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A B S T R A C T   

Reference evapotranspiration (ET0), widely used in efficient and meaningful scheduling of irrigation events, is an 
essential component of agricultural water management strategy for proper utilization of limited water resources. 
Accurate and early prediction of ET0 can provide the basis for designing effective irrigation scheduling and help 
in resourceful management of water in agriculture. This study aims to evaluate and compare the performances of 
different hybridized Adaptive Neuro Fuzzy Inference System (ANFIS) models with optimization algorithms for 
predicting daily ET0. The FAO-56 Penman-Monteith method was used to estimate daily ET0 values using his
torical weather data obtained from a weather station in Bangladesh. The obtained climatic variables and the 
estimated ET0 values form the input-output training patterns for the hybridized ANFIS models. The performances 
of these hybridized ANFIS models were compared with the classical ANFIS model tuned with combined Gradient 
Descent method and the Least Squares Estimate (GD-LSE) algorithm. Performance ranking of these ANFIS models 
was performed using Shannon’s Entropy (SE), Variation Coefficient (VC), and Grey Relational Analysis (GRA) 
based decision theories supported by eight statistical indices. Results indicate that both SE and VC based decision 
theories provided the similar ranking though the numeric values of weights differed. On the other hand, GRA 
provided a slightly different sequence of ranking. Both SE and VC identified Firefly Algorithm-ANFIS (FA-ANFIS) 
as the best performing model followed by Particle Swarm Optimization-ANFIS. In contrast, FA-ANFIS was found 
to be the second-best performing model according to the ranking provided by GRA with a negligible difference in 
weight between FA-ANFIS and the classical ANFIS model (GD-LSE-ANFIS). Therefore, FA-ANFIS can be 
considered as the best model, which can be utilized to predict daily ET0 values for areas with similar climatic 
conditions. The findings of this research is of great importance for the planning of effective irrigation scheduling.   

1. Introduction 

Changing weather patterns have been responsible for affecting 
agriculture to a great extent in recent years. As such, accurate and 
reliable prediction of weather variability have achieved a particular 
importance in agriculture related water resources planning and man
agement problems. Reference evapotranspiration (ET0) is the key 
parameter affecting efficient water management strategies in agricul
ture and is an important component in hydrological and ecological 
processes controlling agricultural water management. Accurate and 
early prediction of ET0 provide the basis for designing efficient irrigation 
scheduling strategies in which actual crop evapotranspiration, ETa can 

be obtained from the computed ET0 when the crop coefficient values of 
the region of interest are known. Therefore, the applicability of ET0 has 
gained wider popularity as it can be admirably adapted to various crops 
through the incorporation of crop coefficient values (Xiang et al., 2020). 
Accurate measurements of ET0 can be obtained through lysimeters, 
which is generally used to develop and validate other indirect methods 
of ET0 estimation (Allen et al., 2011; López-Urrea et al., 2006). These 
indirect methods are typically mathematical models that employ few 
meteorological information (e.g., air temperatures, relative humidity, 
solar radiation, and wind speed) obtained from meteorological stations 
of interest for estimating ET0. As direct measurements through lysime
ters and other approaches are cost intensive, indirect measurements 
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have gained considerable attention in recent years. 
Several empirical methods have been proposed by the United Na

tion’s Food and Agriculture Organization (FAO) to estimate ET0 values. 
Among them, the FAO-56 Penman-Monteith (FAO-56 PM) method 
(Allen et al., 1998) received considerable attentions in recent years and 
is considered as the standard method for the definition and estimation of 
ET0 (Allen et al., 1998) as this method can be applied in a wide range of 
environments and climatic conditions without needing local calibrations 
due to its physical basis. The FAO-56 PM is a well-documented method 
that has been tested and validated for a huge bunch of meteorological 
settings covering a wide range of geographic locations (Landeras et al., 
2008). However, given that this method requires a considerable amount 
of reliable and high-quality meteorological data for accurate estimation 
of ET0, its use has become a major challenge particularly in developing 
countries where getting reliable data could often be a major hindrance. 
To minimize this drawback of data scarcity, Artificial Intelligence (AI) 
based models have been employed in predicting ET0 values in several 
recent studies (Ahmadi et al., 2021; Chia et al., 2021; Elbeltagi et al., 
2020; Feng et al., 2017c, 2017a; Granata, 2019; Roy et al., 2020; Tao 
et al., 2018; Yan et al., 2021; Wang et al., 2019; Wu et al., 2019). 
Nevertheless, the implementation of AI models requires an adequate 
number of input-output training patterns obtained either from direct 
measurements or indirect estimation of ET0 from meteorological vari
ables. It is noted that, AI based modelling approaches do not incorporate 
underlying physical processes of a system in predicting ET0. However, 
once trained properly without model over- or under-fitting, AI based 
modelling approaches can provide reasonably accurate estimates of 
future ET0 values when they are trained with the available input-output 
training patterns of meteorological variables and computed ET0 values. 
The trained and validated models can provide hundreds even thousands 
of future ET0 estimates without the need for calculating point ET0 values 
for a particular set of input variables. In other words, once a relationship 
between the climatic variables and ET0 can be established, one can 
obtain future values of ET0 from that relationship rather than computing 
ET0 values from the climatic variables using the FAO-56 PM equation. 
Nevertheless, the basis for developing this input-output relationship is 
entirely based on ET0 computations using the FAO-56 PM method. 

Numerous AI based models have been employed in recent years to 
accurately predict ET0 values with meteorological variables as inputs to 
the AI models and calculated ET0 values as outputs from the AI models. 
For instance, Feng et al. (2017a) evaluated the performances of Random 
Forests (RF) and Generalized Regression Neural Networks (GRNN) to 
estimate daily ET0 values in southwest China. Their results indicated that 
both RF and GRNN models provided acceptable estimates of ET0 and that 
prediction accuracy of RF was slightly better than that of the GRNN 
model. In another study, the performance of Extreme Learning Machine 
(ELM) and GRNN was found to be satisfactory in estimating daily ET0 
using only the temperature data in six meteorological stations in Sichuan 
basin of southwest China (Feng et al., 2017c). They concluded that both 
GRNN and ELM models outperformed temperature-based Hargreaves 
model and its calibrated version. Goyal et al. (2014) investigated the 
capabilities of Artificial Neural Networks (ANN), Least Squares – Support 
Vector Regression (LS-SVR), Fuzzy Logic, and Adaptive Neuro-Fuzzy 
Inference System (ANFIS) based AI models to enhance the accuracy of 
daily pan evaporation estimation in sub-tropical climates of Karso 
watershed in India. They concluded that Fuzzy Logic and LS-SVR based 
models provided the better prediction results when compared with ANN 
and ANFIS based models and that the AI based models outperformed the 
empirical Hargreaves and Samani as well as the Stephens–Stewart 
method. Ferreira et al. (2019) evaluated the performances of ANN and 
SVM based AI models for estimating ET0 across Brazil using measured 
data on temperature and relative humidity or only temperature. Sani
khani et al. (2018) conducted a survey of different data-intelligent 
modelling strategies for air temperature forecasting. Yu et al. (2020) 
performed uncertainty analysis of AI-based modeling approaches for 
daily ET0 prediction in the northwest end of China. 

On top of the standalone AI based models, hybridized AI models have 
received a considerable attention, primarily to enhance the performance 
of standalone AI models in predicting ET0 values. For instance, Tao et al. 
(2018) compared prediction accuracies of a Firefly Algorithm (FA) 
tuned ANFIS (FA-ANFIS) with the classical ANFIS model and concluded 
that FA-ANFIS provided better accuracy than the classical ANFIS model. 
Similarly, Wu et al. (2019) provided a comparison of four Extreme 
Learning Machine (ELM) based models optimized with bio-inspired 
optimization algorithms in predicting daily ET0 and observed that 
ELM optimized with Flower Pollination Algorithm and ELM with 
Cuckoo Search Algorithm had better prediction accuracies when 
compared to the classical ELM model. Swarm based optimization algo
rithms, i.e., Particle Swarm Optimization (PSO), Moth-Flame Optimi
zation (MFO), and Whale Optimization Algorithm (WOA) were also 
employed to develop hybrid ELM models (Chia et al., 2021) for ET0 
prediction. Their results revealed the superiority of WOA in developing 
hybridized ELM models. Wu et al. (2021) proposed a Kernel ELM 
(KELM) model hybridized with K-means clustering and FA (FA-KELM) to 
estimate ET0. Their findings revealed that the FA-KELM model had 
slightly better performance when compared to the performances of 
ANFIS and that both FA-KELM and ANFIS produced superior perfor
mances to RF and M5 prime model tree. In another study, Ahmadi et al. 
(2021) proposed a hybrid SVR model optimized with Intelligent Water 
Drops (IWA) algorithm for estimating monthly ET0 time series and 
concluded that the hybrid SVR model outperformed the standalone SVR 
model. Mohammadi and Mehdizadeh (2020) investigated the perfor
mance of WOA tuned SVR model and concluded that the hybrid SVR 
model outperformed the classical standalone SVR model in predicting 
daily ET0 values. Extreme Gradient Boosting (XGB) model was hybrid
ized with WOA (XGB-WOA) to estimate daily ET0 values (Yan et al., 
2021) in a humid region of China. Their findings indicated that the 
XGB-WOA model trained with external data and tested with local data 
provided reliable daily ET0 estimates. They also observed that when 
synthetic data from the target and adjacent stations were used, external 
XGB-WOA model produced an ET0 estimate that was better than or 
comparable to local XGB-WOA models. 

Recent literature of AI based ET0 modelling revealed that neural 
architectures have attained significant prediction accuracies for ET0 
modelling (Kumar et al., 2011). A neural architecture integrated with 
the concept of fuzzy logic theory, known as an ANFIS, has received 
considerable attention in recent years due to its better prediction ca
pabilities over other AI based ET0 models (Citakoglu et al., 2014; 
Cobaner, 2011; Fatemeh et al., 2012; Kisi et al., 2015; Ladlani et al., 
2014; Patil and Deka, 2017). ANFIS models are benefited by the ad
vantageous features of fuzzy logic theory and the adaptive nature of 
neural network architectures in solving nonlinear problems having a 
considerable amount of uncertainty (Jang, 1993). Fuzzy logic concept 
enables an ANFIS model to incorporate fuzziness, imprecision, and 
vagueness of the prediction dataset. Nevertheless, ANFIS models are 
associated with the limitations related to difficulties in optimizing in
ternal parameters. Classical ANFIS models use a hybrid tuning algorithm 
based on gradient descent and least squares which are prone to be 
trapped in local optima (Peyghami and Khanduzi, 2013). This is 
particularly true when the network structure and adjustable model pa
rameters are large in which case the classic ANFIS models might fail to 
tune the parameters perfectly and consequently the training of ANFIS 
models might not be satisfactory. Satisfactory training of an ANFIS 
model depends on the efficiency and accuracy of the training algorithm 
used (Hassanvand et al., 2018). Nature-inspired evolutionary algorithms 
have overcome the issues of slow and premature convergence in local 
optima, and therefore, have been a better choice to tune ANFIS model 
parameters for ET0 modelling (Azad et al., 2019; Tao et al., 2018). 
Although a few evolutionary algorithms, e.g. Ant Colony Optimization 
for the continuous domain (ACOR), Genetic Algorithm (GA), Differential 
Evolution (DE), Firefly Algorithm (FA) and Particle Swarm Optimization 
(PSO) have been utilized recently to tune ANFIS parameters for ET0 
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modelling, a detailed comparison of several algorithms might be useful 
to obtain the best hybrid ANFIS model. Therefore, present study intends 
to provide a comprehensive comparison of several optimization algo
rithm tuned ANFIS models in developing daily ET0 modelling. 

While AI-based prediction models are effective tools in forecasting 
daily ET0 values, accuracy and reliability of prediction largely depend 
on right choice of models for a particular study area. A set of perfor
mance evaluation indices are usually used to decide on the best per
forming model from a set of different models. However, the prediction 
models might have conflicting characteristics with respect to various 
performance indices. For instance, one prediction model might perform 
better than others with respect to correlation coefficient viewpoint, 
whereas another prediction model might have better performance when 
relative error criterion is used. To avoid this conflict, a set of perfor
mance indices should be incorporated in the decision-making process to 
address this contradiction objectively. In this approach, the performance 
indices are divided into benefit indices (the higher the better) and cost 
indices (the smaller the better). This study used four benefit and four 
cost indices in the decision-making process to rank the prediction 
models in terms of accuracy of prediction. The decision making was 
performed by calculating the weights of each hybridized model using 
these indices and with the aid of the concepts of Shannon’s Entropy (SE) 
(Shannon, 1948), Variation Coefficient (VC) (Zhang and Xie, 2010), and 
Grey Relational Analysis (GRA) (Deng, 1982). Ranking of the prediction 
models was objectively performed by assigning these weights to each of 
these performance evaluation indices. 

The concepts of information entropy or SE rely on the principle that 
the quantity and quality of information gained from the decision-making 

process determines the reliability and accuracy of the decision making 
(Wu et al., 2011). Entropy is a powerful tool for obtaining valuable in
formation from the data and to quantify the amount of information 
contained in the data. The concept of entropy has been successfully 
applied in different research domains in recent years (Wang et al., 2015; 
Zhang et al., 2010). Likewise, the VC method is a typical diversity-based 
weighting method that calculates attribute weight resulting from the 
diversity or dipartite extent of attribute data among the feasible alter
natives (Li et al., 2019; Liu et al., 2018; Xu et al., 2018) thus avoiding the 
deviance of human influences effectively (Ding et al., 2016). The VC 
approach computes weights using the attribute’s coefficient of variation, 
which measures the extent of diversity of attributes (Chen, 2019). This 
weighting method has been used in the risk assessment and decision 
making regarding natural hazards (Chen, 2019; Li et al., 2019; Liu et al., 
2018). On the other hand, GRA is an important part of Gray system 
theory (Deng, 1982) and can be applied to solve multi-criteria deci
sion-making problems by integrating the whole range of performance 
index values considered for each alternative into an enumerated value of 
Gray relational grade. GRA has been successfully applied in various 
research niches, i.e., in deriving optimal operating rules for a hydro
power reservoir (Fang et al., 2018), in an integrated cascade utilization 
system of geothermal water (Luo et al., 2016), and in the assessment of 
mine safety (Xu and Xu, 2018) etc. However, the application of these 
weighting approaches is quite limited in the ranking of evolutionary 
algorithm tuned ANFIS models for ET0 prediction. To the best of the 
authors knowledge, the application of SE, VC, and GRA approaches has 
only been utilized in few recent studies for prioritizing the prediction 
models to develop ET0 prediction modelling (Roy et al., 2020). 

