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ARTICLE INFO ABSTRACT

Keywords: Spoilage of cassava root begins immediately after harvest, but its shelf-life could be enhanced by adopting
Cassaf’a roots freezing as a storage method. This study investigated the physicochemical properties and morphology of starch
Freez‘_ng ) isolated from cassava roots frozen for 0, 7, 14, 21 and 28 days. Extracted starches can be categorized as com-
lsitl;vzzonal properties pound starches with most granules irregularly shaped, with some oval, round and truncated. The amylose
Pasting contents (22.05-26.41%) decreased with an increase in the freezing time, but the starches showed similar

crystallinity pattern (Type A). Fourier infrared transform spectroscopy showed a reduction in double-helical
order structure of starches from frozen cassava roots. Starches from the stored roots were generally less firm,
less sticky, more cohesive and had higher peak and trough viscosities compared to starch from freshly harvested
roots. Starch from frozen cassava starch may be suited for use in certain types of noodles, such as Japanese
noodles due to low amylose content. Future studies are however, required to explore the starches in food

applications.

1. Introduction

Cassava (Manihot esculenta Crantz) is an important industrial crop
that serves as food for humans and animals. It is highly drought tolerant,
and grows reasonably well in poor soils (Ezui, Leffelaar, Franke, Mando,
& Giller, 2018). Zhu (2015) reported that more than 80% of cassava
produced in Africa is used for human food as a source of energy, with
over 50% in the form of various shelf-stable products, for example,
high-quality cassava flour (HQCF) (Maziya-Dixon, Alamu, Popoola, &
Yomeni, 2017; Oyeyinka, Adeloye, Smith, Adesina, & Akinwande,
2019), roasted cassava grits, ‘gari’ (Balogun, Karim, Kolawole, & Solarin,
2012; Oyeyinka, Ajayi, et al., 2019) and tapioca (Akintayo et al., 2019)
These products are characterized by low moisture content which en-
hances stability and long-term storage (Uchechukwu-Agua, Caleb,
Manley, & Opara, 2015; Uchechukwu-Agua, Caleb, & Opara, 2015).
Another important product from cassava root with industrial relevance

and application is starch. Cassava starch can be processed into different
products such as biofuel (Lu, Ding, & Wu, 2011), edible films (Oroz-
co-Parra, Mejia, & Villa, 2020; Schmidt, Porto, Laurindo, & Menegalli,
2013) and tapioca (Akintayo et al., 2019). According to Dudu, Li,
Oyedeji, Oyeyinka, and Ma (2019), cassava flour and starch have
exceptional quality attributes with potentials in bakery applications. For
food and industrial applications, the knowledge of the physicochemical
properties including structure of starch are very vital. Chisenga, Work-
neh, Bultosa, and Alimi (2019) also noted that the application of cassava
flour and starch in product development and food formulations is
influenced by their composition, physicochemical and functional
properties.

The physicochemical properties of cassava starch including pasting
and thermal properties have been widely studied by different re-
searchers (Cuenca, Ferrero, & Albani, 2020; de Sena Aquino, Azevedo,
Ribeiro, Costa, & Amante, 2015; Diaz, Dini, Vina, & Garcia, 2018; He
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et al., 2020; Oyeyinka, Salako, et al., 2020; Penido et al., 2018). These
properties are influenced by factors such as; starch composition, i.e.
amylose to amylopectin ratio (Hoover, Hughes, Chung, & Liu, 2010),
presence of minor non-starch components like fibres (Moorthy, George,
& Padmaja, 1993), pre-gelatinization (Wang, Wang, Song, Zhang, &
Zhang, 2018) and fermentation (Oyeyinka, Adeloye, Olaomo, & Kayi-
tesi, 2020). Wang et al. (2018) reported significant reduction in vis-
cosities of pre-gelatinized cassava as well as the weakening of gel
structures compared to gel produced from un-pregelatinized cassava
starch. An earlier study by Moorthy et al. (1993) found that the presence
of fibrous components in cassava starch increased their gelatinization
temperatures.

