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Abstract—The paper presents a theoretical foundation for test
sequence generation based on an input specification. The set
of possible test sequences is first partitioned according to a
generic “triaging” function, which can be created from a state-
machine specification in various ways. The notion of coverage
metric is then expressed in terms of the categories produced by
this function. Many existing test generation problems, such as t-
way state or transition coverage, become particular cases of this
generic framework. We then present algorithms for generating
sets of test sequences providing guaranteed full coverage with
respect to a metric, by building and processing a special type of
graph called a Cayley graph. An implementation of these concepts
is then experimentally evaluated against existing techniques, and
shows it provides better performance in terms of running time
and test suite size.

I. Introduction

Specification-based testing is the process of generating sets
of inputs to be sent to a system under test (SUT), with the goal
of checking that the SUT fulfills the specification [32]. As with
any form of software testing, it is intrinsically an incomplete
technique that cannot provide any formal compliance guarantee;
it is rather aimed at helping developers find defects —specific
inputs for which the specification is violated, and which can
then be used to fix the system’s implementation. Despite this
incompleteness, specification-based testing has proved its bug-
finding capability in numerous use cases over the years [2],
[15].
A large part of existing literature on specification-based

testing focuses on what we call static systems, where each
test consists of a single input given to the SUT, which in turn
produces a single output that is then evaluated by some test
oracle. Another line of work focuses on specification-based
testing of reactive systems, whose interaction is often done
through multiple “calls” or “requests”. In such a case, one is
interested in generating not single inputs, but sequences of
actions. In this paper, we shall focus on one specific type of
specification, expressed in the form of a labeled finite-state
automaton where vertices represent observable states, and edge
labels represent actions to be performed on the system.

Intuitively, the principle of all specification-based generation
methods can be summarized as the search for a set of inputs that
“covers” the specification. For example, on a system specified
as a list of simple if-then rules, an input generation technique
could produce one test representative of each “if” case, in order
to make sure that the system behaves as expected in each of
the stipulated eventualities. This intuitive notion of coverage

can be concretely defined in multiple ways, depending on the
specification and the formal notation used to express it. In
the specific case of finite-state automata, state and transition
coverage are two notions that naturally spring to mind, but a
quick survey of literature reveals there are many others: t-way
transition coverage, state residual coverage, etc.
It could be interesting, from a theoretical standpoint, to

ask whether there exists a uniform way of generating a set
of sequences that satisfy any of these coverage criteria. In
the current state of things, existing studies provide ad hoc
algorithms to generate sequences for a single one of these
coverage metrics; hence, an algorithm developed for state
coverage cannot be used for transition coverage. In almost
all cases, these works provide no formal guarantee that full
coverage is always achieved. What is more, many notions of
coverage mentioned above still lack a systematic algorithm to
generate sequences according to them.
This, in a nutshell, is the issue addressed by the present

paper. More precisely, we describe a systematic technique
to efficiently generate test sequences based on a reactive
specification expressed as a labeled finite-state automaton,
according to an arbitrary coverage criterion. In Section II,
we formally introduce the problem of specification-based test
sequence generation, and through numerous examples, discuss
a variety of coverage criteria expressed on labeled finite-state
automata taken from existing literature. We also present an
overview of related works on the subject.

In Section III, we introduce a generic theoretical framework
for test sequence generation based on the notion of triaging
function. A triaging function associates every sequence to an
abstract object called a category; it can be seen as a way
of classifying all possible sequences in a specific way. The
problem of coverage can then be reduced to the problem of
generating one sequence belonging to each category. We show
how the many coverage criteria introduced earlier can actually
be expressed as specific cases of triaging functions, and how
other criteria, unexplored in past literature, can also be taken
into account.
In Section IV, we then present an algorithm for generating

a set of sequences providing complete coverage with respect
to a given criterion, by constructing a structure borrowed from
abstract algebra called a Cayley graph. The problem is solved
by reduction to the Directed Steiner Tree problem on the Cayley
graph induced by a given finite-state automaton and triaging
function. The construction is generic, and can apply for any



coverage criterion that satisfies the conditions presented in
the paper.

Finally, in Section V, we describe an implementation of these
concepts, by extending an existing open source test sequence
generation library. We provide a comparison and analysis of
our proposed approach on 33 problem instances taken from
existing sources. These experiments show that, despite solving
a problem using a generic algorithm, our proposed approach
outperforms existing state-of-the-art sequence generation tools,
in terms of running time, coverage obtained, and test suite size.

II. Specification-Based Test Sequence Generation
We shall first formally define the problem of specification-

based test sequence generation, and then give examples
of coverage criteria on these specifications that have been
presented in past literature. We shall end by a review of existing
works that focus on this particular problem and related notions.

A. Specification of Reactive Systems
Let Q be an abstract set of states, and A be a set of actions.

A reactive system specification is a tuple M = 〈Q, A, q0, δ, ω〉,
where δ : Q × A→ Q is a transition function, q0 ∈ Q is the
unique initial state, and ω : Q→ {>,⊥, ?} is an oracle function.
The oracle function associates each state of the specification
to a ternary Boolean verdict that can either be true (>), false
(⊥), or inconclusive (?). Intuitively, elements of A represent
positive and controllable actions that can be done by a user on a
system, while elements of Q represent the observable states of
the system resulting from these actions. By convention, if δ is
not total, we shall assume the presence of an implicit sink state
q⊥ ∈ Q such that ω(q⊥) = ⊥, and assume that δ(q, a) = q⊥ for
all pairs (q, a) not defined originally in δ. In such a way, any
transition left undefined by the specification is assumed to be
a failure. Since this paper is only concerned with generating
sequences, the actual definition of ω will not matter.1