Fig. 1. Location of weather station in the study area.  
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This study proposed 15 evolutionary algorithms, i.e., Artificial Bee 
Colony (ABC), Bee Algorithm (BA), Biogeography-based Optimization 
(BBO), Continuous Ant Colony Optimization (ACOR), Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES), Cultural Algorithm (CA), 
Differential Evolution (DE), Firefly Algorithm (FA), Genetic Algorithm 
(GA), Harmony Search (HS), Imperialist Competitive Algorithm (ICA), 
Invasive Weed Optimization (IWO), Particle Swarm Optimization (PSO), 
Simulated Annealing (SA) and Teaching-Learning-based Optimization 
(TLBO) to develop hybridized ANFIS models for ET0 forecasting. The 
performances of these hybridized ANFIS models were compared with 
those of the classic ANFIS model. Finally, a ranking of the performances 
of developed hybridized ANFIS models was proposed using the concepts 
of three decision theories (SE, VC, and GRA). The methodology was 
demonstrated using a case study in a sub-tropical climate in Bangladesh. 
Therefore, the prime focus of this research work is to improve the ANFIS 
performances using several optimization algorithms. Another contri
bution of this work is the selection of best ANFIS model utilizing deci
sion theories that incorporate eight statistical performance evaluation 
indices instead of relying on few performance indices in reaching the 
conclusion. Therefore, the study not only proposes several optimization 
algorithms for better ANFIS tuning but also provides a decision tool 
through which one can select the best ANFIS model for ET0 prediction. 

To the best of the authors understanding, there has been a lack of 
comprehensive comparison of several optimization algorithms in 
improving the ANFIS performance for daily ET0 estimation. Besides, 
there has been a need to provide a ranking of the performances of opti
mization algorithm tuned ANFIS models using several performance 
indices instead of relying on few indices. The main contribution of this 
study is to select a suitable optimization algorithm tuned ANFIS model 
utilizing three decision theories for daily ET0 prediction. While successful 
tuning of ANFIS parameters through optimization algorithms can 
improve prediction accuracy, incorporation of decision theories will 
assist decision makers in taking right decision to select the best prediction 
model. As it is practically infeasible to attempt all available optimization 
algorithms, the scope of the present study has been limited to few of the 
promising algorithms to be integrated with the ANFIS. Hence, the aim of 
this study is to (1) employ 15 optimization algorithms to tune ANFIS 
parameters; (2) provide a comparison of the performances of hybridized 
ANFIS models; and (3) provide a ranking of the hybridized ANFIS models 
utilizing three decision theories. The findings of this study will be of 
crucial importance to the agricultural especially irrigation perspective as 
an alternative modelling approach and, in particular, within the context 
of developing countries like Bangladesh where monitoring and acquisi
tion of reliable meteorological data is a serious concern. 

2. Methodology 

2.1. Study area and data 

The historical daily weather data were obtained from an automatic 
weather station located in Gazipur Sadar Upazilla (located at 24.00◦

north latitude and 90.43◦ east longitude) of Gazipur district in 
Bangladesh. The study area covers an aerial extent of approximately 
446.38 km2. The average annual rainfall of the study area is 2036 mm of 
which around 80% occurs during the months of May to August 
(monsoon season in Bangladesh). Generally, the study area is in a sub
tropical climatic zone with heavier rainfalls in the summer and lighter 
rainfalls in winter. The weather station is situated at 24.00◦ north lati
tude and 90.41◦ east longitude with an elevation of 8.4 m above mean 
sea level. The location of the weather station is illustrated in Fig. 1. The 
climatic variables such as minimum and maximum air temperatures, 
relative humidity, wind speed, and sunshine duration for a period of 
approximately 15 years (01 January 2004–30 June 2019) were obtained 
from the weather station shown in Fig. 1. The amount of sunshine as well 
as length of the day was obtained from a silicon photo diode type global 
solar radiation recorder (Licor-200SZ, LI-COR Biosciences, USA; 

accuracy = ± 5%; range = 0.3–4 µm; measurement height = 2 m). The 
maximum and minimum thermometers (Zeal P1000, G. H. Zeal Ltd., UK; 
accuracy = ± 0.2℃; range and resolution = − 50 to + 70℃, 0.1℃; 
measurement height = 2 m) were used to measure the maximum and 
minimum temperatures of the day, respectively. A capacitive type hy
grometer (R. M. Young Company, USA; accuracy = ± 3%; range and 
resolution = 0–100%, 1%; measurement height = 2 m) was used to 
measure relative humidity. A rotating cup anemometer (Cup Anemom
eter 4.3018.10.000, Adolf Thies GmbH & Co. KG, Germany; accu
racy = 1.2 m/s; range and resolution = 0.5–60 m/s, 0.1 m/s; 
measurement height = 10 m) was used to measure the wind speed. It is 
noted that few adjustments were needed to get to the FAO-56 PM 
method suitable for local conditions as well as to improve the ET0 esti
mations (Allen et al., 2006). For instance, the obtained wind speed at 
10 m height was converted to a height of 2 m, keeping a lower limit of 
0.5 m/s following the recommendations from Allen et al. (2006). 

The descriptive statistics of the obtained meteorological variables is 
presented in Table 1. 

The ET0 values were calculated using the weather data inputted into 
the FAO-56 PM model (Allen et al., 1998). Net radiation at the crop 
surface (calculated from the obtained sunshine hours) and other four 
climatic variables were used to calculate the ET0. This method is 
commonly accepted by scientific communities, and has become an 
extensively used approach in situations where the ET0 values are diffi
cult to acquire experimentally (Allen et al., 1998; Feng et al., 2017b; 
Shiri et al., 2014). The FAO-56 PM model can be represented by: 

ET0 =
0.408Δ(Rn − G) + γ 900

Tmean+273u2(es − ea)

Δ + γ(1 + 0.34u2)
(1)  

where, ET0 is the reference evapotranspiration, mm/d; Rn is the net 
radiation at the crop surface, MJ/m2/d; G is the heat flux density of soil, 
MJ/m2/d; Δ is the slope of the saturation vapor pressure curve, kPa/◦C; γ 
is the psychometric constant, kPa/◦C; es is saturation vapor pressure, 
kPa; ea is actual vapor pressure, kPa; u2 is the wind speed at a height of 
2 m, m/s; and Tmean is mean air temperature at 2 m height, ◦C. 

The mean saturation vapour pressure (es) is derived from air tem
perature. The relationship between air temperature and e(T) can be 
represented by the following equation (Zotarelli et al., 2010): 

e(T) = 0.6108exp
[

17.27T
T + 237.3

]

(2)  

where, e(T) = Saturation vapour pressure at the air temperature T, kPa; 
and T = air temperature, ℃. 

As such, es is computed as the average values between the saturation 
vapour pressure at both the maximum and minimum values of daily air 
temperature such that, 

e(Tmax) = 0.6108exp
[

17.27Tmax

Tmax + 237.3

]

(3) 

Table 1 
Statistics of the obtained meteorological variables.  

Variables Min Max Mean Standard 
deviation 

Skewness Kurtosis 

Minimum 
temperature, 
◦C  

4.40  34.50  21.17  5.64 -0.63  -0.88 

Maximum 
temperature, 
◦C  

12.00  53.00  30.93  3.92 -1.10  2.11 

Relative 
humidity, %  

38.00  89.00  80.22  8.20 -0.63  0.75 

Wind speed, 
m/s  

0.68  5.06  2.79  1.05 -0.06  -1.32 

Sunshine 
duration, h  

0.00  11.40  5.54  3.09 -0.40  -1.04  
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e(Tmin) = 0.6108exp
[

17.27Tmin

Tmin + 237.3

]

(4)  

where, Tmax = daily maximum air temperature, ℃; and Tmin = daily 
minimum air temperature, ℃. The es thus be calculated using the 
following equation: 

es =
e(Tmax) + e(Tmin)

2
(5) 

On the other hand, actual vapour pressure (ea) is computed from the 
relative humidity: 

ea =

e(Tmin)

[
RHmax

100

]

+ e(Tmax)

[
RHmin

100

]

2
(6)  

where, ea = actual vapour pressure, kPa; e(Tmin) = saturation vapour 
pressure at minimum daily temperature, kPa; e(Tmax) = saturation vapour 
pressure at maximum daily temperature, kPa; RHmax = maximum rela
tive humidity, %; and RHmin = minimum relative humidity, %. 

Slope of the saturation vapor pressure curve (∆) and psychrometric 
constant (γ) are calculated as (Allen et al., 1998): 

∆ =

4098
[

0.6108 exp
(

17.27T
T+237.3

)]

(T + 237.3)2 (7)  

γ =
CpP
ελ

0.665 × 10− 3P (8)  

P = 101.3
(

293 − 0.0065Z
293

)5.26

(9)  

where, exp [∙] is 2.7183 (base of the natural logarithm) raised to the 
power [∙∙]; P represents the atmospheric pressure, kPa; λ denotes the 
latent heat of vaporization (2.45 MJ/kg); Cp is the specific heat at con
stant pressure (1.013× 10− 3MJ/kg/℃); ε is the ratio between molecular 
weight of water vapor and dry air 
(molecular weight of water vapour/dry air) (0.622). 

The net radiation (Rn) is calculated as: 

Rn = Rns − Rnl (10)  

where, Rns = incoming net shortwave radiation, MJ/m2/d; 

Rnl = outgoing net longwave radiation, MJ/m2/d. 
The net shortwave radiation (Rns) can be computed from the 

following equation: 

Rns = (1 − a)Rs (11)  

where, a = canopy reflection coefficient or albedo (dimensionless), the 
value of which is 0.23 for the hypothetical grass reference crop, and 
Rs = incoming solar radiation, MJ/m2/d. 

Rs =
[
as + bs

n
N

]
Ra (12)  

where, Ra is the extra-terrestrial radiation, MJ/m2/d; N and n are, 
respectively, the maximum and actual possible sunshine durations. The 
recommended values for as and bs are 0.25 and 0.50, respectively 
(Allen et al., 1998). 

Ra =
24(60)

π Gscdr [ωssin(φ)sin(δ)+ cos(φ)cos(δ)sin(ωs) ] (13)  

where, Gsc is the solar constant (0.0820 MJ/m2/min; dr is the inverse 
relative distance Earth-Sun; ωs represents the sunset hour angle, rad, φ 
indicates latitude, rad, and δ is the solar declination. 

dr = 10.033 cos
(

2π
365

J
)

(14)  

where, J represents the number of days in a year between 1 (January 1) 
and 365 or 366 (December 31). 

δ = 0.409 sin
(

2π
365

J − 1.39
)

(15)  

ωs = arccos[ − tanφtanδ] (16)  

Radians = π/180(decimal degrees) (17) 

The net outgoing longwave radiation (Rnl) is represented by: 

Rnl = σ
[
(Tmax + 273.16)4

+ (Tmin + 273.16)4

2

]

(0.34 − 0.14)
̅̅̅̅̅
ea

√
[

1.35
Rs

Rso

− 0.35
]

(18) 

Rso in Eq. (18) is calculated using the following equation: 

Fig. 2. Monthly average of climatic variables and calculated ET0 values. The primary axis displays Temperature (minimum and maximum temperature, ℃), and 
Relative humidity (%) whereas the secondary axis depicts Wind Speed (m/s), Sunshine hours (hr/d), and ET0 (mm/d). 
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Rso =
(
0.75+ 2 × 10− 5Z

)
Ra (19) 

u2 in Eq. (1) is calculated using the following equation (Allen et al., 
1998): 

u2 = uz
4.87

ln(67.8z − 5.42)
(20)  

where, Tmax and Tmin = K maximum and minimum absolute tempera
tures during the 24-hour period [K =℃ + 273.16]; Rso = clear sky solar 
radiation, MJ/m2/d, σ represents the Stefan-Boltzmann constant 
(4.903 × 10− 9 MJ/K4/m2/d); uz is the measured wind speed at Zm 
above the ground surface, m/s; z represents the elevation of the station 
above the mean sea level, m. Estimated ET0 values ranged from 
0.92 mm/d to 8.02 mm/d while the mean, standard deviation, skew
ness, and kurtosis values were 3.80 mm/d, 1.32 mm/d, 0.30, and 
− 0.67, respectively. Fig. 2. shows average values of the climatic vari
ables and calculated ET0. 

These calculated ET0 values and the climatic variables were used as 
outputs and inputs, respectively, of the developed ANFIS based models. 
The entire input-output datasets were divided into training (80%), 
validation (10%), and test sets (10%). The dataset contains 5660 entries 
of climatological variables and computed ET0 values. The first 4528 
entries (from 01 January 2004–24 May 2016) counting 80% of the total 
data were used as training patterns whereas the next 566 entries 
counting 10% of the total data (from 25 May 2016–11 December 2017) 
were used as validation dataset to validate the developed ANFIS models. 
It is noted that the training and validation were performed simulta
neously. The remaining 10% (566 entries, i.e., from 12 December 
2017–30 June 2019) of the total dataset was used as test dataset to test 
the trained and validated ANFIS models. As there remains no definite 
rules for data partitioning, this partitioning scheme of 80-10-10 was 
selected after conducting several trials (results are not presented). 

