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Structural Recovery of Logged Forests
in the Solomon Islands: Implications
for Conservation and Management
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Abstract

Much of the lowland tropical forests in the Solomon Islands have been heavily logged. However, little is known about the

recovery status of these forests. We examined factors that influenced the recovery of forest structural attributes within

50 years after selective logging on Kolombangara Island in the western Solomon Islands. Twelve study sites—six logged and

six unlogged—were identified across the Island, with two logged sites in each of three recovery-time classes: 10, 30, and

50 years after logging. Within each study site, 12 0.1-ha plots were randomly established, and a series of forest attributes

measured in each plot. Our results revealed that local logging intensity and soil attributes have stronger influence on forest-

structural recovery than do site attributes such as local topography or tree architecture. Furthermore, half a century of

regeneration following logging is insufficient to permit full recovery of forest structure. We conclude that logged forests on

Kolombangara and possibly across the Solomon Islands may not fully recover structurally before the next logging cycle, in the

absence of a policy on re-entry harvesting. The development of such a policy coupled with robust forest-management

measures is pivotal to facilitating sustainable logging while supporting biodiversity conservation in the Solomon Islands. This

may be the last best hope for saving lowland forests and their biodiversity on this unique tropical archipelago.
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Introduction

Forest structure—the three-dimensional architecture and
abiotic elements of a forest—is fundamental to regulating
primary productivity, gas exchange, and evapotranspira-
tion because it fosters biophysical interactions and biodi-
versity at various spatial scales (Arcilla et al., 2015; Gadow
et al., 2012; Pe~na-Claros et al., 2012; Seidler, 2017). In
addition to regulating ecosystem functions, forest structure
also influences the influx of solar energy to the understory
(Ozanne et al., 2003; Wedeux & Coomes, 2015). High radi-
ation influx occurs in canopy gaps which increases the rate
of photosynthesis in exposed understory areas, enhancing
tree growth and structural development (Katovai &
Katovai, 2012). Ecophysiological functions of forest struc-
ture also provide goods and services to forest wildlife com-
munities, and contribute to niche specializations that can
result in distinct community assemblages along the forest
stratum (Brauman et al., 2007; Buchmann, 2002; Layman
et al., 2015).

In addition, several studies have suggested that forest
canopies alone contain 40% of global biodiversity, 10%
of which are canopy-specialist species (Basset et al., 2003;
Mendieta-Leiva & Zotz, 2015; Nakamura et al., 2017).
More than 25% of herbivorous insects and 10% of vascular
epiphytes are canopy specialists (Basset et al., 2003;Wagner
et al., 2015). Furthermore, forest-structural attributes are
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important for biodiversity: for example, a tree’s canopy size,
branching architecture, number and size of cavities, height,
and volume are positively correlated with levels of ecosys-
tem provisioning and resident biodiversity (Basset et al.,
2003; Maiti et al., 2015; Poorter et al., 2006; Remm &
L~ohmus, 2011). At the community level, large old-growth
trees contribute extensively to ecosystem functioning, and
provide key habitats for biodiversity (Almeida-Gomes et
al., 2016; Lindenmayer & Laurance, 2017).

Logging in tropical forests is known to substantially
degrade forest structure (Cazzolla Gatti et al., 2015;
Fisher et al., 2011; Katovai et al., 2021). For instance,
tree felling increases mortality of neighbouring trees via
liana networks that drag adjacent trees down, creating
considerable gaps within forests (Forshed et al., 2008;
Shenkin et al., 2015; Wright et al., 2015). The extraction
of felled logs also requires the aid of logging roads, skid-
ding trails, and log-storage areas. These activities usually
create large gaps (>90m2) in the forest (Cazzolla Gatti
et al., 2015; Katovai & Katovai, 2012). The recovery of
natural vegetation and therefore forest structure in these
gaps can potentially be impeded by topsoil removal and
compaction, and a proliferation of invasive plants and
animals (Fujinuma & Harrison, 2012; Harrison &
Swinfield, 2015; Williamson & Neilsen, 2000).

