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Abstract

In order for researchers to deliver robust evaluations of time series models, it
often requires high volumes of data to ensure the appropriate level of rigor
in testing. However, for many researchers, the lack of time series presents a
barrier to a deeper evaluation. While researchers have developed and used
synthetic datasets, the development of this data requires a methodological
approach to testing the entire dataset against a set of metrics which capture
the diversity of the dataset. Unless researchers are confident that their test
datasets display a broad set of time series characteristics, it may favor one
type of predictive model over another. This can have the effect of under-
mining the evaluation of new predictive methods. In this paper, we present
a new approach to generating and evaluating a high number of time series
data. The construction algorithm and validation framework are described
in detail, together with an analysis of the level of diversity present in the
synthetic dataset.
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Introduction

Time series analysis has long been an interesting topic of research across
multiple domains, as many systems require a sequential monitoring of their
data streams at constant intervals. Daily prices, weekly stock indices, hourly
temperature and monthly precipitation rates are examples of the domains
where a sequential monitoring is incorporated. There are currently multiple
challenges in time series analysis such has time series classification, time
series clustering, feature learning and time series prediction. Time series
classification is a process employed to label unseen time series into a set of pre-
existing classes of time series [1]. Time series classification has applications in
various domains such as EEG signal analysis and fault detection [1]. Feature
learning is the process of extracting and learning features from time series
data in order to improve time series classification. Many studies have been
conducted in feature learning such as [2] and [3] which generate discriminative
time series features in an attempt to improve the performance of time series
classification.

Our previous studies in time series prediction [4] suggest that evaluating
new methods for time series predictions generally takes place using datasets
that are specific to a researcher’s area of interest. The acquisition of data
involves harvesting from specific studies or bodies that have an interest in
a particular research question. However, this can mean that solutions are
not applicable to other domains. There are numerous competition and open



source datasets repositories that have been made available to the research
community, such as BCI [5] and Kaggle [6]. These datasets have allowed
researchers to test their methods more extensively, but the datasets are not
typically classified by time series evaluation metrics but by accuracy of the
methods employed.

The primary issue for time series researchers is the lack of available data to
ensure robust validation. Synthetic data has been mixed with real life data in
an attempt to broaden the scope of existing methods but the range of time
series characteristics is quite narrow and datasets can be relatively small.
There are many examples of researchers generating synthetic time series,
such as: synthetic data generation [7]; surrogate data analysis [8]; using
heuristics to materialize datasets [9]; and simulated data [10]. Surrogate
data analysis can be used to estimate the impact of the scale of a time series
characteristic through the comparison of the given time series with surrogate
series [8]. This can then be used to estimate the impact of non-linearity in
a time series in comparison to a series generated from a linear models such
as ARIMA [11] and thus, allows researchers to replicate statistical features
such as auto-correlation.

Time series clustering is a type of analysis that identifies similar time
series and places them into a set of distinct groups. Time series clustering
has applications in domains such as community detection and social media
analysis. Studies such as [12] present new features known as shapelets to
improve time series clustering. Shapelets are useful as features for classifica-
tion and clustering but as it is not a statistical time series feature, it cannot
be measured quantitatively to demonstrate diversity and coverage. Other
approaches included [7], where the authors used a Markov chain model to
create synthetic time series and an approach synthetic data creation for spe-
cific types of time series such as critical transitions [13]. In [14], a stochastic
approach was presented to reproduce long range persistence of time series
at multiple scales. An approach called Generative Adversarial Networks
(GAN) [15] adopted machine learning algorithms to generate time series.

Problem Definition. Time series data generally exhibits a number of
key characteristics (described later) and an important consideration when
generating synthetic data is for these properties to occur with a fairly even
level of distribution. We refer to this as diversity of the time series. Data
generation for simulating changing environments was studied in [16] but no
benchmark was developed for these simulations. In effect, they did not base
their study on the fundamental structure of time series data and its rela-



tionship with time series characteristics. In fact, none of these studies have
investigated the presence of differing characteristics in the generation of time
series. Instead, we will show that they focus on the creation of either visually
similar series or the presence of one particular feature e.g. [14].

