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Abstract: This paper presents the development of a new bi-arc dynamic numerical model
for predicting AC critical flashover voltage (FOV) of ice-covered extra-high voltage (EHV)
insulators. The proposed model is based on a generic calculation algorithm coupled with commercial
finite element method software designed to solve the Obenaus/Rizk model. The proposed
model allows one to implement the Nottingham and Mayr approaches and compare the results
obtained as a function of the arcing distance, the freezing water conductivity, and the initial arc
length. The validation of the model demonstrated high accuracy in predicting the FOV of ice-covered
post-type insulators and its capability to simulate the interaction of the two partial arcs during the
flashover process. In particular, the results showed that the Nottingham approach is sensibly more
accurate than the Mayr one, especially in simulating the dynamic behavior of the partial arcs during
the flashover process. Based on the encouraging results obtained, a multi-arc calculation algorithm
was proposed using the bi-arc dynamic numerical model as a basis. The basic idea, which consists in
dividing the multi-arc model in several bi-arc modules, was not implemented and validated but will
serve as a promising concept for future work.

Keywords: extra-high voltage (EHV) ice-covered insulator; flashover; predictive bi- and multi-arcs
model; dynamic numerical modelling

1. Introduction

Flashover of line and post insulators due to atmospheric ice accretion still constitutes a cause
of failure of overhead electrical power transmission systems in cold climate regions. From several
reports from several utilities, the flashover phenomenon of high voltage (HV) insulators can occur
during ice accretion, or after, under warming conditions [1–8]. Several studies performed on this topic
demonstrate that the flashover process is an extremely complex phenomenon, which depends on the
interaction between the partial arcs established along the air gaps, the condition of the ice surface,
the environmental conditions, and the arcing distance of the insulator [1–11].

In the last several decades, the advancement of knowledge flashover process on ab ice-surface
has led to the development of several single arc mathematical models, both static [12–14] and
dynamic [15–18], dedicated to predicting flashover voltage (FOV) of short ice-covered insulators.
These mathematical models were based on the Obenaus/Rizk approach developed for polluted
insulators. This approach is an equivalent electrical circuit where a single arc is in series with a residual
electrical resistance [19,20]. In the case of polluted insulators, the residual resistance is calculated
from the Wilkins analytical expression, which takes into account the arc root in contact with the ice
surface [21]. However, the Wilkins formulation, initially developed for single arc model, limits the
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applicability of the static and dynamic predictive models to insulators having an arcing distance lower
than 1 m [12–18].

To avoid such a limitation, some authors have proposed an improvement of the original Wilkins
formulation in order to determine the residual resistance when several partial arcs and, consequently,
several arc roots are in contact with the ice surface [14,18]. This improved formulation has been
implemented in a mathematical static multi-arc model and successfully applied to full-scale extra-high
voltage (EHV) post insulators [14]. More recently, this new formulation has been implemented in a
dynamic mathematical multi-arc model using the same approach and is described in more detail in
the next section [18]. Both multi-arc models can predict the critical flashover voltage, but the dynamic
model can also predict leakage current and arc velocity during the flashover process. However, the use
of Wilkins formulation requires a well-defined uniform ice layer that can only be obtained under
severe icing conditions [14]. Under these specific conditions, the insulator is totally bridged by the
ice deposit that can then be modelled as a half cylinder [12–18]. Consequently, the calculation of the
residual resistance using the analytical formulation remains the main limitation of the current static
and dynamic mathematical models used to predict the FOV of ice-covered insulators. However, such
residual resistance formulation is more difficult to use in the case of non-uniform conductive layers
with complex geometries.

To deal with such geometry-related problems, new numerical predictive models using E-field
calculation tools have been proposed in recent years by the authors [22–24]. The initial numerical model
proposed was based on the Obenaus/Rizk single arc model, which was solved using the finite element
method (FEM) to compute the E-field distribution between the arc root and the ground electrode,
the leakage current as well as the residual resistance of the ice surface for a defined applied voltage.
The accuracy of this new predictive model was significantly improved for FOV results obtained with
single arc mathematical models without previously associated geometrical limitations thanks to FEM.
These results lead to the development of a numerical static bi-arc model extending the numerical single
arc model to longer insulators of arcing distance up to 2.02 m [22]. The accuracy of the results obtained
with this bi-arc model also showed improvement compared to mathematical models. However, these
static numerical models do not take into account the implementation of the arc velocity displacement
and do not provide information about the temporal evolution of the arc at the ice surface as well as the
leakage current. Such limitations of the numerical static models were solved by the recent development
of a generic numerical single arc model in which the Bondiou–Gallimberti arc velocity criterion was
implemented to handle the dynamic behavior of the single arc [23,24]. This model was validated with
both experimental results obtained from ice-covered and polluted insulators with an improvement in
the accuracy of FOV compared to mathematical and numerical static models.

Based on the promising results obtained with the numerical dynamic single arc model developed
in recent work, the authors decided to extend this model to the original numerical static bi-arc model
presented in detail in [22]. For that, two different approaches proposed by Nottingham [25] and
Mayr [26] to simulate the partial arc were implemented in the bi-arc numerical dynamic model.
The results were then compared and validated in terms of FOV, leakage current, and evolving partial
arc velocities.

The proposed bi-arc dynamic numerical models proposed in this paper represent a great
improvement over actual mathematical multi-arc models, which are confined to simple geometries
without providing accurate and convivial numerical tools for outdoor insulator dimensioning.