Although logging in tropical forests tend to have a long-
term impact on forest structural recovery (Asase et al.,
2014; Shenkin et al., 2015), little is known about factors
prompting this recovery (Wedeux & Coomes, 2015), par-
ticularly in oceanic islands. Forest recovery on such islands
may differ from mainland tropics (e.g. Gillespie et al.,
2008; Katovai et al., 2016; Whitmore, 1989), because
they often have relatively young soils, a small regional spe-
cies pool, and higher endemism due to their size and iso-
lation, and are subjected to frequent, severe weather events
including cyclones or hurricanes (Burslem et al., 2000;
Katovai et al., 2015; Osazuwa-Peters et al., 2015).

Here we examine the pattern and pace of forest struc-
tural recovery following selective logging in the Solomon
Islands. We (i) assessed factors influencing recovery of
forest structure in previously logged forests, and (ii)
determined whether a half century was sufficient to
allow forest structure to recover to pre-logging condi-
tions. The outcome of this study may aid policy devel-
opment pertaining to logging practices and forest
management on oceanic islands.

Methods

Site Description

This study was conducted on Kolombangara Island
(157� E and 5� S) in the New Georgia group, Solomon
Islands. Kolombangara is a volcanic island having a
near-perfect circular shape, and comprising a land area

of approximately 80,000 ha (Figure 1). Topsoils on the

island are generally Typic Haplorthox—highly weath-

ered brownish red soil—and acidic (pH< 5), and have

a high organic matter (Katovai et al., 2012; Wairiu &

Lal, 2003). The underlying rocks are predominantly oliv-

ine basalt breccias and lavas (Burslem et al., 2000). The

exceptionally high annual rainfall on the island

(�3000mm/yr) supports wet tropical forests that stretch

from the relatively flat coastline to the rim of the volca-

nic cone (1700m a.s.l.), which is in the center of the

island (Katovai et al., 2016).
The lowland forests on Kolombangara have been

logged since 1964 (Katovai et al., 2016). Much of the

island’s southeast, northeast, and northwest quadrants

were either converted to commercial tree plantations or

to pastures for grazing (Katovai et al., 2012). These land

use activities were marginal in the southwest quadrant of

the island thus allowing uninterrupted regeneration in

logged forests. Patches of unlogged lowland forest still

exist on Kolombangara Island which form a mosaic with

logged forests at different stages of recovery. These

unlogged forests are not legally protected and are vul-

nerable to future logging (Cazzolla Gatti et al., 2015;

Katovai et al., 2012).

Study Design

Forest survey began in January through to December

2013 where forest structure, proxies of logging impact,

topography and soil attributes were surveyed. These

were conducted in 144 plots of 0.1 ha (50m x 20m)

established in both logged and unlogged forests. We

evaluated traditional and published information to

avoid plot establishment on past human settlements

(Katovai et al., 2016). To investigate structural change

post-logging recovery, the study was restricted to forests

logged 10, 30, and 50 years previously. Old logging

records, forestry reports and local knowledge were

used to determine areas logged within each aforemen-

tioned time category. Using the initial data collected

for this study and other comparable studies done on

Kolombangara, we used power analyses to determine

the sample size for this study (Irvine & Rodhouse,

2010; Katovai et al., 2012; Whitmore,1989). For each

time class, two forest coupes logged within the same

time frame were selected. In each coupe 12 plots were

established, giving a combined total of 72 plots for the

three time classes. An additional 72 plots were also

established in unlogged forests within the study area,

to enable comparison of the structural differences

between logged and unlogged areas. Plots were random-

ly stratified across each logged coupe and unlogged

forest patch to ensure the variation between forest inte-

riors and edges are effectively captured.
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Forest Structure

Forest-structural attributes recorded in the study included
canopy cover, canopy height, and stem abundance for
tree size classes–large trees and saplings. Surveys of
canopy cover and canopy height, were conducted at 16
random points within each 0.1ha plot. Visual techniques
adopted from Swiecki and Bernhardt (2001) were utilized
in estimating canopy cover within a radius of 2m at each
point to determine mean plot canopy cover. Canopy
height was measured using a Leica laser (Lieca Camera,
Inc., Wetzlar, Germany) where mean values for each plot
were then calculated. Large trees (stem DBH> 30 cm)
abundance was tallied in each 0.1 ha plots. The abun-
dance of saplings with DBH 1–5 cm and those with
DBH >5–10 were tallied in four 5 x 5m subplots and
four 10 x 10m subplots respectively before the abundance
for both size classes were extrapolated to 0.1 ha. Change
in each attribute was then modeled as a function of recov-
ery time, using proxies for logging, topography, tree
architecture, and soil attributes.