A test sequence is a finite sequence of alternating states and
actions q0

a0
−−→ q1

a1
−−→ · · ·

an−1
−−−→ qn such that for every i > 0,

qi = δ(qi−1, ai−1). We shall equate such a sequence with a word
over Σ ⊆ (Q × A ×Q)∗, where Σ contains all finite sequences
such that the i-th element element is the triplet of the form
(qi−1, ai−1, qi). The execution of a test sequence consists of
performing the sequence of actions a0, . . . , an over a system
under test (SUT) and observing the resulting states. A test
sequence is said to be passing if all observed system states
correspond to the expected ones, and ends in a state q such that
ω(q) = >. The sequence is said to be failing if some observed
state of the SUT does not correspond to the expected state in
the sequence, or if it ends in a state q such that ω(q) = ⊥. In
all other cases, the test sequence is said to be inconclusive.
Despite being simple, this model of reactive specifications

is nevertheless very general, as expressions in many other
formal notations can be transformed into equivalent finite-state

1Other works on model-based testing specify reactive systems as Mealy
machines where the SUT produces an output on each transition (e.g. [38]),
whereas our model is actually a Moore machine. This distinction is irrelevant
since both models are equivalent in terms of expressiveness.
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Figure 1: A simple reactive specification.

automata of this form; this includes, among others, Linear
Temporal Logic on finite prefixes and UML state diagrams.
Moreover, states and actions, although represented by atomic
symbols, can actually model arbitrary finite structures with
the proper amount of syntactical sugar. For example, with few
adaptations, such a model can be used to represent navigation
state machines [17], where states represent web pages and
actions represent clicks on specific elements of a page. Simple
objects such as a wristwatch or a vending machine have options
that can be accessed by pressing various buttons, and hence
be modeled in a similar way [20].
We call specification-based test sequence generation any

operation which, from the set of all possible test sequences
Σ, picks a subset ΣT ⊆ Σ called the test suite. Typically, test
sequence generation intends to choose elements of Σ by taking
advantage that the specification is known, and selects test
sequences that are representative of various “cases” described
by that specification. This is what we call coverage-based test
sequence generation. It has been argued that such a technique
has the potential of finding classes of faults, such as missing
special cases, that are difficult to find by only considering the
implementation of a system [21].

B. Coverage Criteria
In the present context, a coverage criterion is a condition

on the set of sequences that is used to decide whether this set
sufficiently reveals the underlying specification. To illustrate the
various coverage criteria, we shall use the reactive specification
shown in Figure 1, where Q = {1, 2, 3, 4} and A = {a, b, c, d}.
To avoid clutter, we use the notation conventions defined above
and do not represent the implicit sink state q⊥ and the transitions
leading to it. We assume all other states are success states.
1) State Coverage: A first natural possibility is to declare

a set of sequences as complete if the sequences it contains,
taken together, are such that each state of the specification is
visited at least once. In this example, the set Ss,1 = {a, db}
satisfies this criterion, and so does the set Ss,2 = {abdb}. These
two sets, however, generate only valid sequences according to
our specification. Since testing also involves generating error
conditions, state coverage would then require that the implicit
sink q⊥ is also visited at least once, leading to solutions such
as the set Ss,3 = {aa, db}.
2) Action Coverage: There exist situations where visiting

each state of the specification may not be an appropriate
measure of coverage. Note that in the previous example, none
of the three sets shown execute action c. A second coverage
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criterion, called action coverage, stipulates that each action label
be present in at least one sequence. Here, the set Sa,1 = {ab, dc}
satisfies this criterion.
3) Transition Coverage: A stronger coverage criterion is

called transition coverage; as its name implies it requires that
each transition be taken at least once [30]. For example, 2 b

−→ 4
is a different transition than 3 b

−→ 1 even though they have the
same action label. In general, one cannot generate a set of
sequences for transition coverage by simply taking the union
of a set achieving state coverage with a set achieving action
coverage.
4) Residual Coverage: Suppose that the system under test

makes a difference between the last state of a sequence and
an intermediate state. In this context, one would like not only
to visit every state, but to produce sequences that end on
each state. This is called state residual coverage [11]. A set
like Ssr,1 = {ε, a, d, db} satisfies this criterion. Note how this
example introduces the use of ε , which represents the empty
sequence of actions. Intuitively, this would amount to starting
the test procedure, performing no action, and ending the test
procedure.
The same notion of residual coverage can be translated to

actions and transitions, although this has seldom been done
in the literature. Action residual coverage requires a set of
sequences such that each action is the last element of at least
one sequence; for example, Sar,1 = {a, ab, d, dc}. Transition
residual coverage requires that sequences end in each possible
transition; a set like Str,1 = {a, ab, d, dc, db, dbb} satisfies this
criterion.
5) Combinatorial Coverage: Covering actions, states or

transitions exactly once may not be a strong enough guarantee
that the SUT complies with the specification. One possibility is
to increase the strength of the tests —for example, by generating
sequences such that every possible sequence of t successive
states is visited at least once. One can see that the state coverage
criterion presented above is simply the particular case where
t = 1. As an example, a possible set of sequences for 3-way
state coverage (i.e. t = 3) is Sts,1 = {aba, abdc, dbbd, dbba};
these sequences indeed cover the 8 sequences of three states
that are actually possible in the specification.
As for the other coverage metrics seen so far, t-way

coverage can also be considered for actions; for example,
2-way action coverage requires to exercise every possible
sequence of two successive actions (a solution being Sta,1 =
{aba, cdc, abd, dbbd}). Finally, t-way transition coverage ap-
plies the same condition on transitions instead of actions. For
t = 2, this criterion has been called transition-pair coverage
by Offutt et al. [30].

