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Abstract—Testing mobile applications often relies on tools, such
as Exerciser Monkey for Android systems, that simulate user
input. Exerciser Monkey, for example, generates random events
(e.g., touches, gestures, navigational keys) that give developers a
sense of what their application will do when deployed on real
mobile phones with real users interacting with it. These tools,
however, have no knowledge of the underlying applications’ struc-
tures and only interact with them randomly or in a predefined
manner (e.g., if developers designed scenarios, a labour-intensive
task) – making them slow and poor at finding bugs.

In this paper, we propose a novel control flow structure able
to represent the code of Android applications, including all the
interactive elements. We show that our structure can increase
the effectiveness (higher coverage) and efficiency (removing
duplicate/redundant tests) of the Exerciser Monkey by giving it
knowledge of the test environment. We compare the interface
coverage achieved by the Exerciser Monkey with our new
Monkey++ using a depth first search of our control flow structure
and show that while the random nature of Exerciser Monkey
creates slow test suites of poor coverage, the test suite created
by a depth first search is one order of magnitude faster and
achieves full coverage of the user interaction elements. We believe
this research will lead to a more effective and efficient Exerciser
Monkey, as well as better targeted search based techniques for
automated Android testing.

Keywords-Android, Control Flow Graph, Exerciser Monkey,
Test Generation

I. INTRODUCTION

Android has become the leading mobile operating system
with 72.48% market share in December of 2020 [1]. The
number of mobile app downloads each year has also increased
steadily. In 2019, there were 204 billion app downloads, and
$120 billion in revenue generated [2]. The validation of app
quality is now essential, for both keeping users as well as
gaining new ones, as app quality is an important factor of user
retention [3]. Ensuring app quality (mostly through testing)
is a labour and skill-intensive activity that is often done
manually [4], [5] (e.g., developers writing test scenarios) but
would benefit from automatic tools [6].

However, despite the massive growth in research for auto-
mated testing techniques, it has been difficult to create a robust
and efficient solution. It is the interactive and event-driven
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nature of the platform that presents the biggest challenge [7].
A user’s interaction with an application is highly reliant on
their environment. Although mobile interfaces are structured,
callback methods are invoked by the Android framework based
on the current system state – which makes the creation of a
representation for Android’s applications difficult e.g. Control
Flow Graphs or Abstract Syntax Trees.

Many different methods of automatic testing have emerged
over the years to tackle the issues related to the interactive
nature of Android. Some of these methods include automation
frameworks [8], [9], [10], [11], [12], [13], which provide
API’s for testers to write interactions as a script, or record
and replay tools [14], [15], [16], [17] that allow developers
to record an interaction to be replayed later. While these
methods have become popular in the Android community
and a standard for Android testing, they are, unfortunately,
highly manual and not efficient for large scale development.
The majority of research toward Android testing has been
devoted to generating user input automatically by means of
random [18], [19], systematic [20], [21], [22], or model-
based [23], [24], [25] input generation, removing the manual
labour usually required. The most popular and widely used
automated framework has been Exerciser Monkey (also known
as Monkey) [18], which is packaged with the Android SDK.

In this paper, we present a novel control flow structure able
to represent the code of Android applications, including all the
interactive elements. We show that the (control flow) graph
generated by our solution can direct/support the execution
of a tool like Monkey (We call our extension of Monkey
Monkey++) and address two of the main challenges in testing
Android apps using the framework: removing duplicate and
redundant interactions (i.e., efficiency, using less resources) by
tracking areas already explored by the test suite; and increasing
test coverage (i.e., its effectiveness) by targeting unexplored
areas of the application.