Predictors

Distance to the nearest unlogged forest, harvest intensity
and liana abundance were used as proxies for logging. The
distance between each logged forest plot and the nearest
unlogged forestwas determined using aGPS (Garmin 76cx
GPS; Garmin International, Inc., Kansas City, USA).
Harvest intensity (measured as the loss of stand basal
area) was estimated from stumps cut at DBH (�1.3m).
A stemprofile model for tropical forests was used to recon-
struct cut stumps that were partially decomposed as well as
estimate basal area for either cut below or above the DBH
(Katovai et al., 2016; Ito et al., 2010). Lianas of all sizes

present at DBH were tallied to determine liana abundance

in four nested subplots, each of 0.01 ha (10m x 10m) in

size; liana abundance was then extrapolated to 0.1ha.

Topographical elevation was measured at the center of

each plot using a Garmin 76cx GPS (Garmin

International, Inc., Kansas City, USA). Slope was estimat-

ed in each plot by averaging slope readings from five

random points using an ECII D Electronic Clinometer

(Hagl€of. Inc., Långsele, Sweden). Proxies for tree architec-
ture were determined by height of first major branching

and stem abundance of canopy trees—trees with crown

constituting the forest canopy layer. The former was mea-

sured with a Leica laser distance measurer (Leica Disto

D5; Geosystems Inc., Heerbrugg, Switzerland) for 10

randomly-picked trees per plot. All canopy trees within

each plot were then counted to determine stem abundance.

Soil attributes investigated were leaf litter depth calculated

from 10 randompoints per plot, and soil nitrogen (N). Soil

nitrogen in each plot was estimated from 30 cm of top soil

samples collected in four randomly selected points per plot

using a cylindrical soil extractor. The samples were air-

dried and then thoroughly mixed and sieved through a

2mmmesh (e.g. Asase et al., 2014). The N weight percent-

age (%N) for each sample were then determined by A

Costech Elemental Analyzer (Costech Analytical

Technologies, Inc., CA, USA) and Continuous-Flow

Isotope Ratio Mass Spectrometry (Bay et al., 2015;

Katovai et al., 2016).

Statistical Analyses

Predictors used in this analyses were firstly ordination

axes generated by simplifying a much larger set of poten-

tial predictors using nonmetric multidimensional scaling

Figure 1. A Map of Kolombangara Island Showing the Study Area.
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(NMS) on PC-ORD (McCune & Mefford, 2011). We

then selected the best predictors for each model-fitting

exercise based on sound biological and ecological rea-

soning (Table 1).

Factors Affecting Structural Recovery. To identify factors

influential in the recovery patterns of forest structures,

each examined structure was modeled as a function of

recovery time, and proxies for logging, topography, tree

architecture, and soil attributes (Table 1). The influence

of each predictor in the respective models was then

assessed, and reported in relation to how it affected

the pattern of forest structural recovery in the logged

forests.
Linear mixed models (LMMs) were used to investi-

gate the relationships between forest structures and the

11 ecological predictors. Coupe was treated as a random

effect in the models, as the plots nested in each coupe

were not independent. Before generating a global model

and candidate model sets for each selected response,

potential variables were investigated by plotting pairs

of variables, calculating correlation coefficients for

each pair, and examining the variance inflation factors

using the package usdm in R (Naimi, 2017). Global

models were generated, in which each selected forest

structure was modeled as a function of all predictor var-

iables (Table 1). Interactions between time since logging

and all predictor variables were also included in the

models as time–predictor interactions, under assumption

that these interactions would be important in explaining

forest regeneration after logging (Katovai et al., 2016). A

candidate model set having of the ‘best simplest model

(s)’ (delta AICc< 7) was generated from which parame-

ters for all variables included in models were then aver-

aged based on model weights (Burnham & Anderson,

2004; Mazerolle, 2015). Inferences from averaged

parameter estimates were drawn based on effect sizes,

and whether their 95% confidence intervals (CI) over-

lapped zero. All analyses were generated using R (R

Core Team, 2020).