Contribution. In this paper, we present a methodology to create syn-
thetic time series with the primary aim of ensuring diversity of time se-
ries characteristics across the overall dataset. By diversity, it implies that
datasets were built to incorporate time series characteristics such as long and
short term dependence, non-stationarity, kurtosis, skewness, trend and vary-
ing degrees of complexity. This is not the same as introducing uncertainty
[17] which would instead mean that the dataset contains time series of various
types and behaviors. Diversity is a desirable attribute especially for time se-
ries algorithms evaluation purposes, where the algorithms’ performances are
required to be evaluated against a wide range of possible situations. We also
provide a rigorous validation to measure the degree to which each time series
property is contained within the dataset. As part of this work, we generated
53,637 time series to be shared with the time series community [18]. To the
best of our knowledge, no other study has constructed this volume of time
series together with a robust evaluation for diversity. In terms of exploiting
this resource, the dataset is provided in full, with evolving documentation to
describe its usage together with a link to this paper to provide the researcher
with an understanding of the characteristics of subsets of the time series. In
terms of data provenance, this paper provides a detailed description of the
algorithm used to generate the data. It is also anticipated that by tweaking
parameter settings, this repository could grow to more significant number of
time series and potentially grow or accelerate research in time series predic-
tion.

Paper Structure. The remainder of this paper is organized as follows:
in section 2 (The Need for Reliable Time Series Data), we motivate a require-
ment for this type of method and examine how and why other researchers
have created synthetic time series data; in section 3 (Generating Time Series),
our method for constructing synthetic time series is presented; in section 4 (A
Feature Set to Capture Diversity), we present the fundamental features used
to evaluate the synthetic time series; in section 5 (Evaluation), we present
our validation together with a detailed discussion of the results; and in the
final section, we present our conclusions.



The Need for Reliable Time Series Data

Traditional (statistical) applications of time series prediction have been
practiced under the assumption that the time series was produced by a linear
continuous process [19]. However, this may not be the case where time series
are the output of interactions of many alternating series and thus, linearity
cannot always be assumed [20]. However, many processes such as financial
time series are fundamentally characterized by complex, substantially noisy,
dynamic, and nonlinear behaviour [21].

Data generation has been widely used in time series analysis through the
use of surrogate data analysis [8], synthetic data generation [7] or simulated
data[10]. Surrogate data analysis can be used as a means of estimating the
impact of the scale of a characteristic in a time series, through the comparison
of the given time series with surrogate series [8]. This can be demonstrated
by estimating for example, the impact of non-linearity in a time series in com-
parison to a series generated from a linear models such as ARIMA and thus,
allows researchers to replicate statistical features such as auto-correlation
22].

The majority of practices in time series generation typically use linear ap-
proaches, such as the ARIMA family of models. These models establish fun-
damental statistical consistency, by means of reproducing the mean, variance
and auto-correlations of lags of the parent historical data [7]. However, many
real-world time series show substantially more complex statistical properties;
for example, time series with skewness rather than Gaussian distributions,
or those characterized by statistical inter-dependencies [23].

In [7], a Markov chain model was used to generate synthetic data for
a wind speed time series analysis. Characteristics such as mean, standard
deviation and frequency distribution were predominantly used as assessment
metrics. They also evaluated auto-correlation and power spectral density to
determined the persistence structure of the series.

In [24], the authors presented a method that incorporates maximum en-
tropy bootstrap to generate ensembles for the given time series data. How-
ever, this method only focuses on the low frequency approximation of the
signal and discards memory characteristics laid on temporal fluctuations. In
[25], the authors also focused on the shape of the signal and tried to use
white noise to generate new patterns. This work was originally conducted to
compare the performances of time series classification methods on the data
for variant representations. However, this work did not address the role of



diversity of time series in performance comparisons.

In [26], the authors present a similarity measure that studies generation
methods for general time series features. Their work also presents a feature-
based time series generation approach that evolves cross-domain time series
datasets. The authors present a generic method capable of generating time
series from a diversity of domains, as opposed to previous methods that
generate time series for particular domains such as weather, economics and
energy. This work introduced 4 general attributes for a time series gener-
ation method: Dataset-oriented, Deterministic, Stochastic and Innovative.
The Innovative feature suggests an overlap with our work as it provides a
reference to the requirement for diversity. However, unlike our approach,
their research is bound to domain-specific constraints as it requires examples
from the domain for which synthetic time series are to be generated.