The storage of cassava roots before starch extraction has also been
found to influence the physicochemical properties of starch (Abera &
Rakshit, 2004; Osunsami, Akingbala, & Oguntimein, 1989; Oyeyinka,
Salako, et al., 2020). Abera and Rakshit (2004) found that the functional
properties such as swelling power and paste clarity of starch from stored
cassava chips significantly reduced with increasing storage time. The
suitable storage (controlled atmosphere, refrigeration, freezing, and
waxing) of cassava root after harvest is important to prevent microbio-
logical and physiological changes that takes place after harvest (Sanchez
et al., 2013; Uarrota et al., 2016). According to Oyeyinka, Ajayi, et al.
(2019), if these changes are not monitored and controlled through
appropriate storage, the quality of resulting products can be negatively
affected. Previous studies reported that the spoilage of cassava root can
be prevented to a certain extent by storing the roots under a controlled
atmosphere condition (Uchechukwu-Agua, Caleb, Manley, & Opara,
2015), waxing (Nuwamanya et al., 2019), refrigeration (Oyeyinka,
Salako, et al., 2020; Uchechukwu-Agua, Caleb, & Opara, 2015) and
freezing (Uchechukwu-Agua, Caleb, & Opara, 2015). Freezing seems to
be the best method of preservation of foods since water is practically
immobile and unavailable for enzymatic changes within the food
structure, although it may result in damage of tissues in cassava roots.

Due to the rapid deterioration of cassava roots, our research team
focused on preserving the roots through low-temperature storage and
subsequently evaluating the properties of products from the stored roots.
For example, gari has been successfully prepared from frozen (Oyeyinka,
Ajayi, et al., 2019) and refrigerated cassava (Oyeyinka, Adesoye, et al.,
2020), while the quality of cooked paste (Oyeyinka, Ayinla, et al., 2020),
custard (Ogundele et al., 2020) and starch from refrigerated cassava root
has also been documented (Oyeyinka, Salako, et al., 2020).

Several of the studies reported above have shown the potentials of
low-temperature storage such as refrigeration and freezing in extending
the keeping quality of cassava roots. These studies also documented the
quality of products like gari from refrigerated and frozen cassava, starch,
cooked paste and custard from refrigerated cassava. A study by
Oyeyinka, Salako, et al. (2020) showed that refrigeration of cassava root
did not alter the crystalline pattern (type A) of the isolated starch but
resulted in a reduction in starch granule size and an increase in peak,
setback, breakdown and final viscosities. Since the application of
freezing for the storage of cassava roots to reduce its postharvest loss
during marketing has been suggested (Wijesinghe & Sarananda, 2010),
there is the need to also evaluate and document the quality of products
such as starch from the frozen roots. This is particularly important
because cassava stands out among the underutilized starch sources
because of its wide availability, comparatively higher starch content and
ease of extraction of its starch (Chisenga et al., 2019). Hence, this study
aims to investigate the physicochemical properties of starch isolated
from cassava roots frozen for 28 days. Starch obtained from cassava
roots that were freshly harvested and processed the same day served as
the control.
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2. Materials and methods
2.1. Materials

One hundred kilograms (100 kg) of matured cassava roots (TMS 98/
0581) with an average moisture content of 61 + 2%, were carefully
harvested at 10 months after planting in December 2019 from Interna-
tional Fund for Agricultural Development cassava plantation farm at
Offa town, Kwara State, Nigeria.

2.2. Freegzing of cassava roots

The roots were cleaned by washing under running water. The
washed roots were peeled, re-washed, drained and 5 kg each of the tu-
bers were packed in Ziploc bags and frozen at —20 + 1 °C in a LED deep
freezer (Model GR-K35DSLBC, LG, Korea) within a period of 1 h of rapid
freezing and maintained for 7, 14, 21 and 28 days. Starch extracted from
freshly harvested cassava roots which was processed same day was
included as the reference sample.

2.3. Thawing and starch extraction

Starch was extracted and dried as earlier described with slight
modifications (Osunsami et al., 1989). Briefly, the frozen cassava roots
were transferred after the required storage period into a refrigerator
working at 4 °C to thaw overnight. Thawed cassava roots were grated
using a grating machine powered by Lister Diesel engine (5-1 6HP
650RPM, UK). The grated pulp was suspended in 140 L of distilled water
for 2 h and then strained through a fine mesh (aperture size: 350 pm).
The resulting starch milk was allowed to settle in clean plastic buckets
for 4 h and the clean supernatant liquid was decanted. The sedimented
starch was further washed several times with distilled to get rid of
adhering proteins. Starch samples were oven-dried at 50 °C for 24 h.
Dried samples were milled, sieved (sieve size of 180 pm), packed in
Ziploc bags and stored under refrigeration at 4 °C until analysis, for a
maximum of one week. Extracted starches were labelled CSO, CS7, CS14,
CS21 and CS28 for starch from cassava root frozen for 0, 7, 14, 21 and 28
days, respectively. The proximate composition of the starch including
ash, protein, fibre, fats and total carbohydrate were determined as
previously reported (Corgneau et al., 2019).