Using our graph, we show the coverage achieved by both
Monkey, the de facto standard automatic testing tool, and
our new Monkey++ using a depth first search. Using 3 open
source Android applications, we found that although Monkey
achieves at least an average of 85% interface coverage, it takes
500 interaction attempts to achieve, with only an average of
8% actually interacting with the application. While the random
nature of Monkey creates slow test suites of poor coverage, our
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search with Monkey++ is one order of magnitude faster and
achieves full interface coverage. This shows that even though
Monkey can be effective in discovering bugs, it can be made
more efficient by integrating knowledge of the application
structure enabling better test generation algorithms.

This paper starts by discussing the related work in the area
of Android Testing in Section II. Section III provides a formal
definition and implementation of our control flow graph,
including its structure, content, and functionality. Section IV
defines the coverage metric we use to evaluate both Monkey
and our new Monkey++. Section V describes our Monkey++
search method. Section VI discusses the results obtained from
the Monkey’s random search and our Monkey++ DFS. Finally,
Section VII concludes the paper.

II. RELATED WORK

Over the years many tools and frameworks have emerged to
try improve Android interactive testing and 3 main categories
have formed: automation frameworks and APIs, record and
replay tools, and automated input generation tools [6], [26].
While they do succeed in testing Android applications to
different degrees, they all have drawbacks preventing them
from solving the entire problem. It is important to point
out that the set of frameworks discussed in this paper is
not exhaustive, but represents the most well-known Android
testing frameworks and tools.

A. Automation Frameworks and API’s

Frameworks and API’s such as Monkey Runner [8], An-
droid View Client [9], UI Automator [10] as well as many
others [11], [12], [13], allow developers to create testing scripts
that run interactive events through the Android emulator.
These tools allow users to test their application using the user
interface in a similar manner to unit testing, which provides
functional testing of application code as well as testing runtime
behaviour of the activity lifecycle and user input callback
methods. The developer is required to code an interaction
with the device and then test whether the resulting outcome is
correct, by either image comparison, view attribute comparison
or by simply monitoring the results of the test manually. This
type of testing is useful for basic functional testing during
the development process as the testing environment is highly
controlled and stable. However, these tools require hours of
manual scripting to be maintained as the application under test
(AUT) develops, and scripts are not guaranteed to work on all
devices, due to Android device fragmentation [6]. Record and
replay tools [14], [15], [16], [17] such as Mosaic or Espresso
Recorder provide the same features as automation API’s but
they eliminate the need for hours of scripting. Instead of
scripting interactions with an Android application, a developer
simply uses their application on an emulator or device and
the interactions are recorded. These interactions can then be
replayed whenever the developer needs them. This method
provides a quicker way of creating tests but does not solve
the core problems. The recordings are still time consuming
and reliant on the device used to create them.

B. Automated Input Generators

The most active area in mobile software testing is currently
automated input generation. Three of the most used methods
are random, systematic, and model-based input generation [6],
[27].

Using random input for testing an application’s interface is
the simplest of methods but they are generally very inefficient
and lead to a high number of redundant and repetitive interac-
tions. An example of this is Monkey, a program that runs on
your emulator or device and generates pseudo-random streams
of user events such as clicks, touches, or gestures, as well as a
number of system-level events [18]. In practice, Monkey does
not support keyboard input or system notifications, and most
of the random inputs applied to the interface do nothing within
the application. Dynodroid, another well-known random input
generator tries to overcome this issue by applying a Frequency
Strategy and Biased-Random Strategy, to increase the effi-
ciency of the inputs it selects. The frequency strategy uses
the inputs that are most frequently used and the biased-random
strategy uses the inputs that are relevant in most contexts [19].
Unlike Monkey, Dynodroid also supports keyboard input and
system notifications, however, this is possibly its downfall. For
instance, in order to provide system events, Dynodroid needed
to instrument the Android framework [19] and in doing this
they made Dynodroid hard to update and maintain which has
led to the framework becoming outdated and unused.

Despite Dynodroid performing better than Monkey, showing
an increased application coverage and less interaction redun-
dancy, Monkey has remained one of the most popular frame-
works available for automated interface testing. This could
be attributed to Monkey being maintained and packaged as
part of the Android framework and its simple implementation,
resulting in the majority of publishers comparing their results
with results from Monkey.

