View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DCU Online Research Access Service

Incorporating User Preferences in
Multi-objective Feature Selection in Software
Product Lines using Multi-Criteria Decision

Analysis

Takfarinas Saber!:?, Malika Bendechache!-?, and Anthony Ventresque!-3

! Lero — the Irish Software Research Centre
2 School of Computing, Dublin City University, Ireland
{takfarinas.saber, malika.bendechache}@dcu.ie,
3 School of Computer Science, University College Dublin, Ireland
anthony.ventresqueQucd.ie

Abstract Software Product Lines Engineering has created various tools
that assist with the standardisation in the design and implementation
of clusters of equivalent software systems with an explicit representa-
tion of variability choices in the form of Feature Models, making the
selection of the most ideal software product a Feature Selection problem.
With the increase in the number of properties, the problem needs to
be defined as a multi-objective optimisation where objectives are con-
sidered independently one from another with the goal of finding and
providing decision-makers a large and diverse set of non-dominated solu-
tions/products. Following the optimisation, decision-makers define their
own (often complex) preferences on how does the ideal software product
look like. Then, they select the unique solution that matches their prefer-
ences the most and discard the rest of the solutions—sometimes with the
help of some Multi-Criteria Decision Analysis technique. In this work, we
study the usability and the performance of incorporating preferences of
decision-makers by carrying-out Multi-Criteria Decision Analysis directly
within the multi-objective optimisation to increase the chances of finding
more solutions that match preferences of the decision-makers the most
and avoid wasting execution time searching for non-dominated solutions
that are poor with respect to decision-makers’ preferences.

Keywords: Feature Selection, Software Product Line, Multi-Objective Evolution
Algorithm, Multi-Criteria Decision Analysis.

1 Introduction

Software Engineering is divided into multiple domains [1]. One of these domains is
Software Product Lines (SPL) which considers groups of related software systems
as a whole, rather than dealing with every single one of them separately [2].
Feature Models (FMs) is the most recurrent representation of SPLs. Furthermore,

https://core.ac.uk/display/478623947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the FM holds a listing of all the possible feature configurations/combinations
which could be viewed as constraints. Therefore, making the FM a representation
of all valid software products that could be made out the features in the SPL.
Building a software product out of a particular SPL requires the selection
of features that respect the desired software configuration. With the multiple
characteristics/objectives that are interesting to decision-makers in practice (e.g.,
cost, technical feasibility, or reliability), the problem of finding the ‘best’ feature
configuration is seen as an instance of a multi-objective optimisation problem [3,4].

Evolutionary algorithms have long been used to efficiently optimise problems
in various domains from Computer Networks (e.g., [5-7]) to Intelligent Transport
Systems (e.g., [8]), to Software Engineering, based on analytical/mathematical
(e.g., [5,0]) or simulated (e.g., [8,9]) models. Evolutionary algorithms are par-
ticularly effective when dealing with multi-objective optimisation problems in
software engineering (e.g., [10—13]). This is also the case for multi-objective feature
selection in SPL for which the state-of-the-art SATIBEA [3] is an Indicator-Based
Evolutionary Algorithm (IBEA) that uses a SAT solver as a mutation operator
to correct infeasible solutions.

Multi-objective optimisation techniques result in a set of non-dominated
products/solutions from which decision-makers select the product that fits their
preferences the most. Given that the number of solutions in the set of non-
dominated solutions is often large and that preferences of decision-makers are
often complex, decision-makers are usually assisted by Multi-Criteria Decision
Analysis (MCDA) tools to accomplish this task [14]. There exist multiple MCDA
techniques that take decision-makers’ preferences (each of them with its degree of
preference expressibility) and return the product that match them the most. We
show in this paper that: (i) some MCDA techniques are simplistic and can only
handle a limited number of preference types (e.g., only take weights into accounts
such as ELECTRE-IV), but they are fast, whereas (ii) other more elaborate
MCDA techniques handle larger preference variations (e.g., they enable the use
of different utility functions such as PROMETHEE-II), but they are slower and
more time-consuming.