2.4. Colour, morphology and apparent amylose contents

To assess the purity of the extracted starches, the Hunterlab color
parameters (L*, a* and b*) of the starches were measured using a
Colorflex-EZ spectrophotometer (A60-1014-593, Hunter Associates,
Reston, VA, USA). The L* value indicate lightness (0-100), positive a*
(+a*) indicate redness, negative a*(-a*): greenness, positive b* (4+b*):
yellowness and negative b* (-b*): blueness.

The total colour change (AE) was calculated using the equation
below (Falade & Oyeyinka, 2015).

AE = \/(AL)2 + (4a)* + (Ab)* @

Granule size and shape were determined under a scanning electron
microscope (JAM-540, JEOL, Tokyo, Japan). The starch samples were
mounted on a plate with adhesive tape and gold-coated. Starch samples
were viewed at a resolution of 1500x magnification. The apparent
amylose content of cassava starch was determined by a colorimetric
method (Naidoo, Amonsou, & Oyeyinka, 2015).

2.5. X-ray diffraction (XRD)
The crystalline pattern of the starch samples was examined using a

diffractometer (PANanalytical, Eindhoven, North Brabant, Netherlands)
as earlier reported (Wokadala, Ray, & Emmambux, 2012). Starches were
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equilibrated at 25 °C and relative humidity of 100%, in an incubator

(MTIE10, Labcon, Pretoria, South Africa) for 12 h before measurement.

The relative crystallinity was calculated using the equation given below.
100 Ac

RC(%):A6+Aa @

where Ac is the crystalline area and Aa is the amorphous area on the X-
ray diffractogram.

2.6. Fourier transform infrared spectroscopy (FTIR)

The ordered structure of starch was analyzed using a spectrometer
(4100-JASCO Spectrometer, Japan) as reported by Man et al. (2012).
The spectra were obtained in the transmittance mode with 64 scans from
500 to 4000 cm 1.

2.7. Functional properties

The water absorption capacities and swelling power of the starch
samples were determined using the method described by Oyeyinka,
Adeloye, Olaomo, and Kayitesi (2020).

2.8. Pasting properties

The pasting properties of the starch samples were measured using a
Rapid Visco-Analyzer (RVA 4500, Perten Instruments, Sydney, NSW,
Australia) following the method reported by Oyeyinka, Adeloye, et al.
(2020).

2.9. Textural analysis

The textural properties of starch gels was measured using a Universal
Testing Machine (Testometric, M500-100AT, Lincoln, England) as pre-
viously reported with slight modifications Shaikh, Ali, and Hasnain
(2015). Starch pastes were formed by cooking starch in water (10%
w/w) at 95 °C for 15 min. Cooked starch pastes were cooled and stored
at 4 °C for 24 h before analyses. Gels were covered with a film to prevent
loss of moisture and were compressed to 50% of the original size at a
speed of 2 mm/s. Texture profile parameters (adhesiveness, chewiness,
cohesiveness, gumminess, hardness and springiness) were calculated
using the computer software.

2.10. Statistical analysis

Duplicate samples were prepared and all analyses were done in
triplicate. Data obtained from the experiments were statistically
analyzed and expressed as mean =+ standard deviation. A one-way
analysis of variance (ANOVA) and Fisher Least Significant Difference
(LSD) were computed using SPSS Version 21.0 (SPSS Inc., Chicago, IL,
USA) with a statistical significance of p < 0.05. Further statistical
assessment was done using the Pearson correlation (SPSS Inc., Chicago,
IL, USA) to establish the relationship among the functional, pasting and
textural properties.
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3. Results and discussion
3.1. Starch composition and colour

Extracted starch showed low fat (average of 0.12%) and protein
(average of 0.27%) contents, but no ash and fibre were detected in the
samples (Table 1). These minute non-starch components are generally
used to ascertain the purity of starch. Previous studies also indicated that
cassava starch contain minor components such as protein, lipid, fiber
and phosphorus, but these components can interfere with the physico-
chemical properties of the extracted starch (Chisenga et al., 2019). The
total starch content varied between 87.43 and 89.64%, which agrees
with the values (65.00-99.14%) reported in the literature (Pereira &
Leonel, 2014; Sanchez et al., 2009; Vatanasuchart, Niyomwit, &
Wongkrajang, 2009).