Forest Structural Recovery. We compared the means of

canopy height and cover, ground cover and stem abun-

dances across logging ages using nested analysis of var-

iance (ANOVA) generated in the mixed model function

in the lme4 R package (Bates et al., 2015).

Satterthwaite’s approximation in the lmerTest R pack-

age was used to determine the degrees of freedom in the

analyses, as ‘coupe’ and ‘time’ were treated as random

and fixed effects, respectively (Kuznetsova et al., 2015).

The multcomp package in R was then used to generate

post hoc comparison tests for forest structures that

showed significant mean differences among forest classes

(Hothorn et al., 2015). Graphical visualization of these T
a
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analyses was generated in Statistix 10 (Tallahassee, FL

32317, USA).

Results

Factors Affecting Forest Structure

The relatively low Variance Inflation Factors (< 6.42)

and range for paired correlation coefficients (R¼ –0.42

to 0.44) indicated the absence of significant collinearity

among the selected predictors.

Canopy Cover. The average LMM for canopy cover fitted

the data well (Pearson’s R between observed and model-

fitted values¼ 0.91), and comprised 7 models that

included time, height of major branching, leaf litter

depth, and soil N (Table A1(a)). Time influenced

canopy cover in all three logged forest time classes

(Table 2). The time effect for the 10-year post-logging

time class was positive (slope¼ 0.37; 95% CI¼ 0.2,

0.55), but was negative and of similar scale for the 30-

year (slope¼ –0.32; 95% CI¼ –0.41, –0.22) and the 50-

year (slope¼ –0.32; 95% CI¼ –0.41, –0.22) post-logging

time classes.

Canopy Height. The averaged model for canopy height

had an exceptionally high fit to the data (R¼ 0.96),

and contained three models that included time, liana

abundance, and soil N (Table A1(b)). The influence of

time was positive for all logged forest classes. The influ-

ence of time on canopy height was greatest for the 10-

year post-logging time class (slope¼ 2.56; CI¼ 0.25,

0.26) and less for the 30- and 50-year post-logging time

classes (slope¼ 0.68; CI¼ 0.63, 0.73, and slope¼ 0.74;

CI¼ 0.69, 0.79, respectively). The influence of liana

abundance on canopy height was negative and weak

(slope¼ 0.03; CI¼ –0.01, 0.0). Although an important

component of the averaged model, soil N had no influ-

ence on canopy height (Table 2).

Large Tree Abundance. The large tree abundance averaged

model showed a strong fit to the data (R¼ 0.74), and

comprised nine models that included time, harvest inten-

sity, distance to nearest unlogged forest, liana abun-

dance, leaf litter depth, slope and soil N (Table A1(c)).

However only liana abundance had a marked influenced

on large tree abundance (slope¼ -0.6; CI¼ -0.47, -0.05)

at 10 years after logging (Table 2).

Sapling Abundance. The average LMM for sapling abun-

dance fitted the data reasonably well (R¼ 0.60), and

included nine models. The averaged model included

time, harvest intensity, leaf litter depth, and soil N

(Table A1(d)). Harvest intensity was the most important

predictor in the averaged model, having a positive influ-

ence on sapling abundance (slope¼ 0.5; CI¼ 0.02, 0.09).

Leaf litter depth also had a slightly negative influence on

sapling abundance (slope¼ –0.07; CI¼ –0.14, –0.01).

The influence of time on sapling abundance varied,

having a positive influence for the 10-year post-logging

time class, but a negative influence for the 30- and 50-

year post-logging time classes (slope¼ 8.18; CI¼ 7.27,

9.09, and slope¼ –0.38; CI¼ –6.42, –7.25, respectively).

Although soil N and the interaction between time

and soil N were important predictors in the averaged

model, they had no influence on sapling abundance

(Table 2).

Table 2. Summary of Important Predictors and Their Influence on Forest Structures Among Logged Forests on Kolombangara Island.