2. A Background of Ice-Covered Insulator Mathematical Flashover Models

2.1. The Obenaus/Rizk Single Arc Flashover Model

The first mathematical model of flashover was proposed by Obenaus and dedicated to polluted
insulators [19]. This simple model, illustrated in Figure 1, is the basis of most of the flashover models
developed in the last four decades for both the polluted and ice-covered insulators.
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Rumeli and the mathematical formulation proposed by Wilkins. Rumeli proposed that the surface 
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advantage of this model is to provide a simple representation of the complex geometry of the 
uniformly polluted layer covering the insulator. However, the calculation of the pollution resistance 
of this open model requires that the density current distribution is uniform. In this context, the 
presence of the arc root at the surface of the conductive layer cannot be taken into account, resulting 
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the other hand, Wilkins proposed a new formulation, which takes into account the effect of the 
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ice-covered insulators that present a rectangular conductive layer in the case of a uniform ice layer 
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Figure 1. Single arc modeling of flashover proposed by Obenaus.

For Obenaus, flashover can be modelled as a single arc of length x in series with a conductive
layer of length L−x, where L is the total arcing distance of the insulator. The conductive layer of
residual resistance R(x) is used to model the humidified polluted layer at the surface of the insulator
or the water film formed on the insulator ice surface during the melting period. The corresponding
circuit equation for the Obenaus model can then be expressed as follows [19]:

Vm = x·Earc + ImR(x) + Ve (1)

where Vm is the applied voltage (V); x is the local arc length (m); Im is the leakage current (A); R(x) is the
residual resistance of ice layer (Ω); Ve is the electrode voltage drop. The latter can be neglected under
AC, where Earc is the electric field along the arc, as initially proposed by Nottingham and expressed as
follows [25]:

Earc = A·I−n
m (2)

with A and n being the arc constants.
Equations (1) and (2) describe the flashover process for DC applied voltage. For AC, however,

Rizk observed that the arc extinguishes and re-ignites twice in each cycle [15]. The arc re-ignition occurs
when the AC applied voltage Vm reaches a specific value, the arc re-ignition condition, which can be
expressed as follows [20]:

Vm =
kx
Ib
m

(3)

where k and b are the arc re-ignition constants, and Vm and Im are respectively the peak value of the
AC applied voltage (V) and the corresponding peak value of current (A).

In order to solve Equation (1), the residual resistance R(x) must be determined. For mathematical
flashover models, two approaches have been principally used: the open or AR model proposed by
Rumeli and the mathematical formulation proposed by Wilkins. Rumeli proposed that the surface
geometry of a real insulator is equivalent to a surface in 2D, called the AR or open model, whose length
is equal to the leakage path of the given real insulator, as explained in detail in [27]. The advantage of
this model is to provide a simple representation of the complex geometry of the uniformly polluted
layer covering the insulator. However, the calculation of the pollution resistance of this open model
requires that the density current distribution is uniform. In this context, the presence of the arc root at
the surface of the conductive layer cannot be taken into account, resulting in a significant discrepancy
in the calculation of R(x), as demonstrated in a previous study [27]. On the other hand, Wilkins
proposed a new formulation, which takes into account the effect of the density current line constriction
at the arc root position. Wilkins considered the arc root to be circular so that the arc is cylindrical [21].
In this way, using the theory of conjugate functions, the calculation of the polluted surface resistance is
reduced to a two-dimensional (2D) Laplacian field problem. Taking into account the presence of the
arc root influences the residual resistance R(x) value as demonstrated in [27]. However, the problem
with the Wilkins formulation is that it can only be applied to rectangular pollution layer geometries
and is not representative of real polluted insulator shapes. In fact, this formulation has been principally
applied in the modeling of ice-covered insulators that present a rectangular conductive layer in the
case of a uniform ice layer [12–18], as illustrated by Figure 2. In most ice-covered insulator flashover
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models, the simplified Wilkins formulation given by Equation (4) is used with the assumption that w
� L, where w is the width of the ice layer, and L the total arcing distance of the insulator:

R(x) =
1

2πγe

[
π(L− x)

w
+ ln

( w
2πr

)]
(4)

where x is the arc length, γe is the surface conductivity of the conductive layer, and r is the arc
root radius.

In previous studies, the arc-root radius r and the surface conductivity γe were established to
be [12]:

r =

√
Im

B·π (5)

γe = α·σ + β (6)

where Im is the leakage current, B a constant dependent on the nature of the applied voltage and
conductive layer, σ is the conductivity of the freezing water, and α and β are constants depending on
the applied voltage polarity [12–14].
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Figure 2. Example of ice accumulation shape obtained for (a) a porcelain post insulator with an arcing
distance L of 103 cm and (b) the corresponding rectangular model geometry used in the flashover model.

Based on the Obenaus/Rizk single arc model, several mathematical models, static or dynamic,
were developed, predicting with a good accuracy the FOV of ice-covered insulators [12,13,15].
However, this single arc model could only be applied to ice-covered insulators with arcing distance
lower than 1 m. As reported in several experimental studies on short suspended insulator strings
or small porcelain post insulators, the flashover process of small ice-covered insulators seems to be
attributed to the propagation of only one electrical arc on the ice surface [4,5]. For longer insulators
like those used on EHV electrical networks, several electrical partial arcs on the ice can be involved in
the flashover process [11,14,18]. In that situation, a single arc flashover model cannot be used anymore
and some modifications need to be done, as presented in the next sections.