In [27], the authors presented a method known as GRATIS and used
Mixture AutoRegressive (MAR) models to generate time series data. They
incorporated 26 time series features and used a genetic algorithm to evolve
time series and create new instances. This approach generated 20,000 yearly,
20,000 quarterly, 40,000 monthly and 10,000 weekly time series based on the
MAR models. This work compared their synthetic time series with those
of M4 to provide an analysis of coverage and diversity, using M4 as the ref-
erence dataset. However, their measures indicate diversity and miscoverage
only in relation to the reference dataset after dimension reduction, which is
analytically difficult to project into the original feature space. We believe
that our approach is free from this limitation.

In [14], a stochastic approach was presented to simulate long range persis-
tence of hydrometeorological time series at multiple scales. The authors use a
linear stochastic model to generate synthetic data that replicates the Hurst-
Kolmogorov characteristics of the original process. However, this method
attempts to replicate temporal dynamics to create similar series, and thus
cannot produce diverse series.

More recently, a method called Generative Adversarial Networks (GAN)
[15] received attention for generating similar datasets. GANs were origi-
nally introduced as an approach that facilitates generative modeling via deep
learning. The GANS’ training process is to force the output of the network to
follow the distribution of the given input. Most of the studies on GANs focus
on image generation and limited work address time series data. [28] was the
first attempt that used GANs to generate continuous sequential data (which
is a superset of time series). This work tries to generate new music pieces
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based on some reference classical musics. A similar attempt was also made in
[29], and used GANs to reproduce musical symbolic sequences. Past studies
on GANs have also addressed diversity, such as in [30], although in GANs
diversity has received a greater attention in the context of training perfor-
mance, where diversity is required in training samples in order to stabilize
modeling performance. More complex practices have also been reported that
use deep learning for synthetic data generation. In [31], the authors pro-
posed a deep learning architecture which incorporates a stack of multiple
Long-Short-Term-Memory (LSTM) networks and a Mixture Density Net-
work (MDN) for Synthetic Sensor Data Generation. This work attempted to
develop a model that reproduces sequences of data which preserve specific
statistical properties. However, this work did not consider the diversity of
the synthetic data, a characteristic that we believe is crucial when validating
results. In fact, none of these studies investigated the presence of differing
characteristics when generating synthetic time series. Instead, they focus on
the creation of either visually similar series or the presence of one particular
feature, as in [14].

In summary, almost all research on surrogate and synthetic time series
generation were conducted to reproduce the same set of features with small
variations. To date, there has not been an extensive generation of time series
datasets that cover a broad range of time series characteristics and such a
method will facilitate a more robust validation of future time series models.

Generating Time Series

A time series is a sequence of equally spaced time ordered data points.
When conducting time series analysis, the predominant objective is to un-
derstand the characteristics of the data, and the extraction of meaningful
statistics. Time series data can be broken up into four components [32, 33]:
trend, seasonality, cyclicality, and irreqularity.

These components can be used to drive the generation of time series.
It is important to note that there is no standard way of combining these
components to generate a time series, especially when considering that each
component can itself be generated in multiple ways. For instance in [34], the
irregularity component is used as the base and manipulated by adding the
trend and the seasonality components, which are combined in an additive or
multiplicative way.



Time Series Components

Trend. The trend 7; describes the long term increase or decrease in the
data. The trend can be linear or not, and can be described via the equation
in Eq. 1.

T; = (ax + b) x sin(x) + cx +d (1)

In Eq. 1, symbols a,b, c,d are the coefficients that allow one to specify the
desired behavior of the trend, specifically: ¢, d control the linearity, while a, b
via the sinusoidal function determine the non-linear behavior.

Seasonality and Cyclicality. Both seasonality and cyclicality describe
repeating behaviors in the time series data. Specifically, seasonality describes
a repeated behavior that occurs at regular intervals (e.g. every number of
seconds, days, weeks, etc.); cyclicality, on the other hand, describes repeated
behaviors that occurs at irregular intervals. We used four functional forms
of repeating patterns to simulate seasonality S;: the sinusoidal function, the
step-wise function, the impulsive function and the triangular function.

The Sinusoidal function is simulated using Eq. 2, where, 5y and 3, are the
weights; oy and a; are the phases for the sinusoidal functions; and «yg, a1, 5y
and [3; are constants.

St = Bosin(apt) + Brsin(ast) (2)

The Step-wise function is a type of latch function (with two stable states)
that changes between two values at fixed intervals, shown in equation 3,
where, p (p > 0) is the period, t is time and m is an integer.

g _ 1 2mp <t <2mp—+1 (3)
P10 2mpH+1<t<2mp+2

The step-wise function is shown in Figure 1.