The apparent amylose content of the starch samples significantly (p
< 0.05) decreased from 26.41% to 22.05% with increasing freezing
period (Table 1). There was approximately 6, 7, 12 and 17% decrease in
the apparent amylose content for starch isolated from cassava frozen for
7, 14, 21 and 28 days, respectively. Freezing is known to make water
immobile and thus limit enzyme activity. Hence, the reduction in
apparent amylose content after freezing can be due to changes that occur
in the roots during thawing rather than during freezing. Freezing and
thawing cycles reportedly affected the activities of a-amylase, bile-salt-
activated lipase and trypsin extracted from gilthead sea bream (Sparus
aurata) stored for 2 years (Solovyev & Gisbert, 2016). Whittam and
Rosano (1973) had earlier reported that the freezing and thawing rate,
especially when slow, is highly detrimental to purified a-amylase ac-
tivity in an aqueous solution than the faster process. Hence, the slow
thawing rate used in this study may have encouraged the activity of the
amylase enzyme to begin the degradation of amylose in the roots and
this may explain the reduction in the measured amylose content.
Sanchez et al. (2013) noted that enzymatic hydrolysis can modify the
ratio of amylose to amylopectin in the starch granules and the modifi-
cation may significantly impact the physicochemical properties of
starch. The values of amylose (22.05-26.41%) in this study agrees with
previous reports on cassava starch (Chandanasree, Gul, & Riar, 2016;
Nwokocha, Aviara, Senan, & Williams, 2009; Tappiban et al., 2020; Zhu,
2015).

Cassava starches exhibited slight differences in their Hunter lab
colour properties (Table 1). The L* values of the isolated starches
generally decreased, while the redness (a*) and yellowness (b*) values
increased significantly with increasing freezing period. Although the L*
values decreased, the decrease was insignificant (p > 0.05) beyond 7
days of freezing. A similar result was reported for starch from refriger-
ated cassava roots, albeit for 3 weeks (Oyeyinka, Salako, et al., 2020).
The calculated total colour change (AE) of the starches ranged from 0.22
to 3.11 for starch from cassava root frozen for 7 days and 28 days,
respectively (Table 1). The AE values were determined relative to the
control starch and agree with the L* values which also decreased with
storage period. Variation in the colour of the starch may be explained by
the changes that took place during thawing and subsequent drying of the
starches. Earlier studies similarly found significant colour change in
starch from stored cassava (Osunsami et al., 1989).

Table 1

Chemical composition and colour parameters of starch from frozen cassava roots.
Storage period (days) Fat (%) Protein (%) Total starch (%) Apparent amylose (%) L* a* b* AE
0 0.13%+0.01 0.40°40.07 87.44°+0.12 26.41°+0.13 83.63%+0.64 3.10°+0.03 9.80°+0.03 -
7 0.12%40.01 0.23° + 0.01 89.18" + 0.04 24.89% + 0.16 83.55%+0.54 3.18° + 0.01 9.99° + 0.04 0.22°+0.14
14 0.14°+0.01 0.27° £0.00  89.54°" + 0.08 24.67° + 0.38 81.87° +0.40  3.25°+0.06 10.06" + 0.03 1.85° + 0.13
21 0.11°+0.03  0.23° £ 0.01 89.26" + 0.27 23.2340.35 80.74° £ 0.25  3.97°+0.00 10.48%+0.07 3.09%40.09
28 0.12240.01 0.23° £0.00  89.64°+0.08 22.05°+1.34 80.73° £ 0.23  3.98%+0.01 10.51%+0.11 3.11740.11

Mean + SD Mean with different superscript in each column are significantly different (p < 0.05).
AE: Whiteness index; L (lightness) axis — 0 is black, 100 is white, a (red-green) axis-positive values are red; negative values are green and 0 is neutral, b (yellow-blue)

axis-positive values are yellow; negative values are blue and 0 is neutral.
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3.2. Morphology

Isolated starch samples had similar shape but different granule size
(Fig. 1). Freezing of the cassava roots appears not to change the starch
granule morphology. Most of the granules were irregular and truncated
in shape, while a few round and oval-shaped granules were also seen.
The starches showed an average granule size ranging between 6 and 22
pm. The size and shape of the cassava starches are in agreement with
previous studies (Fang, He, Jiang, Li, & Li, 2020; He et al., 2020;
Oyeyinka, Adeloye, et al., 2019; Oyeyinka, Adeloye, et al., 2020;
Oyeyinka, Salako, et al., 2020; Rolland-Sabaté et al., 2012).