2.2. The Principle of the Static Mathematical Multi-Arcs Model

When the arcing distance of an insulator is greater than 1 m, as in the case of EHV insulators,
the dynamic ice accretion process combined with the presence of a high electric field leads to the
formation of several air gaps (ice-free sections of the insulator). These air gaps combined with the
presence of a water film generated by the melting of the ice surface lead to a non-uniform distribution
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of the electric field along the insulator [9,10]. Under melting conditions, the increase of the electric field
along the air gaps can initiate partial arcs along each air gap, as illustrated in Figure 3. Depending on
the applied voltage amplitude and the ice surface condition, these partial arcs will start propagating
along the ice-covered insulator, and will join together to form a complete flashover [9,10]. The presence
of several partial arcs will give rise to several arc roots on the ice surface. This specific condition
generates a non-uniform current distribution along the melted ice surface, which directly affects the
calculation of the residual resistance of the ice layer.

In order to be able to model this multi-arc flashover process in the case of ice-covered
EHV insulators, some authors have proposed extending the single-arc static model, proposed by
Obenaus/Rizk, to multi-arcs (Figure 4a) by dividing the ice layer covering the EHV insulator in several
parts in order to create several single arc models in series (Figure 4b) [14,18]. Moreover, in the case of a
partial arc having two roots in contact with the ice surface (Arc 2 on Figure 4a), it must be divided into
two partial arcs of equal length (Arc’2 and Arc”2 on Figure 4b) in order to create two single arc models.
Hence, using this strategy, an ice-covered insulator (Figure 4a) with three partial arcs can be modelled
using four single arc models in series (Figure 4b), which are governed by Equations (1) to (3).
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Figure 3. Example of ice accumulation shape obtained for an extra-high voltage (EHV) porcelain
post insulator under wet grown ice conditions: (a) with the presence of two partial arcs for an arcing
distance of 1.36 m; (b) with the presence of three partial arcs for an arcing distance of 2.7 m [14,18].
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Figure 4. Illustration of the principle use for modelling multi-arc flashover process of ice-covered EHV
insulator: (a) initial model with three partial arcs; (b) equivalent model composed of four single arcs.

This arc splitting modelling requires modifying the expression of the residual resistance R(x)
given by Equation (4) for the one arc root in contact with the ice surface. In a general way, if there are
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N arcs, N′ of them with one-root and N′ ′ of them with two roots in contact with the ice (N = N′ + N′ ′),
then the total residual resistance R(x) of the multi-arc model can be expressed as follows [14]:

R(x) =
1

2πγe

[(
(L− x)

w

)
+
(

N + 2N′
)
ln
( w

2πr

)]
(7)

where L is the total arcing distance of the insulator, and x is the sum of all arc lengths.
Despite the relatively good accuracy obtained with this static multi-arc model, as demonstrated

in [14], it does not allow the behavior of partial arcs at the ice surface to be modeled or the arc velocity
and leakage current evolution during the flashover process to be computed. For that purpose, a new
dynamic multi-arcs model has been proposed recently, as presented in the next section.

2.3. The Principle of Dynamic Mathematical Multi-Arcs Models

The dynamic mathematical multi-arc model proposed by [18] uses exactly the same approach as
the static multi-arc model does, and is shown in Figure 4. In fact, the authors use a single arc dynamic
mathematical model, presented in detail in [10], to solve the multi-arc problem by splitting of several
single arc models, as illustrated in Figure 4b. The residual resistance R(x) is calculated using the same
analytical formulation as used for the multi-arc static model, given by Equation (7).

The main goal here is to propose a new arc velocity criterion. The proposed arc velocity criterion
is an experimental criterion based on high-speed measurements of the propagation of the upper and
lower partial arcs during the flashover process. From the results obtained, the authors have determined
that the average arc velocity v(x) can be expressed as follows [18]:

v(m/s) = 1634.1x4.9 (8)

where x(m) is the length of the partial arc.
The proposed multi-arc dynamic model allows for predictions of the FOV of EHV ice-covered

insulators with good accuracy (Figure 3), with an arcing distance up to 4.17 m. However, this model
presents two main limitations. The first limitation comes from the experimental arc velocity criterion
given by Equation (8), which does not permit any simulation of the velocity of each partial arc on the
ice surface. Indeed, each partial arc propagates differently depending on its initial length and position
along the insulator. Generally, the upper partial arc located at the top of the insulator in contact
with the HV electrode is faster than the lower partial arc in contact with the ground electrode [14,18].
The second limitation of this model, which is the same as that of the static multi-arcs model, is inherent
to the residual resistance R(x) calculation given by Equation (7). Since this equation can only be applied
to rectangular geometries as those obtained for uniform ice layers, and it cannot cover non-uniform ice
layers as those obtained in the case of insulators equipped with alternated sheds or booster sheds [4,5].

3. Numerical Implementation of the Bi-Arc Flashover Model

3.1. The Single Arc Dynamic Numerical Model

Despite the fact that both static and dynamic mathematical models applied to multi-arcs flashover
modeling provide satisfactory results in terms of FOV, they present limitations, as mentioned previously.
To extend the applicability of predictive models in terms of geometry and dynamic parameter
computation, the authors have developed in recent years a new dynamic single arc model to predict
the FOV of both polluted and ice-covered insulators. This model, presented in detail in [23,24],
uses the finite element method (FEM) commercial software Comsol Multiphysics to compute the
leakage current Im and the residual resistance R(x) related to the Obenaus/Rizk model described by
Equations (1)–(3). The numerical approach based on FEM allows for the development of a versatile
model, which is independent of the geometry of the problem and, consequently, can be applied to
different conductive layer geometries as those of polluted insulators using the AR model or ice-covered
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insulators [24]. The FEM is coupled with a generic calculation algorithm implemented in Matlab (2017),
which allows for the determination of the evolution of the leakage current Im and the arc velocity
v(t) during the flashover process as well as the average E-field Eavg in the conductive layer. In order
to implement dynamic calculations, the algorithm uses the arc propagation criterion proposed by
Hampton [28] given by Equation (9) as well as the arc velocity criterion proposed by Gallimberti [29]
given by Equation (10). These equations are expressed as:

Earc < Eavg (9)

where Eavg is average E-field inside the pollution layer, and Earc is the electric field along the arc given
by Equation (2), and as:

v(t) =
Im

Qi(t)
(10)

where Qi(t) is the required charge to induce the arc propagation, which can be expressed as follows [29]:

Qi(t) = ∑ CiVap (11)

where Ci is the capacitance between the arc root and the ground, and Vap the potential at the arc root.
In Equation (11), the capacitance Ci can be calculated using a spherical approximation [29]

as follows:

Ci = 4πε0r·sh(α)
∞

∑
i
[sh(θ)]−1 (12)

with

θ = cos h−1
(

L− x
r

)
(13)

where L is the insulator arcing distance, x the arc length, and r the arc root radius given by Equation (5).
As mentioned previously, this single arc dynamic numerical model has been successfully applied

to both polluted and ice-covered insulators presenting short arcing distance. As for longer insulators,
where two and more partial arcs are involved in the flashover process, the authors decided to improve
their single arc numerical model in order to take into account the presence of several partial arcs at the
surface of the ice-covered insulator.

3.2. The Principle of the Bi-Arc Dynamic Numerical Model

Figure 5 illustrates the modelling principle used in the case of two partial arcs in contact with the
ice surface. As observed in Figure 5, during experimental tests, each partial arc is initiated at the HV
and ground electrode, respectively; consequently, each of them featuring an arc root in contact with the
ice surface. Due to the presence of the two arc roots on the ice surface, the distribution of the current
density is modified as well as the residual resistance R(x) between the two arc roots [22]. However,
this modification can be easily handled using FEM, where the influence of each arc root is taken
into account without having to divide the ice layer into two parts, as done for the two mathematical
multi-arc models.

The proposed bi-arc dynamic numerical model is based on the static bi-arc numerical model
developed by the authors dedicated to ice-covered insulators and presented in detail in [22]. To this
static model, the authors have applied the dynamic conditions used in their numerical single arc model
described previously to enable it to compute the evolution of the leakage current and the velocity
of each partial arc during the flashover process. Hence, both the Hampton and Gallimberti criteria
described by Equations (9) and (10) were used, respectively. In the FEM model, two arc roots in contact
with the ice surface was considered as an equipotential surface of radius r given by Equation (5).
The voltage boundary condition applied to each arc root was calculated as follows:

Vapp1 = Vm − x1·A·I−n
m (14)
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Vapp2 = x2·A·I−n
m (15)

where Vm is the peak value of the AC applied voltage; x1 and x2 are the length of the Partial Arcs 1
and 2, respectively (Figure 5); Im is the leakage current; R(x) is the residual resistance of the ice layer;
A and n are the AC arc constants.

Finally, as proposed in [14], the condition of arc re-ignition given by Equation (3) must be modified
in order to take into account the presence of the two arcs one of which propagates downwards (Arc 1)
and the other upwards (Arc 2). This is done by the following equation:

Vm =
1
Ib
m
(k1·x1 + k2·x2) (16)

where x1 and x2 are the length of Partial Arcs 1 and 2, respectively, and k1, k2, and b are AC parameters
given by [12].
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Figure 6 shows the calculation algorithm of the dynamic numerical bi-arc models. This algorithm
is based on the calculation algorithm developed for the dynamic numerical single arc presented in
detail in [23] with the addition of the new conditions expressed by Equations (14)–(16). The problem is
solved in 2D using the electric current module and the stationary solver of Comsol Multiphysics, where
only the conductive surface of the ice layer, given by Equation (6), is discretized in finite elements.
The FEM is used to calculate the average electric field Eavg, the residual resistance R(x), and the peak
value of the leakage current Im determined by integrating the current density along a moving line
located at equal distance of the arc roots. The FEM calculation are performed at each time step of
the dynamic calculation algorithm, which used the numerical FEM results to verify the re-ignition
condition given by Equation (16) followed by the arc propagation condition given by Equation (9).
For each case, if the condition is not satisfied, the peak value of the applied source voltage Vm is
increased by 1 kV, and the process is repeated until condition verification. Once the two conditions are
verified, the velocity of each partial arc using Equation (10) is determined and used to increment the
arc root position of these latter. The process is repeated until the sum of the length of the two partial
arcs equals the arcing distance of the insulator. The simulation parameters used by the calculation
algorithm are summarized in Table 1.
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Table 1. Simulation parameters obtained under AC applied voltage used for the bi-arc dynamic
numerical model [3–5].

Parameters Value

A 204.7
n 0.561

Ve 0
B 0.875
α 0.0675
β 2.45
K1 1118
K2 1300
b 0.528
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3.3. The Validation of the Bi-Arc Dynamic Numerical Model

3.3.1. The Effect of Arcing Distance and Freezing Water Conductivity

The model was validated using the experimental results extracted from literature [14,22]. For that
purpose, post-type insulators as the one in Figure 5a, with arcing distances of 1.39 and 2.02 m, were
used. The corresponding FEM model is presented in Figure 5b. The experimental FOV of the post
insulator was determined under wet-grown ice conditions during the melting period, the most likely
conditions for flashover [4,5]. The tests were conducted for two freezing water conductivities, 30 and
80 µs/cm and two ice thicknesses, 1.5 and 2 cm. The two air gaps were created artificially in order to
control their length, fixed at 5 cm, which is the length used in the simulations.