C. State of the Art in Test Sequence Generation
From a test case generation perspective, many works relate

to the problem studied in this paper. They can be divided into
a few broad categories, which we discuss in the following.
1) Static and Combinatorial Test Sequence Generation:

A first broadly related line of work is test case generation
for the “static” case. In this context, the goal is to generate

inputs (i.e. parameter values) to be fed to a function or a
system under test. We call this process static, in the sense that
each test instance consists of a single assignment of values
to each parameter. Nevertheless, static test input generation
shares some similarities with the present problem. For example,
in equivalence class partitioning (ECP), also called category
partition testing [34], the principle is to partition the space of
values for each input parameter into a number of equivalence
classes, and to generate tests so that all combinations of
equivalence classes for each input appears in some test. ECP is
particularly useful when testing inputs on infinite domains, as
these domains can be abstracted by a finite number of classes.
We shall see that one of the contributions of this paper is
precisely to reframe test sequence generation as a form of ECP.

The t-way test sequence generation problem was introduced
as a dynamic counterpart to static combinatorial testing. Given
a set of actions A, the classical problem is defined as the
generation of a set of traces where each action occurs exactly
once in each trace, such that all sequences of t actions occur
somewhere in one of the traces. Kuhn et al. [26, Chapter 10]
describe a greedy algorithm which generates a large number
of tests, scores each by the number of previously uncovered
sequences it covers, and selects the highest scoring test. While
this technique generates sequences of actions, it is not based
on a specification; we shall see in the experiments detailed in
Section V that it generates a disproportionate number of invalid
sequences and struggles to achieve full coverage according to
any metric.
2) Conformance Testing: The generation of test sequences

falls more closely into the field of model-based testing for so-
called reactive systems [3]. In this field, conformance testing
has led to a very large body of works. The problem consists of
discovering whether an unknown implementation behaves in
the same way as a specification given as a finite-state machine
with inputs and outputs, i.e. that the same input sequences
produce the same output sequences in both the SUT and the
specification [10], [28]. Methods for testing in such a context
have been reviewed by Ural [37] and Dorofeeva et al. [12];
they include the W, HSI, H, SPY, UIOv and P methods [7],
[16], [31].
It shall be noted that these techniques operate under much

stronger constraints than the problem addressed in this paper.
They assume the internal state of the SUT is not observable,
and can only be partially deduced by the outputs it produces. As
a matter of fact, the central task of most of the testing methods
enumerated above is to traverse the specification in various
ways in order to progressively discover the states of the SUT,
and to ensure that every state of the specification exists in the
implementation. This is done through the progressive construc-
tion of so-called “synchronizing”, “homing” or “distinguishing”
sequences [27]. For this reason, the sequences generated by
these methods are typically long, as guessing the internal
state can often only be done through convoluted traversals of
several input-output pairs and frequent returns to a known state.
In counterpart, they also provide much stronger guarantees;
typically, if the specification can be modeled as an FSM with



n states, and the (unknown) implementation has at most m ≥ n
states, they can derive a test suite such that the implementation
passes this test suite if and only if it conforms (i.e. is equivalent)
to the specification. A more detailed discussion of the difference
between test sequence generation and conformance testing can
be found in [38, §5.1.4].
3) Specification-Based Test Sequence Generation: We end

this section by discussing the works that tackle the same
problem as ours, which is to generate sequences that cover a
finite-state machine specification. Despite being considered one
of the simplest forms of model-based testing, the generation of
test sequences from a finite-state machine specification is often
handled through ad hoc means, and has been the subject of
few formal studies. Li et al. describe an algorithm to solve the
Minimum Cost Test Paths Problem (MCTP), which consists
of finding a set of sequences (here called “test paths”) that
cover a given set of sub-paths in a graph, using a greedy set
covering algorithm [29]; it reports on experiments but the
implementation is not made available.

Chander et al. consider a specific automaton and generate a
set of sequences such that all sequences of t states present in
the specification occur somewhere in the set [5]. The authors
describe how this can be formulated, and solved optimally, as
an integer linear programming (ILP) problem. However, the
approach is only illustrated on a few examples for the single
case t = 1.

Kim et al. [24] use model checking to generate test sequences
from UML statecharts. In this work, each coverage criterion is
expressed as a CTL formula; performing model checking of
the statechart against that formula produces a counter-example
trace which can then be used as a test sequence. The writing
of the statecharts into NuSMV input files, and the expression
of the coverage criteria as CTL formulæ, however, seem to be
done by hand. Moreover, for criteria such as state coverage,
one CTL formula per state needs to be written, each producing
one distinct trace. The fact that a single trace visits more than
one state is not exploited, leading to an unnecessarily large
number of sequences.

Generating test sequences from a specification using multi-
agent systems has been suggested by Kruse [25]. Srivastava
et al. use ant colony optimization to generate test sequence
that achieve either state coverage or transition coverage of a
given FSM [33]. In this latter case, probabilities are associated
to each transition, making the model a Markov chain. The
test generation problem takes into account these probabilities
when generating the test sequences. In both works, however,
the presented algorithm only supports t-way state and transition
coverage for t = 1, and guarantee neither full coverage nor the
optimality of the solution.