In this paper, we aim to include preferences of the decision-makers directly in
the multi-objective search process to avoid spending a precious execution time
searching for solutions that are (despite being non-dominated) far from decision-
makers’ preferences. In this paper, we study the effects of using MCDA techniques
in the selection process of SATIBEA instead of the Indicator-Based technique
(i.e., based on the contribution in Hypervolume of each solution). Particularly,
we would like to evaluate the impact in terms of both: (i) the execution time
overhead that it would induce, and (ii) quantity of non-dominated solutions
matching preferences of decision-makers missed by SATIBEA.

This paper makes the following contributions:

— We propose SAT_MCDA_EA, a hybrid algorithm that includes decision-
makers preferences in an MCDA form directly in the evolutionary search
process.

— We show that using MCDA techniques as a selection operator has an insig-
nificant impact in terms of execution time overhead in comparison to the
execution time taken by one generation of SATIBEA.

— We also show that using MCDA techniques (particularly PROMETHEE-II)
enables finding a large number of solutions which better match preferences of
decision-makers and that are missed by SATIBEA (despite not outperforming
SATIBEA on most of the multi-objective performance metrics).

Combining MCDA techniques with multi-objective evolutionary algorithms
has already been attempted in a few recent works (e.g., [15-17]). However, to
the best of our knowledge, this is the first time it is attempted in the Software
Engineering domain in general and on the multi-objective feature selection in
FM in particular.

The remainder of this paper is organised as follows: Section 2 presents the
background of our study. Section 3 describes some common MCDA techniques
and details our SAT_MCDA_EA approach. Section 4 provides our overall set-up
and benchmark for multi-objective feature selection in SPL. Section 5 reports the

results of our evaluation in terms of execution time overhead and performance of
SAT_MCDA_EA against SATIBEA. Finally, Section 6 concludes the paper.

2 Background

In this section, we detail two aspects that make up the background of our work.

2.1 Software Product Line Engineering

Software Product Line Engineering is the paradigm that attempts to manage
software variations more systematically and provide tools that cover the do-
main engineering and the application engineering processes with their multiple
phases/activities [18]. In SPL, all software artefacts (i.e., variations of the same
feature) could be picked and put together to form a particular product as long
as they are compatible.

Feature Models is a way to represent an SPL. FMs represent the set of all
available features with their variations and incompatibilities (i.e., constraints).
Figure 1 shows a toy FM example with ten inter-connected features. It shows, for
example, that the final product requires a ‘Screen’. It also shows that there exist
three ‘Screen’ types (i.e., ‘Basic’, ‘Colour’ or ‘High Resolution’) and only one of
them could be selected for the final product. To build a software product from
the SPL, we need to select a subset of features S C F such that constraints of
the FM F are satisfied. Constraints of the FM can be modelled as a satisfiability
(SAT) problem for instantiating Boolean variables to true or false (in our case,
every variable represents a feature) in a way that satisfies all the constraints. A
variable f; € {true, false} is set to true if the feature F; € F is picked to be part
of S, and false otherwise.

An FM can be represented in a conjunctive normal form (CNF). Therefore,
searching for a valid software product in the SPL is equivalent to searching

for a feasible solution to the SAT problem. For instance, the FM in Figure 1
describes the screen alternatives in its SAT model with these clauses: (Basic V
ColourV High resolution) A(~BasicV-Colour) A(—BasicV—~High resolution) A
(=Colour v ~High resolution).

Mobile Phone

= —@ Mandatory
—Q Optional
T> Alternative
» or

- -» Requires

< -» Excludes

Figure 1: Example of a Feature Model

2.2 Multi-Objective Optimisation

Multi-Objective Optimisation (MOQ) considers the optimisation of more than
two objective functions at the same time. Software products can be seen from
various perspectives (e.g., development cost, reliability, performance). Therefore,
by considering each of the perspectives as independent objectives, feature selection
in SPL is a suitable candidate for MOO [14].

As a meaningful sample case, we use a set of commonly used optimisation
objectives in the literature [19-21]:

— Correctness — reduce the number of violated constraints.

— Richness of features — increase the number of picked features (have products
with more functionality, minimisation of its negative value is considered).

— Features used before — reduce the number of picked features that were not
used before.

— Known defects — reduce the number of known defects in picked features.

— Cost — reduce the cost of the picked features.

3 State-of-the-Art and Proposed Approach

In this section, we describe the state-of-the-art algorithm SATIBEA and our
proposed approach.