Systematic input involves dynamically analysing the inter-
face of an application and generating appropriate test inputs
as they are found. This method provides effective testing
of an application without prior knowledge of the interface
structure or the underlying code. A good example of this
technique is Android Ripper that maintains a state machine
model of the GUI, called a GUI Tree. The GUI Tree model
contains the set of GUI states and state transitions encountered
during the ripping process [22]. Similar to Android Ripper,
tools such as Automatic Android App Explorer (A3E) and
Crash Scope use the same systematic approach to exploring
an application interface, however, they also use static analysis
to determine activity or method interactions and contextual
features respectively [20], [21].

A systematic approach to automated input generation shows
promise with Android Ripper, A3E and CrashScope showing
varying degrees of improvement over Monkey in areas such
as coverage, input redundancy and bug detection [27], [22],
[20], [21], however, a systematic approach can never guarantee
complete coverage of the application.

Model-based testing requires a formal model of the appli-



cation, such as an event flow graph, control flow graph, finite
state machine, etc. Once the model has been made, it is used to
generate a test suite of device inputs. For example, Stoat [24]
and MobiGuitar [25] use a finite state machine (FSM) to model
the AUT. Stoat uses dynamic analysis, enhanced by a weighted
UI exploration strategy and static analysis, to explore the app’s
behaviours and construct a stochastic FSM [24]. MobiGuitar
on the other hand, uses an enhanced version of Android Ripper
and dynamically traverses the application in a breadth first
fashion to generate its FSM [25].

Model-based approaches to automated Android testing hold
up well against the other testing methods and tools we have
discussed but have failed to generate a solid user base. Stoat
sets itself apart with its method of using system events within
tests. Instead of trying to model system events, it randomly
injects various system-level events into its UI tests [24]. This
simulates the random nature of receiving notifications and
state changes in a real environment. However, Stoat is also
ineffective with regular gestures (e.g., Pinch Zoom, Move) and
specific input data formats [24], while MobiGuitar’s reliance
on Android Ripper caused it to have the same pitfalls.

III. CONTROL FLOW STRUCTURE

In this section we define the data structure (control flow
graph) we extract from Android applications and how it is
implemented.

A. Formal Definition

Definition 1 (Control Flow Structure): A Control Flow
Structure is a directed graph G = (V,E) where V = {v1,
. . . , vn}, n ∈ N, is a set of vertices and E = {e1, . . . , em},
m ∈ N, is a set of arcs (directed edges), where ei = (vj , vk)
with vj , vk ∈ V .

Our control flow graph G is composed of three types of
vertices: V = Vs∪Vm∪Vui , that represent the three important
elements of a mobile application:
• Vs represents the statement vertices. While testing, we

want to focus on the code written for the application
rather than system or library code, so we exclude them
from our statement set. Statements play an important role
by revealing application logic, internal method calls and
the overall control flow of the application.

• Vm represents the method vertices and similarly only
comprises methods developed for the application. The
method vertices represent the entry points to a method
and lead to the statement vertices within. These vertices
can be further split into three types: the Android life-cycle
methods, the user input callback methods, and standard
Java methods.

• Vui represents the interface vertices, indicating user input
locations within the graph.

Not all control flow edges can be included in our graph as
they are runtime dependent. For example, Activity lifecycle
methods are called by the Android framework based on the
current state of the system or application, meaning they have

no explicit call within the application code. Therefore, an
additional primitive runtime model was created to track and
enforce the proper movement between these methods during
a search. This model is discussed in Section V.