3.3. Crystallinity pattern

All the extracted starches showed similar crystallinity patterns with
strong peaks at 15° (20), a doublet at 17° and 18° (20) and a single peak
at 23° (20), indicating the A-type crystallinity pattern (Fig. 2). The
similarity in the patterns observed from the diffractograms suggests that
freezing of cassava roots did not affect the crystalline structure of the
extracted starches. Starch generally will display different crystallinity
patterns (A, B or C), depending on the arrangement of the crystalline
lamellae of amylopectin, the source (botanical origin) of the starch and
in some instances the conditions of experiment. Cassava starch generally
has been found to exhibit the A-type crystallinity (He et al., 2020;
Oyeyinka, Salako, et al., 2020; Wang et al., 2018) or the Ca-type
(Rolland-Sabaté et al., 2013; Rolland-Sabaté et al., 2012). The Ca-type
denotes the portion of A-type is dominant over B-type in the poly-
morphic composition (Zhu, 2015). However, the C-type crystalline type,
which is very unusual for roots and tubers has been observed in cassava
starch by some researchers (Fang et al., 2020). The difference observed
in the crystal type of starch may be due to several factors including
botanical source and the method of analysis. For instance, an increase in
starch moisture content resulted in a change of the A-type polymorph to
the C-type pattern (da Cruz Francisco, Silverio, Eliasson, & Larsson,
1996). The relative crystallinity (RC) of freshly harvested cassava starch
was 38.63% (Table 2). Freezing increased the RC of cassava starch

Dotoctor = NT'S BSD
Mag= 150KX

EHT= 1500 kV.
WD= 9.0mm

EHT= 1500 kV.
WD= 9.0mm

Brightness = 49.8%
Contrast= 666 %

Detoctor = NTS BSD
Mag= 150KX
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Fig. 2. XRD of starches extracted from frozen cassava root.

CSO0: Starch from freshly harvested cassava roots; CS7: Starch from cassava root
frozen for 7 days; CS14: Starch from cassava root frozen for 14 days; CS21:
Starch from cassava root frozen for 21 days; CS28: Starch from cassava root
frozen for 28 days.

which varied from 40.76% to 42.28% (day 28 and day 14, respectively)
and may be due to the reduction of the amylose content (Table 1),
indicating a reduction in the amorphous region of starch. Further to this
is the possibility of the formation of new starch crystallites by increasing
the perfection of smaller crystalline structures of native cassava starch
into larger ones as previously noted (Dudu et al., 2019).

3.4. Fourier transform infrared spectroscopy (FTIR)

The FTIR spectra for starch from freshly harvested cassava and from
frozen cassava roots were similar (Fig. 3). All the starch samples showed
peaks in the broadband region of 3000-3650 cm ™, corresponding to the
complex vibration stretching of free, inter-and intra-molecular hydroxyl
(-OH) groups (Guo, Kong, Du, & Xu, 2019; Pozo et al., 2018). The
starches showed differences in their peak intensities (14 days >21 days

Dotoctor = NTS BSD
Mag= 150KX

EHT = 1500V
wo= 9.0 mm

. 4 i
Brightness = 49.8 % Brightness = 49.5%
Contrast= 71.3% Contrast= 71.3%
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£ &
10pm EHT = 1500V
WD= 9.0mm

Brightness = 49.8%

ZE1ss]
Contrast= 71.3%

E S
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Mag= 1.50KX

EHT= 1500 kV

Brightness = 49.8 % e
wo= 9.0mm Contrast= 71.3%

Fig. 1. Scanning electron micrographs of starch isolated from frozen cassava roots.

0D: Starch from freshly harvested cassava roots; 7D: Starch from cassava root frozen for 7 days; 14D: Starch from cassava root frozen for 14 days; 21D: Starch from

cassava roots frozen for 21 days; 28D: Starch from cassava roots frozen for 28 days.
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Table 2
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Relative Crystallinity, FTIR peak ratio, pasting properties and texture profile results of gel produced of starch from frozen cassava roots. Mean + SD Mean with different

superscript in each row are significantly different (p < 0.05).