Forest structure Important predictor Relative importance Slope 95% Confidence interval

Canopy cover Time�10 yrs. 0.61 0.37 0.2 0.55

Time�30 yrs. 0.61 �0.32 �0.41 �0.22

Time�50 yrs. 0.61 �0.32 �0.41 �0.22

Canopy height Liana abundance 0.03 �0.01 �0.01 0

Soil nitrogen 0.08 – – –

Time�10 yrs. 1 2.56 2.5 2.6

Time�30 yrs. 1 0.68 0.63 0.73

Time�50 yrs. 1 0.74 0.69 0.79

Large tree abundance (DBH> 30 cm) Liana abundance 0.53 �0.6 �0.47 �0.05

Time�10 yrs. 0.55 �0.41 �1.50 �8.53

Sapling abundance (DBH >1 cm–10 cm) Basal area harvest 0.51 0.5 0.02 0.09

Leaf litter depth 0.04 �0.07 �0.14 0

Soil nitrogen 0.23 – – –

Soil nitrogen:time 0.05 – – –

Time�10 yrs. 0.34 8.18 7.27 9.09

Time�50 yrs. 0.34 �0.38 �6.42 �7.25

Katovai et al. 5



Forest Structural Recovery Across Time

Canopy Cover. Although the mean canopy cover among

forest classes was highly significant (F3, 8¼ 51.1;

p< 0.0001), the post hoc comparisons test revealed

only two homogenous groups: (i) the 10-year post-

logging time class; and (ii) all other forest classes

(Figure 2A). The variation in canopy cover between

coupes in each forest class was relatively low (v2 (1,

N¼ 144)¼ 0.763; p¼ 0.4).

Canopy Height. The mean canopy height significantly dif-

fered among all forest classes (F3, 8¼ 471.6; p< 0.0001)

with the post hoc test revealing each forest class as a

homogenous group. The largest difference occurred

between the 10- and 30-year after logging time classes.

The differences in means between the 30- and 50-year

post-logging forests, and between the latter and

unlogged forests, were much smaller but still significant-

ly different (Figure 2B). Canopy height variations

among coupes in the same forest class were not signifi-

cant (v2 (1, N¼ 144)¼ 1.14e�13; p¼ 1).

Large Tree Abundance. The mean for large tree abundance

differed among the various forest classes (F3, 8¼ 14.9;

p< 0.0001). However post hoc test revealed only two

homogenous groups between which large tree abun-

dance differed (Figure 2C). Coupe variation for large

tree abundance within each forest class was relatively

higher than mean variation among forest classes (v2 (1,

N¼ 144)¼ 2.97; p¼ 0.08).

Sapling Abundance. There were highly significant differen-

ces for the mean sapling abundance among the forest

classes (F3, 8¼ 50.9; p> 0.0001). The post hoc test

revealed three homogenous groups among which

means differed (Figure 2D). The 10-year after

logging time class had the highest mean (6212.5 stems

per ha), followed by the 30-year (4291.7 stems

per ha) and 50-year (4328.1 stem per ha) after logging

time classes, which had similar means. Unlogged

forests had the lowest mean (2798.6 stems per ha).

Variations in sapling abundance between coupes in the

same forest class were fairly low (v2 (1, N¼ 144)¼ 0.06;

p¼ 0.8).

Discussion

Forest structure of Kolombangara, Solomon Islands

have not completely recovered within 50 years of selec-

tive logging. It appears that logging-intensity and soil

attributes were more important than local topographical

and tree architectural factors in influencing the structur-
al recovery (Table 2).

Canopy Cover

Based on our estimates, canopy cover in logged forests
on Kolombangara Island appeared to have returned to
pre-logging levels of after 10 years of natural regenera-
tion (Figure 2A). Full canopy recovery in our study is
comparable with similar studies across insular and main-
land tropical forests (Asner et al., 2004; Dalagnol et al.,
2019; Milodowski et al., 2021; Pereira et al., 2002). It
was argued that forest canopy recovery is strongly
inversely correlated to the logging intensity in these for-
ests (Milodowski et al., 2021). Logging in most
tropical forests are usually guided by a conventional
approach including cut-size limitation [usually >50-
60cm DBH] and species preference (Katovai et al.,
2015; Putz et al., 2012). In contrast, logging in the
Solomon Islands is highly intensive. Any hardwood or
softwood tree species of commercial value as small as
30 cm DBH is usually harvested (Bennett, 2000;
Katovai et al., 2012). Such intensive logging practice
often results in large forest gaps due to non-directional
felling of adjacent trees. Nonetheless the quick recovery
of canopy cover to pre-logging levels in this study was
largely due to high levels of tree recruitment in
logging gaps (Shenkin et al., 2015). The proliferation
and long-term dominance of large-crown species includ-
ing Campnosperma brevipetiolata contributed strongly to
the recovery of the logged forest canopy (Katovai et al.,
2016). Lateral branching and crown extension of adja-
cent trees also contributed to canopy closure (Meng et
al., 2006).