2.2. Adaptive Neuro-fuzzy Inference System (ANFIS) 

ANFIS models are able to mimic the trends of the input-output pat
terns of a nonlinear system due to their capability of incorporating 
vagueness or fuzziness of the input parameters of a complex system 
(Jang et al., 1997). For this reason, ANFIS models are often considered to 
be the universal approximators of nonlinear and complex systems. 
Incorporation of advantageous features of both the fuzzy logic and 
artificial neural networks has made them capable of modelling nonlinear 
processes of complex systems through capturing and mapping the trends 
or relationships between the input and output variables (Sugeno and 
Yasukawa, 1993; Takagi and Sugeno, 1985). A Sugeno type ANFIS 
model has a relatively simple architecture with the ability of providing a 
fairly accurate prediction through superior learning capability (Jang 
et al., 1997). In this effort, Fuzzy C-Mean Clustering (FCM) (Bezdek 
et al., 1984) algorithm was utilized to reduce the dimensionality of the 
training dataset in order to minimize the numbers of modifiable (linear 
and nonlinear) parameters of the developed ANFIS models. The input 
and output membership functions of a Sugeno type ANFIS are Gaussian 
and linear, respectively. The Gaussian membership function, deter
mined by two parameters {c, σ}, can be represented by (after Jang et al. 
(1997)): 

gaussian (x, c, σ) = e
− 1

2

(
x− c

σ

)2

(21)  

where, c = center of the membership function, and σ = width of the 
membership function. Fig. 3 illustrates an ANFIS architecture derived 
from a Sugeno type Fuzzy Inference System (FIS). 

The building block of the ANFIS structure shown in Fig. 3 is the first- 
order Sugeno FIS, which is composed of two inputs (αandβ) and one 
output (f). The fuzzy if-then rule sets for this FIS can be written as: 

Rule 1:If α is P1 and β is Q1 then f1 = p1α+ q1β+ r1 (22)  

Rule 2:If α is P2 and β is Q2 then f2 = p2α+ q2β+ r2 (23) 

The Sugeno type ANFIS has five layers as shown in Fig. 3. These 
layers are named as a fuzzy layer, a product layer, a normalized layer, a 
defuzzification layer, and a total output layer. The detail description and 
the functions of these layers can be found in Jang (1993) and is not 
repeated here. 

MATLAB commands and functions were used to develop the ANFIS 
models. 

2.3. Optimization algorithms for tuning ANFIS parameters 

2.3.1. Artificial Bee Colony (ABC) 
The ABC (Karaboga, 2005) is a relatively new swarm intelligence 

based meta-heuristic optimization algorithm that intends to simulate 
intelligent natural behavior of real honey bees in food forging. A swarm 
consists of a set of honeybees, which are assigned to perform particular 
tasks successfully accomplished through social cooperation. Honeybees 
utilize a number of unique mechanisms, for instance, waggle dance to 
accurately locate food sources and to search for new locations of food 
sources. This unique behavior of honeybees makes them an ideal 
candidate for formulating intelligent search algorithms. The ABC algo
rithm makes use of the performances of three types of bees (employed 
bees, onlooker bees and scout bees) associated with three types of ac
tions: (i) search for new food sources, (ii) recruit bees for collecting the 
food, and (iii) abandon the exploited food sources. The employed bees 
search for food around the food source and transmit the information on 
the food sources to the onlooker bees who wait in the hive for the in
formation from the employed bees. Scout bees are associated with 
searching for the new food sources. The employed bees dance in the 
dance area to transmit information about food sources and the dancing 
extent is proportional to the nectar content of the food sources exploited 
by the dancing bees a few moments ago. Onlooker bees select a food 
source by judging the quality of the food source perceived through the 
nature of dancing by the employed bees. When honeybees, be it an 
onlooker or a scout bee, find a food source they become employed bees. 
A food source is abandoned whenever it is fully exploited by the 
employed bees who may afterwards become onlooker or scout bees. In 
the ABC algorithm, the first and second halves of the swarm are 
composed of employed and onlooker bees, respectively. The number of 
solutions is equal to the number of either the employed or the onlooker 
bees in the swarm (Karaboga, 2005). The position of a food source 
represents a feasible solution of the optimization problem in hand 
whereas the nectar quantity of a food source represents the quality 
(fitness) of that solution. The details of the ABC algorithm with the 
associated equations can be found in Karaboga (2005), and are not 
repeated here. 

2.3.2. Bee Algorithm (BA) 
The BA, proposed by Pham et al. (2006), is similar to the ABC with 

respect to both local and global search processes. However, the algo
rithms differ in terms of neighborhood search process during which ABC 

Fig. 3. ANFIS structure derived from a two-input first-order Sugeno type FIS 
(Jang, 1993). 
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employs probabilistic approach whereas BA employs fitness evaluation 
approach to drive the search process (Yuce et al., 2013). The BA utilizes 
exploitation and exploration strategies in order to perform both local 
and global searches, respectively. The basic operating principle of the 
BA is as follows: Let i be the number of iterations, then the pseudo-code 
of the basic BA can be written as: 

In BA, each point within the solution space is regarded as a food 
source. When a honeybee finds a food source, its quality is evaluated by 
the bee through the fitness function. Scout bees are assigned to randomly 
select the fitness landscape with a priority of sampling unexplored areas 
of higher fitness. That is to say, new probable solutions are generated 
and evaluated randomly. The ranking of the visited areas is performed, 
and the forager bees are employed to re-search the neighborhood of the 
highly ranked locations, i.e., new solutions similar to the current best 
ones are generated and evaluated. 

2.3.3. Biogeography-based Optimization (BBO) 
The BBO (Simon, 2008) is developed by incorporating the ideas from 

biogeographic evolution. This evolutionary algorithm is intended to 
perform global optimization. In BBO, a population of habitats, referred 
to as solutions, are repeatedly evolved and improved principally by 
migrating characteristics from better solutions to worse ones. Each 
standalone solution, known as “habitat” or “island”, has a particular 
Habitat Suitability Index (HSI). Emigration and immigration rates are 
computed using this HSI, which is used to determine the extent of 
suitability of solutions. A particular solution is considered to be more 
suitable if its HSI value is higher whereas a solution with a lower HSI 
value indicates a less suitable solution. Solutions with higher and lower 
HSI values have a tendency to share few of their unique features with 
each other (Zheng et al., 2014). Two major mechanisms namely 
migration and mutation control the continuous evolution and 
improvement of the habitats or solutions in BBO. BBO has proved itself 
as one of the promising evolutionary algorithms when tested with 
various test problems (Du et al., 2009; Simon, 2008; Song et al., 2010). A 
detailed description of the BBO can be found in Simon (2008), and is not 
repeated here. 

2.3.4. Continuous Ant Colony Optimization (ACOR) 
The first Ant Colony Optimization (ACO) was developed from an 

inspiration by the foraging behavior of real ants (Dorigo, 1992). During 
foraging, ants initially utilize a random search to explore the area sur
rounding their nest. Whenever an ant finds a source of food, it evaluates 
the source and brings some food to its nest. The ant deposits a phero
mone trace on the path it uses to return to the nest. The amount of this 

deposited pheromone provides a signal to the other ants about the 
quantity and quality of the food. This pheromone track acts as an indi
rect form of communication among the ants enabling them to find the 
shortest routes between the food sources and the nest. Initial application 
of ACO was intended to solve Combinatorial Optimization Problems 
(COPs) including vehicle routing, scheduling, timetabling, and so on 
(Dorigo, 1992; Dorigo et al., 1999, 1996). Although a lot of real-world 
optimization problems can be represented as COPs directly, many of 
the real-world problems, for instance, those requiring selection of values 
for continuous variables may not be well suited to be represented as 
COPs directly. Such problems require converting the continuous ranges 
of allowable values into finite sets. However, this conversion is not al
ways straightforward and expedient in cases where the initial probable 
range is extensive, and the process demands a very high resolution 
(Socha and Dorigo, 2008). To overcome this inconvenience associated 
with the original ACO algorithm, Socha and Dorigo (2008) proposed an 
extension of ACO algorithm to continuous domains without carrying out 
any major conceptual modification to the structure of the original ACO 
algorithm. This modified algorithm is referred to as ACOR. 

According to Socha and Dorigo (2008), the formal definition of a 
model for continuous optimization problem can be expressed as: 

Q = (S,Ω, f ) (24) 

This model for continuous optimization problem includes:  

a. a search space (S) that is defined over a finite set of continuous 
variables  

b. a set (Ω) of constraints among the variables  
c. an objective function to be minimized that can be defined as: f:S→R0

+

The key idea associated with the ACOR algorithm is the shift from 
‘using a discrete probability distribution’ to ‘using a continuous proba
bility distribution’, commonly referred to as a probability density 
function. The ACOR consists of three major algorithmic components, 
namely, (i) Ant Based Solution Construction, (ii), Pheromone Update, 
and (iii) Daemon Actions. A detailed description of these components 
can be found in Socha and Dorigo (2008), and is not repeated here. 

2.3.5. Covariance Matrix Adaptation Evolution Strategy (CMAES) 
The CMAES is an efficient derivative-free global evolutionary opti

mization algorithm for solving continuous optimization problems 
(Hansen et al., 2003). It possesses several advantageous features, for 
instance, the CMAES is a derivative free, covariant, off-the-shelf, and 

i = 0  
Generate initial population of sizen  
Evaluate the Fitness Value of initial population  
Sort the initial population on the basis of fitness value  
Perform a while loop until the user defined maximum number of iterations (MaxIter) is  
reached OR the differences in Fitness Values between any two consecutive iterations  

becomes less than or equal to the used defined Error criterion(Error)
The While loop  
while i ≤ MaxIter OR Fitnessi − Fitnessi− 1 ≤ Error  
a. i = i + 1  
b. Select the elite and non-elite best patches for performing neighborhood search  
c. Employ the forager bees in the elite patches and the non-elite best patches  
d. Evaluate the Fitness Value of each patch;  
e. Sort the results based on their fitness values;  
f. Allocate the reminder of the bees to the non-best locations to perform global search;  
g. Evaluate the Fitness Value of the non-best patches;
h. Sort the overall results on the basis of their Fitness Values;  
i. Execute the algorithm until the termination criterion/criteria is/are met  
End    
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scalable optimization algorithm (Hansen et al., 2003). The CMAES is 
intended to optimize a black-box objective function over a well-defined 
parameter space (Dang et al., 2019). The feature functions are some
times delineated manually within this parameter space. As such, the 
selected feature quality or the underlying parameter space largely in
fluence the performance of this optimization approach (Dang et al., 
2019). The working principle of CMAES is primarily governed by 
establishing a parametric distribution over the solution space. The al
gorithm utilizes a parametric search distribution for an iterative sam
pling of a population of candidate solutions, which are then evaluated by 
a black-box function (Dang et al., 2019). Like any other evolutionary 
optimization algorithm, the CMAES implements three key steps, namely 
recombination, mutation and selection in order to carry out the opti
mization tasks. 

However, the original CMAES was slightly modified by Hansen et al. 
(2003) with a view to adapting the covariance matrix through utilizing 
additional information obtained from larger populations. In this modi
fied version of the CMAES, higher rank information is included rather 
than using the rank one information for updating the covariance matrix. 
The modified equations can be found in Hansen et al. (2003), and is not 
repeated here. 

2.3.6. Cultural Algorithm (CA) 
The CA, proposed by Reynolds (1994), is a population-based opti

mization algorithm based on the concept of collective intelligence. It is 
derived from the ‘lineal evolution of socio-cultural transition, which pre
vailed in the19th century’ (Kuo and Lin, 2013), and is employed as a 
search engine to solve global optimization problems. Reynolds (1994) 
described the fundamentals of CA using an expression of Renfrew’s 
Think model with respect to a twofold inheritance framework. This 
framework incorporated a belief space that constitutes both the indi
vidual and group ‘mappa’, and a trait-based population space. In this 
framework, each of the individuals can be represented with respect to 
(a) a set of traits or behaviors, and (b) a ‘mappa’ or a general explanation 
of their understandings. Traits are possible to be altered and swapped 
between individuals with the help of various socially inspired operators 
whereas the individual ‘mappa’ may be combined and altered to create 
‘group mappa’. The symbols for characterizing traits and ‘mappa’ may 
also be altered with time with respect to the experience. Existing traits 
may be lost from the population while several new traits can be added to 
the population. Likewise, symbols representing ‘mappa’ may also be 
forgotten and new symbols may be added. Therefore, the depiction of 
the trait sequences and the ‘mappa’ may themselves be evolved with the 
utilization of the experiences of the groups. 

At a certain time-step, there exists a set of individuals (each of which 
are defined with respect to the presently applicable traits) within the 
population space. Each individuals’ performance is evaluated with 
respect to solving a given set of problems. Additionally, each individual 
is likely to create a general mapping of their experiences during this 
time-step, a process referred to as outlining. The most generalized belief 
in a created ‘mappa’ is named as its ‘dominant belief’. The ‘mappa’ of an 
individual can then be combined with presently prevailing ‘group 
mappa’ within the belief space whenever the conditions for one or 
combining operations are satisfied. If a ‘mappa’ is unable to be merged 
for a certain time-step, it remains separated within the belief space for 
that time-step. During the merging of ‘mappa’, the performances of in
dividuals allied with the ‘mappa’ are integrated. If the integrated per
formance of a ‘mappa’ is lower than some predefined level of 
acceptance, then that ‘mappa’ is eliminated or ‘pruned’ from the belief 
space. The set of presently accepted ‘group mappa’ forms the adjusted 
belief space for a particular time-step. Eliminated ‘mappa’ may or may 
not be enforced in the population level. 

The present state of the belief space can, therefore, be utilized to alter 
the individuals’ performance, alter the set of acceptable traits, and 
enforce eliminated ‘mappa’ etc. The population is then utilized to create 
a new population by means of the selection of individuals to be parents 

for the next generation. The parents are then employed to evolve a new 
population through the use of different alteration operators. A 
communication channel or protocol is employed to describe the effects 
of present belief space on the population of individuals as well as the 
counter effect of the individuals on the belief space. The vote-inherit- 
promote protocol is utilized. This protocol supports the method of 
connecting the performance of an individual with a ‘mappa’ in the belief 
space (vote), then letting the ‘mappa’ to inherit the performances of 
individuals (inherit), and eventually promoting those individuals in the 
population related to the present ‘group mappa’ (promote) (Reynolds, 
1994). The process continues until a stopping or termination criterion is 
satisfied. 