3.1 SATIBEA

SATIBEA [3] is an extension to the Indicator-Based Evolutionary Algorithm
(IBEA) which guides the optimisation through a quality indicator selection

process (in this case, the Hypervolume); a SAT solver has been introduced as a
mutation operator to assist IBEA.

Note that there are multiple algorithms designed to address the multi-objective
feature selection in SPL problem. Most of these algorithms perform in a similar
fashion as SATIBEA (evolutionary algorithm + exact algorithm such as SMT [20]
or MILP [21,22]). In this work, we do not compare to them as we do not aim
to design an algorithm that is better in terms of multi-objective metrics (even
if we report the performance with respect to those metrics below). Instead, our
goal is to showcase the fact that including preferences of the decision-makers
in the evolutionary search process is worth considering when decision-makers
have complex preferences as: (i) it only adds a marginal execution time overhead,
and (ii) it finds solutions that are interesting with respect to decision-makers’
preferences, but missed by particular IBEA algorithms (in our case SATIBEA).

3.2 Multi-Criteria Decision Analysis

Providing a set of non-dominated solutions, decision-makers explore them to
find their preferred one. Given the large size of the non-dominated sets that are
obtained after performing the multi-objective optimisation, decision-makers take
advantage of MCDA techniques to select the ideal solution with respect to their
preferences.

MCDA deals with decision-making constrained by multiple and often con-
flicting criteria (or objectives or goals). MCDA has been broadly divided into
two categories [14]: (1) Outranking Methods: builds a preference relation, and
(ii) Multiple Attribute Utility and Value Theory: the ‘utility’ of every action is
scored based on its utility.

In this work, we select three commonly used MCDA techniques: two outrank-
ing methods (ELECTRE-IV [23] and PROMETHEE-II [21]) and one Multiple
Attribute Utility and Value Theory method (MAUT [25]).

We propose in this paper to substitute the Indicator-Based selection oper-
ator in the original SATIBEA algorithm by one of the aforementioned MCDA
techniques (i.e., ELECTRE-IV, PROMETHEE-II or MAUT) to create what we
call SAT_MCDA _EA. Therefore, we are creating three distinct algorithms under
the same umbrella of SAT_ MCDA_EA: (i) SAT_ELECTRE-IV_EA, where we use
ELECTRE-IV as the selection operator, (ii) SAT_ PROMETHEE-II_EA, where
we use PROMETHEE-II as the selection operator, and (iii) SAT_-MAUT_EA,
where we use MAUT as the selection operator.

4 System Set-up

This section presents the different elements that we have used in our experiments:
the dataset, the multi-objective performance metrics, the parameters of the
genetic algorithms (i.e., SATIBEA and SAT_MCDA_EA), the parameters we use
for the MCDA techniques, and the hardware configuration.

4.1 System and Algorithms Set-up

We use the implementation of SATIBEA that is made available to us by its
creators (implemented in Java) and implement our approach on top of it. We
conduct our experiments on a machine with a 4 core CPU (our algorithms use
a core at a time though) and 16 GB of RAM. We ran all our algorithms and
determined the average results over 30 runs for each instance.

We use the same parameters for SATIBEA as those defined by its authors
(e.g., population size: 300, crossover rate: 0.8, mutation rate of each feature
selection: 0.001, and solver mutation rate: 0.02). We also use the same parameters
as SATIBEA for our SAT_MCDA _EA approach. Furthermore, we define addition
parameters for the MCDA techniques to simulate preferences of decision-makers.
Note that the chosen preferences are only selected to showcase different capabilities
of each MCDA method. Therefore, it will be worth performing a more robust
analysis with different kinds of preferences and a full parameters sweeping for
each of these MCDA methods in a future work.

— ELECTRE-IV: requires a parameter triplet (optimisation threshold, prefer-
ence threshold, and indifference threshold) for every objective. We set these
triplets to (5,6,5), (3,4,3), (0.1,0.3,0.1), (1,2,1) and (3,4,3) for Correctness,
Richness of features, Feature used before, Known defects, and Cost.

— PROMETHEE-II: requires a parameter pair (weight and preference function)
for each objective. We set equal weights for all objectives and set their prefer-
ence functions to Level, Linear, Linear, Level, and Gaussian for Correctness,
Richness of features, Feature used before, Known defects, and Cost.

— MAUT: only requires one parameter per objective (weight) that we set equally
for all the objectives.