There were distinct temporal patterns in canopy
recovery after logging. The positive influence on
canopy cover at 10 years after logging was largely attrib-
uted to the turnover between fast growing short-lived
pioneers and mid-succession species (Katovai et al.,
2016). The marked negative effect of time in canopy
cover across 30 and 50 years after logging suggests that
the establishment and growth of long-lived pioneers and
late succession species was supplemented by only mini-
mal forest turnover (Katovai et al., 2016; Wedeux &
Coomes, 2015). It also suggests that the impact of nat-
ural disturbances, including extreme weather, was simi-
lar in logged and unlogged forests during the intervening
20-year time period. Cyclonic events more than four
decades ago caused major damage to the canopy struc-
ture on Kolombangara Island (Burslem et al., 2000). The
absence of cyclones affecting the island since 1970 has
possibly enabled the canopy structure to recover in
logged forests.

6 Tropical Conservation Science



Canopy Height

Even after 50 years canopy height has not recovered in

the logged forests of Kolombangara Island (Figure 2B).

Consistent with studies in Brazil and Malaysia, this indi-

cates that canopy structural development in logged for-

ests is a gradual process (Okuda et al., 2003; Villela et

al., 2006). Our findings reveal that the recovery of mean

canopy height to pre-logging levels would only be pos-

sible if these regenerating forests are protected from fur-

ther logging. However due to poor governance in the

forest sector, re-entry logging is apparently inevitable

in the Solomon Islands, indicating that the chances of

full recovery is slim (Katovai et al., 2015). Our results

also underscore the negative influence of liana abun-

dance on canopy height. Liana abundance is remarkably

high in logged forests in the Solomon Islands, particu-

larly in large tree fall gaps. This is consistent with a

previous study on Kolombangara Island inferring high

levels of canopy loss from high-intensity harvesting can

promote a hyper-abundance of Convolvulus spp. lianas,

which may arrest forest regrowth (Neil, 1984).

Large Tree Abundance

The low mean of large tree abundance at 10 years after

logging is largely attributed to the negative influence of

liana abundance. The homogeneity in mean of large tree

abundance in the 30 years, 50 years and unlogged forest
classes suggests that the tree stand density in logged
forests reached saturation levels after 10 years of recov-

ery (Figure 2C). The steadily high abundance of large
trees at 30 and 50 years of recovery after logging may
also indicate more rapid turnover times between pio-

neers and late succession specialists (Katovai et al.,
2016). The high level of recruitment of climax species
in the understory of these forests may have facilitated

this rapid turnover (Katovai et al., 2012).

Sapling Abundance

Logging has had an important effect on mean sapling

abundance and composition on Kolombangara Island.
Sapling abundance doubled in recently logged forests
and remained at elevated levels in forest 50 years post

logging. Because of the high intensity harvesting that
occurred on the island (Katovai et al., 2015), numerous
large forest gaps were created in the logged landscape,

which enabled high light intensities to reach the under-
story (Katovai & Katovai, 2012). Light enhancement
subsequently triggered the proliferation of fast growing,

short-lived pioneers during early succession, particularly
Macaranga dioca (Aoyagi et al., 2013; Katovai et al.,

2016). High mortality of this species occurred between

Figure 2. Differences in Forest Structural Attributes Among Forest Classes. Mean canopy cover and large tree abundance (A and C)
recovered to pre-logging levels between 10 and 30 years after logging. The letters above each error bar in each class denote homogenous
groups as revealed by the post hoc tests. Bars in each class with the same letter do not differ significantly.
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10 and 30 years after logging because of decreasing light
levels associated with the progressive recovery of the
forest canopy. The decline in sapling abundance was
also affected by the low recruitment of climax
species (Katovai et al., 2012; Pessoa & Araujo, 2014).
There is sufficient evidence from post-logging recovery
studies across the tropics suggesting that seeds of
climax species are often severely damaged from topsoil
compaction by logging machineries resulting in low
turnover of climax species (DeArmond et al., 2019;
Howlett & Davidson, 2003; Pinard et al., 2000; Van
Nieuwstadt et al., 2001).