\4

X

Figure 1: The Step-wise function



The Triangular function is similar to the step-wise function where the
step-wise effect occurs in the slope of the line. Equation 4 implements the
triangular function with a fixed slope a, with by and b; as constants, p as the
period, t as time, and m as an integer.

| at+ b 2mp <t <2mp+1 ()
S —at+b 2mp+1<t<2mp+2
The Triangular function is shown in Figure 2.

A

v

X
Figure 2: The Triangular function
The Impulsive function is a pattern that has a value of 1 at fixed intervals

and 0 otherwise and was implemented using 5, where ¢ is time, and p is the
period.

0 otherwise

y:{l Lt/pjzt/p (5)

The Impulsive function is shown in Figure 3.

Non-zero samples

I

X

Figure 3: The Impulsive function

Note that the impulsive function is smoothed using a moving average
operation to avoid sharp fall and rise fluctuations.
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Irregularity. The Irregular component describes behaviors that cannot be
represented via the trend or the cyclicality/seasonality. In time series analysis
this component is often referred to as noise. Some researchers, e.g. [35],
believe that this component carries important information. Therefore, in
order to accommodate for these theories, we model the noise as a signal with
its own characteristics. Specifically, we consider following three models:

e Fractional Gaussian noise (fGn), which represents stationary series with
a constant mean and variance;

e Fractional Brownian motions (fBm), which are non-stationary series
with time-dependent variance [36];

e Multi-fractal Brownian motion, for the case where the Hiirst exponent
is applicable to time series, that is: the index is a function of time.

The Hurst exponent H [37] is one of the most popular methods to measure
Long Range Dependence (LRD). H attempts to explain LRD as a property
of stochastic self-similar processes. Here, x(t) is self-similar with the Hurst
exponent H, when for a stretching factor A, the rescaled process z(At) is
equal to the original process z(t) in terms of distribution as in Eq. 6, where
= denotes equality in terms of distributions.

w(t) = X Hz(\t) (6)

If the fluctuations are stationary (the process has a constant mean and
a constant variance), the process is said to have fractional Brownian motion

(fBm). Based on [38], the auto-correlation function for fBm processes is
defined in Eq. 7.

1
p(k) = Sk + 17 =2k + [k = 117) (7)

Based on [37], applying a first-order Taylor expansion to p(k) from Eq. 7
delivers the functionality in Eq. 8, for k& — oo.

p(k)

HEH - DRpr2 (®)

It can be inferred from Eq. 8 that the autocorrelation p(k) o< |k|*"*” when
H > 1, based on [37].
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Our Combinational Methodology

Building on the work presented in [39], we combine trend and cyclical-
ity into a joint component known as the trend-cycle component in order to
prevent known complexities involved in identifying Cyclicality. In our time
series construction method, we consider all possible additive and multiplica-
tive combinations of trend-cycle T, seasonality S; and irreqularity I;, using
the approach presented in [40], where there are 8 possible models for com-
bining 7, S; and I;, shown in Table 2.

Table 2: Time Series Component Combinations

Model Description
Model 1 | YV; =T¢ + S; + I
Model 2 | Y; = (T¥ + Si) 1y
Model 3 | Y; = (T¥ + I;)S;
Model 4 | Y; = (S; + I)Tf
Model 5 Y, =T5S + I
Model 6 | Y; =TFL + 5S¢
Model 7 Y, = Sl + 1IF
Model 8 Y, =TS

In Table 2, Model 1 is the pure additive model which is the most widely
used model in the time series community. Model 8, or the pure multiplicative
model, is the second most popular model among time series researchers. The
other models in Table 2 are also used in the time series studies with Model
3 and Model 5 being more popular because they incorporate irregularity I;
using an addition operation.

An example of combining time series components is illustrated in Figure
4.

A Feature Set to Capture Diversity

In the previous section, we described a method that ensures diversity in
synthetic time series using different combinations of functions that introduce
time series characteristics. As one cannot directly measure time series com-
ponents such as trend, it is necessary to extract a feature set to support any
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Figure 4: Combining Time Series components

evaluation. For our validation framework in this paper, we use Long-Range
Dependence, Complexity and Normality .