Figure 1 shows an example of a control flow structure repre-
senting an Android application: its syntax (methods and state-
ments) and the user interactions it contains. We can see from
this example two interface views, ’StartB’ and ’SayHello’,
connected to their respective method listeners ’startActivityB’
and ’sayHello’. The statements within these methods are linked
by edges in their execution order. Method call edges are
also shown, for instance the statement ’startActivity(intent)’
calls the subsequent lifecycle methods. Some of the edges
are shown as a dashed arrow. These edges are not contained
in our graph, instead they are determined by the primitive
runtime model mentioned above. It decides which edge to
follow during a search based on the status of the called activity.
In order to simplify our example, we include statement nodes
for the ’ActivityB onResume()’ lifecycle method only.

Fig. 1: Control flow structure representing a small Android
application. User interface (e.g., Buttons) are red, callback
methods are orange, lifecycle methods are blue, standard
methods are green, and statements are yellow.

B. Implementation

Traditional control flow analysis cannot be directly applied
to Android applications because they are framework based
and event-driven. For this reason we used our own algorithms
along with existing frameworks (i.e., Soot and FlowDroid) to
statically analyse the application.

1) Soot: started off as a Java optimization framework,
by now, researchers and practitioners use Soot to analyse,
instrument, optimize and visualize Java and Android appli-
cations. Soot’s primary functionality is inter-procedural and
intra-procedural analysis using an intermediate representation.
It takes as input Java source and byte-code, or more recently
Android byte-code, and transforms it into an intermediary
representation for easier analysis [28].

Soot’s primary intermediate representation is Jimple—a
typed three address code [28]. The creation of Jimple was
motivated by the difficulty of directly analysing Java byte-
code: although it is possible to construct a control-flow graph
for Java byte-code, the implicit stack masks the flow of data,



making it difficult to analyse [29]. Using Jimple makes the
analysis easy due to its low complexity.

Our motivation for choosing Soot is due to the framework
and the Jimple intermediate representation being the most
adopted support tool and format respectively [30], as well as
the internal objects that Soot provides to represent the code
and Soot’s inter-procedural and intra-procedural analysis.

However, it does have its drawbacks: although Soot has
the ability to analyse Android byte-code, it does not have
knowledge of the activity lifecycle and therefore cannot get
the body of lifecycle methods. Also, Android applications have
multiple entry points as part of the lifecycle model, this means
that Soot cannot create a call graph as it has no knowledge
of where to enter the application. To solve this issue we use
FlowDroid.

2) FlowDroid: is the first fully context-, field-, object-
and flow-sensitive taint analysis which considers the Android
application lifecycle, while also featuring a novel, particularly
precise variant of an on-demand alias analysis [31]. It was
designed to analyse applications, and alert users of malicious
data flows, or as a malware detection tool which could
determine if a leak was a policy violation.

Despite its main purpose, FlowDroid’s knowledge of the
activity lifecycle is why it became applicable to this research.
As mentioned, Android applications do not have a main
method, they consist of entry points that are called by the
Android framework when needed. These entry points can be
input callback methods, defined to respond to a user input; or
lifecycle methods, defined by the developer to respond to a
system event, for example, launching a new activity.

FlowDroid adds the ability for Soot to retrieve the body
of lifecycle methods and include them in its analysis. Addi-
tionally, it allows Soot to create a call graph by generating
a dummy main method using Heros, an IFDS/IDE solver
framework which is not path sensitive, but instead joins anal-
ysis results immediately at any control flow merge point [31].
This main method contains every order of individual lifecycle
and callback components without traversing all the individual
paths.

3) The control flow structure: is mostly populated using
Soot and FlowDroid’s static analysis. However, even though
the structures provided by these frameworks are comprehen-
sive and invaluable, they are also disconnected and do not
allow for easy traversal. For this reason, we use the data they
provide to populate our own graph implementation, consisting
of a set of vertex and edge objects. An edge object consists
of a source and target vertex, while a vertex object contains
several attributes including but not limited to a unique ID, a
label, and a type. As discussed in Section III-A our control
flow structure consists of 3 types of vertices.
• Method vertices are retrieved from FlowDroid’s call

graph. We check each method in the call graph to further
classify them as activity lifecycle, input callback, or
standard Java methods as well as filtering methods from
the Java and Android SDK, before adding them and their
associated call edges to our graph.