2.3.7. Differential Evolution (DE) 
The DE algorithm (Price, 1999; Storn, 1999) is a stochastic and 

population-based optimization algorithm, ideally suited for solving 
nonlinear optimization problems. The concept of DE is simple with a 
fundamental configuration of DE/rand/1/bin (Fan and Lampinen, 2003; 
Storn and Price, 1997). In DE, an initial population is randomly gener
ated following a uniform distribution with the lower and upper bounds 
of xL

j and xU
j , respectively. This randomly created initial population 

contains NP vectors such that Xi, ∀i = 1, 2, 3,…,NP. Once this initiali
zation process has completed, the generated individuals are evolved 
through mutation and crossover operators leading to the creation of a 
trial vector. The trial vector thus obtained is compared with the asso
ciated parent for selecting the vector that should pass through to the 
next generation (Das and Suganthan, 2011). The basic steps of DE al
gorithm are consisted of initialization, mutation, crossover, and selec
tion. These steps are described in Price (1999) and in Storn (1999), and 
are not repeated here. 

2.3.8. Firefly Algorithm (FA) 
The development of FA (Yang, 2010) was inspired by the idealized 

behavior of the fireflies (light flashing characteristics). These light 
flashing characteristics of fireflies can be idealized into three basic rules:  

a) Fireflies are unisex, and they possess a unique characteristic in order 
to attract each other regardless of the sex they belong to;  

b) The rate of attraction is proportional to the degree of brightness. This 
implies that for any two fireflies with dissimilar flashing character
istics, the firefly possessing more brightness will attract the one with 
less brightness. In other words, the less bright firefly will tend to 
move towards the brighter firefly. Furthermore, both the brightness 
and attraction are inversely proportional to the distance, therefore, a 
firefly will move randomly if it cannot find no other brighter fireflies 
than itself; 

c) The landscape of the objective function of a particular problem de
termines the brightness or light intensity of a firefly. 

Thus, variation of light intensity and establishment of attraction are 
the two most important issues in the FA. In particular, it is perceived that 
the attraction of a firefly to another firefly is associated with the light 
intensity or brightness of the participating fireflies, and the light in
tensity is affected by the landscape of the encoded objective function. 
The details of FA can be found in Yang (2010) and are not repeated here. 

2.3.9. Genetic Algorithm (GA) 
GA was introduced by John Holland in 1960 and was further pro

tracted by Goldberg (1989). GA works on the principles of natural se
lection method that initiates biological evolution based on Darwin’s 
theory of evolution. It is capable of solving complex optimization 
problems with or without linear, nonlinear, and bound constraints. GA 
differs in principle from other classical optimization algorithms with 
respect to the coding of variables (GA employs coding of variable instead 
of the variables themselves) (Deb et al., 2002). GA is a population based 
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evolutionary algorithm that utilizes probability theorem in its search 
procedure for providing a population of solutions rather than generating 
a single solution. During the search process, a population of individual 
solutions is repetitively modified by the GA. At every step of the search 
process, the algorithm randomly chooses parents from the present 
population pool and employs these selected parents to generate children 
for the next generation. The population ‘evolves’ on the way to an ideal 
or optimal solution through an iterative process of the formation of a 
reasonable number of generations. To produce successive generations 
from the present population pool during each step, the GA employs three 
key categories of rules: selection, crossover, and mutation. Each of these 
rules is associated with performing particular tasks as the algorithm 
progresses to reach an optimal solution. These tasks are summarized as 
follows:  

• Selection rules: They randomly select individuals or parents from the 
present pool of populations. These parents contribute in terms of 
producing offspring or children to the next pool of populations at 
successive generations.  

• Crossover rules: These rules integrate two parents for producing 
offspring for the next generation.  

• Mutation rules: They apply arbitrary alterations to individual parents 
to produce offspring. 

The fundamental working principles of GA are summarized in the 
following points (Mathworks, 2020):  

I. GA starts by forming a randomly generated initial population.  
II. A sequence of new populations is then formed. During successive 

steps, GA employs individuals contained in the present generation to 
produce the next population. New population is produced through 
the subsequent phases:  

• Scoring of all members of the present population through calculating 
their individual fitness values, which are referred to as ‘raw fitness 
scores’.  

• Converting the ‘raw fitness scores’ to a further usable array of values 
through scaling. These usable scaled values are named as ‘expecta
tion value’.  

• Selecting parents with respect to their ‘expectation values’.  
• Selecting ‘elite’ members (having lower fitness values) from the 

present population and passing them to the next population. 
• Producing offspring from the parents. Offspring production is per

formed either by mutation (a single parent is randomly changed) or 
by crossover (a pair of parents is combined).  

• Replacing the present population with the produced offspring in 
order to create successive generations.  

I. The iterations of GA search process terminate as soon as the user 
defined stopping criteria are satisfied. 

2.3.10. Harmony Search (HS) 
HS, a music-inspired metaheuristic optimization algorithm, was first 

proposed by Geem et al. (2001). The development of HS is stimulated by 
the fundamental ideologies of the musician’s improvisation of the har
mony (Gao et al., 2015). The algorithm is based on the observation that 
the prime objective of listening music is to look for an ideal situation of 
harmony, which is incorporated in the search process to obtain an 
optimal solution for an optimization problem. The link between the 
musical harmony and the optimal solution lies in the analogy between 
them in such a way that a musician constantly tries to present a piece of 
music with flawless harmony while an optimization problem formula
tion always intends to search for the best or optimal solution. Such 
linking or similarities motivated the researchers to develop HS algo
rithm through learning from both musical harmony and principles of 
optimization process. The HS is an attempt to transform the qualitative 

improvisation of a musician into several quantitative rules by idealiza
tion (Yang, 2009). 

The idealization of an expert musician is associated with three 
probable selection processes. In the first case, a musician may decide to 
play any popular music with a sequence of harmonic pitches solely from 
his memory. Secondly, he may opt to play a recognized piece of music by 
modifying the existing harmonic pitch to some extent. Thirdly, the 
musician may choose to compose and play a completely new or random 
music. These three qualitative possibilities are incorporated into a 
quantitative optimization formulation in which these three components 
are accordingly named as: ‘usage of harmony memory’, ‘pitch adjust
ing’, and ‘randomization’ (Geem et al., 2001). The first component, 
‘usage of harmony memory’, is very similar to the selection of best-fit 
individuals in GA and is an important constituent in HS algorithm. 
This component ensures the inclusion of the best harmonies to the 
successive harmony memories. A parameter called harmony memory 
acceptance rate, racceptance is generally employed for the efficient utili
zation of harmony memory. The values of racceptance range between 0 and 
1. However, a typical range of 0.7 ~ 0.95 is usually preferred for 
practical applications (Yang, 2009) because too small value of this 
parameter may result in the inclusion of only few best harmonies in the 
harmony memory and may cause slow convergence of the algorithm. On 
the other hand, a higher value of racceptance leads to the use of most of the 
harmonies in the harmony memory leaving the other harmonies quite 
unexplored that may provide with the incorrect solutions. 

The pitch adjustment component is determined by two parameters: 
band width of the pitch (bpitch), and rate of pitch adjustment 
(rPitchAdjustment). In music, adjustment of pitch typically refers to frequency 
change. Likewise, in HS algorithm, pitch adjustment refers to create a 
somewhat different solution (Geem et al., 2001). 

The randomization component helps in increasing and maintaining 
the diversity of the HS solutions. This component is employed to further 
improve the search space by broaden the search space because pitch 
adjustment is primarily associated with certain local pitch adjustment 
that drives the algorithm to perform local search only. The addition of 
randomization component helps the HS algorithm in exploring a number 
of different diverse solutions, thus helping the algorithm in finding a 
solution which is very close to the global optimal solution. 

The HS algorithm performs search of the optimal solutions through 
the utilization of four major steps:  

• Step 1: Initialization of the HS memory, which contains a particular 
number of arbitrarily generated initial solutions.  

• Step 2: Improvisation of a new solution from the initial HS memory. 
• Step 3: Updating of the HS memory and evaluation of the new so

lution in step 2. If the new solution provides with the better objective 
function value for the considered optimization problem, the solution 
is kept. If the solution resulted in worse objective function value, the 
solution is discarded from the HS memory.  

• Step 4: Repetition of steps 2 and 3 until the termination criterion 
(user-defined) is reached. 

2.3.11. Imperialist Competitive Algorithm (ICA) 
The ICA, introduced by Atashpaz-Gargari and Lucas (2007), is based 

on the theory of swarm intelligence dealing with both the continuous 
and discrete optimization problems. This metaheuristic algorithm is 
inspired by the principle of human social evolution strategy, i.e., the 
socio-political behaviors of human beings. Like other evolutionary al
gorithms, the ICA begins with a randomly generated initial population in 
which each individual population denotes a country in the world. In this 
initialization stage, few of the best countries (with lower value of cost 
function) in the population are selected as the ‘imperialists’ while the 
remainders of the population are used to form the ‘colonies’ of the 
selected imperialists. According to their power, all of the colonies ob
tained from the initial population are distributed among the 
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imperialists. Once the colonies are distributed among the imperialists, 
the colonies move toward their relevant imperialist country within the 
decision space. In ICA, the power of an empire is considered to be 
inversely proportional to its cost. The total power of an empire is 
calculated by adding the power of an imperialist country to a certain 
percentage of average power of the imperialist countries’ colonies 
(Atashpaz-Gargari and Lucas, 2007). At this stage, all the empires are 
participated in the imperialistic competition. An empire is eliminated 
from the competition if it is unsuccessful in this competition, i.e., if it is 
unable to enhance its power or avoid deteriorating its power. As a result 
of this imperialistic competition, powerful empires gradually enhance 
their power while the less powerful empires lose their existing power 
and eventually collapse. The interaction among the colony movement 
toward the relevant imperialist countries, imperialistic competition, and 
the collapse mechanism ultimately cause all countries to a state of 
convergence where only one empire exists in the world and the other 
countries are regarded as the colonies of that empire. The execution of 
the ICA is accomplished using several stepwise procedures (Atashpaz-
Gargari and Lucas, 2007). These steps include: (a) Creating initial em
pires (initialization), (b) Moving the colonies of an empire toward the 
imperialist (assimilation process), (c) Swapping the positions of an 
imperialist and a colony, (d) Calculating total power of an empire, (e) 
Imperialistic competition, (f) Eliminating the empires with less power, 
and (g) Convergence. 

2.3.12. Invasive Weed Optimization (IWO) 
The IWO, first introduced by Mehrabian and Lucas (Mehrabian and 

Lucas, 2006), is a population-based, derivative free and stochastic 
meta-heuristic optimization algorithm inspired by the colonizing 
behavior of weeds. Weeds are known to be very resistant to environ
mental vicissitudes and are able to adapt easily to climatic variabilities. 
Therefore, the growth of weeds is a serious threat to crop production. 
These characteristics of weeds, i.e., resistance and adaptability to 
adverse climatic conditions as well as the randomness of a weed com
munity are incorporated into an optimization formulation, which in
tends to obtain an optimal solution of a mathematical function through 
mimicking the characteristics of a weed colony. The IWO algorithm is 
based on three major iterative processes such as reproduction, spatial 
dispersal, and competitive deprivation. It incorporates some of the basic 
features (seeding, growth, competition etc.) of a weed colony in order to 
converge to a global optimal solution of an optimization problem. In 
IWO, a solution of a particular optimization problem is referred to as a 
weed, and all weeds participates in the reproduction process. However, 
the fertility rates of these weeds are different, therefore, the numbers of 
seed produced by different weeds are also different. The seed production 
rate of a certain weed depends on the vigor and strength of that 
particular weed. This vigor and strength are referred to as ‘fitness’ of a 
weed in IWO algorithm. The seeds of weed are scattered randomly in the 
search space with a normal distribution of zero mean and an adaptive 
standard deviation. The reproduction phase is followed by a competition 
between weeds with their produced seeds. The weeds with higher fitness 
(produced more seeds) enter into the next generation. 

In IWO, the habitat behavior of weeds is simulated through consid
ering the following five processes or steps: 

Step 1: Initialize primary population - In this step, a restrained 
quantity of seeds is distributed in the search domain. 

Step 2: Reproduction - All of the seeds are allowed to grow and pass 
through the vegetative, flowering, and seed formation stages in order to 
produce seeds that depend on the fitness value of the individual weeds. 
The weeds with higher fitness value produce more seeds and those with 
lower fitness value produce less seeds. 

Step 3: Spatial dispersal - The distribution of seeds around their 
parent weeds follows a normal distribution with zero mean and adaptive 
standard deviation. An adaptive standard deviation is employed to 
reduce the probability of dropping a seed in a distant area at each 
iteration as the algorithm proceeds. This adaptive conversion ensures 

the probability of seed falling at a distant area decreases nonlinearly at 
each iteration and assures the incorporation of more fit plants and 
elimination of less appropriate plants to the next generation. 

Step 4: Competitive deprivation- Each weed with their seeds is 
integrated to form a population for the next generation. If the number of 
weeds surpasses the maximum number of weeds in the colony, the 
weeds with lower fitness values are eliminated from the colony in order 
to maintain a constant number of weeds in the colony. Nevertheless, the 
mechanism of reproduction and competition provide a chance to the 
weeds with lower fitness for reproduction. If they are able to reproduce 
more fit offspring, the generated offspring will have a chance to take part 
in the competition. 

Step 5: Stopping criterion - The process continues, i.e., steps 2–4 is 
repeated until a user-defined stopping criterion (maximum number of 
iterations or objective function value) is reached. Once the stopping 
criterion is attained, the results with the minimum value of the objective 
function is stored. 

2.3.13. Particle Swarm Optimization (PSO) 
The PSO (Kennedy and Eberhart, 1995), a population-based sto

chastic optimization algorithm, is inspired by the social and psycho
logical principles. The PSO is associated with the principles of swarm 
intelligence, which simulates the social behavior of bird flocking or fish 
schooling predation. The algorithm has gained popularity due to the 
possession of many advantageous characteristics such as it has a simple 
structure, robust maneuverability, and easy realization (Sun et al., 2019) 
that facilitates the training of various intelligent models. In PSO, every 
particle is regarded as a feasible solution within the search space of an 
optimization problem. On the other hand, the flight behavior of the 
particles is recognized as the search process of all individuals. In PSO, 
the dynamic update of the velocity of particles is determined by the past 
optimal location of the particle and the swarm population. 