Ferrer et al. [14] study search-based approaches and propose
two algorithms. First, the Genetic Test Sequence Generator
(GTSG) constructs an entire test suite by evolving a population
of solutions in each iteration until a given coverage criterion is
fulfilled. The algorithm tries to find the tests that maximize the
coverage, then it sequentially adds them to the solution. Second,
the ACO Test Sequence (ACOts) algorithm is an adaptation of

an ant colony algorithm that can deal with the construction of
large graphs of unknown size. Experimental analysis claims
that these two search-based approaches are better than the
greedy deterministic approach, especially in the most complex
instances. However, the paper provides no publicly available
implementation and no benchmark dataset.
Swain et al. convert a statechart into an intermediate

representation called a State-Activity Diagram (SAD), which
can take into account the lifecycle of multiple interacting
objects [35]. Kansomkeat and Rivepiboon [22] transform a
UML statechart into a flattened structure called a Testing Flow
Graph (TFG), which is then traversed to generate test cases.
Again, in these two works, the coverage metrics supported
are t-way state and transition coverage for the single case
t = 1. Unfortunately, no implementation of these techniques is
provided in their respective papers.
A sequence generation library called SealTest [18] imple-

ments a pseudo-random greedy algorithm to generate sequences
according to a coverage metric, based on the random greedy
algorithm described by [26]. Analysis of the source code shows
that this algorithm generates k random walks of a randomly
selected length inside the specification, and adds to its test suite
the sequence that produces the largest increase in coverage; if
no sequence increases the coverage, it regenerates a new set of
k candidates. The process repeats for a maximum number of
iterations n. Each random walk favors transitions that have not
yet been explored when possible. The values of k and n must
be appropriately guessed by the user, and the process does not
guarantee that full coverage can be achieved. GraphWalker2 is
an industrial-grade tool that operates in a similar manner, by
performing walks inside the finite-state machine specification
and favoring transitions that increase coverage.

III. An Abstract Definition of Coverage

As one can see, there are relatively few works that focus on
the specification-based sequence generation problem, as defined
in this paper. In addition, although these works display a wide
variety of techniques for sequence generation, they all focus
on a narrow set of coverage metrics (t-way state and transition
coverage, with t = 1 for most of them); our discussion in
Section II-B has shown that many other coverage criteria could
be considered, and for which the presented algorithms cannot
be applied. A single of these works provides a construction that
guarantees the generated test sequences achieve full coverage
with respect to the criterion it considers. To address this
issue, we start by providing the basis of a generic formal
framework for describing coverage criteria. These criteria will
be expressed as triaging functions, which will classify test
sequences extracted from a reactive specification into abstract
“categories”. This generic definition will make it possible to
model a large number of coverage criteria into a uniform formal
model.

2https://graphwalker.org

https://graphwalker.org


A. Triaging Functions and Coverage
We recall from Section II-A that any test sequence can be

equated to a list of triplets (q0, a0, q1), (q1, a1, q2), . . . , where
q0 is the initial state of the specification, and qi = δ(qi−1, ai−1)
for every i > 0; note how, with the exception of q0, each state
is the last element of a triplet and the first element of the
next one. Let Σ be the set of all possible runs with respect
to a reactive specification. In the following, we shall denote
by σ ∈ Σ a test sequence, and by σ[i] the i-th triplet of the
sequence.
Let C be a set of elements called categories. A triaging

function is a function κ : Σ → C, which associates each test
sequence to a particular category. Without loss of generality,
we assume that κ is surjective: each category has at least one
sequence associated to it. A triaging function κ can be seen
as a categorization function over sequences, with respect to a
given specification. We consider the equivalence relation ∼ κ

lifted from κ as σ ∼κ σ′ if and only if κ(σ) = κ(σ′). The
kernel of κ is the partition of Σ induced by the quotient Σ/∼κ ;
each subset contains all traces that are categorized in the same
way by κ. The subscript κ is omitted when clear from context.

In some cases, one may wish to associate each test sequence
with all the categories given to its prefixes; this is what we call
the prefix closure. Formally, the prefix closure of a triaging
function κ : Σ→ C is the triaging function κ′ : Σ→ 2C , such
that:

κ′(σ) ,
⋃
σ′4σ

{
κ(σ′)

}
where the notation σ′ 4 σ indicates that σ′ is a prefix of σ.
We shall note by ∫κ the prefix closure of κ; intuitively, this
function accumulates into a set the categories of all prefixes of
a sequence given by κ. For example, if C = N, and if κ(a) = 0,
κ(ab) = 1 and κ(abc) = 2, then ∫κ(abc) = {0, 1, 2}. When
a triaging function is defined as the prefix closure of some
other triaging function, the sets of categories it returns will
be called families, i.e. a family is a set of categories of some
other triaging function.
For a triaging function κ and a set of sequences ΣT ⊆ Σ,

one can say that a category c ∈ C is “covered” if there exists
a sequence σ ∈ ΣT such that c = κ(σ); this is what we call
category coverage. For a prefix closure ∫κ, we say that c is
covered if there exists a sequence σ ∈ ΣT such that c ∈ ∫κ(σ);
this is what we call family coverage. We shall use the notation
c @κ ΣT and c @∫ κ ΣT to indicate that c is (category- or family-
) covered by the set ΣT . Again, we shall omit the subscript
when the triaging function is clear in the context.

This notion of coverage for single sequences can be used to
associate a numerical value to a set of sequences. For a given
triaging function (either κ or ∫κ), the coverage ratio of a test
suite ΣT , noted ρ(ΣT ) is defined as:

ρ(ΣT ) ,
|{c ∈ C : c @ ΣT }|

|C |

Intuitively, ρ(ΣT ) is a value between 0 and 1 that corresponds
to the proportion of categories covered by ΣT with respect to

the total number of categories one can cover using all possible
test sequences. A coverage of 1 indicates that each category
is “represented” somewhere in the test suite, and that the
specification has been fully “covered” by it.

B. Coverage Criteria Revisited
We can now return to the coverage criteria described in

Section II-B and provide a formal definition for each of them
using the concepts we just described.

