An Adaptive Resolution Scheme
for Performance Enhancement of a Web-based
Multi-User VR Application

Rishabh Pathak!, Anderson Augusto Simiscukal, Member, IEEE, and
Gabriel-Miro Muntean!, Senior Member, IEEE

Abstract—Over the last few years, several frameworks have
been introduced to help developers build virtual reality (VR)
experiences for the web. One such open-source web framework
is the A-Frame framework, which is built on top of WebXR and
Three.js. A-Frame can be used to create 3D scenes that can be
rendered using compatible browsers such as Chrome and Firefox.
The performance of web-based VR applications, however, can be
affected due to the limitations of the CPU and GPU, especially in
multi-user applications. In this paper, an A-Frame-based multi-
user VR application is developed and the performance is analyzed
under different scenarios, demonstrating how an increase in
the number of users affects metrics related to VR quality of
experience (QoE). Then, an Adaptive Resolution Scheme for VR
(ARS-VR) is proposed, which improves the VR performance in
terms of frame rate and frame latency on remote devices with
limited processing and display features.

Index Terms—VR, WebXR, A-Frame, Three.js, frame rate,
resolution, adaptation

I. INTRODUCTION

EBXR, formerly known as WebVR, is an application
Wprogramming interface (API) that has made possible
the development of VR applications on the web. As the name
suggests, it is a combination of two technologies - Web and
VR. The web takes care of the HTML, CSS styling, and
JavaScript while VR is the usage of virtual reality devices such
as Oculus and Google Cardboard. It is used in conjunction
with WebGL, which is a JavaScript API that can be used
for rendering 2D and 3D graphics in various compatible
web browsers. These technologies together enable the user
to experience a VR scene on their browsers. While VR
applications built using development engines such as Unity
and Unreal Engine need to be downloaded and installed on
the user devices, with WebXR it is possible to access a VR
application in a web browser.

The work presented in [1] showcases a Unity-based VR
application wherein they evaluate the throughput and round
trip time (RTT) against an increasing number of simulated
users and server refresh rate. Authors in [2] attempt to evaluate
A-Frame [3] as a VR technology by creating a 360-degree
virtual tour consisting of panoramic equirectangular photos of
the Conimbriga Monographic Museum in Portugal. A-Frame
can be tested in terms of frame rate to demonstrate the quality

1R. Pathak, A. Simiscuka and G.-M. Muntean are with the Performance
Engineering Laboratory, School of Electronic Engineering Dublin City Uni-
versity, Glasnevin, Dublin 9, Ireland. (e-mails: rishabh.pathak2 @mail.dcu.ie,
anderson.simiscuka2 @mail.dcu.ie and gabriel.muntean@dcu.ie)

Fig. 1. Multi-user VR application theater room

and responsiveness of the experience [4], [5]. This indicates
the need for approaches that increase the frame rate metric,
especially in devices with limited processing resources.

As demonstrated by [1] and [6], rendering VR graphics
in web browsers can be a graphics processing unit (GPU)
intensive job and requires high-end graphics and processing
hardware to provide a stable frame rate, which is the minimum
requirement for a smooth user experience.

This paper describes the design and implementation of
a multi-user VR application developed using the A-Frame
library, rendered as a 360-degree experience within a browser.
The application employs a novel Adaptive Resolution Scheme
for VR (ARS-VR), which improves the VR performance in
terms of frame rate and frame latency on remote devices with
limited processing and display features.

A-Frame offers cross-platform support, being compatible
with i0OS, Android and Windows devices with an active
internet connection. Fig. 1. shows the proposed application, a
VR movie theater-like setting. Multiple remote users can join
the VR scene with or without a VR headset and can watch a
movie together. This allows for analysis of the performance
of the application with multiple users connected via different
devices consuming rich media content in VR.

The remaining sections of this paper are organized as
follows. Section II presents related works and Section III dis-
cusses the application design and implementation. Section IV
describes the performance analysis. Conclusions and directions
for future work end this paper in Section V.

II. RELATED WORK

A number of approaches have been reviewed in relation to
the scheme proposed in this paper. For instance, the authors
in [7] built a synchronization test-bed consisting of a web
application that uses A-Frame based HTML pages. These
pages create a binding between the user interface and the core
of another application that delivers instructions to IoT devices
in a VR-I0T synchronization system [8]. The research focuses
on achieving timely synchronization between IoT devices in
the real and virtual world.