Table 2 presents the comparison between the experimental results and those calculated with
the proposed bi-arc numerical model, showing that the dynamic numerical model provides accurate
results with an average discrepancy of 1.4%. Moreover, the implementation of the arc velocity criterion
allows for computation of the evolution of the velocity of each partial arc during the flashover
process presented in Figures 7 and 8 and the leakage current presented on Figure 9. The results were
obtained for an arcing distance of 139 and 202 cm for an ice thickness of 1.5 cm and for freezing water
conductivities of 30 and 80 µs/cm, respectively.

Table 2. Flashover voltage (FOV) obtained with the new numerical dynamic bi-arc model for a freezing
water conductivity of 80 µs/cm.

Ice Thickness (cm) σ (µs/cm) Experimental FOV
(kVrms)

Numerical Dynamic
FOV (kVrms)

Absolute
Discrepancy (%)

Arcing distance of 139 cm
1.5 30 130 130.4 0.31
1.5 80 120 117.1 2.17
2 80 120 124.0 3.3

Arcing distance of 202 cm
1.5 30 190 189.0 0.53
1.5 80 161 160.3 0.43
2 80 150 147.5 1.67

As observed in Figures 7 and 8, only the velocity of one partial arc is represented. Indeed, Partial
Arc 1 propagates downward and Partial Arc 2 propagates upward at the same velocity. Consequently,
the flashover occurs when the two partial arcs meet each other at the middle of the ice layer or when
they reach the same arc length equal to 64.5 cm for an arcing distance of 139 cm and equal to 96 cm for
an arcing distance of 202 cm (Figure 8). The identical behavior of the two partial arcs can be attributed
to the fact that the simulations were conducted for an identical initial arc length (x01 = x02 = 5 cm) for
each partial arc. In this way, the problem becomes symmetric in terms of the arc velocity criterion
given by Equation (10), as the two partial arcs are in series (with the same leakage current Im) and each
arc root has the same capacity Ci calculated by Equation (12), between the arc root and the middle of
the ice layer. Additionally, the velocity of each partial arc for the same arcing distance increases as
freezing water conductivity increases. In the same way, the velocity of each partial arc, for the same
freezing water conductivity, increases as arcing distance increases. From Figure 7, it can be observed
that the time to flashover decreases as freezing water conductivity increases, for each arcing distance.
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The first observation of Figure 9 shows that the evolution and order of magnitude of the
values obtained for the leakage current are consistent with the experimental observations made
in laboratory [12–18]. The results show that the leakage current increases with an increase in freezing
water conductivity as well as with an increase in arcing distance. It can also be observed that the time
to flashover decreases significantly as freezing water conductivity increases.
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80 µs/cm.

3.3.2. The Effect of the Initial Partial Arc Length

In order to verify the effect of the initial arc length, it was decided to perform another simulation,
with the same arcing distances and parameters, but with the initial length x1 of Partial Arc 1 equal
to twice the length x2 of Partial Arc 2 (x01 = 2x02). The arc velocity evolution of each partial arc as a
function of time and the arc length for an arcing distance of 202 cm and freezing water conductivities
of 30 and 80 µs/cm are presented in Figures 10 and 11, respectively. The results obtained clearly
demonstrate that the initial arc length has a significant influence on its velocity. Indeed, it is interesting
to note that the velocity of Arc 1 is significantly greater than that of Partial Arc 2, with a final value
twice the velocity of Arc 2 for the arcing distance of 139 cm, the latter being similar to the velocity
obtained with the same initial arc length (x01 = x02). For the arcing distance of 202 cm, the ratio between
the velocities of Partial Arcs 1 and 2 decreases to a value of 1.3. With a higher velocity, Partial Arc 1
propagates on a longer distance at the ice surface than Partial Arc 2. In the case of Figure 10, Partial
Arc 1 meets with Partial Arc 2 at a length x1 of 80 and 111 cm for the arcing distance of 139 and 202 cm,
respectively (Figure 11).
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80 µs/cm.

Table 3 presents a comparison between the FOV results obtained with the bi-arc dynamic
numerical model for the two partial arc initial length conditions. As can be observed, the effect
of initial arc length is not significant on the FOV results. However, the absolute discrepancy seems to
increase with an increase of arcing distance and freezing water conductivity as well.

Table 3. Effect of initial arc length on the FOV predictive results for freezing water conductivity of
80 µs/cm.

Ice Thickness (cm) σ (µs/cm) FOV for x01 = x02
(kVrms)

FOV for x01 = 2x02
(kVrms)

Absolute
Discrepancy (%)

Arcing distance of 139 cm
1.5 30 130.4 130.7 0.23
1.5 80 117.1 117.5 0.34

Arcing distance of 202 cm
1.5 30 189.0 187.2 0.95
1.5 80 160.3 157.7 1.61

3.4. Implementation of the Mayr Approach in the Bi-Arc Dynamic Numerical Model

As shown in the last section, the proposed numerical dynamic model improves the accuracy of
the initial numerical static bi-arc model and computes the evolution of the leakage current and the arc
velocity during the flashover process. However, as explained in Section 3.2, the proposed calculation
algorithm is applicable only in the case where the two partial arcs are in contact with the HV and
ground electrodes. In this particular situation, the voltage condition applied to each arc root can be
easily determined using Equations (14) and (15). In the case of one partial arc having its two arc roots
in contact with the ice layer, as illustrated by Arc 2 in Figure 4a, these equations are no longer valid.
The two arc roots must be considered as two floating potentials of unknown values, which are required
to deeply modify the calculation algorithm of Figure 6. In order to solve this problem, it was decided
to implement a new modeling of the arc in the numerical dynamic bi-arc model using the arc resistance
formulation proposed by Mayr, as presented in detail in the next section.
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3.4.1. Arc Resistance Formulation by Mayr

Mayr has proposed an analytical formulation in order to define the arc resistance Rarc, which can be
defined only by the arc voltage and current. He has also described the arc resistance as time-dependent
by introducing the arc time constant τ. According to Mayr, the arc resistance Rarc can be expressed as
follows [26]:

d
dt

[
ln

1
Rarc

]
=

1
τ

(
Varc·Im

P0
− 1
)

(17)

where τ = 100 µs is the arc time constant [26] and P0 the cooling power dissipated in the arc, expressed
numerically as

P0 = Varc·Im = Earc·x·Im (18)

where Im is the leakage current (A), x is the arc length, and Earc is the electric field along the arc given
by Equation (2).