Based on the parameters that each of the MCDA techniques requires, we
see that PROMETHEE-II is the most expressive between them as it enables
decision-makers to design their own custom utility function for each objective
and feed it to the MCDA.

4.2 Dataset

For our experiments, we use the five of the largest open source FMs we could
find [20]. Table 1 shows the version and the size of each of the FMs that we
consider in our experiments. The table also reports the number of features and
the size of the SAT problem necessary to represent the FM in a conjunctive
normal form (in terms of number of variables and number of clauses). Similarly to
the SATIBEA paper [3], we set the execution time on the Linux Kernel to 1,200s.
For the other datasets, we use smaller execution times based on the convergence
time of SATIBEA [19, 26].

4.3 Multi-Objective Performance Metrics

To assess the performance of our algorithms we use 5 multi-objective performance
metrics: 4 quality metrics (Hypervolume, Epsilon, Generation Distance, and
Inverted Generation Distance) and 1 diversity metric (Spread).

Table 1: Versions and characteristics of the feature models used in our experiments.

Dataset Version |#Features|# Variables|#Clauses|Time (s)
Linux kernel| 2.6.28.6 5,701 6,888 343,944 | 1,200
eCos 20100825 1,244 1,244 3,146 50
Fiasco 2011081207 300 1,638 5,228 200
FreeBSD 8.0.0 1,396 1,396 62,183 200
pClinux 3.0 616 1,850 2,468 100

— Hypervolume (HV): computes the volume (measured in & dimensions of the
problem’s search space) that is dominated by the Pareto front (to maximise).

— Epsilon (e): evaluates the smallest distance that is needed for every solution
in Pareto front to dominate the Reference front (to minimise).

— Generation Distance (GD): evaluates the smallest distance needed for every
solution in Pareto front to dominate the Reference front (to minimise).

— Inverted Generation Distance (IGD): evaluates average distance between
every solution in Reference front and its closest solution in Pareto front (to
minimise).

— Spread (S): computes the solutions’ distribution to evaluate their extent
spread in Pareto front (to maximise).

5 Evaluation

5.1 Execution Time Overhead

One of the major issues that kept designers of evolutionary algorithms away
from using MCDA techniques within the search process is the excessive execution
time that these techniques require. More researchers and practitioners favour less
time-consuming indicator-based methods. This is even more true with problems
that are only given a few seconds as a total optimisation time budget. In this
section, we evaluate the overhead execution time that is introduced by the use of
MCDA techniques. We compare the execution time of MCDA techniques to the
execution time needed to evolve a full generation and also to the execution time
of the default indicator-based method (in our case, the Hypervolume).

Table 2 shows the average execution time in millisecond over 30 iterations
of the second generation of SATIBEA (the generation following the evolution
of the randomly generated initial population) using the default indicator-based
(Hypervolume). The table also shows the average execution time of each partic-
ular selection technique from Indicator-Based, to the three considered MCDA
techniques (i.e., ELECTRE-IV, MAUT, and PROMETHEE-II).

We clearly see that the execution time of a full SATIBEA generation is very
large in comparison to the execution time of the different selection operators
(148 times larger on average than the largest selection time per instance). A
single generation takes on average 531, 11, 84, 100, and 12 times larger execu-
tion times than the most time-consuming selection process (in this case, using

Table 2: Average execution time (ms) of the second generation of SATIBEA,
indicator-based selection, and MCDA selection methods.

Dataset |Generation|Indicator-Based| ELECTRE-IVIMAUT|PROMETHEE-II
Linux Kernel| 53,788 30.50 1.71 62.75 101.23
eCos 1,235 30.22 1.93 60.33 114.82
Fiasco 12,477 44.49 1.42 59.68 149.04
FreeBSD 12,742 29.57 1.56 71.28 127.30
uClinux 1,197 31.6 1.55 58.09 96.44

PROMETHEE-II) on the instances Linux Kernel, eCos, Fiasco, FreeBSD and
uClinux respectively. This is a clear indication that using any of the studied
MCDA techniques is less likely to add a significant execution time overhead. The
execution time of the section process is particularly insignificant when dealing
with the large instances (Linux Kernel, Fiasco and FreeBSD).