State residual coverage can be defined as a triaging function
κsr : Σ→ Q, such that κsr ((q0, a1, q1) · · · (qn−1, an−1, qn)) , qn.
In this case, the set of categories is the set of states Q of the
reactive specification, and the function associates a sequence
to the state of the specification it ends at. It is straightforward
to see that a set Σ′ that covers all categories produced by κsr
if it contains one test sequence that ends in each state of the
specification, which indeed corresponds to the state residual
coverage criterion.

Classical state coverage, noted κs , is nothing but the prefix
closure of state residual coverage, i.e. κs , ∫κsr . This is in
line with the intuition that a state q of the specification is
considered covered as long as it has been visited at some point
by some test sequence σ —in other words, that a prefix of
σ ends in q. In this case, the function ρ, applied on a set of
sequences, computes the fraction of all states of the reactive
specification that are visited by the tests.
Coverage criteria on actions and transitions can easily be

defined using the same pattern. A function κar : Σ → A,
such that κsr ((q0, a1, q1) · · · (qn−1, an−1, qn)) , an−1 associates
a sequence with the last action it contains; this corresponds to
the action residual coverage criterion. Action coverage, noted κa,
is the prefix closure of action residual coverage, i.e. κa , ∫κar ;
according to this criterion, an action is covered if it appears
somewhere in one of the test sequences. This time, ρ calculates
the fraction of actions that are exercised by the set of test
sequences. Finally, a function κtr : Σ→ (Q × A×Q), such that
κsr ((q0, a1, q1) · · · (qn−1, an−1, qn)) , (qn−1, an−1, qn) associates
a sequence with the last transition it contains, and corresponds
to the transition residual coverage criterion. Again, transition
coverage, noted κt , is the prefix closure of transition residual
coverage.
We shall now turn to combinatorial, or so-called “t-way”

coverage criteria, and show how they can be expressed as
triaging functions as well. We describe the construction only
for t-way state coverage; by now the reader should have grasped
how similar criteria for actions and transitions can likewise be
defined. We start with the t-way state residual triaging function.
Let κt,sr : Σ→ Πt

i=0Qi be a function that produces a list of at
most t states from a test sequence, defined as follows:

κt,sr ((q0, a1, q1) · · · (qn−1, an−1, qn)) ,


〈q0, . . . , qn〉 if n < t
〈qn−t, qn−t−1, . . . , qn〉

if n ≥ t

Intuitively, κt,sr returns the ordered list of the last t visited
states in the sequence, or a shorter list if the sequence has



a length smaller than t. Note that this definition is such that
the empty trace, ε , is assumed to visit the initial state of
the specification, q0. This fulfills our definition of a triaging
function, and corresponds to t-way state residual coverage.
The t-way state coverage criterion is, again, its prefix closure:
κt,s , ∫κt,sr . One can see that, in this case, the family associated
to a sequence σ is the set of all t-tuples of successive states that
have been visited by the sequence.3 For example, with t = 2, the
sequence dca will result in the family {〈1〉, 〈1, 2〉, 〈2, 1〉, 〈1, 3〉}.
Other triaging functions must be omitted due to lack of

space. However, it should be clear from the examples above
that our proposed framework provides a generic and very
flexible notation to describe triaging functions of various kinds,
including and extending those already studied in past literature
on specification-based test sequence generation.

IV. Sequence Generation with Cayley Graphs
In this section, we provide a procedure that solves the test

sequence generation problem in the general case. The procedure
can be divided into three main steps: generating a Cayley
graph G from a reactive specification and a triaging function,
computing a set of important vertices VI , and finding a Steiner
tree of G that reaches all vertices of VI .

A. Generating Cayley Graphs
The notion of equivalence classes on sequences is closely

linked to an abstract structure called a Cayley graph.

Definition 1. Let κ be a triaging function κ : Σ → C for
some reactive specification M. Let Gκ = 〈Q, q0, δ, `〉 be a
deterministic Moore machine with Q, q0 and δ defined as
usual, and ` : Q → C a state labeling function, associating
each state to a category in C. Gκ is called a Cayley graph of
κ if for every σ ∈ Σ, `(δ(q0, σ)) = κ(σ).

For example, Figure 2 shows Cayley graphs for a few of
the triaging functions we defined in the previous section. As
one can see, each state of the graph is labeled with one of
the categories. One can also observe that, for any path taken
in this graph, the label of the state the path ends with indeed
corresponds to the category that is associated to this path by
the triaging function.

Cayley graphs were first introduced in the study of algebraic
data structures [4]. While our definition allows more than one
vertex to be associated to a category c ∈ Cκ , the original
definition of Cayley graph imposes that ` be injective. When
the context requires it, we will use the term “classical” to
denote this restricted type of graph.
Algorithm 1 generates a Cayley Graph from a triaging

function κ and a reactive specification M. The algorithm
actually builds a graph whose vertices are pairs (c, q) ∈ C ×Q,
where c is a category of κ and q is a state of M; once the
graph is built, the states in each vertex can simply be ignored.
Starting from the empty trace ε , it adds to a set E quadruplets
of the form (κ(ε), q0, ε, a) for all a ∈ A. This represents a

3With the exception of the first t − 1 prefixes of σ, where fewer than t
states will be contained in the tuple.
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Figure 2: The Cayley graphs of some of the triaging functions
defined in this paper, using the automaton of Figure 1 for M.
Colored nodes represent a possible set of important vertices,
and colored edges represent a possible Steiner tree for these
vertices.