Parameters Storage period (days)

0 7 14 21 28
Relative crystallinity (%) 38.63°+0.42 41.43 + 0.46 42.28%+0.15 42.07°+0.12 40.76% + 0.45
Ratio of 1045/1022 cm ™! 0.99°+0.01 0.92¢ + 0.01 0.97° + 0.01 0.96"£0.01 0.95°+0.01
PV (RVU) 484.42° + 9.54 487.62%° + 6.08 453.91° + 6.83 496.33°+£4.49 522.04°+8.08
TV (RVU) 163.33" + 4.47 175.67°+7.19 162.54° + 2.53 169.88% + 4.77 180.96+1.82
BV (RVU) 321.09%° + 5.06 311.96"°+8.89 291.38°+8.30 246.46% + 9.72 341.08°+6.26
FV (RVU) 266.42%" + 8.01 278.08%+5.30 256.16° + 4.71 258.88° + 0.64 278.96°40.41
SV(RVU) 103.08%+3.53 93.58% + 2.23 93.63°¢ + 2.18 89.009 + 5.41 98.00° + 0.04
Peak time (min) 3.84°+£0.04 4.04° + 0.00 4.27°4+0.09 4.14%° + 0.09 3.80°+£0.04
PT (°C) 72.25%°40.63 72.80%° + 0.53 73.18%° + 0.60 73.52240.03 71.43° +0.63
Adhesiveness (N.s) 1.50°+0.01 1.14% + 0.63 0.54°°+0.03 0.54°°+0.28 0.15°4+0.15
Cohesiveness 0.70° + 0.05 0.93%+0.01 0.82%° + 0.08 0.91°40.04 0.92%+0.00
Chewiness (N) 3.24°40.00 3.18%+1.40 2.99°4+1.22 3.84°40.00 3.17°40.72
Gumminess (N) 4.77°40.17 3.77°+1.34 4.07°+1.07 4.68°+0.63 3.16°+0.71
Hardness (N) 6.85°+0.79 4.06° + 1.51 4.92%° + 0.77 5.19%° + 0.95 3.45° +0.77
Springiness 0.68" + 0.02 0.83" + 0.07 0.72" + 0.11 0.82" + 0.04 1.00%+0.00

Mean + SD Mean with different superscript in each row are significantly different (p < 0.05).
PV: Peak Viscosity; TV: Trough Viscosity; BV: Breakdown Viscosity; FV: Final Viscosity; SV: Setback Viscosity; PT: Pasting Temperature.
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Fig. 3. FTIR spectra of starches extracted from frozen cassava root.

CSO0: Starch from freshly harvested cassava roots; CS7: Starch from cassava root
frozen for 7 days; CS14: Starch from cassava root frozen for 14 days; CS21:
Starch from cassava root frozen for 21 days; CS28: Starch from cassava root
frozen for 28 days.

> 7 days >0 days > 28 days) in this region. These variation could be
attributed to differences in the strength of hydrogen bonds within the
starch structure (Kong, Lee, Kim, & Ziegler, 2014; Pozo et al., 2018).
Furthermore, all the starches showed an absorption peak at around
2931 em ™ attributed to the stretching of the C-H bonds associated with
the ring methine hydrogen atoms (Guo et al., 2019). The starch samples
also displayed a sharp peak at around 995 cm ™! in the fingerprint region
which denotes the vibrations of the glucose C-O-C bond in the starch
structure (Estrada-Ledn et al., 2016; Oyeyinka, Salako, et al., 2020).
To assess the effect of freezing on the short-range structure of starch,
the bands at 1045 and 1022 cm ™! which are linked with the crystalline
and amorphous regions in starch, respectively were determined and
their ratio reported in Table 2. The ratio of these bands (1045/1022
cm ™) has been widely used to quantify the degree of crystalline order in
starch samples (Babu, Mohan, & Parimalavalli, 2019; Ji et al., 2019;
Man et al., 2012). Starches from frozen cassava root generally showed
significantly (p < 0.05) lower 1045/1022 cm ™! ratios (0.92-0.97) than
starch from freshly harvested cassava root (0.99) as shown in Table 2.
The observed ratio suggests that freezing resulted in the reduction of the
double-helical order structure of the starch granules in the external re-
gion (Zhang et al., 2020) and this may explain variation in the functional

and pasting properties as will be discussed later.