We see that with the exception of ELECTRE-IV, MCDA techniques (i.e.,
MAUT and PROMETHEE-II) necessitate a larger execution time than the default
Indicator-Based selection. This is one of the main reasons why the simplistic
weighted-sum is the de-facto go to in absence of a pure multi-objective objective
optimisation (keeping objectives separate with no aggregation). However, we
notice in our usecase that the order by which the execution time of these MCDA
techniques exceed the Indicator-Based selection is rather small (~0.9 and ~2.5
more execution time on average for MAUT and PROMETHEE-II respectively).

Therefore, we could claim that from an execution time perspective and in the
context of multi-objective feature selection in large software product lines such
as the ones studied in our paper, decision-makers should no longer be reluctant
to provide their preferences in advance to be embedded in the multi-objective
optimisation process.

5.2 Multi-Objective Performance Metrics

Knowing that using MCDA techniques in the multi-objective optimisation process
does not add a significant execution time overhead is good, but obtaining improved
results is better —despite not being the most important in our case as our goal is
to find more solutions that match decision-makers’ preferences. Therefore, we
would like to evaluate the impact of our approach in terms of performance and
quantify it using the different multi-objective metrics seen in Section 4.

Table 3 shows the average performances achieved by SATIBEA and SAT_-
MCDA _EA techniques (i.e., SAT_ ELECTRE-IV_EA, SAT MAUT _EA, SAT -
PROMETHEE-II_EA) with respect to the quality metrics HV, IGD, GD, Epsilon
and Spread. We put in bold the best achieved performances per instance and
per metric. We also put (*) when results are not statistically significant between
SATIBEA and the best performing SAT_MCDA _EA technique (p-value j 0.05
when evaluated using the non-parametric two-tailed Mann-Whitney U test).

Table 3 clearly shows that SATIBEA achieves the best performances on
the metrics HV and IGD on all instances. SATIBEA also achieves the best
performances on Epsilon in 4 out of 5 instances on average. This is a clear
indication that SATIBEA maintains its supremacy with regards to very important
multi-objective performance metrics. This is quite understandable as SATIBEA’s
aim by design is to cover most of the search space, which yields better multi-
objective quality metrics performances. However, SAT_MCDA_EA algorithms
target solutions that better match the predefined preferences of the decision-
makers and leave large parts of the search space unprobed, which yields low
multi-objective quality metrics performances.

Table 3 also shows that SATIBEA does not always achieve the best results
with respect to the Spread metric. SAT_ELECTRE-IV_EA achieves the best
performance on Spread on 3 out of 5 instances on average. Although, Spread is a
secondary metrics and should not be interpreted alone without the other quality
metrics. Looking at SAT_ELECTRE-IV_EA’s performance in terms of HV, we
see that it is poor, which reduces the importance of its Spread performance.

Table 3 also shows that SATIBEA is not achieving the best GD on any instance
(achieved by SAT_PROMETHEE-II_EA). This is an indication that most of the
solutions that are found by SAT_PROMETHEE-II_EA are non-dominated by the
solutions found by the other algorithms. However, given that the performance
of SAT_ PROMETHEE-II_EA in terms of HV is poor, we can deduce that its
solutions are not diverse enough. While this might seem negative, we believe
that this is a good characteristic. Decision-makers would rather be provided
with several non-dominated solutions that are similar and better match their
preferences, rather than a set of non-dominated solutions covering a larger space,
but match their preferences less. Furthermore, SAT_MAUT_EA also achieves a
better performance than SATIBEA in terms of GD on 3 out of 5 instances on
average.

5.3 SAT_MCDA _EA’s Strictly Non-Dominated Solutions

With SAT_ PROMETHEE-II_EA and SAT_MAUT_EA achieving good GD per-
formances, we would like to measure the ratio of non-dominated solutions found
by SAT_MCDA _EA algorithms, but missed by SATIBEA. We gather all non-
dominated solutions found over all iterations by each algorithm and perform a
pairwise non-dominance comparison. Table 4 shows the ratio (in percentage) of
solutions found by each SAT_MCDA_EA that are strictly non-dominated (neither
equal nor dominated) by any solution found by SATIBEA.

Table 4 confirms our assumption that many solutions found by SAT_MAUT -
EA and SAT_ PROMETHEE-II_EA are strictly non-dominated by those found
by SATIBEA. We see that SAT_ PROMETHEE-II_EA finds the largest number
of solutions non-dominated by those found by SATIBEA (~83% non-dominated
solutions on average, and 94% on Fiasco). Therefore, if decision-makers have
a prior knowledge of what makes a good software, they are better off using
PROMETHEE-II as a selection operator. While this will not yield optimal
multi-objective metrics, it will yield more solutions matching their preferences.