LRD

Long-Range Dependence (LRD) measures the degree of dependence (cor-
relation) over long intervals of time, which is a way to indicate “memory”
in a time series. As mentioned earlier, the Hurst exponent is the traditional
method for measuring LRD [41]. The Hurst exponent divides time series
data into three categories: Negatively-correlated 0 < o < 0.5, Uncorrelated
a =~ 0.5 and Correlated 0.5 < o < 1. However, the Hurst exponent is only
able to process stationary time series. An alternative to the Hurst exponent
for measuring LRD is the Detrended Fluctuation Analysis (DFA) approach
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which allows for the detection of LRD in non-stationary time series.

Using Detrended Fluctuation Analysis (DFA), LRD can be assessed and
categorized into 6 well known and critical classes.

Values of o can be interpreted as follows: o = 1 indicates perfect (self)
similarity in the data (a characteristic of the Self Organized Critically sys-
tems [42]); a = 1/2 represents white noise, no similarity (or no memory);
1/2 < a < 1 describes positive correlation, with similarity (memory) in-
creasing with the values of a; a < 1/2 indicates inverse correlation; a > 1
indicates that while correlations exist, they cannot be described in the form
of a power-law relationship. A special case where a = 1.5, indicates Brow-
nian noise or the integration of white noise. « also provides information
about the roughness of the time series where larger values of o belong to
smoother time series. 1/f noise can be interpreted as a compromise between
the complete unpredictability of white noise (very rough landscape) and the
very smooth landscape of Brownian noise.

Complezxity

Entropy can be used to measure complexity [43]. As per [44], given a
signal y with sample size N and tolerance r, sample entropy is the negative
logarithm of the conditional probability that a sub-series of length m matches
point-wise with the next point with tolerance (distance less than) . In this
paper, we used spectral entropy to evaluate complexity, which measures the
uniformity of the power spectrum distribution or the frequency component
distribution.

Normality

Normality is a test to determine if data falls into a normal distribu-
tion [45]. Common metrics to measure normality are: Kurtosis, Skewness,
and Gaussianity of the Differences (GoD). Kurtosis measures the number of
outliers in the dataset with respect to a normal distribution: when Kurto-
sis is high, the dataset has a higher number of outliers (heavy tail in the
distribution); when kurtosis is low, the outliers are low to none (light tail).
Skewness measures the symmetry of the distribution: when positive, the dis-
tribution has a longer or fatter tail on the right side; when negative, the left
side of the distribution has a longer or fatter tail; when zero, the distribution
is symmetrical. Gaussianity of the differences (GoD) was used in [33, 46]
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to measure the normality of the distribution of the changes (the first differ-
ence of the series) in the time series: this is an important metric because
differencing is an important phase of many time series analysis.

Evaluation

As the goal of this research is to provide researchers with a method to
create diverse time series datasets, it must be accompanied by validation
framework to measure diversity. There are five metrics used to assess the time
series components discussed in the previous section : Detrended Fluctuation
Analysis (DFA), Spectral Entropy, Kurtosis, Skewness, and Gaussianity of
the differenced values. They have been extensively used in the literature as
individual assessment measures of time series data [10].

FEvaluation Criteria

In this paper, the evaluation goal is to demonstrate the diversity of the
generated time series, where the goal is to achieve maximum diversity and
thus, we incorporate three main approaches to assess the degree of diversity.
First, we use the histogram plot to visually observe the diversity of the gen-
erated time series for each feature on an individual basis. In a histogram
plot, the z-axis represents the range of values for a given feature and the
y-axis shows the number of time series that fall into each specific interval.
Therefore, using the histogram plot, we can visually observe the distribution
of the time series for each feature, individually. Note that we are not looking
for a histogram with a uniform distribution of values but instead, attempt
to determine the non-empty intervals, so that we obtain time series for all
feature values.

Second, we use the multivariate entropy score to provide an accumulative
diversity score across individual features to return a single score for diversity.
While it represents the dominant approach in the literature, the problem
with the multivariate entropy score is that it calculates diversity independent
of inter-feature relationships. Therefore, we propose the third evaluation
measure known as the coverage rate which provides a more reliable evaluation
for diversity.