Algorithm 1 An algorithm for generating a Cayley Graph
from a triaging function κ and a reactive specification M =
〈Q, A, q0, δ, ω〉.
1: procedure CayleyGraph(M, κ)
2: δ′, E ← ∅; σ ← ε ; V ← {(κ(ε), q0)}
3: for a ∈ A do
4: E ← E ∪ {(κ(ε), q0, ε, a)}
5: end for
6: while E , ∅ do
7: pick (c, q, σ, a) in E
8: c′ ← κ(σ · a)
9: q′ ← δ(q, a)
10: δ′ ← δ′ ∪ {((c, q), a, (c′, q′))}
11: if (c′, q′) < V then
12: V ← V ∪ {(c′, q′)}
13: for a′ ∈ A do
14: E ← E ∪ {(c′, q′, σ · a, a′)}
15: end for
16: end if
17: end while
18: return 〈V, δ′, (κ(ε), q0)〉
19: end procedure

set of transitions to visit, from a given source pair (c, q), a
given “history” sequence and a given action to append to that
history. The algorithm then repeatedly picks (i.e. removes) one
quadruplet of the form (c, q, σ, a) from E . It then computes
κ(s ·a) = c′, and the new state δ(q, a) = q′. Then, the transition
(c, q)

a
→ (c′, q′) is added to the graph. If the pair (c′, q′) has

never been seen before (i.e. is not already in V), a new vertex
labeled (c′, q′) is added to the graph. Finally, the quadruplets
(c′, q′, σ · a, a) are added to the set of transitions to explore.
Note that the algorithm assumes without loss of generality that
δ is total, as per the remarks we made in Section II-A.
We must omit the proof that this algorithm terminates and

does produce a Cayley graph, due to lack of space. A quick
analysis shows that the number of quadruplets that can be
iterated over in the loop of line 6 is bounded by O(|C | · |Q | · |A|).



Indeed, one can observe that throughout its execution, the set E
will contain at most one quadruplet (c, q, σ, a) for given c ∈ C,
q ∈ Q and a ∈ A. This entails the algorithm is linear in the
number of categories of the triaging function κ, the number of
actions and the number of states in the reactive specification.4.

B. Building Test Suites for Triaging Functions

Once a Cayley graph has been computed for a given triaging
function κ, the second step of the operation is to pick vertices of
this graph we call the important vertices. The set of important
vertices must be a set VI = {q1, . . . , qn}, where n = |C |, and
such that for every c ∈ C, there exists some 1 ≤ i ≤ n such that
qi = c. In other words, the set of important vertices contains one
vertex labeled with each category in C. For example, consider
the Cayley graph of κa in Figure 2b. A set of important vertices
is any set that includes each possible action; one possible set
is identified in yellow.5 Note that nodes that are not chosen
may nevertheless be part of the Steiner tree if they are on the
way to an important leaf that must be reached.

The last step of the process is to generate sequences from
the Cayley graph and the important vertices. Let G = 〈V, E〉
be a directed graph with a vertex v0 ∈ V called the root. Let
V ′ ⊆ V be a subset of edges of V . A directed Steiner tree is
a minimal subgraph G′ ⊆ G where the root is connected to
every vertex v ∈ V ′. In the present case, the set V ′ is simply
the set of important vertices identified in the previous step.
In Figure 2, edges in red in each graph represent a possible
Steiner tree. In the general case, finding the Steiner tree of
the smallest size is known to be NP-hard, although it can be
approximated in polynomial time [6].
Once the Steiner tree has been computed, the last step is

trivial. The set of test sequences is simply the set of all paths
in G that start from the root and, taking only vertices of the
Steiner tree, end in all important nodes. For example, in the
case of Figure 2a, such a set is {ε, a, d, db}. Notice how this
corresponds exactly to the set Ssr,1 we presented in Section
II-B, and how this set indeed achieves state coverage. A similar
reasoning could be made for the remaining Cayley graphs.
We can observe that a test suite generated by this method

ensures complete category coverage by construction, since the
Steiner tree is such that there is one path that ends in each of
the important vertices, and hence one sequence that produces
each category of κ. Note that, thanks to the genericity of our
construction, full coverage is guaranteed for category coverage
of all triaging functions at once. When the labeling function
` of the Cayley graph is injective, one can observe that all
vertices are important. In this particular case, the Steiner tree
degenerates into the problem of finding the minimum spanning
tree of G. Then by definition, there is no way to cover each
vertex of G using fewer edges (i.e. fewer actions).

4However, for some functions, the number of categories |C | may itself
be exponential in the size of the specification. This will be discussed in
Section IV-C

5Although our simple examples look like almost all vertices must be chosen,
this is no longer the case for more complex specifications.

C. Dealing with Prefix Closure
We shall now turn to triaging functions κ′ that are expressed

as the prefix closure of some other function (i.e. κ′ = ∫κ for
some κ). Algorithm 1 could in principle be used to generate a
Cayley graph by directly using ∫κ as the triaging function;
however, since the families of prefix closures are sets of
categories, their size is typically exponentially larger than the
set of categories of the original function –which would result
in extremely large Cayley graphs. For example, categories
for t-way residual state coverage are sequences of t states,
whose number is bounded by |Q |t . Prefix closure is t-way state
coverage, where categories are sets of sequences of t-states,
whose number is bounded by 2 |Q |t . Moreover, the choice of
important vertices on the resulting graph differs, since a prefix
closure produces families and requires family coverage instead
of category coverage. One would hence need to pick vertices in
such a way that each category of κ is contained in the family
of at least one important vertex of G∫ κ .
A simpler way to work around this problem is to realize

that any test suite that achieves full category coverage with
respect to κ, by construction, also achieves full family coverage
with respect to ∫κ. Indeed, for any c ∈ C, if c = κ(σ), then
c ∈ ∫κ(σ), since σ is obviously a prefix of itself. Therefore, any
test suite ΣT generated for a triaging function κ also works for
its prefix coverage. Note however that, in the general case, this
test suite will be larger than needed, as κ is a stronger condition
on a test suite than ∫κ: the first requires that each category be
produced at the end of a test sequence, while it suffices for
the second that each category be produced somewhere along
some sequence.