In PSO, the particle’s objective function values are considered to be 
the corresponding fitness values. These fitness values determine the 
optimal position of the particles. The fitness values are also used to 
update the past most favourable location of the particles and optimal 
location of the swarm population. The control parameters of the PSO 
algorithm determine the convergence of particles trajectories (Sun et al., 
2019). Convergence of the PSO algorithm is attained through main
taining a record of individual best fitness values of all particles, locating 
the global best particle, and bringing up-to-date location and velocity of 
each particle. In the event that the convergence is not attained, the 
iterative process continues until the optimization problem converges to 
its optimal solution or the maximum number of iterations is reached. 

2.3.14. Simulated Annealing (SA) 
The SA algorithm, an iterative metaheuristic search algorithm which 

mimics the slow cooling process of metals, was first introduced as a 
search engine for combinatorial optimization problems (Cerny, 1985; 
Kirkpatrick et al., 1983). The SA optimization approach adopts the 
principle of physical processes of heating and slow cooling of a material 
to minimize the damages or defects of that material. This physical 
heating and cooling processes eventually lead to the minimization of 
overall system energy. In SA, the efficient search is ensured by inclusion 
of a temperature schedule through generalization of the Metropolis 
Monte Carlo integration algorithm (Metropolis et al., 1953) by the 
Kirkpatrick algorithm (Kirkpatrick et al., 1983). Afterwards, the proof of 
sufficiency was demonstrated (Geman and Geman, 1984) by assigning a 
lower bound of 1/log(t) to this temperature schedule. Here, t refers to an 
artificial measure of time of the annealing schedule. Nevertheless, the 
present form of SA algorithm is the outcome of the individual contri
butions of a number of scientists (Pincus, 1970). These contributions can 
be grouped into three main categories (Ingber, 1996): Boltzmann 
annealing (BA), simulated quenching (SQ), and fast annealing (FA). A 
brief description of each of these categories are presented below: 
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2.3.14.1. Boltzmann annealing (BA). The first SA was based on a Monte 
Carlo importance-sampling technique intended to solve large- 
dimensional path integrals related to the problems of statistical phys
ics (Metropolis et al., 1953). 

2.3.14.2. Simulated quenching (SQ). Although SA has become an 
attractive optimization algorithm due to its easy implementation and 
flexibility to handle complex objective functions and constraints, the 
computational burden in terms of long execution time has been a real 
challenge for the utilization of standard Boltzmann-type SA (Ingber, 
1996). This necessitates the incorporation of a temperature schedule, 
which is consistent with the Boltzmann algorithm and at the same time 
fast enough to meet the ‘sufficiency conditions’ needed to bring about an 
exact (weak) ergodic exploration of solutions. A logarithmic tempera
ture schedule is convinced to be consistent with the Boltzmann algo
rithm. An exponential temperature schedule may also be used with the 
Boltzmann algorithm. However, the use of exponential temperature 
schedule is well-justified in an adaptive simulated annealing (a variant 
of SA) provided the use of a particular distribution is ensured for the 
generating function (Ingber, 1989). 

2.3.14.3. Fast annealing (FA). Up until 1987, much attention was not 
paid to search for alternative algorithms other than the development of 
various variants and improvement made on the standard Boltzmann 
algorithm (van Laarhoven et al., 2020). It was Szu and Hartley (1987), 
who pointed out that a Cauchy distribution is able to provide several 
certain advantages over the Boltzmann algorithm. For instance, it has a 
‘fatter’ tail when compared to the Gaussian form of the Boltzmann dis
tribution, which allows identifying and testing the local optima in the 
search process for the anticipated global optima. 

The working principle of SA algorithm starts with generating a new 
point, i.e., the SA algorithm randomly generates a new point at each 
iteration. The search domain is determined by the distance between the 
randomly generated new point and the present point. As discussed 
above, a probability distribution (Cauchy or Gaussian) whose scale is 
proportional to the ‘temperature’ determines the degree of search. The 
SA algorithm accepts not only all new points that minimize the objective 
function value but also other particular points (with a certain proba
bility level) that raise the objective function value. This acceptance of 
points that raise the objective function value is performed to allow 
exploration of more plausible solutions which leads to finding the global 
optimal solutions. Another advantage is that the inclusion of more 
points avoids the SA algorithm to be trapped in the local optima. As 
execution of the algorithm proceeds, an ‘annealing schedule’ is desig
nated to decrease the ‘temperature’ systematically. The extent of search 
process is reduced with the decrease in ‘temperature’ until the algorithm 
converges to a global optimal solution. 

2.3.15. Teaching-Learning-based Optimization (TLBO) 
The TLBO, proposed by Rao et al. (2011), is a population-based 

metaheuristic search algorithm. It utilizes a population of solutions to 
converge to the global optimal solutions. The population in TLBO rep
resents a group of students or a class of learners. The teaching and 
learning processes in a classroom environment form the basic principle 
of the TLBO algorithm. It deals with the significances of influence of a 
teacher on learners in a classroom environment. The algorithm is asso
ciated with two major phases: ‘Teacher Phase’, and ‘Learner Phase’. The 
‘Teacher Phase’ deals with learning of the learners from the teachers 
while the ‘Learner Phase’ deals with the learning process through 
interaction among the learners. Four step-wise procedures as outlined in 
Rao et al. (2011) are utilized in the implementation of TLBO algorithm. 
These are: (a) Problem definition and parameter initialization (step 1), 
(b) Initialize population (step 2), (c) Teacher phase (step 3), (d) Learner 
phase (step 4). The details of these steps with the associated equations 
can be found in Rao et al. (2011), and are not repeated here. 

2.3.16. Gradient Descent- Least Squares Estimate (GD-LSE) algorithm 
The basic learning rules of an adaptive network are composed of two 

components: gradient descent and chain rule (Werbos, 1974). This 
gradient-based learning approach requires longer convergence time 
with the possibility of converging to local optima. To avoid these two 
disadvantages, Jang (1993) proposed a hybrid learning approach. This 
hybrid learning rule integrates the Gradient Descent (GD) method with 
the Least Squares Estimate (LSE) for tuning the parameters of adaptive 
networks to obtain optimal network parameters. This integration of two 
approaches is referred to as Gradient Descent- Least Squares Estimate 
(GD-LSE), which is utilized to tune the parameters of the proposed 
Sugeno type ANFIS model. The GD-LSE utilizes a forward and a back
ward pass to execute the hybrid learning procedure. In the forward pass, 
the functional signals are forwarded up to layer 4 of the ANFIS archi
tecture, and then the LSE is employed to recognize the ‘consequent pa
rameters’ while the ‘premise parameters’ are kept fixed. On the other 
hand, ‘consequent parameters’ are kept unchanged in the backward 
pass, and the ‘premise parameters’ are reorganized by the GD algorithm. 
Moreover, in the backward pass of the algorithm, the error rates prop
agate to the backward direction. The obtained ‘consequent parameters’ 
are regarded as optimum within the desired parameter space of the 
consequent parts when the ‘premise parameters’ are held unchanged. 
The learning procedure of the ANFIS architecture using hybrid algo
rithm can be summarized in Table 2. 

3. ANFIS-optimization algorithm hybrid models 

A total of 16 hybridized ANFIS models were developed whose pa
rameters were tuned and optimized using the algorithms described in 
subsection “2.3 Optimization algorithms for tuning ANFIS parameters”. 
Various parameters of the optimization algorithms were obtained 
through several trials in which the performances of the hybrid ANFIS 
models were carefully examined. The entire dataset was divided into 
training (80%), validation (10%), test (10%) sets. The Root Mean 
Squared Error (RMSE) values between the FAO-56 PM-calculated and 
the hybrid ANFIS model predicted ET0 were used to evaluate the 
training performance of the developed ANFIS models. In addition, the 
validation RMSE values were used to check the model over- and under- 
training by observing the absolute differences between the training and 
validation RMSE values. The remaining 10% (used neither to train nor to 
validate the models) of the data was used to test the performances of the 
developed ANFIS models. Parameters of the optimization algorithms 
used to tune ANFIS parameters are presented in Table 3. The different 
maximum numbers of iterations used for the optimization algorithms 
ensured convergence of the particular algorithm. 

4. Ranking of prediction models: weight assignment 

Statistical performance evaluation indices were calculated on the 
test dataset for evaluating the performances of the developed optimi
zation algorithm tuned ANFIS models. It is noted that different ANFIS 
models may have conflicting performances with respect to various 
performance indices, i.e., one model may be considered as superior 
when RMSE criterion is used while another model may be regarded as 
the best performer when MAD criterion is used. Decision making in such 
situations is difficult and deciding on the best performing model is often 
impossible when a set of different performance indices are employed. In 
these situations, decision theories that incorporate various performance 

Table 2 
Activities in forward and backward passes during hybrid learning of ANFIS 
(Jang, 1993).   

Premise parameters Consequent parameters Signals 

Forward pass Fixed Least Squares Estimate Node outputs 
Backward pass Gradient Descent Fixed Error rates  
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Table 3 
Optimal parameter values for the optimization algorithms.  

Algorithms Optimal parameter values 

ABC Maximum number of iterations: 200 
Population size: 100 
Number of onlooker bees: 100 
Abandonment limit parameter: 0.6 × number of variables × population size 
Upper bound of acceleration coefficient: 1 

BA Maximum number of iterations: 200 
Population size: 100 
Number of selected sites: 0.5 × population size 
Number of selected elite sites: 0.4 × number of selected sites 
Number of recruited bees for selected sites: 0.5 × population size 
Number of recruited bees for elite sites: 2 × number of recruited bees for selected sites 
Neighbourhood radius: 0.1 × (Maximum value of variable – Minimum value of the variable) 
Neighbourhood radius damp rate: 0.95 

BBO BBO settings 
Maximum number of iterations: 1000 
Population size: 200 
Keep rate: 0.2 
Number of kept habitats: Keep rate × Population size = 40 
Number of new habitats: Population size – Number of inhabitants kept = 160 
Migration rates 
Emigration rates: A linearly spaced vector of 200 points. The spacing between the points = (1-0)/(200-1) 
Immigration rates: 1 – Emigration rates 
Alpha: 0.9 
Mutation: 0.1 
Sigma: 0.2 

ACOR & CA ACOR 
Maximum number of iterations: 1000 
Population size: 100 
Sample size: 40 
Intensification factor (selection pressure): 0.5 
Deviation-distance ratio: 1 

CA 
Maximum number of iterations: 200 
Population size: 100 
Acceptance ratio: 0.35 
Number of accepted individuals: Acceptance ratio ×
Population size 
Alpha: 0.3 
Beta: 0.5 

CMAES Maximum number of iterations: 300 
Population size (and number of offspring): lambda = (4 + round (3 × log (number of variables)) × 10 
Number of parents: mu = round (lambda / 2) 

DE & FA DE 
Maximum number of iterations: 1000 
Population size: 100 
Lower bound of scaling factor: 0.2 
Upper bound of scaling factor: 0.8 
Crossover probability: 0.2 

FA 
Maximum number of iterations: 500 
Number of fireflies (Swarm Size): 100 
Light absorption coefficient: 1 
Attraction coefficient base value: 2 
Mutation coefficient: 0.2 
Mutation coefficient damping ratio: 0.98 
Uniform mutation range: 0.5 

GA Maximum number of iterations: 200 
Population size: 100 
Crossover percentage: 0.4 
Number of offspring (parents): 2 × round (crossover percentage × population size / 2) 
Mutation percentage: 0.7 
Number of mutants: round (mutation percentage × population size) 
Gamma: 0.7 
Mutation rate: 0.15 
Selection pressure: 8 

HA Maximum number of iterations: 200 
Harmony memory size (population size): 100 
Number of new harmonies: 20 
Harmony memory consideration rate: 0.9 
Pitch adjustment rate: 0.1 
Fret width (bandwidth): 0.02 × (Maximum value of variable – Minimum value of the variable) 
Fret width damp ratio: 0.995 

ICA & IWO ICA 
Maximum number of iterations: 1000 
Population size: 100 
Number of empires/imperialists: 10 
Selection pressure: 1 
Assimilation coefficient: 1.5 
Revolution probability: 0.05 
Revolution rate: 0.1 
Colonies mean cost coefficient: 0.2 

IWO 
Maximum number of iterations: 300 
Population size: 100 
Minimum number of seeds: 0 
Maximum number of seeds: 5 
Variance reduction exponent: 2 
Initial value of standard deviation: 0.5 
Final value of standard deviation: 0.001 

PSO & SA PSO 
Maximum number of iterations: 200 
Population size (Swarm size): 100 
Inertia weight: 1 
Inertia weight damping ratio: 0.99 

SA 
Maximum number of iterations: 200 
Maximum number of sub-iterations: 10 
Population size: 20 
Initial temperature: 0.025 

(continued on next page) 
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evaluation indices often provide a better insight of selecting the best 
model. SE, VC, and GRA-based decision theories have successfully been 
utilized in different research domains for uncertainty quantification and 
selection of best alternatives from a set of different feasible alternatives 
(Chen, 2019; Li et al., 2019, 2011; Luo et al., 2016; Roy and Datta, 2019, 
2018; Xu and Xu, 2018). The present study applied these decision the
ories in order to provide a ranking of the optimization algorithm tuned 
ANFIS models for predicting daily ET0. For this, eight performance 
evaluation indices were calculated: Correlation Coefficient (R), 
Nash-Sutcliffe Efficiency Coefficient (NS), Willmott’s Index of Agree
ment (IOA), Kling-Gupta Efficiency (KGE), Maximum Absolute Error 
(MAE), Median Absolute Deviation (MAD), Root Mean Squared Error 
(RMSE), and Normalized RMSE (NRMSE). Among them, four benefit 
indices (the higher the better: R, NS, IOA, KGE) and four cost indices (the 
lower the better: MAE, MAD, RMSE, NRMSE) were used in this study to 
rank the performances of the developed prediction models. 