3.5. Functional properties

The water absorption capacity (WAC) of the starch samples were
higher than their oil absorption capacity (OAC) (Fig. 4). This is expected
since starch are hydrophilic and the mechanism of oil absorption simply
relies on physical entrapment rather than absorption into the starch
granules. Freezing of the cassava roots did not significantly (p > 0.05)
influence the WAC and OAC of the extracted starches, though these
parameters increased slightly with the storage period. Amylose content
of starches has been suggested to influence their ability to absorb water.
For example, Bambara groundnut genotype with high amylose content
reportedly showed restricted swelling but greater ability to absorb water
compared with genotypes with low amylose content (Oyeyinka, Singh,
Adebola, Gerrano, & Amonsou, 2015). In this study, the amylose content
of the extracted starches reduced with an increase in the freezing period
and hence shows no clear correlation with WAC. Other researchers
associated variation in WAC to factors such as damaged starch content,
starch granular morphology features and fine structure of starch (Liu
et al., 2014; Ma et al., 2016).

Hence, the slight differences in WAC may be explained by variation
in the starch granule size (Fig. 1) and possibly the increase in relative
crystallinity (Table 2).

Extracted starches showed similar swelling pattern with an increase

EWAC =OAC
120

100

40
20

CSso cs7 Cs14

Storage period (days)

Ccs21 Cs28

Fig. 4. Water and oil absorption capacities of starch.

WAC: Water absorption capacity; OAC: Oil absorption capacity; CSO: Starch
from freshly harvested cassava roots; CS7: Starch from cassava root frozen for 7
days; CS14: Starch from cassava root frozen for 14 days; CS21: Starch from
cassava root frozen for 21 days; CS28: Starch from cassava root frozen for
28 days.
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in swelling as a function of temperature (Fig. 5). The swelling power of
the starches increased drastically between temperatures of 60 and 70 °C,
indicating the gelatinization of starch. Previous researchers (Roll-
and-Sabaté et al., 2012, 2013; Tappiban et al., 2020; Zhu, 2015) on
cassava starch, reported a gelatinization temperature ranging between
approximately 56 and 75 °C. Furthermore, starches from frozen cassava
showed significantly (p < 0.05) higher swelling power than the control
starch samples and this may be explained by the variation in amylose
content of the starches (Table 1). Amylose in starch is known to restrict
starch swelling (Naidoo et al., 2015) by forming a barrier around the
starch granules (Sang, Bean, Seib, Pedersen, & Shi, 2008). Other factors
which may influence the swelling properties of starch are the structure
of amylopectin and the extent of interaction within the crystalline and
amorphous regions of starch (Singh, Singh, Kaur, Sodhi, & Gill, 2003).

3.6. Pasting properties

The average pasting temperature (approx. 73 °C) of the starches
(Table 2) is in agreement with values (58-86 °C) reported in the liter-
ature for cassava starch (Abera & Rakshit, 2004; Dudu et al., 2019;
Gomand, Lamberts, Visser, & Delcour, 2010; Oyeyinka, Salako, et al.,
2020; Zhu, 2015). Pasting temperature is the amount of energy required
to cook the starch samples. Freezing of cassava roots had very minimal
effect on the pasting temperature since the values were very similar.

The peak viscosity, which signifies the ability of starches to swell
varied between 453.91 and 522.04 RVU, trough viscosity ranged from
162.54 to 180.96 RVU, breakdown viscosity ranged between 246.46 and
341.08 RVU, final viscosity varied from 256.16 to 278.96 RVU and
setback viscosity ranged between 89.00 and 103.08 RVU. Starch from
frozen cassava roots generally displayed a higher peak viscosity
compared with the control starch sample. The difference in peak vis-
cosity of the starches could be due to the variation in their amylose
contents (Table 1) and an increase in relative crystallinity of the starches
(Table 2). Previous studies indicated that amylose in starch restricts
swelling (Naidoo et al., 2015) and forms a barrier around the granules
during pasting (Sang et al., 2008). The peak viscosity result agrees with
studies on physicochemical properties of starch from cassava roots
stored at room temperature (Sanchez et al., 2013) or refrigeration
temperature (Oyeyinka, Salako, et al., 2020).

Another important pasting property of starch is the setback viscosity
as it relates to the level of retrogradation in the starch during storage.
Generally, starch from frozen roots showed significantly lower setback
viscosities (89.00-98.00 RVU) compared with starch from freshly har-
vested roots (103.08 RVU). Retrogradation occurs when amylose is free

—-CS0 -—»—CS7

Cs14

CS21 —+—CS28

w
H

N

—

Swelling power (g/q)

o
cu=, NGO WO

a
o

60 70 80 90
Temperature (°C)

Fig. 5. Swelling power of starch.