Therefore, an optional filtering step can be applied in order
to account for this fact. To this end, from a set of test sequences
ΣT = {σ1, . . . , σn}, we shall create a hypergraph HΣT . As a
reminder, a hypergraph is a tuple G = 〈V ′, E〉, where V ′ is a
set of vertices and E ⊆ 22V is a set of edges. A hypergraph
generalizes a classical graph by having edges that may link
more than two vertices. An edge covering of some hypergraph
is a set of edges E ′ ⊆ E , such that for every vertex v ∈ V ′,
there exists an edge e = {v0, v1, . . . , vk} ∈ E ′ such that v ∈ e.
Hence every vertex of the graph is adjacent to at least one
hyperedge in E ′.

In the present case, we let V ′ , ΣT , the set of all sequences
produced in the test suite produced for κ. The set of hyperedges
E is defined as:

E ,
⋃
c∈C

{σ ∈ ΣT : c ∈ ∫κ(σ)}

In other words, there exists one hyperedge for each category
c produced by κ; this hyperedge connects the test sequences
associated to a family that contains c. Finding a vertex covering
of this hypergraph results in a subset E ′ ⊆ ΣT of the test
sequences of κ where each category is produced at least once.
This problem is NP-complete [23]; however, in practice it can
be approximated in polynomial time by a greedy procedure that
repeatedly picks the hyperedge containing the most uncovered
vertices [8]. In our running example, we have seen that a



possible test suite for residual state coverage κsr is Ssr,1 =
{ε, a, d, db}. State coverage is the prefix closure of state residual
coverage; using the hypergraph vertex covering approach, we
obtain the subset {a, db}, which, as it turns out, is exactly the
set we had shown for that triaging function.
The advantage of this construction is that it avoids enu-

merating the families of ∫κ and does not require the explicit
construction of its Cayley graph. This is the approach we chose
to follow in our implementation of these principles, which will
be discussed next.

V. Implementation and Experiments
In this section, we report on the implementation and

experimental evaluation of the concepts described earlier. To
the best of our knowledge, this paper is the first that compares
multiple test sequence generation tools on the same input
specifications.

A. Implementation
We chose to implement the concepts described in this paper

by extending the open source Java library called SealTest
mentioned in Section II-C. [18]. This choice was made for two
reasons. First, the modular organization of SealTest makes it
possible to implement new trace generators easily. Second, as
we shall discuss later, the library constitutes the single other
implementation of a specification-based sequence generator
that was publicly available for comparison. Our additions have
been integrated directly into SealTest’s code base.

The library provides constructs for defining coverage metrics
and test sequence generators for AtomicEvents, which are
actions represented by a single symbol; an AtomicTrace is
a finite sequence of atomic events, and a TestSuite is a
set of atomic traces. A reactive specification can be created
programmatically, or read form a variety of text file formats.
SealTest provides the TraceGenerator interface, which

allows users to implement their own trace generation algorithms.
It currently provides a simple method for generating traces, us-
ing a greedy random algorithm we already described in Section
II-C. The extension to SealTest we implemented is an alternate
generator, based on the Cayley graph/Steiner tree construction
presented in this paper. Here, T is the generic type of the
events inside a sequence, and U is the type of the categories
returned by the function. The new class needs to implement
getStartCategory(), which returns the equivalence class of
the empty trace, and processTransition(), which returns
the equivalence class of the current sequence to which a new
event is to be appended.

B. Results
Equipped with this implementation, we proceeded to exper-

imentally evaluate our proposed approach. We focus on two
important dimensions of the problem, quality and performance.
Quality is measured by the size of the generated test suites and
their associated coverage ratio, for various specifications and
coverage metrics. Performance is the ability of a test generation
technique to produce results in reasonable time, and to scale

well to large specifications. It is important to stress that our
experiments do not intend to assess the relative merits of
the coverage criteria themselves, in terms of their capacity to
reveal bugs. We recall that our focus is on providing a uniform
theoretical framework to generate test sequences according to
a variety of criteria.
Alas, only two of the works mentioned in Section II-C

provide an implementation. In addition, for those related works
that give experimental results, many of the input specifications
that have been used could not be found either. Finally, some
papers report data only for state coverage, while some others
report figures only for transition coverage; those that report
on t-way coverage consider only the case t = 1. This makes
any meaningful empirical comparison between our proposed
approach and these related works flatly impossible.6 Among
the remaining contenders, only SealTest v0.2 and GraphWalker
v4.3.0 could be reliably tested against our approach.

Consequently, we prepared a set of experiments that com-
pares our Cayley-based approach to these two available imple-
mentations. To remedy the absence of a preexisting benchmark,
we gathered 33 reactive specifications from various sources.
This includes temporal specification patterns introduced by
Dwyer et al. [13] and which occur commonly in the spec-
ification of concurrent and reactive systems; all the finite-
state specifications that could be obtained from aforementioned
works on test sequence generation (less than a dozen); classical
examples of specifications such as the Qui-Donc protocol [38]
and the microwave FSM [9]; FSMs obtained from common
regular expressions, such as validating e-mail addresses and
date formats; and a collection of FSM from the Büchi Store
[36]. The reactive specifications range in size between 2 and 33
states, and have up to 397 transitions. Counting all combinations
of state/action/transition residual/non-residual t-way triaging
functions on all specifications, this corresponds to a set of
1452 distinct problem instances which generate a total of 5808
measurements. The experiments were implemented using the
LabPal testing framework [19], and their source code is publicly
available, including all input specifications.7 Each problem
instance was given a timeout of 15 seconds.
1) Solution Quality: The first factor we measured is the

size of the generated test sequences. This can be measured
as both the number of different sequences required to achieve
a certain coverage, and the total number of actions in the
generated sequences. We compared the size of generated test
sequences on all 33 automata specifications for the SealTest
(greedy) algorithm and our proposed method. Figure 3 shows
a graphical rendition of this comparison. Each dot represents
a problem instance; the length of the Cayley-based suite is the
position on the x-axis, and the length of the greedy solution
is the position on the y-axis. Any dot that lies over the line
x = y therefore corresponds to a problem where the Cayley
approach produced a smaller (i.e. better) test suite. On average
over all problem instances, our proposed approach generates