• Statement vertices are gathered from the UnitGraph
objects created by Soot for each method in the analysed
application. Each UnitGraph contains a unit chain detail-
ing all the Jimple statements and their execution order
within the method. We add each Jimple statement in the
unit chain to our graph, while also checking for method
calls within the statement and creating the relevant edges.

• Interface controls and callback methods are identified by
FlowDroid and included in the graph. However, Flow-
Droid fails to provide a link between the individual
controls and their associated callback method. This is
made more challenging by most callback methods having
the same name when defined within the Java code, e.g.,
onClick(). Currently we instrument the AUT so that the
control ID for each callback method can be found in the
Jimple statements. Finding better methods of retrieving
the interface data is part of future work.

As mentioned in Section III-A, not all control flow edges
can be determined through static analysis, as they are runtime
dependent, and therefore cannot be included in the graph.
For example, activity lifecycle methods are called by the
Android framework based on the current state of the system
or application, meaning they have no explicit call within the
application code. This causes disconnected clusters to form
in the graph. The control flow to and from these clusters is
determined at runtime by the Android framework, or by our
runtime model (see Section V) during a search.

Figure 2 shows the control flow structure generated for
one of our AUT, Activity Lifecycle. The visualisation of the
graph was generated using the DOT visualisation language and
Gephi.

Fig. 2: Control flow structure for Activity Lifecycle applica-
tion. User interface (e.g., Buttons) are red, callback methods
are orange, lifecycle methods are blue, standard methods are
green, and statements are yellow.

IV. COVERAGE METRICS BASED ON OUR CONTROL FLOW

Once we have a representation of the Android app (i.e., the
graph G we have proposed in Section III), we can look at the
code coverage of tests generated by different test generation



techniques, i.e., how much of the graph is covered by the test
suites generated by a given technique.

A. Formal Definitions

In the current paper, we are interested in the interactive
elements (e.g., buttons) of the application. The focus on
interactive elements (i.e., vj ∈ Vui in our graph) tells us how
much of what the users can do is tested. Further research
will involve using the methods Vm and statements Vs to
enhance our search to target specific features likely to uncover
application bugs.

Let’s first introduce the notion of test and test generation
tool.

Definition 2 (Test and test suite): Let us assume a mobile
application A and the graph representing it G = (V,E). A
test is a sequence of vertices t = [vt1, v

t
2, . . . , v

t
m] such that

(vti , v
t
i+1) ∈ E (for i = 1, . . . ,m − 1), and vt1 is an interface

vertex (i.e., vt1 ∈ Vui ). A test suite is a set of tests TS =
{t1, . . . , tk}.

Definition 3 (Test generation tool): Given a mobile appli-
cation A and its graph G = (V,E), a test generation tool
T can be seen as a function producing a test suite TS , i.e.,
TS = T (A, G).

As said before, in our work we are interested in measuring
how much of the interface of the application has been covered.
Therefore, we introduce the notion of interface coverage as
follows.

Definition 4 (Interface Coverage): Let us assume a mobile
application A, its graph G = (V,E) (with V = Vs∪Vm∪Vui ),
and a test generation tool T . The interface coverage achieved
by the tool is defined as:

IC (T ,A, G) =
|
⋃

t∈TS{v ∈ t | v ∈ Vui}|
|Vui |

where TS = T (A, G).

The interface coverage tells us how many of the interactive
elements in the whole application are explicitly being tested.

Figure 3 shows an interaction scenario (i.e., a test, see
definition 2), where green nodes identify covered vertices.
While interface elements are source vertices in the graph they
are not entry points within the Android application. We can
see that when “SayHi” is touched we achieve 33% interface
coverage but, in order to achieve 100% interface coverage, we
must touch “StartB” in “ActivityA” (assuming “ActivityA” is
an entry point class), so that the search can reach “SayBye”
in “ActivityB”.