Errors bars indicate standard deviation (N = 4).

CSO0: Starch from freshly harvested cassava roots; CS7: Starch from cassava root
frozen for 7 days; CS14: Starch from cassava root frozen for 14 days; CS21:
Starch from cassava root frozen for 21 days; CS28: Starch from cassava root
frozen for 28 days.
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to re-associate into crystallites (Liang, King, & Shih, 2002). In baked
foods, a lower rate of retrogradation is desirable especially for foods like
bread that are usually consumed in a very short time and a high rate of
retrogradation has detrimental effect on the sensory properties of baked
goods (Wang, Li, Copeland, Niu, & Wang, 2015). Hence, the lower
setback viscosity of the starch from frozen cassava suggests their po-
tentials in baking applications.

3.7. Texture of starch gels

The textural properties of cassava starch gels determined using a
texture analyser are presented in Table 2. Freezing of the cassava root
did not significantly (p > 0.05) affect the chewiness (2.99-3.84 N),
cohesiveness (0.70-0.93), and gumminess (3.16-4.77 N) of the gels
prepared from the starches. However, the adhesiveness, hardness and
springiness were significantly (p < 0.05) affected. While the adhesive-
ness (0.15-1.50 N s) and hardness (3.45-6.85 N) decreased, the
springiness (0.68-1.00) increased with an increase in the freezing
period. The reduction in adhesiveness and hardness values for gels
prepared from starch extracted from stored roots indicates the gels were
less sticky and softer, respectively compared to gel from the control
starch sample. Waxy starch produces gels which are less firm than
normal starch gels because the presence of amylose between the
amylopectin chains in the latter increases the close-packing and bonding
of the gel (Liu, Ramsden, & Corke, 1999). Thus, high amylose starch
form harder gels and a reduction in gel adhesiveness and hardness may
be associated with the reduction in amylose content of the starch sam-
ples (Table 1) and an increase in the relative crystallinity (Table 2).
Starches with higher amylose content reportedly showed higher firm-
ness (hardness) than starches with low amylose (Chung et al., 1998;
Oyeyinka, Singh, Venter, & Amonsou, 2017). Collado, Mabesa, and
Corke (1999) reported that the adhesiveness of potato starch negatively
correlated with the amylose content. Since the starch gels were stored
before texture profile measurement, the hardness may be linked with the
retrogradation of amylose and amylopectin in the cassava starches,
resulting from the re-association of amylose-amylose chains and
amylopectin chains to form junction zones through cross-links (Wang
et al., 2015). The reduction in the ratios of FTIR peaks at 1045 and1022
em~! (Table 1) may further explain the reduction in the starch hardness
since these peaks are very sensitive to changes in starch structure. Rapid
freezing has also been found to reduce the hardness and adhesiveness of
rice during storage (Yu, Ma, & Sun, 2010). Starch gel textural features
are very important parameters that can be used to determine the po-
tential use of starches in various food applications.

3.8. Pearson correlation among functional pasting and textural properties

Pearson correlation of the water absorption capacity, oil absorption
capacity, amylose content, pasting properties, i.e., pasting temperature,
peak time, peak, trough, breakdown, final and setback viscosities as well
as the measured textural properties (hardness, springiness, adhesives,
cohesiveness, chewiness and gumminess) of the starch gel are shown in
Table 3. The amylose content showed a significant but negative corre-
lation with peak viscosity (r = —0.60, p < 0.01), trough viscosity (r =
—0.67, p < 0.01), springiness (r = —0.79, p < 0.05) and cohesiveness (r
= —0.69, p < 0.01) but positively correlated with adhesiveness (r =
0.82, p < 0.05) and hardness (r = 0.67, p < 0.01) of the starches.
Hardness or firmness of starch gels has been linked with the amylose
content of starch and a positive correlation in this study also confirms
the role of amylose in gel formation. The significant positive correlation
of amylose with the peak viscosity in this study further confirms the role
of amylose in swelling properties of starch. Amylose has been suggested
to form a barrier around starch granules which restricts swelling
behaviour (Naidoo et al., 2015). Amylose content of root and tuber
starches such as potato starch has been positively correlated with the
adhesiveness of the starch gel and negatively correlated with the
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