Authors in [6] proposed a multi-user VR application to
facilitate inter-communication between different VR hard-
ware vendors such as HTC Vive and Oculus Rift. Whereas
authors in [1] analyzed the performance of a Unity-based
VR application by spawning multiple moving users that can
share streamable files in a virtual space through a mobility
algorithm. However, the impact on the frame rate with an
increasing number of users on the same machine has not
been considered as the author has attempted to evaluate the
performance on the network level.

The users in the VR environment as demonstrated in [6] and
[1] are simulated within the VR environment in the form of
capsule-like avatars, but the users might feel socially detached.
The scheme proposed in [9] tries to tackle this problem by
using a green screen to blend people into the VR environment
developed using A-Frame. They observed certain resolution
problems with the videos and background images. Also, the
browser runs at a frame rate of 50-60 frames per second (fps)
which is less than they anticipated nevertheless, it is difficult
to say if the frame rate was supposed to be more than that
unless they had mentioned the specifications (primarily the
screen refresh rate) of the laptops used.

Most standard laptops have a 60Hz refresh rate and a frame
rate above the laptop’s refresh rate can create screen tears and
visual lag unless vertical sync (Vsync) [10] is enabled. Some
gaming laptops provide up-to 165Hz refresh rate even though
only a few of those are fully capable of supporting VR because
of differences in the GPU. Less than 1% of sold computers
and 6.8% of sold smartphones are VR ready, representing only
13 million computers and just under 200 million smartphones
[11], [12]. The number was estimated to reach 100 million
by 2020 which is still a small number as from 2015 to
2019, roughly 1.5 billion PCs were in use worldwide [13].
Regarding VR support on multiple devices, [14] also talks
about problems with VR performance on mobile devices in
multi-user distributed VR spaces. This paper proposes a novel
adaptive resolution scheme within a multi-user VR application
that aims at providing the best possible frame rate against
different number of users, which if integrated with the WebXR
API in future could help support VR for low-end devices.

III. APPLICATION DESIGN AND IMPLEMENTATION

The 360-degree scene in the application was principally
designed using the A-Frame framework. It primarily uses
HTML and has several Javascript libraries supporting it to take
care of the 3D boilerplate and bi-directional communication
between the clients and the application server. These libraries

TABLE I
JAVASCRIPT LIBRARIES EMPLOYED

Library Version
A-Frame 1.0.4
three.js [16] r119
WebGL [17] 2.0
WebVR PolyFill [18] 0.10.4
Networked A-Frame [19] 0.7.1
socket.io [20] 2.2.0
node.js [21] 12.18.3
npmyjs [22] 6.14.7

and their respective versions used have been listed in Table
I. Some of the minified versions of the Javascript files were
imported with their respective content delivery network (CDN)
links.

The application allows users to watch a film in a synchro-
nized manner, in a virtual cinema room, as seen in Fig. 1. The
film used for the tests is the Big Buck Bunny animation [15].

As network security is a crucial factor in multi-user VR
systems [1], [6], [9], the application keeping in mind security
over the public internet uses a reverse proxy service called
ngrok to expose the local application server to a firewall on
the public internet using secure tunnels [23]. Therefore, users
that are not on the same network as the server can access
the application by querying the link to the secure tunnel. The
reason this tunnel is called secure is because it uses Transport
Layer Security (TLS version 1.2 - RFC 5246) to send the
application data.

A. Client-Server Architecture

Two laptops were used as the application server and the
client with their respective specifications shown in Tables II
and III.

Additionally, a smartphone was used to simulate a client
from a different network than the server. The configuration
is given in Table IV. Fig. 2 demonstrates the architecture or
the testbed containing the application server and the clients.
The external clients access the application server through the
secure tunnel as shown in the figure.

B. Client-Server Operation

Before the users can join the VR scene, the server is started
by using the NPM JavaScript package manager so that it can
pre-load all the dependencies inside a JavaScript Object Nota-
tion (JSON) file for Networked A-Frame. Networked A-Frame
is another library that is built on top of A-Frame and helps with
the creation of templates for the position synchronization of
the avatars and video playback. Once the server starts listening
on port 8080, the client can create a ngrok tunnel instance to
open the application server port to receive public requests.
Ngrok allows the use of mobile networks for the testing of
the application, and a 4G connection was used.