The first step of weight assignment is associated with developing a 
decision matrix of prediction models and performance evaluation 
indices. Assume that there are m prediction models and PEI performance 
evaluation indices such that the decision matrix can be expressed by the 
following equation (Wu et al., 2011): 

ETij =

⎡

⎢
⎣

ET11
ET12

⋮
ET1PEI

ET21
ET22

⋮
ET2PEI

⋯
⋯
⋮
⋯

ETm1
ETm2

⋮
ETmPEI

⎤

⎥
⎦ (25) 

The next step is to standardize the decision matrix to minimize the 
effects of index dimensionality. The values of performance indices were 
standardized between 0 and 1 such that Sij ∈ [0,1], i = 1, 2,…,m; j =
1, 2,…,PEI. Sij is expressed as (Wu et al., 2011): 

Sij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ETij

max(ETi1,ETi2,…,ETiPEI)
, for benefit indices

Xij

min(ETi1,ETi2,…,ETiPEI)
, for cost indices

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(26)  

4.1. Entropy weight 

Entropy weights to individual prediction model were assigned using 
the Entropy-based ranking of the models. The ranking was performed by 
the following steps (Li et al., 2011): 

Step1: Computation of each index’s Entropy value using the concepts 
of Shannon’s information Entropy. Entropy value of the jth index was 
calculated as 

Entropyj = − k
∑m

i=1
fijlnfij (27)  

where, 

fij = Sij

/
∑m

i=1
Sij (28)  

k = 1/lnm (29) 

Step2: Calculation of each index’s Entropy weight. jth index’s entropy 
weight was calculated by: 

w(entropy)j =
1 − Entropyj

PEI −
∑PEI

j=1
Entropyj

(30) 

This Entropy weight indicates the importance of the index in the 
decision-making process. The higher the value of Entropy based weight, 
the more information the particular index carries, and more significant 
this index is in the decision-making. 

Step3: Calculation of each model’s ranking weight by summing up 
the product of each index’s Entropy weight and the standardized value 
of that index. This step is mathematically represented by 

w(entropy)i =
∑PEI

j=1
Sij × w(entropy)j (31) 

Step4: Determination of model ranking 

max [w(entropy)i],….,min[w(entropy)i]; for i = 1, 2,…, m (32) 

Step5: Calculation of Entropy weight for individual prediction 
models 

W(entropy)i = w(entropy)i

/
∑m

i=1
w(entropy)i (33)  

4.2. Variation Coefficient weight 

Variation Coefficient (VC) weights to individual prediction model 
were assigned using the VC based ranking of the models. The ranking 
was performed by the following steps (Zhang and Xie, 2010). 

Step1: Calculation of the mean values of the jth index 

sj =
1
m

∑m

i=1
Sij (34) 

Step2: Calculation of the mean squared error of the jth index 

MSEj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1

(
Sij − sj

)2

√

(35) 

Step3: Calculation of the Coefficient of Variation of the jth index 

VCj = MSEj
/

sj (36) 

Step4: Calculation of each index’s VC weight. VC weight of the jth 

index is given by: 

Table 3 (continued ) 

Algorithms Optimal parameter values 

Personal learning coefficient: 1 
Global learning coefficient: 2 
Maximum velocity: 1 
Minimum velocity: -1 

Temperature reduction rate: 0.99 
Number of neighbours per individual: 5 

TLBO TLBO typically does not necessitate any algorithm parameters to be tuned (Rao et al., 2011) 
Maximum number of iterations: 2000 
Population size (Swarm size): 20 

GD-LSE FIS parameters 
Fuzzy partition matrix exponent: 1.1 
Maximum number of iterations: 200 
Minimum improvement: 1×10-5 

ANFIS parameters 
Maximum number of Epochs: 200 
Error goal: 0 
Initial step size: 0.01 
Step size decrease rate: 0.9 
Step size increase rate: 1.1  
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w(VC)j = VCj

/
∑PEI

j=1
VCj;

∑PEI

j=1
w(VC)j = 1 (37) 

Step5: Calculation of each model’s ranking weight by summing up 
the product of each index’s VC weight and the standardized value of that 
index. This step is mathematically represented by 

w(VC)i =
∑PEI

j=1
Sij × w(VC)j (38) 

Step6: Determination of model ranking 

max [w(VC)i],….,min[w(VC)i]; for i = 1, 2,…, m (39) 

Step7: Calculation of VC weight for individual prediction models 

W(VC)i = w(VC)i

/
∑m

i=1
w(VC)i (40)  

4.3. Grey Relational Analysis weight-based ensemble 

Gray Relational Grade (GRG) approach as implemented in Wang and 
Rangaiah (2017) was used in this study to provide a prioritization of the 
prediction models. The GRG approach utilizes the resemblance between 
the performance index values of individual prediction models and the 
ideal or the best reference performance index values. The GRG is 
calculated using the following steps (Wang and Rangaiah, 2017): 

Step 1: Standardize the performance index values for eliminating the 
effects of dimensionality. For benefit indices, standardization was 
calculated using the following equation: 

ETij =
ETij − min iϵmETij

max iϵmETij − min iϵmETij
(41) 

For the cost indices, standardization was performed as: 

ETij =
max iϵmETij − ETij

max iϵmETij − min iϵmETij
(42) 

Step 2: Find the ideal or best reference performance index values 

ETIdeal
j = max iϵmETij (43) 

Step 3: Obtain the deviation between the ETIdeal
j and ETij 

ΔDij =

⃒
⃒
⃒ETIdeal

j − ETij

⃒
⃒
⃒ (44) 

Step 4: Calculate GRG values for each prediction model: 

GRGi =
1
m

∑PEI

j=1

Δmin + Δmax
ΔDij + Δmax

(45)  

where, i = index of the number of prediction models (i = 1,2, …, m), 
j = the index of the number of performance indices (j = 1,2, …, PEI), 
Δmax = maxiϵm,jϵPEI

(
ΔDij

)
, Δmin =miniϵm,jϵPEI

(
ΔDij

)
. 

Based on the concept of Gray Relational Analysis, the larger the value 
of GRGi the more reliable the prediction model is. Therefore, the largest 
value of GRGi is the recommended best prediction model among all the 
prediction models. 

5. Performance evaluation of the developed models 

The following performance evaluation indices were calculated on the 
test dataset to evaluate the performance of the developed optimization 
algorithm tuned ANFIS models: 

Correlation Coefficient, R 

R =

∑n

i=1

(
ETi,a − ETa

)(
ETi,a − ETp

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
ETi,a − ETa

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

(
ETi,p − ETp

)2
√ (46) 

Normalized Root Mean Square Error, NRMSE (%) 

NRMSE =
RMSE
ETa

× 100 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
ETi,a − ETi,p

)2
√

ETa
× 100 (47) 

Maximum Absolute Error, MAE 

MAE = max
[⃒
⃒ETi,a − ETi,p

⃒
⃒
]

(48) 

Median Absolute Deviation, MAD 

MAD
(
ETa,ETp

)
=median

( ⃒
⃒ET1,a − ET1,p

⃒
⃒,
⃒
⃒ET2,a − ET2,p

⃒
⃒,…,

⃒
⃒ETn,a − ETn,p

⃒
⃒
)

for i = 1, 2,…, n (49) 

Nash-Sutcliffe Efficiency Coefficient, NS 

NS = 1 −

∑n

i=1

(
ETi,a − ETi,p

)2

∑n

i=1

(
ETi,a − ETa

)2 (50) 

Kling–Gupta Efficiency, KGE 

KGE = 1 − ED = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R − 1)2
+ (∝ − 1)2

+ (β − 1)2
√

(51)  

∝ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
ETi,p − ETp

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
ETi,a − ETa

)2
√ (52)  

β =

1
n

∑n

i=1
ETi,p

1
n

∑n

i=1
ETi,a

(53)  

where, ETi,a and ETi,p are ET0 values at the ith step obtained by FAO-56 
PM and ANFIS models, respectively, n = number of data points, ETa is 
the mean value of the FAO-56 PM ET0 values, ED = Euclidian distance 
from the ideal data points, ∝ = relative variability in the predicted and 
simulated ET0values, β = ratio between the mean predicted and mean 
simulated ET0values representing the bias. 

In addition, a recently proposed engineering index, a10 − index, was 
calculated to assess the reliability of the developed prediction models 

a10 − index =
l 10

L
(54)  

where, L is the number of test datasets and l 10 is the number of test 
samples that have a Actual /Predicted value between 0.90 and 1.10. Note 
that for a perfect predictive model, the values of a10 − index are expected 
to be unity. The proposed a10 − index has the advantage that their value 
has a physical engineering meaning. It represents the amount of the 
samples that satisfies predicted values with a deviation of ± 10% 
compared to actual values (FAO-56 PM estimated ET0 values in this 
study). 

6. Results 

In this study, optimization algorithm tuned ANFIS models were used 
to predict ET0 time series computed using FAO-56 PM equation for the 
considered meteorological station. For this, several approaches were 
used, e.g., classical ANFIS model (GD-LSE-ANFIS), optimization 
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algorithm tuned ANFIS models, and three decision theories (SE, VC, and 
GRA). The performances of all developed ANFIS models were evaluated 
using several statistical performance evaluation indices. 

Five climatic variables such as minimum and maximum air tem
peratures, relative humidity, wind speed, and sunshine hours were used 
as inputs to the hybrid ANFIS models. This selection of input variables 
was performed by observing cross-correlation values between the input 
variables and the calculated ET0 values. The calculated cross-correlation 
values of similar magnitude between the input variables and the 
resulting ET0 values indicated that all input variables contributed to a 
similar extent in calculating ET0 values. The cross-correlation values are 
presented in Table 4. The highest positive value of 0.774 indicated that 
the maximum temperature had the greatest impact on determining the 
ET0, whereas relative humidity had the lowest influence (the negative 
value of − 0.412). It is agreed that using maximum possible inputs 
usually provide the best prediction results (Tao et al., 2018). As such, all 
input variables were used in developing the hybrid ANFIS models. 

The Fuzzy C-Mean Clustering (FCM) (Bezdek et al., 1984) algorithm 
was used to divide the input datasets into identical clusters in the 
training of ANFIS models. The optimum numbers of clusters that pro
vided the best training and validation performance were decided upon 
conducting trials in which the numbers of clusters ranged between 2 and 
5. The trial was limited to 5 clusters because increasing the numbers of 
clusters did not improve the training performance significantly while 
incurred an increased computational time requirement. An ANFIS model 
with a particular number of clusters was selected by observing the 
training and validation RMSE values as well as the absolute differences 
in RMSE values between training and validation phases of model 
development. A model was selected when both training and validation 
RMSE as well as their absolute differences were minimum. Training and 
validation RMSE values of different optimization algorithm tuned ANFIS 
models for different numbers of clusters are presented in Table 5. It is 
observed from Table 5 that ANFIS models bearing 3, 2, 2, 2, 2, 3, 2, 4, 4, 
2, 3, 2, 3, 2, 4, 2 clusters were observed to be optimal when tuned with 
ABC, BA, BBO, ACOR, CMAES, CA, DE, FA, GA, HS, ICA, IWO, PSO, SA, 
TLBO, and GD-LSE, respectively. Although training time was not 
considered as a selection criterion, the time required to train the models 

with varying numbers of clusters was calculated and is presented in 
Table 6. 

ANFIS architectures with two (BA, BBO, ACOR, CMAES, DE, HS, 
IWO, SA, and HA tuned ANFIS), three (ABC, CA, ICA, and PSO tuned 
ANFIS), and four (FA, GA, and TLBO tuned ANFIS) clusters are shown in 
Figs. 4, 5, and 6, respectively. 

Table 4 
Cross-correlation coefficients between ET0 and input variables.  

Variables ET0, mm/d 

Minimum temperature,0C  0.5124 
Maximum temperature,0C  0.7740 
Relative humidity, %  -0.4118 
Wind speed, km/d  0.6236 
Sunshine hours, h  0.5688  

Table 5 
Training and validation RMSE of different optimization algorithm tuned ANFIS models with different numbers of clusters.  

Algorithms Two clusters Three clusters Four clusters Five clusters 

Train Validation Train Validation Train Validation Train Validation 

ABC  0.313  0.282  0.303  0.275  0.314  0.287  0.317  0.289 
BA  0.276  0.257  0.297  0.312  0.283  0.327  0.315  0.287 
BBO  0.169  0.170  0.165  0.170  0.169  0.171  0.167  0.174 
ACOR  0.315  0.286  0.315  0.286  0.315  0.286  0.315  0.286 
CMAES  0.240  0.238  0.315  0.291  0.318  0.288  0.330  0.297 
CA  0.743  0.771  0.307  0.290  0.305  0.278  0.302  0.352 
DE  0.240  0.237  0.272  0.235  0.266  0.511  0.312  0.283 
FA  0.162  0.161  0.154  0.177  0.155  0.156  0.154  0.199 
GA  0.199  0.212  0.214  0.231  0.229  0.230  0.254  0.234 
HS  0.242  0.242  0.292  0.281  0.296  0.274  0.290  0.279 
ICA  0.177  0.184  0.164  0.168  0.210  0.201  0.201  0.210 
IWO  0.227  0.252  0.314  0.284  0.295  0.270  0.315  0.286 
PSO  0.163  0.166  0.161  0.162  0.154  0.158  0.158  0.163 
SA  0.200  0.202  0.242  0.468  0.223  0.251  0.200  0.202 
TLBO  0.177  0.182  0.211  0.226  0.178  0.180  0.241  0.728 
GD-LSE  0.162  0.164  0.157  0.176  0.157  0.165  0.147  0.152  

Table 6 
Training time required to develop different optimization algorithm tuned ANFIS 
models with respect to different numbers of clusters.  

Algorithms Time taken, sec 

Two clusters Three clusters Four clusters Five clusters 

ABC  1686  1454  1694  1682 
BA  19,143  19,845  22,631  27,378 
BBO  4535  6389  6443  7606 
ACOR  5386  2388  2256  1779 
CMAES  961  1357  1631  2007 
CA  1074  1282  905  1050 
DE  2167  2676  3298  3858 
FA  53,230  67,029  84,587  98,838 
GA  979  637  732  857 
HS  463  587  689  801 
ICA  2384  2905  3395  3974 
IWO  754  931  1186  1429 
PSO  441  551  667  781 
SA  4560  5667  6663  8075 
TLBO  1915  2366  2657  3252 
GD-LSE  9  12  18  19  

Fig. 4. ANFIS predictive model structure with two input membership functions 
for each of the five inputs. 
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The time required to train and validate the various ANFIS models 
presented in Table 6 revealed that the implementation of GD-LSE 
significantly reduced the time required for ANFIS training. It is also 
observed from Table 6 that, in general, the required training time 
increased with an increase in the number of clusters for the proposed 
optimization algorithms and that the FA algorithm required the greatest 
training time followed by BA, BBO, SA, and so on. 