The development of Equation (17) for its implementation in the calculation algorithm leads to the
following expression:

dRarc =

[(
Rarc

τ

)
·
(

1− Rarc·Im

Earc

)]
·dt. (19)

In order to be consistent with the implementation of the arc resistance formulation given by
Equation (19) in the algorithm, the authors decided to introduce a new expression of the electric
field Earc along the partial arc, which is generally expressed by the Nottingham expression given by
Equation (2). The new expression of Earc is as follows:

Earc =
Im·Rarc

x
(20)

where Im is le leakage current, Rarc is the arc resistance given by Equation (19), and x is the partial
arc length.

3.4.2. Validation of the Implementation of the Mayr Arc Resistance Formulation

The implementation of Equations (19) and (20) in the dynamic bi-arc algorithm of Figure 6
was validated using the same simulation parameters and ice-covered insulator geometries as used
in Section 3.3. The results obtained were then compared with those of the Nottingham approach
in terms of FOV, arc velocity, and leakage current evolutions. Table 4 presents the FOV predictive
results obtained with the two approaches for an ice thickness of 1.5 cm, which are compared to the
experimental results. The results showed that the Mayr approach is less accurate than Nottingham
with an average discrepancy of 2.43% and 0.86%, respectively. However, the difference between the
two approaches is not significant. The absolute accuracy seems to decrease significantly as arcing
distance and freezing water conductivity are increased, but less so for the latter.

Figures 12 and 13 compare the evolution of partial arc velocity as a function of time and arc
length, respectively, for an arcing distance of 202 cm and initial condition x01 = x02. Only the velocity
of one partial arc is presented, as they are the same due to the symmetry of the problem, as explained
previously. Figure 14 shows the evolution of leakage current Im as a function of arc length for an arcing
distance of 202 cm and initial condition x01 = x02.

From Figure 12, it can be observed that the evolution of the velocities obtained with Mayr is
different from those obtained with Nottingham, with a longer time to flashover for Mayr. In Figure 13,
however, the evolutions of the arc velocity as a function of the arc length are closed, as the dynamic
aspect is not represented in this figure, with a final value slightly greater for Nottingham. The same
observation goes for the evolution of leakage current in Figure 14 but with a difference in the final
value of Im, which is higher for Mayr than it is for Nottingham.



Energies 2018, 11, 2792 15 of 22

Table 4. FOV predictive results obtained with the Nottingham and Mayr approaches for an ice thickness
of 1.5 cm and the same initial arc length (x01 = x02).

σ (µs/cm) Experimental
FOV (kVrms)

FOV with
Nottingham (kVrms)

FOV with Mayr
(kVrms)

Absolute Discrepancy

(%) (%)

Arcing distance of 139 cm
30 130 130.4 136.4 0.31 4.92
80 120 117.1 125.0 2.17 4.17

Arcing distance of 202 cm
30 190 189.0 191.0 0.53 0.53
80 161 160.3 160.8 0.43 0.12
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Finally, the authors decided to compare the effect of the initial arc length between the Mayr and
Nottingham approaches. FOV results are listed in Table 5 for an ice thickness of 1.5 cm, an arcing
distance of 202 cm, and a freezing water conductivity of 80 µs/cm. With an average discrepancy of
2.37%, compared to the 1.53% obtained with Nottingham, it can be concluded that the Mayr approach,
in the same manner that Nottingham, takes into account the effect of the initial partial arc length.

Figures 15 and 16 present the evolution of the velocity of each partial arc as a function of time
and arc length, respectively. The simulations were performed for the same simulation conditions
used for an arcing distance of 202 cm and for a freezing water conductivity of 80 µs/cm. As observed
previously, the dynamic behavior of the partial arc differs from Mayr and Nottingham with a greater
time to flashover with the Mayr approach. However, the arc velocity values obtained with Mayr are in
good agreement with those obtained with Nottingham, which is confirmed by the results of Figure 16.

Table 5. FOV predictive results obtained with the Nottingham and Mayr approaches for an ice thickness
of 1.5 cm and for different initial arc lengths (x01 = 2x02).

σ (µs/cm) Experimental
FOV (kVrms)

FOV with
Nottingham (kVrms)

FOV with Mayr
(kVrms)

Absolute Discrepancy

(%) (%)

Arcing distance of 139 cm
30 130 130.7 132.3 0.53 1.77
80 120 117.5 122.8 2.08 2.33

Arcing distance of 202 cm
30 190 187.2 182.7 1.47 3.84
80 161 157.7 163.5 2.05 1.55
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4. Discussion

4.1. Validation of the Bi-Arc Dynamic Numerical Model Results

The obtained results have demonstrated the predicting ability of the proposed bi-arc dynamic
numerical model with an average discrepancy of 1.4% for the FOV values (Table 2). In that case,
the initial length of the two air gaps were the same and equal to 5 cm in order to respect the experimental
conditions used in the literature to determine the FOV of ice-covered post-type insulators. This result
can also be compared to that obtained with the authors’ previous bi-arc static numerical model [22] with
which an average discrepancy of 4.2% was obtained for the same experimental conditions. This clearly
demonstrates that the implementation of the Galimberti arc velocity criterion improves the accuracy of
the FOV predictive results. Moreover, this implementation also allows one to compute the velocity of
each partial arc during the flashover process, as shown in Figures 7 and 8. Due to the symmetrical
configuration of the problem when the two partial arcs present the same initial length, the two partial
arcs propagate with the same velocity. This velocity is influenced by the freezing water conductivity
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and increases with it. This behavior is normal because at higher conductivities, as shown in Figure 9,
the leakage current increases affecting directly the Gallimberti criterion, which is current dependent
through Equation (10). Additionally, with the increase of arcing distance, the velocity also increases
due to the fact that the partial arc has more time to accelerate before flashover occurrence.