Visualizing Feature Metrics

The results presented in this section use the 53,637 generated time series
as input. Fach set of results presented in figures 5, 6, 7, 8 and 9 represents
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an analysis (metric) of a specific feature across the entire dataset. For each
feature, a histogram plot has been provided that visually illustrates the di-
versity of time series over the potential range of values for the corresponding
feature. Using these histograms, we evaluate the diversity of each feature
independent of each of the other features and this evaluation can be referred
to as feature specific diversity. As the goal is to observe the least number of
empty intervals, a perfectly diverse dataset is one that has no zero intervals
over the range of the possible values for the given feature.
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Figure 5: Results for LRD Metric (DFA)

15



Count

Count

0.8

0.7

0.6

0.5 A

0.4 +

0.3

0.2 A

0.1

0.0

0 2 4 6 8 10 12
Range (bins)

Figure 6: Results for Complexity

124

1.0+

0.8 1

0.6 1

0.4 1

0.2 1

0.0

=2 -1 o 1 2 3 4
Range (bins)

Figure 7: Results for Normality (Kurtosis)

16




2.0 4
S 1.5
=1
(=]
[s]
1.0 A
0.5 A
0.0 T T T T T
-2 -1 0 1 2
Range (bins)

Figure 8: Results for Normality (Skewness)

35 4

30 A

251

204

Count

15 4

10 4

T T
0.0 0.2 0.4 0.6 0.8 1.0
Range (bins)

Figure 9: Results for Normality (GoD)
Long range dependency for each series was calculated using a DFA anal-

ysis and shown in Figure 5. These results demonstrate that the synthetic

series encapsulate all forms of long range dependency described by the DFA
values in the previous section.
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In Figure 6, the histogram for spectral entropy of the time series is pre-
sented. The entropy of values close to zero indicates high levels of self-
similarity and thus, higher predictability. The results illustrate a high num-
ber of time series with low complexity (entropy close to zero) and also a
high number of complex time series (entropy greater than 9). In addition,
there are a lot of time series between these ranges, demonstrating that all
complexity levels are present.

In Figure 7, the results for kurtosis show the expected diversity of negative
(series of light tails or series of no outliers), zero (occasional outliers) and
positive values (series of heavy tails or series with significant or numerous
outliers). This is a strong indicator of diversity across the datasets.

The results for skewness are presented in figure 8, showing a high number
of time series with negative skewness (series with a fatter or longer tails on
the left side), zero skewness (series of symmetrical distribution) and positive
skewness (series of heavy or long tails on the right side). Once again, this
indicates a high level of diversity across the datasets.

Figure 9 illustrates the distribution of the gaussianity of the differences.
A value of 1 indicates that the series follow a normal/Gaussian distribution
and a value of 0 indicates no normality. The results show the generated
series cover the entire range between zero and complete normality and thus,
demonstrates a high level of diversity for the generated series.

Multivariate Entropy Score

The diversity measure in this paper is based on Shannon’s entropy func-
tion which is frequently used to measure the amount of information in an
encoded message [47], and shown in equation 9, where x1, 23, ..., zg are the
possible values of X and p(z;) is the probability of observing z; or X = ;.

S

H(X) == p(z;)log p(;) 9)
i=1
In order to measure diversity, we used a metric known as the evenness
measure [47], which provides a normalized value for H(X) based on its max-
imum, and shown in equation 10.

S
1 1
Hypor(X) = — —log = =1log S 10
(X) ; S og g og (10)
Therefore, the diversity of feature X is calculated by equation 11.
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H(X) 1

s
Hp(X) = Hopae (X) = _logS Zp(xi)logp(l"i) (11)

In this evaluation, we assume that all the features have equal signifi-
cance, independent of the domain-specific constraints of the problem space.
Assuming that all features have the same significance, the diversity for a
multivariate (multi-feature) dataset with k features can be obtained using
equation 12, where H will range between 0 and 1.

1 k

H=-)Y Hp(X* 12

£ A (12)

In order to implement this metric, each feature was categorized into buck-

ets/zones as used traditionally by researchers. The categorization of the
features, later shown in Table 3, is as follows:

e Spectral Entropy was categorized into three categories including A: X <
1, B 1 <X <9and C:9 < X.

e Kurtosis was categorized into three categories including A: X < —0.3,
B:—03< X < 0.3 and C:0.3 < X.

e Skewness was categorized into three categories including A: X < —0.3,
B:—03< X < 0.3and C:0.3 < X.

e GoD was categorized into two categories including A:X < 0.02 and
B:0.02 < X.

e DFA was categorized into seven categories including A:X < 0.45,
B:0.45 < X < 0.55, C:0.55 < X < 095, D:0.95 < X < 1.05,
E:1.05 < X <145, F:1.45 < X < 1.55, G:1.55 < X.