The performance evaluation results are presented in the form of 
absolute error box plots. Fig. 7 illustrates box plots of absolute errors 
between FAO-56 PM estimated and model predicted ET0 values pro
duced by different optimization algorithm tuned ANFIS models denoted 
by M1–M16 (M1 = ABC-ANFIS, M2 = ACOR-ANFIS, M3 = GD-LSE- 
ANFIS, M4 = BA-ANFIS, M5 = BBO-ANFIS, M6 = CA-ANFIS, 
M7 = CMAES-ANFIS, M8 = DE-ANFIS, M9 = FA-ANFIS, M10 = GA- 
ANFIS, M11 = HS-ANFIS, M12 = ICA-ANFIS, M13 = IWO-ANFIS, 
M14 = PSO-ANFIS, M15 = SA-ANFIS, M16 = TLBO-ANFIS). Horizontal 
line inside each box in Fig. 7 indicates the median of the absolute error 
between the FAO-56 PM estimated and model predicted ET0 for the 
particular prediction model. The black circle denotes the mean of the 
absolute errors and ‘£’ symbols represent outliers. It is perceived from 
Fig. 7 that minimum values of the absolute error mean (0.113 mm/d) 
and median (0.082 mm/d) were obtained from FA-ANFIS indicating the 
superior performance of the FA-ANFIS model over others based on the 
absolute error criterion. On the other hand, CA-ANFIS produced the 
maximum mean value (0.236 mm/d) of absolute errors whereas ACOR- 
ANFIS produced the maximum median value (0.192 mm/d) of absolute 
errors. In sum, the results revealed the superior performance of FA to 
considerably enhance the prediction capabilities of ANFIS for the 
considered application presented in this study. 

In addition, the performances of the proposed optimization algo
rithm tuned ANFIS models in predicting ET0 were evaluated using 
various statistical performance evaluation indices (as described in Sec
tion 5). The performance results are presented in Table 7. In quantitative 
terms, FA-ANFIS model provided the best results for most of the per
formance evaluation indices (R = 0.993, NS = 0.986, IOA = 0.996, 
KGE = 0.989, MAD = 0.054 mm/d, RMSE = 0.149 mm/d, and NRMSE 
= 3.819%). On the other hand, CA-ANFIS produced the worst prediction 
accuracies (NS = 0.944, IOA = 0.984, KGE = 0.883, 
RMSE = 0.294 mm/d, NRMSE = 7.507%, and a10-index = 0.792) when 

Fig. 5. ANFIS predictive model structure with three input membership func
tions for each of the five inputs. 

Fig. 6. ANFIS predictive model structure with four input membership functions 
for each of the five inputs. 

Fig. 7. Box plots of absolute errors between FAO-56 PM 
estimated and model predicted ET0 values. M1 = ABC- 
ANFIS, M2 = ACOR-ANFIS, M3 = GD-LSE-ANFIS, 
M4 = BA-ANFIS, M5 = BBO-ANFIS, M6 = CA-ANFIS, 
M7 = CMAES-ANFIS, M8 = DE-ANFIS, M9 = FA-ANFIS, 
M10 = GA-ANFIS, M11 = HS-ANFIS, M12 = ICA-ANFIS, 
M13 = IWO-ANFIS, M14 = PSO-ANFIS, M15 = SA-ANFIS, 
and M16 = TLBO-ANFIS. Median of absolute errors are 
indicated by the horizontal lines inside each box. The black 
circles and × symbols denote the mean of absolute errors 
and the outliers, respectively.   
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compared with others. It is observed from Table 7 that FA-ANFIS was 
evidenced to be the best prediction model among the 16 individual 
models for most of the performance evaluation indices, except the IOA, 
MAE, and a10-index for which PSO-ANFIS, TLBO-ANFIS, and GD-LSE- 
ANFIS showed the superior performance. In other words, IOA, MAE, 
and a10-index criteria suggest the superiority of PSO-ANFIS, TLBO- 
ANFIS, and GD-LSE-ANFIS, respectively, among others. On the other 
hand, CA-ANFIS proved to be the worst performer for the six perfor
mance evaluation indices (NS, IOA, KGE, RMSE, NRMSE, and a10-index). 
The performance of ACOR-ANFIS was found to be inferior with respect 
to R and MAD criteria whereas BA-ANFIS showed poor performance 
when MAD criterion was used. Consequently, it is apparent that the 
performances of different ANFIS models were ranked differently when 
different performance evaluation indices were computed based on the 
models’ performance on test dataset. Decision making in such situations 
is quite difficult which can be easily overcome by applying a decision 
theory that considers several performance indices instead of relying on a 
single index. The contribution of several performance indices needs to 
be incorporated within a general framework of a decision tool in eval
uating the superiority of a standalone prediction model compared to 
others. 

In this effort, SE, VC, and GRA based decision theories described in 
section “4: Ranking of prediction models: weight assignment” were 

applied and the corresponding ranking values were computed to address 
the contrasting performances of the ANFIS models on different perfor
mance indices. SE, VC, and GRA based ranking results are shown in 
Table 8. 

The ranking results presented in Table 8 reveals that both SE and VC 
based weighting scheme provided the similar ranking although the 
ranking values were not identical. Both weighting schemes found the 
FA-ANFIS model to be the best performer, followed by PSO-ANFIS, BBO- 
ANFIS, and so on (Table 8). The position of the benchmark GD-LSE- 
ANFIS was fifth for both weighting schemes. In contrast, the bench
mark GD-LSE-ANFIS was found to be the top ranked prediction model 
followed by FA-ANFIS, PSO-ANFIS, ICA-ANFIS, and so on (Table 8) 
when GRA-based weighting scheme was used. However, the difference 
in weight between GD-LSE-ANFIS and FA-ANFIS was almost negligible. 
Therefore, it can be concluded that FA-ANFIS appeared to be the best 
prediction model in predicting ET0 values, at least for this example 
problem presented in this effort. It can also be observed that the 
evolutionary-algorithm-tuned ANFIS models, especially FA-ANFIS and 
PSO-ANFIS performed better than the classical ANFIS model (GD-LSE- 
ANFIS) for the SE and VC based weighting scheme. On the other hand, it 
is observed that the weight values of the FA-ANFIS and PSO-ANFIS were 

Table 8 
Ranking of prediction models based on entropy, variation coefficient and Grey 
relational analysis weights.  

Entropy weight Variation Coefficient 
weight 

Grey Relational Analysis 
weight 

Weights Models Weights Models Weights Models 

0.990 FA-ANFIS  0.988 FA-ANFIS  0.447 GD-LSE 
-ANFIS 

0.984 PSO-ANFIS  0.969 PSO-ANFIS  0.445 FA-ANFIS 
0.976 BBO-ANFIS  0.958 BBO-ANFIS  0.445 PSO-ANFIS 
0.968 TLBO-ANFIS  0.934 TLBO-ANFIS  0.445 ICA-ANFIS 
0.960 GD-LSE- 

ANFIS  
0.921 GD-LSE 

-ANFIS  
0.444 BBO-ANFIS 

0.955 ICA-ANFIS  0.903 ICA-ANFIS  0.443 IWO-ANFIS 
0.884 SA-ANFIS  0.763 SA-ANFIS  0.441 TLBO-ANFIS 
0.872 IWO-ANFIS  0.736 IWO-ANFIS  0.440 GA-ANFIS 
0.861 GA-ANFIS  0.711 GA-ANFIS  0.440 SA-ANFIS 
0.854 DE-ANFIS  0.675 DE-ANFIS  0.437 DE-ANFIS 
0.826 HS-ANFIS  0.648 HS-ANFIS  0.437 HS-ANFIS 
0.821 CMAES- 

ANFIS  
0.644 CMAES- 

ANFIS  
0.434 CMAES- 

ANFIS 
0.797 BA-ANFIS  0.610 BA-ANFIS  0.427 BA-ANFIS 
0.768 ABC-ANFIS  0.551 ABC-ANFIS  0.423 ABC-ANFIS 
0.759 CA-ANFIS  0.532 CA-ANFIS  0.416 ACOR-ANFIS 
0.754 ACOR-ANFIS  0.522 ACOR-ANFIS  0.414 CA-ANFIS  

Fig. 8. Prediction accuracy of the developed hybrid FA-ANFIS model over the 
testing period: (a) FAO-56 PM estimated and model predicted ET0 time series, 
(b) scatterplots of the FAO-56 PM estimated versus model predicted ET0. 

Table 7 
Performance statistics of all optimization algorithm tuned ANFIS models.  

Model R NS IOA KGE MAE, mm/d MAD, mm/d RMSE, mm/d NRMSE, % a10-index 

ABC-ANFIS  0.979  0.954  0.987  0.917  0.987  0.111  0.267  6.825  0.827 
ACOR-ANFIS  0.975  0.947  0.986  0.923  1.018  0.116  0.285  7.290  0.793 
GD-LSE-ANFIS  0.992  0.984  0.996  0.988  0.706  0.061  0.157  4.021  0.972 
BA-ANFIS  0.981  0.962  0.990  0.977  1.116  0.089  0.242  6.191  0.841 
BBO-ANFIS  0.992  0.984  0.996  0.980  0.664  0.056  0.158  4.027  0.936 
CA-ANFIS  0.977  0.944  0.984  0.883  0.860  0.115  0.294  7.507  0.792 
CMAES-ANFIS  0.984  0.965  0.991  0.948  0.850  0.091  0.232  5.917  0.853 
DE-ANFIS  0.985  0.967  0.992  0.975  0.645  0.097  0.227  5.796  0.825 
FA-ANFIS  0.993  0.986  0.996  0.989  0.680  0.054  0.149  3.819  0.965 
GA-ANFIS  0.988  0.971  0.993  0.971  0.746  0.084  0.210  5.376  0.882 
HS-ANFIS  0.983  0.966  0.991  0.963  0.831  0.093  0.228  5.821  0.882 
ICA-ANFIS  0.992  0.983  0.996  0.983  0.669  0.064  0.161  4.104  0.947 
IWO-ANFIS  0.987  0.974  0.993  0.983  0.780  0.079  0.200  5.117  0.910 
PSO-ANFIS  0.992  0.985  0.996  0.986  0.650  0.057  0.153  3.913  0.968 
SA-ANFIS  0.988  0.975  0.994  0.969  0.739  0.075  0.196  5.007  0.883 
TLBO-ANFIS  0.991  0.982  0.995  0.985  0.627  0.056  0.168  4.280  0.924  
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the same (0.445), and that the top ranked GD-LSE-ANFIS had almost the 
same weight value (0.447) for the GRA based weighting scheme. 
Therefore, it can be argued that the FA-ANFIS model achieved a better 
performance relative to the others as indicated by the ranking scores 
computed using the three decision theories. The FA-ANFIS is suggested 
as the best hybrid ANFIS model to predict daily ET0 values for this study. 

To evaluate the models with the help of diagrams besides the tables 
and to evaluate further the performances of the best (FA-ANFIS) and 
worst (ACOR-ANFIS) hybrid ANFIS models, model performances were 
illustrated schematically using scatter and hydrograph plots. Figs. 8–9 
display the comparisons of the estimated (FAO-56 PM calculated ET0) 
and predicted (hybridized model outputs) daily ET0 values. 

The estimated versus predicted plots (Figs. 8(a) and 9(a)) clearly 
indicate that FA-ANFIS produced a superior matching between the 
estimated and predicted daily ET0 lines (Fig. 8(a)) when compared to the 
ACOR-ANFIS produced daily ET0 lines (Fig. 9(a)). The scatter plots 
displayed in Fig. 8(b) and 9(b) reveal that there was less scatter/ 
dispersion around the fit line for the FA-ANFIS model (Fig. 8(b)) than the 
ACOR-ANFIS model (Fig. 9(b)). An observation of the hydrograph plots 
reveals that the peak points of the ET0 time series were well captured 
and modelled by the FA-ANFIS model than the ACOR-ANFIS model. 

7. Overall findings 

This study assessed prediction performances of several optimization 
algorithm tuned ANFIS models and proposed a raking of these models 
using three decision theories (SE, VC, and GRA) that incorporated 
various performance evaluation indices in reaching the conclusion. 
Therefore, the overall findings consisted of two parts: (a) assessing the 
prediction performances of the developed models to predict daily ET0 
based on several performance evaluation indices (as described in section 
“5. Performance evaluation of the developed models”), and (b) 
providing a ranking of the models through incorporating a set of per
formance evaluation indices within a framework of decision theories 
given the fact that standalone prediction models often provide con
flicting performances. When considering prediction capabilities of 
ANFIS models in predicting daily ET0, as presented in Table 7 and 

Figs. 7, 8, and 9, some of the major findings are as follows:  

(1) The mean and median of the absolute error values between the 
FAO-56 PM estimated and FA-ANFIS model predicted ET0 were 
the minimum (mean = 0.113 mm/d and median = 0.082 mm/ 
d), which indicated the superior performance of the FA-ANFIS 
model when compared to other models.  

(2) In quantitative terms, FA-ANFIS model provided the best results 
for most of the performance evaluation indices (R = 0.993, 
NS = 0.986, IOA = 0.996, KGE = 0.989, MAD = 0.054 mm/d, 
RMSE = 0.149 mm/d, and NRMSE = 3.819%). On the other 
hand, CA-ANFIS produced the worst prediction accuracies 
(NS = 0.944, IOA = 0.984, KGE = 0.883, RMSE = 0.294 mm/d, 
NRMSE = 7.507%, and a10-index = 0.792) when compared with 
others. The values of these performance evaluation indices 
clearly indicated the superior and inferior performances, 
respectively, of the FA-ANFIS and CA-ANFIS models in predicting 
daily ET0.  