Once the user opens a browser window, the request is sent to
the server based on the source. If the request is made locally, a
direct connection with the server is initiated, but if the request
is made via a public network, it is re-directed through the

TABLE II
LAPTOP 1 - SPECIFICATIONS

Parameter Value
Model Dell Inspiron 3551 15
Processor Intel Pentium Quad Core N3540
Memory (RAM) 4GB
GPU Intel Integrated HD Graphics
Screen Refresh Rate 60Hz
Screen Resolution 1366x768
Aspect Ratio 16:9
Operating System Windows 10

TABLE III

LAPTOP 2 - SPECIFICATIONS

Parameter Value
Model Dell Inspiron 13-5378
Processor Intel Core i7-7500U
Memory (RAM) 16GB
GPU Intel HD Graphics 620
Screen Refresh Rate 60Hz
Screen Resolution 1280x720
Aspect Ratio 16:9
Operating System Windows 10

TABLE IV

SMARTPHONE - SPECIFICATIONS

Parameter Value

Model Motorola One Power
Processor Qualcomm Snapdragon 636
Memory (RAM) 4GB

GPU Qualcomm Adreno 509
Screen Refresh Rate 60Hz

Screen Resolution 360x749

Aspect Ratio 19:9

Operating System Android 10

tunnel to the server. Once a connection is established, the
server starts sending application data to the client and Adaptive
Resolution Scheme for VR (ARS-VR) starts. The ARS-VR
algorithm is deployed via JavaScript functions and it adjusts
the resolution of the application within the browser window
by looking at the frame rate (see Algorithm 1). The aim is
to adapt the resolution of the rendered content in order to
increase the amount of frames rendered per second, which is
an important metric in 3D and VR applications. The higher
the frame rate, the higher the user perceived quality, in relation
to the fluidity of the graphics.

Before the algorithm can start adjusting the resolution,
all textures in the scene, images, video elements need to
be resized to the power of 2 in case they are not. This is
done by the WebGLRenderer instance of three.js. In order to
maintain compatibility with multiple devices, inconsistencies
are handled by the PolyFill instance so that the content works
on multiple platforms regardless of the WebVR support. Once
the dependencies load and the scene starts to render, the
client is added to the room and a corresponding avatar is
spawned based on the avatar template. As long as the current
client browser window remains open, the frame rate data is
continuously fetched from a JavaScript function.

—
Motorola One Power Dell Inspiron 3551
l— External client browser External client browser
1 = =
- I b J
] il

all 7

-
1]
e NGROK Firewall

is‘ecure Tunnel

Dell Inspiron WQ

Apphcan/on Server
N @

S 5

Local client browser Local client browser

Fig. 2. Application client-server architecture

At this point, two variables are initialized with the product
between the device pixel ratio and the screen width and
height respectively. Another function calculates the greatest
common divisor between the two newly initialized variables.
The variables are now divided by the divisor to get the aspect
ratio. The numerator and denominator of the aspect ratio are
multiplied with the frame rate to provide a dynamic resolution.
This algorithm was found to be suitable for laptop 2 with a
widescreen aspect ratio. In the case of smartphones, the screen
height is usually more than the width therefore, the algorithm
first takes a ratio of the width to the height and if it is less
than 1, it adjusts the resolution using the screen height and
width of the smartphone. The resolution, in this case, is not
dependent on the frame rate.

In both cases, the user sees a drop in the resolution but in
a multi-user environment, it intends to keep a stable average
frame rate between 40-60fps. The reason why the resolution
is dropped for smartphones is that by default, the application
is rendered at a resolution of 1920x1920px [24], which is way
more than the physical resolution of mid-range smartphones.
One might argue that because of high number of pixels per
inch (ppi) animations will be sharper and crisp on a small size
display, but unless the device has a high-end processing unit
to support it, it will only make the application lag and cause
motion sickness if the user is wearing a VR headset.

C. User Mobility and Audio-Video

Playback Simulated users can move around in the scene
using the standard movement keys "w", "a", "s" and "d".
Apart from the libraries mentioned in Table I, two more open
source projects were used for allowing users to exchange voice
messages and control playback of the video inside the scene
[25], [26]. The WebRTC adapter enables microphone access
in the browser for voice chat. The other project is a Javascript
file based on top of the Networked-A-Frame library which
defines a custom A-Frame component for broadcasting the

video playback events to all the clients on the same network.