B. Coverage Evaluation

In order to obtain the coverage achieved by the Monkey
test suite (sequence of interaction events), we needed to map
it to our control flow graph. We first needed to extract it
from Monkey’s output, which is limited to the command line.
We ran Monkey as a Python sub-process and captured the
output produced, which contains a stream of events executed

Fig. 3: Interaction Scenario: When “SayHi” is touched we
achieve 33% interface coverage but, to achieve 100% interface
coverage, we must touch “StartB” for the search to reach
“SayBye”.

on the device during a test. A sample of the output can be
seen in Listing 1 showing the generated random interactions
(instructions proceeded by ’:’) that were executed on an
Android device.

:Switch: #Intent;action=android.intent.action.MAIN;
category=android.intent.category.LAUNCHER;
launchFlags=0x10200000;component=com.example.
android.lifecycle/.ActivityA;end

// Allowing start of Intent { act=android.intent.
action.MAIN cat=[android.intent.category.
LAUNCHER] cmp=com.example.android.lifecycle/.
ActivityA } in package com.example.android.
lifecycle

:Sending Touch (ACTION_DOWN): 0:(177.0,1604.0)
:Sending Touch (ACTION_UP): 0:(170.91504,1612.0048)
// Allowing start of Intent { cmp=com.example.

android.lifecycle/.DialogActivity } in package
com.example.android.lifecycle

:Sending Touch (ACTION_DOWN): 0:(114.0,1359.0)
// activityResuming(com.example.android.lifecycle)
:Sending Touch (ACTION_UP): 0:(112.05528,1361.9899)

Listing 1: Sample of output given from Monkey

Regular expressions were used to search the output text and
identify the type of events used during a test, as well as any
execution details that accompany them. For example, listing 2
shows the method used to extract the switch event given on
line 1 of listing 1.

def __extract_switch_event(self, line):
ptn=re.compile(r’:Switch:\s.+;component=([\w

./]+);end’)
component=regex_search(ptn, line, 1)

next_line = self.__monkey_output.pop(0)
if any(word in next_line for word in ["Allowing"

,"Resuming","Rejecting"]) and component in
next_line:
accepted=False if "Rejecting" in next_line

else True
else:

self.__monkey_output.insert(0, next_line)

self.events.append(SwitchEvent(component,
accepted))

Listing 2: Extracting switch events from Monkey output



The Monkey output only provides screen coordinates for
the interactions executed. In order to determine which of the
AUT’s interface control views were used during a test, we
needed to convert those coordinates into the control view at
that location. UI Automator [10], an automation framework,
has a dump feature that provides a structured layout of views
currently on the screen, including each views ID, screen
coordinates and whether it is clickable. Due to the dump
feature only working on a screen’s current content, we were
forced to re-execute the extracted events while collecting
details of the view found at the coordinates, if one existed.
Listing 3 shows a small portion of the code used to execute a
touch event.

window = device.get_focused_window()
if action is not None:

view_id = device.find_view(action[’x’], action[’y’
])

if view_id is not None:
view={’id’:view_id,’activity’:window,’coords’:

action}

device.touch(action[’x’], action[’y’])

Listing 3: Running Touch Events on the Application

Once the Monkey test suite had been extracted, the search
followed the graph to determine where in the application
Monkey travelled and thus gave us the application coverage
achieved.

V. MONKEY++: MONKEY DRIVEN BY OUR CONTROL
FLOW

Besides defining coverage metrics, our control flow could
also empower Monkey in its search for better test suites.
Instead of randomly testing the application, we propose Mon-
key++; a Monkey which is capable of leveraging our control
flow using some graph navigation algorithm (e.g., Depth First
Search, Breadth First Search, or more elaborate techniques) to
achieve a better coverage and with a smaller effort.