When the initial arc length is different, the symmetry of the problem is lost and the partial arcs
propagate at different velocities, as shown in Figures 10 and 11. The partial arc with longer initial
length is faster with a ratio that is principally influenced by the arcing distance and not by the freezing
water conductivity. The effect of the initial arc length can be explained by the capacity Ci of each partial
arc calculated by Equation (12). Partial arc capacity is directly dependent on the partial arc length x,
thus affecting the determination of the Gallimberti criterion. Although the initial arc lengths affect the
partial arc velocities, they do not influence the FOV as illustrated by the predictive results of Table 3
where an average discrepancy of 0.78% is obtained.

As a partial conclusion, it can be observed that the arc velocity criterion proposed by Gallimberti
allows one to obtain accurate results in terms of FOV as well as arc velocity determination. In particular,
this criterion can take into account the effect of freezing water conductivity, arcing distance, and initial
partial arc length during the flashover process. The results obtained using this criterion are in
agreement with the experimental observations and results regarding the parameters influenced the
dynamic behavior of the partial arcs propagating on the ice surface. However, the lack of experimental
measurements of arc velocities makes the arc velocity simulations difficult to validate.

The only available experimental result is the experimental arc velocity criterion given by
Equation (8), which expresses the arc velocity a function of its length. This experimental criterion was
determined on the average velocity of several partial arcs propagating at the ice surface for arcing
distance up to 4.17 m, as reported in [18]. However, in the reported study, the experimental conditions,
such as the freezing water conductivity and the initial arc length, were not specified. For example,
applying Equation (8) with an arc length of 96 cm yielded a velocity of 1338 m/s. This value can be
compared to the final arc velocity value (corresponding to an arc length of 96 cm) of Figure 8 for an
arcing distance of 202 cm, which was found to be equal to 1291 m/s for a freezing water conductivity of
30 µs/cm and 1854 m/s for 80 µs/cm. For an arcing distance of 139 cm, the final arc length was 64.5 cm
with a velocity of 1042 m/s for 30 µs/cm and 1446 m/s for 80 µs/cm. The velocity value obtained with
Equation (8) yielded 191 m/s, which is largely lower than the simulation results. From these results, it
seems that the only arc velocity value matching the experimental criterion was obtained for a freezing
water conductivity of 30 µs/cm for an arc length close to 1 m. This also indicates that the proposed
experimental criterion can only be applied to the specific cases investigated in the study.

4.2. Comparison of Nottingham and Mayr Approaches

The determination of the electric field Earc along the partial arc is important in the determination
of the arc propagation based on the Hampton criterion given by Equation (9) and used in the
authors’ algorithm calculation. In most of the models for predicting the FOV of polluted and
ice-covered insulators, the Nottingham expression given by Equation (2) was used to determine Earc.
As demonstrated by the results obtained in the present paper, this approach is accurate and easy to
implement as long as the arc constants A and n (Table 1) are correctly determined experimentally. On the
other hand, although the Mayr approach expressed by Equation (19) is more difficult to implement in
an algorithm, it can facilitate the determination of the flashover parameters by considering the partial
arc as an electrical resistance. It can also be used to determine Earc using Equation (20) in order to
validate the Hampton criterion.

The comparison of the two approaches performed in this paper demonstrates that the Mayr
approach can predict FOV with a relatively good accuracy. However, the results obtained are sensibly
less accurate than those obtained by Nottingham with an average discrepancy of 2.4% compared to the
1.2% obtained with the latter. In Figures 12–16, it can be observed that Mayr seems to underestimate
the final value of the arc velocity by around 7% but overestimates the final value of the leakage current



Energies 2018, 11, 2792 19 of 22

by around 30%. The most significant difference between the two approaches lies in the simulation of
the dynamic behavior of the partial arcs in terms of time to flashover, which is longer in the case of
Mayr, as can be observed in Figures 12 and 15. This difference can be attributed to the expression of the
arc resistance which remains an approximation of the arc behavior, and which was initially developed
for polluted insulators [26]. Moreover, the increase in time to flashover obtained with Mayr can be
explained by the implementation of the expression of Earc by Equation (20), which is dependent on the
arc resistance calculation. However, despite the difference obtained, the results obtained with the Mayr
approach can be considered accurate, taking into account the effect of freezing water conductivity in
the same manner as the Nottingham approach.

4.3. The Proposition to Extend the Bi-Arc Dynamic Numerical Model to Multi-Arc Flashover Modeling

In this section, the possibility to extend the bi-arc dynamic numerical model to a multi-arc
flashover process is discussed. As illustrated in Figure 3, the flashover of EHV post-type ice-covered
insulators with an arcing distance of up to 4.17 m can be the result of the propagation of three to
several partial arcs. In general, when the arcing distance becomes greater than 2.02 m, at least one of
the arcs has its two arc roots in contact with the ice layer, as illustrated by Arc2 in Figure 17a. This arc
configuration is problematic, as its two arc roots become two equipotential surfaces with floating
potentials, adding two unknown values in the electrical circuit. However, this specific constraint
can be solved by using the Mayr approach, as given by Equation (19), to model Partial Arc 2 as an
electrical resistance.
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Figure 17. Examples of decomposition of a multi-arc problem with several bi-arc modules: (a) multi-arc
models of arcing distance L with three partial arcs and (b) decomposition of the model in two
bi-arc modules.