Algorithm 1: Adaptive Resolution Scheme for VR

while browser_window==open do
Input: framerate; screen_width;
device_pixel_ratio; window_height
Output: maxCanvasSize
Function greatest_common_divisor (w,
h):
var w = screen_width*device_pixel_ratio
var h = window_height*device_pixel_ratio
var ratio = screen_width/screen_height
var gcd = greatest_common_divisor(w, h)
var num = w/gcd
var den = h/gcd
return num, den, ratio, w, h
Function Main:
ii" ratio <I then
‘ maxCanvasSize = {height: h/2, width: w/2}
else
maxCanvasSize ={height: framerate*den,

width: framerate*num}

return maxCanvasSize
end

end

It roughly synchronizes the time each client is into the video
since they entered the scene so that everyone is on the same
point in the video once they join the room. The networked
A-Frame library also uses the Open-EasyRTC server API for
video synchronization [27]. Another custom component was
added to the HTML front-end to allow users to broadcast play-
pause events in the video.

IV. PERFORMANCE ANALYSIS

The testbed was set up as illustrated in Fig. 2 and analysis
was performed after measuring QoS parameters for multiple
users served by the same application server. Although A-
Frame supports most browsers such as Chrome, Firefox, and
Internet Explorer, Chrome was used as the client browser
for all the experiments to keep the results consistent as all
browsers have different rendering capabilities.

A. Frame Rate and Resolution Analysis

The application server was started and multiple browser
windows were opened once a client avatar appeared for each
window. The application was allowed to run at its default
resolution for approximately 120 seconds with the algorithm
code commented out and the video inside the scene playing.
The frame rate data was sent to the console output every
second.

The browser windows were closed and console data was
collected. The application window was opened once again.
However, this time, the JavaScript code for the algorithm was
allowed to run. Fig. 3 shows the average frame rate for 4

Framerate (fps)

60
50
40
30 !

] 20 40 60 a0 100 120 140
Time (s)

= Application runs with algorithm Application runs without algorithm

Fig. 3. Variation of frame rate for 4 users

et

0 20 40 60 80 100 120 140
Time (s)

moo@
S o o

Framerate (fps)
[
(=] (=] [=]

[=}

= Application runs with algorithm Application runs without algorithm

Fig. 4. Variation of frame rate for 6 users

] Tt

i} 20 40 60 20 100 120 140
Time (s)

Framerate (fps)
= L] w E=) w o -~
(=] (=] (=] [=] (=] (=] [=]

=]

— Application runs with algorithm Application runs without algorithm

Fig. 5. Variation of frame rate for 8 users

simulated users with and without the algorithm running behind
the scenes. The graphs indicate that the frame rate in the
former case started well nevertheless, it dropped a few times
and could peak up-to 50fps. In the latter case, the frame rate
starts great and remains steady between up to 60fps for the
whole duration. The same experiment for the same duration
was repeated for 6 and 8 users. Figs. 4 and 5 show the variation
of the frame rate against time in each case, respectively.

The downward spikes in Fig. 5 just after 40s is due to the
frame rate getting dropped every time a new client was added.
More downward spikes correspond to more users being added.
The other downward spike just before 100s is because of the
navigation between browser windows. The average frame rate
in default resolution and adjusted resolution for each case is
shown in Table V.

These results indicate that if the ideal frame rate for the
60Hz client monitor is considered to be 60fps, the algo-

TABLE V
AVERAGE FRAMERATE (HIGHER IS BETTER)

No. users Avg. fps Avg. fps-ARS Avg. resolution FPS loss reduction

4 36.65 50.94 806x453 23%

6 29.69 47.33 801x450 30%

8 27.94 45.23 667x375 28%
TABLE VI

STANDARD DEVIATION

No. of users STDEV STDEV-ARS

4 8.7078 8.7078
6 7.6326 8.7078
8 8.7078 8.7078

rithm reduces the fps loss in the scenarios with 4, 6, and
8 simultaneous users by 23%, 30%, and 28%, respectively.
Beyond 8 users, the CPU of the used computer reaches its
full functioning capacity and after a point, the system starts to
lag and either crashes or stops responding. In spite of having
a reasonable GPU, the client system is bound by its CPU.