Table 3 shows the breakdown of the proportion of series that belong to
each of the categories outlined above. An N/A implies that this category is
not appropriate for that metric.

The proportion of series that belong to each of the categories outlined
above are shown in Figure 10

19



Table 3: Proportion of dataset relative to time series characteristics

Feature A B C D E F G

Spectral | 0.42 | 0.28 | 0.29 | N/A | N/A | N/A | N/A
Entropy
Kurtosis 0.59 | 0.25 | 015 | NJA | N/A | N/JA | N/A
Skewness 0.07 | 0.58 | 0.35 | N/JA | N/A | N/A | N/A

GoD 0.70 | 03 | N/A | N/A [ N/A [ N/A | N/A
DFA 0.017| 0.012 | 0.092| 0.035| 0.190 | 0.067 | 0.584
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Figure 10: Proportion of dataset relative to time series characteristics

Table 4 shows the H,,,, and Hg of each metric for the full dataset. These
interim results are used to calculate the diversity as our final evaluation is to
measure the diversity and coverage rate. The overall diversity score, H for
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the dataset was 0.83. Here, H(X), H,a, and Hg which were obtained using
equations 9, 10 and 11, and show that the level of diversity for each of the
metrics examined ranges between 0.65 for DFA to 0.98 for Spectral Entropy.
This is a significant result as it indicates the most diverse features or the
features that have the best evenness. The low level of diversity for the DFA
metric was predominantly due to the low levels of stationary data DFA < 1.

Table 4: H scores for each metric

Feature H(X) | Hnax Hg
Spectral 1.55 1.58 0.98
Entropy

Kurtosis 1.366 1.58 0.86
Skewness 1.25 1.58 0.79
GoD 0.88 1.00 0.88
DFA 1.837 | 2.80 0.65

The H score (diversity score) for each time series characteristics is shown
in Figure 11
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Figure 11: H scores for each metric
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Feature Space Coverage

The feature space for the data is identified as all potential category com-
binations of the metrics outlined above. For this evaluation, we selected a
measure of diversity that reflects the percentage coverage of the samples over
the potential feature space. Using Table 3, there are: 3 categories for spectral
entropy; 3 categories for Kurtosis; 3 categories for Skewness; 2 categories for
GoD; and 7 categories for DFA. Thus, there is a total of (3 x 3 x 3 x 2 x 7)
378 possible feature combinations, meaning 378 potential categories from our
metrics. A full list of all feature combinations is provided in [18].

Figure 12 shows the number of time series where a specific category was
represented by our synthetic data. Here, the x-azis represents all 378 possible
categories, each using a unique category_id, and the y-axis shows the number
of time series that fall under that category_id. For some categories, it is clear
that there are multiple time series in the datasets whereas other categories
are absent altogether.
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Figure 12: Number of series in each category

Conclusions

Researchers using time series data are often faced with the problem of
insufficient data for the purposes of testing and validating their algorithms.
In this work, we presented a methodology for the creation of a large number
(53,637) of time series which are now available to the research community
[18]. Their construction had an emphasis on diversity and a validation frame-
work to ensure a robust evaluation of the synthetic time series created. Our
method comprised 5 well-known time series features and used a multivariate
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entropy measure to examine the diversity of the created time series based on
these five features. The experimental results showed that our overall dataset
measured diversity at 83.4%, which we believe to be a significant achieve-
ment. We have also proposed a new diversity assessment measure called the
coverage rate which reflects the coverage of the dataset over the full feature
space. The results show that our series exhibit a coverage rate of 72%, which
delivers a significant contribution for such a large dataset.

There are some limitations to this research which we feel should be high-
lighted. Firstly, our paper considers only five features for studying diver-
sity and future research could adopt more time series features into a more
advanced study of diversity when building synthetic time series. Addition-
ally, this research constructs only 50K time series and a wider set would
be necessary to accommodate the additional features. Secondly, we assume
that all features have equal significance, independent of the domain-specific
constraints of the problem space. To advance our work, researchers could in-
corporate an additional customization step for determining the significance
of features, applicable to each specific domain.
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