(3) Although FA-ANFIS produced superior performances with 
respect to most of the performance evaluation indices, three 
indices (IOA, MAE, and a10-index) suggested the superiority of 
PSO-ANFIS, TLBO-ANFIS, and GD-LSE-ANFIS, respectively 
among others. 

(4) CA-ANFIS proved to be the worst performer for the six perfor
mance evaluation indices (NS, IOA, KGE, RMSE, NRMSE, and a10- 
index). However, the performance of ACOR-ANFIS was found to 
be inferior with respect to R and MAD criteria whereas BA-ANFIS 
showed poor performance when MAD criterion was used. 

Based on the obtained results, it can be concluded that the perfor
mances of different ANFIS models were ranked differently when 
different performance evaluation indices were computed based on the 
models’ performance on test dataset. This contradiction in prediction 
performances was overcome by applying three decision theories to 
provide a fair ranking of the prediction models. When ranking results are 
considered, the following conclusions can be drawn:  

(1) Both SE and VC weighting schemes found the FA-ANFIS model to 
be the best performer, followed by PSO-ANFIS, BBO-ANFIS, and 
so on (Table 8).  

(2) When GRA-based weighting scheme was used, the GD-LSE-ANFIS 
was found to be the top ranked prediction model followed by FA- 
ANFIS, PSO-ANFIS, ICA-ANFIS, and so on (Table 8). Neverthe
less, the difference in weight between GD-LSE-ANFIS and FA- 
ANFIS was almost negligible. Therefore, it can be concluded 
that FA-ANFIS appeared to be the best prediction model in pre
dicting ET0 values, at least for this example problem presented in 
this effort. 

To sum up, the overall findings of the study revealed that the pro
posed modelling approach was able to provide hundreds even thousands 
of future ET0 estimates without the need for calculating point ET0 values 
for a particular set of input variables. In other words, future values of 
ET0 can be obtained from the developed relationship between the cli
matic variables and ET0 (relationship contained in the ANFIS models) 
rather than computing ET0 values from the climatic variables using the 
FAO-56 PM equations. Of note, the basis for developing this input- 
output relationship is entirely based on ET0 computations using the 
FAO-56 PM method. 

8. Discussion 

Reference evapotranspiration (ET0) values predicted using the fol
lowed methodology in this study were compared to FAO-56 PM esti
mated ET0 values during training, validation, and testing phases as 
presented and discussed earlier in section “6. Results”. The ET0 

Fig. 9. Prediction accuracy of the developed hybrid ACOR-ANFIS model over 
the testing period: (a) FAO-56 PM estimated and model predicted ET0 time 
series, (b) scatterplots of the FAO-56 PM estimated versus model predicted ET0. 
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calculated using FAO-56 PM was regarded as the standard value, and the 
ET0 predicted by the proposed optimization algorithm tuned ANFIS 
models were compared with the standard value. The results of the 
hybrid ANFIS model which performed best (i.e., FA-ANFIS) were 
compared with those of the hybrid models presented in previous liter
ature for daily ET0 prediction. What is more, this study provided a robust 
decision support tool to select the best AI based prediction models using 
three decision theories (SE, VC, and GRA). The literature review illus
trated that the model selection techniques had been rarely utilized to 
determine the best prediction model from a choice of several alterna
tives when predicting daily ET0. Recently, Roy et al. (2020) used deci
sion theories to calculate weights of standalone hybrid models to be 
integrated in an ensemble modelling approach for predicting daily ET0. 
They employed five evolutionary algorithm tuned AI models compared 
to 15 evolutionary algorithm tuned hybrid ANFIS models presented and 
compared in this study. 

One of the prime aims of this study was to propose several hybrid 
ANFIS models developed through coupling ANFIS and optimization al
gorithms for predicting daily ET0. The performance comparison between 
the classical ANFIS (GD-LSE-ANFIS) and optimization algorithm tuned 
hybrid ANFIS models demonstrated that the hybrid ANFIS models 
especially FA-ANFIS performed better than the classical ANFIS model to 
predict the daily ET0 for the studied station. This finding can be justified 
since optimization algorithms generally improve ANFIS training phase, 
which is validated by the validation datasets, and consequently, the 
trained and validated ANFIS models provide a better result in terms of 
prediction accuracy. Previous literature on AI based hybrid models 
further justify superior performances of the optimization approaches for 
coupling through AI based models (Ahmadi et al., 2021; Mohammadi 
and Mehdizadeh, 2020; Guan et al., 2020; Mohammadi et al., 2020; 
Mehdizadeh et al., 2020; Safari et al., 2020). 

Deciding on the number of input variables for the AI based modelling 
techniques including hybridized ANFIS models has been the most crucial 
phase in developing any prediction tools. Several recent studies on ET0 
modelling employed different variable selection procedures in reaching 
conclusion about the optimal number of input variables (Ahmadi et al., 
2021; Mohammadi and Mehdizadeh, 2020; Tao et al., 2018), which 
produced the optimal prediction performance. These studies reported 
that models with all possible climatic variables as inputs generally 
provided with the best results. Upon conducting several trials on 
different combinations of input variables, the present study also 
observed the similar findings, i.e., prediction accuracy of hybrid ANFIS 
models improved with the number of input variables considered. 
Therefore, the results presented in this study is based on employing all 
possible climatic variables (maximum and minimum air temperatures, 
relative humidity, wind speed, and sunshine hours) as inputs to the 
developed hybrid ANFIS models. 

The superiority of AI based machine learning models over the 
empirical models in predicting ET0 values has been well documented in 
recent literature, especially the hybridized models with optimization 
algorithms or pre-processing tools (Fan et al., 2020; Wu et al., 2020). 
However, AI based modelling approaches often suffers from model over- 
or under-fitting issues that need to be addressed adequately before 
employing the models for prediction purposes. An over-fitted model 
usually provides sufficient accuracy during the training phase, however, 
fails to produce expected accuracy during the validation phase. In other 
words, the difference between training and validation performances is 
huge for an over-fitted AI model. These over-fitted AI models are ex
pected to provide higher prediction errors when tested with the unseen 
test dataset. A careful inspection was performed during the model 
development phase to make sure that the difference between the 
training and validation errors are minimal and within the acceptable 
limits. Therefore, the developed hybridized ANFIS models do not suffer 
from the model over-fitting issue as the training and validation results 
were carefully examined during the model development stage. 

Recently, optimization algorithms have attained increasing attention 

as techniques of enhancing ET0 modelling with AI based approaches 
(Ahmadi et al., 2021; Chia et al., 2021; Mohammadi and Mehdizadeh, 
2020; Tao et al., 2018). The findings of the previous studies confirmed 
the superiority of optimization algorithm tuned hybrid models in pre
dicting daily or monthly ET0 values. The results of the best prediction 
model (FA-ANFIS) in this research were compared with the optimal 
hybrid ET0 modelling approaches proposed in previous studies. 
Although several performance indices were computed on the test dataset 
to test the performances of the developed hybrid ANFIS models in this 
study, the available indices computed in previous studies were used for 
the comparison purpose. The values of performance indices during the 
testing phase for the best hybrid ANFIS model (FA-ANFIS) are as follows: 
R = 0.993, R2 = 0.986 (obtained from R value of 0.993), NS = 0.986, 
IOA = 0.996, KGE = 0.989, MAD = 0.054 mm/d, RMSE = 0.149 mm 
/d, NRMSE = 3.819%, and SI = 0.038 (obtained from NRMSE value of 
3.819%). 

The findings in this study may not be explicitly comparable to other 
studies due to differences in study conditions in terms of geographical 
locations and modelling tools applied. However, the numeric values of 
different performance evaluation indices were found comparable or 
even better than those of the recently published papers on ET0 model
ling. For instance, the findings of the present study were better than Tao 
et al. (2018), who reported that the best hybrid FA-ANFIS achieved SI, 
R2 and RMSE values of 0.043, 0.97 and 0.24 mm/d, respectively, for the 
prediction of ET0 at a site in Bur Dedougou, Burkina Faso. The FA-ANFIS 
developed in this study also produced superior performance than the 
SVR-IWD model proposed in Ahmadi et al. (2021), reported that the 
optimal SVR-IWD models achieved the following performances at 
various stations: at the Arak station (RMSE = 0.404 mm/d, R = 0.980), 
at Mashhad station (RMSE = 0.540 mm/d, R = 0.983), at the Shiraz 
station (RMSE = 0.299 mm/d, R = 0.989), at the Bandar Abbas station 
(RMSE = 0.457 mm/d, R = 0.962), at the Tehran station (RMSE = 0.55 
9 mm/d, R = 0.978), at the Yazd station (RMSE = 0.399 mm/d, 
R = 0.986). In addition, the findings obtained in the present study are in 
line with the findings presented in Chia et al. (2021), who found that the 
best ELM-WOA produced an average RMSE and R2 values of 
0.0011–0.1972 mm/d and 1.0000–0.9486 for the considered three sta
tions. Our results also obtained higher and comparable performances, 
respectively in terms of RMSE and R2 criteria presented in Mohammadi 
and Mehdizadeh (2020), who obtained RMSE and R2 values for the 
RF-SVR-WOA model as follows: RMSE = 0.213 mm/d and R2 = 0.991 at 
Isfahan station; RMSE = 0.325 mm/d and R2 = 0.977 at Urmia station; 
RMSE = 0.257 mm/d and R2 = 0.991 at Yazd station. 

To assess the prediction accuracies of various optimization algorithm 
tuned ANFIS models in predicting ET0, nine statistical performance 
evaluation indices were used in this study. Most of the studies reported 
in recent literature used few of these performance indices in determining 
the performance of ET0 prediction models. It is apparent that the per
formances of different prediction models produce different ranking 
when these indices are employed to test the model’s performance during 
the testing phase (Roy et al., 2020). This nature of the prediction models 
demands the incorporation of several performance indices within the 
framework of suitable decision tools in determining the suitability of a 
standalone prediction model compared to others. Therefore, to address 
this contradictory behavior of the developed models, the present study 
divided the performance indices into benefit (the higher the better) and 
cost (the lower the better) indices to be used in the framework of deci
sion theories for providing a more reliable ranking of the developed 
prediction models. These analyses revealed that three decision theories 
(SE, VC, and GRA) used in this study introduced different ranking values 
to predict daily ET0 values and that the FA-ANFIS and ACOR-ANFIS 
were the best and worst prediction models, respectively. The literature 
review illustrated that this model selection technique utilizing decision 
theories had been rarely used to provide a ranking of the ET0 prediction 
models. Recently, Roy et al. (2020) employed decision theories to rank 
optimization algorithm tuned ANFIS models (five optimization 
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algorithms were used). The present study utilized 15 optimization al
gorithms to enhance the performance of ANFIS models and provided a 
comprehensive comparison among the hybrid models with the aid of 
three decision theories, which provided rankings of the developed 
hybrid models. The proposed ranking approaches provided a robust 
decision support tool that would facilitate the decision makers in the 
right choice of the best prediction model in determining daily ET0 for the 
considered study area. 

Overall, the present study provides the following outcomes, which 
are highly significant in the field of ET0 forecasting using AI based 
modelling techniques. First, this study demonstrated a method for 
developing hybridized ANFIS models that do not suffer from the model 
over-fitting. This was done through careful observation of the training 
and validation results. Second, the performance of the trained and 
validated models was tested using a new unseen test dataset (used 
neither for training nor for validation). The test results, which was 
verified by comparing the results with other similar studies found in the 
literature, also demonstrated the suitability of the proposed hybrid 
ANFIS models especially FA-ANFIS in predicting daily ET0. Therefore, 
this model (FA-ANFIS) could be easily used in large-scale applications 
for efficient water management. Lastly, this study provides a relatively 
new method for best predictive model selection technique utilizing de
cision theories. This has huge application potential in the field of agri
culture, engineering, and water management. 

In sum, this study is of significant benefit as it provides a solution to a 
critical agricultural problem. The methods employed in this study pro
vides an accurate and robust ET0 prediction tool, which can provide the 
foundation for designing effective irrigation scheduling schemes and 
help in resourceful management of water uses in agriculture. Also, the 
developed hybrid prediction tool can be applied universally provided 
relevant datasets are available. 

9. Conclusions 

In this study, 15 evolutionary algorithms, i.e., Artificial Bee Colony 
(ABC), Bee Algorithm (BA), Biogeography-based Optimization (BBO), 
Continuous Ant Colony Optimization (ACOR), Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES), Cultural Algorithm (CA), 
Differential Evolution (DE), Firefly Algorithm (FA), Genetic Algorithm 
(GA), Harmony Search (HS), Imperialist Competitive Algorithm (ICA), 
Invasive Weed Optimization (IWO), Particle Swarm Optimization (PSO), 
Simulated Annealing (SA) and Teaching-Learning-based Optimization 
(TLBO) were used to develop hybridized ANFIS models for ET0 fore
casting. The performances of these hybridized ANFIS models were 
compared with those of the classic ANFIS model (GD-LSE-ANFIS). The 
methodology was demonstrated using a case study in a sub-tropical 
climate in Bangladesh. It was observed that performance evaluation 
indices utilized in this study did not favor a single hybridized model. For 
example, the performance evaluation results suggested that FA-ANFIS 
was evidenced to be the best prediction model among the 16 individ
ual models for most of the performance evaluation indices, except the 
IOA, MAE, and a10-index for which PSO-ANFIS, TLBO-ANFIS, and GD- 
LSE-ANFIS showed the superior performance. On the other hand, CA- 
ANFIS proved to be the worst performer for the six performance eval
uation indices (NS, IOA, KGE, RMSE, NRMSE, and a10-index). Decision 
making in such situations is quite challenging and selecting a single 
hybridized model is a difficult task. To resolve this issue, Shannon’s 
Entropy, VC, and GRA based decision theories that takes into account 
several performance indices instead of relying on a single index were 
applied to select the best preforming model. This study concluded that 
FA-ANFIS was the best prediction model in predicting ET0 values, at 
least for this example problem utilized. Overall, this study provides an 
accurate and early ET0 prediction tool, which can provide the founda
tion for designing effective irrigation scheduling schemes and help in 
resourceful management of water uses in agriculture. 
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