The similar mean values for sapling abundance in the
30- and 50-year after logging forest time classes may
indicate that the natural thinning is very slow. The pro-
cess may take more than a century to reach a state of
dynamic equilibrium (Pessoa & Araujo, 2014).
Sapling abundance in these forests was significantly
higher than in unlogged forests because of the
persistence of long-lived pioneers during succession
(Katovai et al., 2016). This pattern of species co-
existence usually occurs in forests subject to
ongoing disturbances because of geological volatility
and extreme weather (Burslem et al., 2000; Whitmore,
1989). The occurrence of regular strong winds, sporadic
earthquakes, and landslides on Kolombangara
Island may have resulted in a succession whereby long-
lived pioneers can persist (Katovai et al., 2012;
Whitmore, 1989).

Implications for Conservation and

Management

Half a century of regeneration following logging has
been insufficient for full structural recovery of logged
forests on Kolombangara Island. The same is possibly
true for other logged forest estates in the Solomon
Islands due to highly unsustainable logging practices
since the early 1950s (Bennett, 2000; Laurance, 2000;
Wairiu, 2007). Unlike most large island states in the
Southeast Asia and Pacific region that have either diver-
sified their export commodities or have transitioned into
a mixed or service-based economy, Solomon Islands
remains dependent on round-log exports as it contrib-
utes 50–70% of annual export revenue since gaining its
independence in 1978 (Katovai et al., 2015). Following
the collapse in oil palm and rice industries (1986) due to
cyclone Namu and the massive decline in other export
commodities during ethnic civil unrest (1990s), the

Solomon Island government forestry sector facilitated
a rise in annual logging exports to assist the ailing econ-
omy by increasing logging licenses issued to landowners
and permitting them to sub-contract foreign companies
to operate their land (Wairiu, 2007). As such, timber-
harvesting rates have quadrupled, dramatically exceed-
ing sustainable levels (Katovai et al., 2021).

Despite only partial recovery of forest structure
across Kolombangara, such selectively logged forests
may still support high levels of biodiversity (Laurance
& Edwards, 2014). For example, the recovery of canopy
structure to pre-logging levels may have facilitated the
restoration of biodiversity to levels similar to that in
unlogged forests (Gao et al., 2014). Similarly, the recov-
ery of large tree abundance in logged forests may suggest
that these forests have retained ecological functions able
to sustain high levels of biodiversity (Almeida-Gomes et
al., 2016). The high sapling abundance in regenerating
logged forests may provide a refugia for ground-dwelling
animals and the recruitment of climax plant species,
aiding the increase in understory biodiversity (Katovai
et al., 2012). Although the mean canopy height level
was lower in logged forests, its large increase with
recovery time suggests that biodiversity levels may even-
tually recover to pre-logging levels (Gillison et al.,
2013), if further logging or other land use activities do
not occur.

Nonetheless premature re-entry logging and other
unsustainable land use activities are still inevitable
across Kolombangara due to no policy on re-entry log-
ging coupled with poor logging practices in Solomon
Islands (Katovai et al., 2021, 2016, 2015). Such practices
can lead to further structural degradation of logged for-
ests on the island, potentially resulting in unprecedented
biodiversity loss in the future. It is therefore paramount
for forest resource owners across the Solomon Islands to
collaborate with relevant government and non-
government stakeholders, and develop national policies
on re-entry logging and harvesting limitations to drive a
transdisciplinary land-use management system (Reed et
al., 2020). This system should be based on reduced-
impact logging to achieve socioeconomic benefits
while sustaining forest resources for future use, and bio-
diversity conservation outcomes (Edwards et al., 2012;
Katovai et al., 2021, 2015). Such an initiative may
perhaps be the last resort in protecting key lowland for-
ests on Kolombangara from further degradation
and consequently sustaining the biodiversity within
these forests.
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