6Implementations of tools that perform conformance testing, such as JTorX
[1] must also be discarded as they address a different problem; see §II-C2.

7https://bitbucket.org/sylvainhalle/cayley-fsm-benchmark
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Figure 3: Test suite total length for each problem instance, for
the Cayley graph method (x) and the random greedy method
(y). The red line represents x = y.

test suites that are 4.73 times smaller than SealTest, and 4.11
times smaller than GraphWalker.
These experiments made us discover that both SealTest

and GraphWalker fail to obtain 100% coverage for many
problem instances; (in 23.0% and 38.0% of all problem
instances, respectively). When such a situation occurs, these
tools repeatedly generate candidate sequences to add to a test
suite, but find that none of them increases the existing coverage.
As a result, they exhaust their iterations and return a suite that is
artificially small, but also well below full coverage (sometimes
as little as 25%). This is why, in comparison, the Cayley-based
test suites are sometimes larger —in counterpart they always
have 100% coverage.

Note that increasing the maximum number of iterations of the
greedy algorithm is of no help. In our benchmark, the greedy
algorithm was given an upper limit of 1000 × t iterations8,
yet none of the generated test suites contains more than 275
sequences. Thus, the random greedy algorithm already runs
for hundreds of iterations without succeeding at generating a
single new sequence that increases coverage.
As for the number of sequences inside a test suite, we

observed that the random greedy approach produces fewer
sequences than the Cayley approach, by an average factor of
0.542; this number decreases to 0.529 when including only test
suites with full coverage. This is again a consequence of the
behavior of the greedy algorithm when it fails to achieve full
coverage. We recall that our proposed approach nevertheless
produces test suites that contain a clearly smaller total number
of actions to be performed on the SUT.
2) Performance: A second factor we measured is the

required time it takes to generate a test sequence from a
given specification. On the same problem instances as before,
we measured the relative time taken by the greedy vs. the
Cayley approach to generate a test sequence. The plot cannot
be included due to lack of space, but the results are unequivocal
as the Cayley approach is on average 238.0 times faster. This
can, again, be explained by the fact that the greedy random
algorithm spends a lot of time trying to find new sequences
that increase coverage (and often fails, as we have seen above).

8With t being the strength of the coverage, and t = 1 for non-combinatorial
coverage criteria.
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Figure 4: Test sequence generation time with respect to
specification size (in states), for the state coverage metric.

In absolute numbers, our proposed approach took at most 1793
ms to generate a test suite across the whole benchmark.
We also studied the impact of increasing the size of the

specification on the running time of the algorithm. An excerpt
of the results is plotted in Figure 4, for the state coverage
metric; it shows the roughly linear increase we expected from
our discussion about the complexity of Algorithm 1. Similar
trends were observed with respect to the number of states and
number of categories of the underlying triaging function.

VI. Conclusion and Future Work
This paper described a theoretical framework for the catego-

rization and generation of test sequences based on a reactive
specification. Given a triaging function κ and its associated
Cayley graph, we have shown a generic technique to create a
set of test sequences with respect to multiple kinds of coverage
metrics, all based on the actual function κ being used. We
then presented a generic algorithm for generating a set of test
sequences that achieves complete coverage with respect to any
of these metrics. Experimental results on a large set of reactive
specifications have shown that our method is usable and efficient
in practice. It is faster than existing tested solutions, produces
smaller test suites on average, and produces guaranteed 100%
coverage for all metrics and all input specifications.
Some limitations of the proposed framework need to be

mentioned. First, it would be advisable to characterize the
coverage criteria that can be expressed as triaging functions;
the fact that those studied in this paper are amenable to such
a formulation is not proof that they all can. Second, all the
models we have hown are deterministic. It would be interesting
to study how non-determinism could be handled in the proposed
framework. For example, is it possible to generate adaptive,
tree-shaped test cases in a similar way?
This theoretical framework lends itself to many extensions

and improvements. First, there remain some coverage criteria
for which a formulation into triaging functions has yet to
be provided, in particular prime path coverage. Second, the
model could be extended to take into account actual inputs
and outputs, instead of abstract transition labels; this could
make it possible to express the more complex conformance
testing problem in the form of triaging functions. In addition,
one could think of assigning a different cost to each action;
this would correspond to a scenario where performing an
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action on a system is more complex or resource-intensive than
for other actions. Adapting our proposed technique to this
situation should be straightforward, as this would translate
into solving the corresponding problems on the Cayley graph
for the weighted case. So far, we also considered events as
atomic units; one could handle richer types of events on which
arbitrary predicates could be evaluated, and upgrade the triaging
functions and test sequence generation techniques to this more
general setting.

Finally, a promising approach would consist of adapting this
theoretical framework to other formalisms for sequences of
actions, such as temporal logic or regular expressions. To this
end, it would suffice to provide appropriate definitions of a
triaging function for these notations; this work is currently
under way and will be the subject of an upcoming publication.
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