Table 3: Comparison of the average performances achieved by SATIBEA and the
various SAT_MCDA _EA algorithms.

Dataset Metric| SATIBEA | SAT_ELECTRE-| SAT_MAUT_EA | SAT_ PROMETHEE-
IV_EA II_EA
HV 0.136 0.124 0.123 0.134
1GD 0.010 0.016 0.016 0.012
Linux Kernel | GD 0.030 0.130 0.012 0.007
€ 1982 2047 2051 1991
S 1.16 1.24 1.21 1.19
HV 0.252 0.206 0.188 0.085
IGD | 0.0071 0.0072 0.008 0.016
eCos GD 0.0722 3.8714 0.0935 0.0031
€ 147 260 217 149
S 1.51* 1.30 1.33 1.55
HV 0.195 0.133 0.132 0.124
1GD 0.009 0.022 0.024 0.018
Fiasco GD 0.065 0.237 0.076 0.008
€ 277 917 950 171
S 1.58 1.14 1.16 1.27
HV 0.24 0.18 0.18 0.08
1GD 0.006 0.011 0.012 0.018
FreeBSD GD 0.091 0.156 0.066 0.004
€ 133 303 308 498
S 1.21 1.23" 1.20 1.21
HV 0.893 0.89 0.891 0.805
1GD 0.054 0.055 0.056 0.060
uClinux GD 0.043 0.016 0.015 0.012
€ 598" 611 604 1199
S 1.067 1.229 1.198 1.003

Table 4: Ratio (in per cent) of strictly non-dominated solutions found over the 30
iterations by SATIBEA using one of the MCDA methods in comparison with the
solutions found by SATIBEA when using the default Indicator-Based method.

Dataset SAT_ELECTRE-IV_EA SAT_MAUT_EA SAT_PROMETHEE-II_EA
vs SATIBEA vs SATIBEA vs SATIBEA

Linux Kernel 40 41 66

eCos 33 42 90

Fiasco 27 59 94

FreeBSD 26 48 92

uClinux 5 34 73

6 Conclusion and future work

In this paper, we proposed using MCDA techniques directly within the multi-
objective search process by employing them as the selection operator. We have
evaluated their impact both in terms of induced execution time overhead and in
terms of quality of the obtained solutions. We have seen that using the MCDA
techniques introduces a non-significant overhead execution time with respect to
the execution time of the other operators that make up the evolution. However,
we have also seen that using the MCDA techniques within the search process
impacts negatively the performance of the algorithm with respect to various
multi-objective performance metrics with the exception of GD. We have confirmed
that the SAT_MCDA _EA algorithms perform particularly well with respect to
GD as they find a large number of solutions that match their preferences but that
are not dominated by the solutions found by SATIBEA. The insight obtained
from this study encourages us to deepen the investigation of combining MCDA
techniques with the multi-objective feature selection in SPL.

Acknowledgement: This work was supported, in part, by Science Foundation
Ireland grants No. 13/RC/2094_P2 (Lero) and 13/RC/2106_P2 (ADAPT).

References

1. Ramirez, A., Romero, J.R., Ventura, S.: A survey of many-objective optimisation
in search-based software engineering. Journal of Systems and Software 149 (2019)
382-395

2. Metzger, A., Pohl, K.: Software product line engineering and variability management:
achievements and challenges. In: FSE, ACM (2014) 70-84

3. Henard, C., Papadakis, M., Harman, M., Le Traon, Y.: Combining multi-objective
search and constraint solving for configuring large software product lines. In: ICSE.
(2015) 517-528

4. Yadav, H., Chhikara, R., Kumari, A.C.: A novel hybrid approach for feature
selection in software product lines. Multimedia Tools and Applications 80(4) (2021)
4919-4942

5. Lynch, D., Saber, T., Kucera, S., Claussen, H., O’Neill, M.: Evolutionary learning of
link allocation algorithms for 5g heterogeneous wireless communications networks.
In: GECCO. (2019) 1258-1265

6. Saber, T., Fagan, D., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: A hierarch-
ical approach to grammar-guided genetic programming: the case of scheduling in
heterogeneous networks. In: TPNC. (2018) 225-237