A. Monkey++ with Depth First Search

As a use-case, we developed Monkey++ which navigates
our control flow using the Depth First Search algorithm.

Monkey++’s search begins with the default launch activity
within the AUT. Monkey++ gets all the interface vertices for
an activity and performs a search with one vertex as the root,
recursively finding new interface controls while it searches.
When all the interface vertices in the current activity have been
explored, Monkey++ moves back one activity, the equivalent
to pressing the back button on a device.

As mentioned previously, our graph does not contain control
flow edges between activity lifecycle methods as these control
flows are determined by the Android framework based on the
current system state and the application state itself. Our search
determines these flows at runtime by tracking both the activity
stack and lifecycle status of each activity.

The stack determines which activity is currently on the
screen. For example, when a new activity is launched, it gets
added to the top of the stack and takes over the screen,
conversely if the back button is pressed, the top activity in
the stack is removed and the previous one takes its place.

The lifecycle status of each activity determines which life-
cycle methods need to be executed/searched when an activity
is added, or removed from the top of the stack. For example,
the onCreate() lifecycle method is only executed if an instance
of the activity does not already exist in the stack, while the
onResume() method is only executed if the activity is moved
to the top of the stack and was previously in a paused state.

When visiting a vertex in our graph we check for 3 features:
an activity launch statement; an activity finish statement; or
a lifecycle method. If any of these features are found then
the current state of the stack and the lifecycle status of each
activity will determine where the search continues. This can
be seen in listing 4 showing the main DFS search method.

protected void search(Vertex v) {
v.visit();
v.localVisit();

for(DefaultEdge e : graph.outgoingEdgesOf(v)
) {
Vertex target = graph.getEdgeTarget(e);
if(!target.hasLocalVisit()) {

search(target);
}

}

switch(v.getType()) {
case statement:

checkForIntentAndStart(v);
checkForActivityFinish(v);
break;

case lifecycle:
updateLifecycle(v);
break;

}
}

Listing 4: Search method for executing a DFS on a graph

While searching the graph we enter and exit activities
repeatedly, meaning certain lifecycle methods need to be
executed/searched multiple times to maintain the activity stack
and lifecycle states. In a standard DFS, repetition is not
allowed as it leads to searching the same vertices infinitely.
We allow repetition in our overall search by creating smaller
local searches that do not allow repetition. While each local
search cannot visit the same vertex more than once, the area
covered by each local search can overlap.

VI. VALIDATION

The Monkey is capable of finding bugs within Android
applications but its performance can be greatly improved by
adding knowledge of the AUTs underlying structure. Lever-
aging knowledge of the internal structure using even a simple
search method such as DFS can provide a more efficient
and effective Monkey. We demonstrate this by comparing the



TABLE I: Composition of AUTs

App Name No. Activities No. Controls Java LOC
Mo Clock 3 10 378

Activity Lifecycle 4 13 558
Volume Control 4 11 2254

coverage achieved by a standard Monkey random search with
a DFS using our (control flow) graph (Monkey++).

Monkey supports different interaction types, such as screen
touches, key presses, swipe events, etc. In order to get the
best possible coverage from Monkey, we limit the interactions
to screen touches, as these are the only interactions that the
AUTs accept. For both Monkey and Monkey++ a test is a
sequence of interactions where an interaction is a click on the
screen. Monkey, with no knowledge of the interface, can not
be specific, so an interaction does not always touch an inter-
face control. Conversely, thanks to the (control flow) graph,
every Monkey++ interaction is specific to an interface control
(Similarly to getting interface controls views from Monkey
coordinates in Section IV-B, we can also get coordinates of
interface controls views from control IDs).

Stress testing the application was not the objective, therefore
we gave Monkey a 0.5 second throttle to allow plenty of
time between events. For both Monkey and Monkey++ our
validation centres around interface coverage.