In order to verify that the values of the frame rate were not
too spread out from the mean value, the standard deviation for
frame rate of all scenarios was calculated, as seen on Table
VI

The impact of the algorithm on resolution over the 120-
second tests is shown in Figs. 6, 7 and 8, in the scenarios with
4, 6 and 8 users, respectively. The resolution variation has a
transitory initial period (visible in all graphs), followed by a
relatively stable period, once the framerate is also adjusted.
Without ARS-VR, the default resolution of 1920x1920px
is rendered by A-Frame, with the FPS being affected by
performance issues. With ARS-VR, the resolution is adjusted
so the FPS is improved. As seen in Table V, the resolutions,
are on average 806x453px, 801x450px and 667x375px for the
scenarios with 4, 6 and 8 users, respectively.

B. Frame Latency Analysis

For the analysis of frame latency, a WebVR API method
[28] was used to provide a Document Object Model (DOM)
timestamp. This method calls another method [29] to tell the
browser that animation will be performed. The first method is
then called once again to calculate the timestamp difference
between the two values (once before the animation and once
after) which gives the requested animation frame latency
(RAF) also updated in real-time in the application window.
This value is printed to the console output against a generated
frame serial number starting from 1 for every user.

The same procedure for server and tunnel initiation was
repeated and browser windows were opened on the client
laptop. The console output was averaged with the number of
users or windows and resulting values were plotted against the
frame number. The results are shown in Figs. 9, 10 and 11.

The plots indicate that the frame latency peaks up-to 800
and 700 milliseconds respectively in the case of 4 and 6 users.
The average frame latency when the application runs without

1200x675

1000x562

800x450

600x337

Resolution

400x225

200x112

0 20 40 60 80 100 120

Time (s)

Fig. 6. Resolution Variation for 4 users

1200x675

1000x562
800x450

600x337

Resolution

400x225

200x112

0 20 40 60 80 100 120

Time (s)
Fig. 7. Resolution Variation for 6 users
1200x675
1000x562
800x450

600x337

Resolution

400x225

200x112

60 80 100 120

Time (s)

Fig. 8. Resolution Variation for 8 users

the algorithm was observed to be between 90-100 milliseconds
whereas when it runs with the algorithm, it was observed to
be between 70-80 milliseconds. However, when the users were
increased to 8, there is another peak of the latency reaching as
high as 1500 milliseconds which is due to the larger processing
power needed at this point.

Thus, by performing these experiments, it was possible
to analyze the performance of the application under various
scenarios by observing the variation of frame rate and frame
latency on a laptop and a smartphone having a wide screen
and a short width aspect ratio respectively. ARS-VR shows
good improvement in the frame latency on both the devices.
On the smartphone, the frame rate peaks up-to 60fps, a good
improvement given the graphics configuration of the device.

700

Frame latency (ms)
A
(=1
o

] 100 200 300 400 500 600 700 800 900 100t

Frame number

— With algorithm ———Without algorithm

Fig. 9. Variation of frame latency for 4 users

Frame latency {ms)

0 200 400 600 800 1000

Frame Number

—— With algorithm ———Without algorithm

Fig. 10. Variation of frame latency for 6 users
1600

=R e
o N OB
Q Q 9
(=2 = =]

Frame latency (ms)
N o 0
o Q9 Q9 Q
o o o o QO

0 200 400 600 800 1000

Frame number

With algorithm ———Without algorithm

Fig. 11. Variation of frame latency for 8 users

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This work presented an A-Frame browser-based multi-
user VR application rendered on remote devices with limited
processing and display features. The ARS-VR algorithm was
also introduced, aimed at improving VR performance in terms
of frame rate and frame latency on such devices, with the
dynamic adaptation of the visuals resolution. ARS-VR signif-
icantly reduces the fps loss in the scenarios of 4, 6, and 8
simultaneous users by 23%, 30%, and 28%, respectively.

Future work will improve the algorithm to support devices
with different screen height and width ratios. Other user
applications, such as video conferencing in A-Frame and other
device types will also be studied.

ACKNOWLEDGEMENTS

This work was supported by the European Union’s Hori-
zon 2020 Research and Innovation programme under Grant
Agreement no. 870610 for the TRACTION project. The

support of the Science Foundation Ireland (SFI) Research
Centres Programme via grants SFI/12/RC/2289_P2 (Insight)
and SFI/16/SP/3804 (ENABLE), co-funded by the European
Regional Development Fund, is also gratefully acknowledged.

REFERENCES

[1] V. Parthasarathy, A. A. Simiscuka, N. O’Connor, and G.-M. Muntean,
“Performance Evaluation of a Multi-User Virtual Reality Platform,”
in International Wireless Communications and Mobile Computing
(IWCMC), 2020, pp. 934-939.