7. Saber, T., Fagan, D., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: A multi-level
grammar approach to grammar-guided genetic programming: the case of scheduling
in heterogeneous networks. Genetic Programming and Evolvable Machines 20(2)
(2019) 245-283

8. Saber, T., Wang, S.: Evolving better rerouting surrogate travel costs with grammar-
guided genetic programming. In: IEEE CEC. (2020) 1-8

9. Bendechache, M., Svorobej, S., Endo, P.T., Mario, M.N., Ares, M.E., Byrne, J.,
Lynn, T.: Modelling and simulation of elasticsearch using cloudsim. In: DS-RT.
(2019) 1-8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Saber, T., Gandibleux, X., O’Neill, M., Murphy, L., Ventresque, A.: A comparative
study of multi-objective machine reassignment algorithms for data centres. Journal
of Heuristics 26(1) (2020) 119-150

Saber, T., Delavernhe, F., Papadakis, M., O’Neill, M., Ventresque, A.: A hybrid
algorithm for multi-objective test case selection. In: CEC. (2018) 1-8

Saber, T., Ventresque, A., Brandic, 1., Thorburn, J., Murphy, L.: Towards a multi-
objective vm reassignment for large decentralised data centres. In: UCC, IEEE
(2015) 65-74

Saber, T., Ventresque, A., Gandibleux, X., Murphy, L.: Genepi: A multi-objective
machine reassignment algorithm for data centres. In: International workshop on
hybrid metaheuristics, Springer (2014) 115-129

Mjeda, A., Wasala, A., Botterweck, G.: Decision spaces in product lines, decision
analysis, and design exploration: an interdisciplinary exploratory study. In: VaMoS,
ACM (2017) 68-75

Mohammed, A., Harris, I., Soroka, A., Nujoom, R.: A hybrid mcdm-fuzzy multi-
objective programming approach for a g-resilient supply chain network design.
Computers & Industrial Engineering 127 (2019) 297-312

Kapsoulis, D., Tsiakas, K., Trompoukis, X., Asouti, V., Giannakoglou, K.: Evol-
utionary multi-objective optimization assisted by metamodels, kernel pca and
multi-criteria decision making techniques with applications in aerodynamics. Ap-
plied Soft Computing 64 (2018) 1-13

Jafarian-Namin, S., Kaviani, M.A., Ghasemi, E.: An integrated moea and mcdm for
multi-objective optimization (case study: control chart design). In: IEOM. (2016)
Horcas, J.M., Pinto, M., Fuentes, L.: Software product line engineering: a practical
experience. In: SPLC. (2019) 164-176

Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: Is seeding a good strategy
in multi-objective feature selection when feature models evolve? Information and
Software Technology 95 (2018) 266-280

Guo, J., Liang, J.H., Shi, K., Yang, D., Zhang, J., Czarnecki, K., Ganesh, V., Yu,
H.: Smtibea: a hybrid multi-objective optimization algorithm for configuring large
constrained software product lines. Software & Systems Modeling 18(2) (2019)
1447-1466

Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: Reparation in evolutionary
algorithms for multi-objective feature selection in large software product lines. SN
Computer Science 2(3) (2021) 1-14

Saber, T., Brevet, D., Botterweck, G., Ventresque, A.: Milpibea: Algorithm for
multi-objective features selection in (evolving) software product lines. In: EvoCOP.
(2020) 164-179

Govindan, K., Jepsen, M.B.: Electre: A comprehensive literature review on method-
ologies and applications. European Journal of Operational Research 250(1) (2016)
1-29

Brans, J.P., De Smet, Y.: Promethee methods. In: Multiple criteria decision analysis.
Springer (2016) 187219

Allah Bukhsh, Z., Stipanovic, 1., Klanker, G., O’Connor, A., Doree, A.G.: Network
level bridges maintenance planning using multi-attribute utility theory. Structure
and infrastructure engineering 15(7) (2019) 872-885

Brevet, D., Takfarinas, S., Goetz, B., Anthony, V.: Preliminary study of multi-
objective features selection for evolving software product lines. SSBSE (2016)

https://www.researchgate.net/publication/353020939

	Incorporating User Preferences in Multi-objective Feature Selection in Software Product Lines using Multi-Criteria Decision Analysis