Due to Monkey executing random events on the device,
all experiments are repeated 10 times executing 500 device
interactions each. Results for Monkey are averaged over the 10
obtained test suites. However, using the DFS as the underlying
graph navigation for Monkey++ makes it deterministic–thus
only requiring one run.

A. Applications Under Test

All the AUTs are free and open source applications taken
from Fossdroid [32]. The applications were chosen randomly
with the following criteria in mind: relatively small in size; and
simple (i.e., no custom views, and minimal external libraries).
These criteria were included due to the immature nature of
our graph generation. Further development is needed to allow
for larger industrial applications. The chosen applications can
be seen in Table I.

B. Interface Coverage

Figures 4a–4c show the interface coverage achieved by both
Monkey and Monkey++ for the three AUTs.

Table II shows the coverage achieved by each AUT and the
number of interactions required to reach it.

Even though Monkey achieved an at least average of 85%
coverage, it required 500 interaction attempts to do it. We
expected with such a low number of interface controls, that
the Monkey would get 100% coverage in less attempts. Even
when 100% coverage was achieved, it required at least 180
interactions. Given an application with a more complex inter-
face structure, we would expect Monkey to achieve a much
lower coverage with the same number of attempts.
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Fig. 4: Interface Coverage (over 10 runs of Monkey and 1 run
of Monkey++). Note the log scale of x-axis.

TABLE II: Overview of Results – Interface coverage (No. of
interactions required to achieve it)

Monkey
App Name Monkey++ Average Min Max
Mo Clock 100% (19) 88% (500) 70% (500) 100% (300)

Activity Lifecycle 100% (17) 85% (500) 77% (500) 100% (400)
Volume Control 100% (13) 100% (350) 90% (500) 100% (180)

Due to the random nature of Monkey, not all events executed
on the device will hit an interactive view in the application.
Despite sending 500 events to the device, Monkey on average
has only an 8% hit rate. Monkey also takes approximately
5 minutes to execute. Given this time scale and the amount



of interactions required to achieve a high coverage, larger
applications cannot afford the wasted time and resources.

In comparison, Monkey++ achieves 100% interface cover-
age with a maximum of 19 interactions. Knowing the underly-
ing structure of the interface, removes redundant interactions
and therefore saves time and resources. While gaining this
knowledge requires pre-processing, it is only required once
and the overhead is far less with our graph generation taking
approximately 10 seconds on the largest AUT.

VII. CONCLUSION

Android’s event driven paradigm and its reliance on call-
back methods has presented many challenges to traditional
testing techniques. The most popular framework for testing is
Exerciser Monkey, an automated random input generation tool
designed to test an Android application through its interface.
We argue that Monkey is a reliable, but limited, testing tool,
that can be made more efficient and effective by replacing its
random nature with knowledge of the applications structure.

In this paper, we presented a novel control flow structure
able to represent the code of Android applications, including
all interactive elements. We show that the (control flow) graph
generated by our solution can direct/support the execution of
a tool like Monkey (We call our extension Monkey++) and
address two main challenges in testing Android apps using the
framework: removing duplicate/redundant interactions (i.e.,
efficiency, using less resources) by tracking areas already
explored by the test suite; and increasing test coverage (i.e., its
effectiveness) by targeting unexplored areas of the application.

Our results show that although Monkey can achieve a high
coverage, it requires a large number of wasted interactions.
Monkey achieves a coverage value of at least 85%. However,
to achieve these results, 500 interactions were executed and
on average only 8% actually interacted with the application.
In comparison the test suite generated by Monkey++ achieved
100% interaction coverage with a maximum of 19 interactions,
showing that Monkey can be more effective with knowledge
of the applications underlying structure.

In the future we will explore other search techniques suited
to large scale Android applications while also leveraging
knowledge of the applications internal structure (i.e., our con-
trol flow structure) to increase bug detection and efficiency.
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