[2] S. G. Santos and J. C. Cardoso, “Web-based virtual reality with A-
frame,” in Iberian Conference on Information Systems and Technologies,
CISTI, 2019.

[3] “A-frame.” [Online]. Available: http://www.aframe.io/

[4] R. Marx, S. Vanhove, W. Vanmontfort, P. Quax, and W. Lamotte,
“DOM2AFRAME: Putting the web back in WebVR,” in International
Conference on 3D Immersion (IC3D), 2017, pp. 1-8.

[5] M. Letié¢, K. Nenadi¢, and L. Nikoli¢, “Real-time map projection in
virtual reality using webvr,” in 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO), 2018, pp. 1439-1443.

[6] S. Abbas, A. A. Simiscuka, and G. M. Muntean, “A Platform Agnostic
Solution for Inter-Communication between Virtual Reality Devices,” in
IEEE 5th World Forum on Internet of Things, WF-IoT 2019 - Conference
Proceedings. 1EEE, 2019, pp. 189-194.

[71 A. A. Simiscuka and G. M. Muntean, “Synchronisation between Real
and Virtual-World Devices in a VR-IoT Environment,” in /IEEE Interna-
tional Symposium on Broadband Multimedia Systems and Broadcasting,
BMSB, 2018.

[8] A. A. Simiscuka and G.-M. Muntean, “REMOS-IoT-A Relay and
Mobility Scheme for Improved IoT Communication Performance,” IEEE
Access, vol. 9, pp. 73000-73 011, 2021.

[9]1 S. Gunkel, M. Prins, H. Stokking, and O. Niamut, “WebVR meets

WebRTC: Towards 360-degree social VR experiences,” Proceedings -

IEEE Virtual Reality, pp. 457-458, 2017.

T. Lacoma, “What Is VSync, and When

Use It?” Digital Trends, Aug 2020. [Online].

https://www.digitaltrends.com/computing/what-is-vsync/

“Less than 1% of pcs can run virtual reality, bbc news,” vol. 04-Jan-2016.

[Online]. Available: https://www.bbc.com/news/technology-35220974

J. B. E. 19th April 2017, “6.8% of smartphones are ready for vr.”

[Online]. Available: https://www.gamesindustry.biz/articles/2017-04-19-

6-8-percent-of-smartphones-are-ready-for-vr

“Pcs installed base worldwide 2013-2019.” [Online]. Avail-

able: https://www.statista.com/statistics/610271/worldwide-personal-

computers-installed-base

B. Maclntyre and T. F. Smith, “Thoughts on the Future of WebXR and

the Immersive Web,” in IEEE International Symposium on Mixed and

Augmented Reality, ISMAR 2018, 2018, pp. 338-342.

Should You
Available:

[10]

(11]

[12]

[13]

[14]

[15] “Blender Cloud - Big Buck Bunny.” [Online]. Available:
https://cloud.blender.org/films/big-buck-bunny

[16] “Three.js.” [Online]. Available: https://threejs.org

[17] “Webgl.” [Online]. Available: https://www.khronos.org/webgl/wiki

[18] Immersive-Web, “immersive-web/webvr-polyfill,” GitHub. [Online].
Available: https://github.com/immersive-web/webvr-polyfill

[19] H. L. Networked-Aframe, ‘“networked-aframe/networked-aframe.”
[Online]. Available: https://github.com/networked-aframe/networked-
aframe

[20] Socket.IO, Aug 2020. [Online]. Available: https://socket.io/

[21] Node.js. [Online]. Available: https://nodejs.org/en/

[22] [Online]. Available: https://www.npmjs.com/

[23] “What is ngrok?” [Online]. Available: https://ngrok.com/product

[24] Aframevr, “Ability to cap the canvas size by benjaminleonard,
Pull Request 3641, aframevr/aframe.” [Online]. Available:
https://github.com/aframevr/aframe/pull/3641/files

[25] machenmusik. [Online]. Available: https://glitch.com/edit/!/networked-
aframe-synced-video-example?path=public/video-transport.js:5:28

[26] [Online]. Available: https://webrtc.org/

[27] Open-Easyrtc, ‘“open-easyrtc/open-easyrtc.” [Online]. Available:
https://github.com/open-easyrtc/open-easyrtc

[28] “performance.now().” [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

[29] “Window.requestanimationframe().” [On-

line]. Available: https://developer.mozilla.org/en-
US/docs/Web/APl/window/requestAnimationFrame