By using the Mayr approach for Partial Arc 2, the multi-arc model can be divided into several
bi-arc modules as illustrated in Figure 17b. The bi-arc calculation algorithm with the implementation
of an arc resistance calculation can then be applied to each module. Each bi-arcs module is in series
and interconnected through the partial arc with its two arc roots in contact with the ice layer (Arc 2
in Figure 17). Hence, the modules are interdependent; consequently, they have an influence on each
other. Figure 18 proposes a calculation algorithm that can be used to develop a new multi-arc dynamic
numerical model involving three partial arcs at the ice surface, as shown in Figure 17a. In this example,
each bi-arc module calculates the different parameters associated to their respective ice layer section
(arc propagation, arc velocity, arc and residual resistances, and Eavg) and exchanges these data to
compute the leakage current Im as a function of applied voltage Vm. Once this is done, the algorithm
verifies if one of the sections of the ice layer is short-circuited by the two partial arcs (partial flashover
obtained). In the negative, the process is repeated until a partial flashover occurs. When this happens,
the multi-arc algorithm applies the bi-arc module to the remaining ice section with the two remaining
partial arcs. In a general way, when N partial arcs are present at the ice surface with N−2 partial arcs
having their two arc roots in contact with the ice layer, N−1 bi-arc modules are required to simulate
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this problem using the same principle of calculation described previously. In this way, the proposed
calculation algorithm of Figure 18 has no limit in terms of the number of partial arcs.
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It is important to mention that, as illustrated in Figure 17b, each bi-arc module takes into account
the entire length of the partial arc (Arc 2 in the example of Figure 17) in the validation of the arc
propagation and arc velocity criteria given by Equations (9) and (10). The length of Partial Arc 2 is
important because, as demonstrated by the results of Figures 10 and 11, it has a significant influence on
its velocity, in particular. This approach differs from that used in the multi-arc dynamic mathematical
model and illustrated in Figure 4 where Partial Arc 2 is divided into two partial arcs of equal length.
However, this mathematical model makes use of an experimental arc velocity criterion given by
Equation (8), which only allows one to determine the average velocity of the partial arc and not the
velocity of each partial arc, as reported in [18]. Moreover, this mathematical model uses the modified
Wilkins formulation given by Equation (7), which can only be applied to rectangular geometries, hence
limiting considerably its applicability to more complex problems such as polluted insulators.

5. Conclusions

This paper proposes a new bi-arc dynamic numerical model based on the use of commercial finite
element software coupled with a generic calculation algorithm. This new model can simulate the final
stage of the flashover process of ice-covered insulators resulting from the propagation of two partial
arcs at the ice surface. The accuracy of the results obtained, with an average discrepancy of 1.4% for
the prediction of FOV, conclusively shows that the implementation of the Hampton and Gallimberti
criteria in a modular calculation algorithm can obtain a reliable predictive model. Moreover, thanks to
the use of the finite element method, it is now possible to avoid the problem of analytical formulation
for the residual resistance calculation, consequently allowing the application of this new bi-arc model
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to more complex geometries. The second advantage of the proposed model lies in its capacity to
simulate the dynamic behavior of each partial arc during the flashover process by determining their
respective velocity. This represents a huge improvement in regard to actual bi- and multi-arc dynamic
models limited to using an experiment arc velocity criterion. With the new model, it becomes possible
to study numerically different flashover scenarios involving two partial arcs in order to optimize the
geometry of insulators dedicated to cold regions.

The modularity of the proposed bi-arc model allows for implementation of the formulation of
the Mayr approach used to calculate the equivalent electrical resistance of the partial arcs. The results
obtained conclusively show that the Mayr approach is sensibly less accurate than the approach
proposed by Nottingham, while staying acceptable with an average discrepancy of 3.2% compared
to Nottingham for predicting the FOV. The most significant difference lies in the simulation of the
arc velocity and leakage current as a function of time that differs from Nottingham in terms of time
to flashover and leakage current final value. The implementation of a new approach to calculate the
electric field along the arc using the Mayr arc resistance seems to be the main cause. However, this
does not seem to affect the FOV results or the final values of the partial arc velocity. As for Nottingham,
the Mayr approach allows one to take into account the effect of the freezing water conductivity,
the arcing distance, and the initial arc length. Using the calculation of the arc resistance can be helpful
to simplify the determination of the parameters of the equivalent electrical circuit of the flashover
process when a partial arc has its two arc roots in contact with the ice surface.

Hence, by coupling the implementation of the Nottingham and Mayr approaches, the proposed
bi-arc dynamic numerical model can then be used to simulate the flashover process of longer
ice-covered EHV post-type insulators involving several partial arcs. The simplicity of the proposed
multi-arc dynamic calculation algorithm is based on the use of several bi-arc modules in series
where the partial arcs in contact with the HV and ground electrodes are modelled by the Nottingham
approach and the partial arc with its two arcs roots in contact with the ice surface by the Mayr approach.
The implementation and validation of this multi-arc algorithm will be the subject of future work to
propose a new generic multi-arc dynamic numerical model. Such model will be useful for insulator
dimensioning under polluted or atmospheric icing conditions presenting complex geometries.
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