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Abstract 24 

Automatic liver and tumour segmentation in CT images are crucial in numerous clinical 25 

applications, such as postoperative assessment, surgical planning, and pathological diagnosis of 26 

hepatic diseases. However, there are still a considerable number of difficulties to overcome due to 27 

the fuzzy boundary, irregular shapes, and complex tissues of the liver. In this paper, for liver and 28 

tumor segmentation and to overcome the mentioned challenges a simple but powerful strategy is 29 

presented based on a cascade convolutional neural network. At the first, the input image is 30 

normalized using the Z-Score algorithm. This normalized image provides more information about 31 

the boundary of tumor and liver. Also, the Local Direction of Gradient (LDOG) which is a novel 32 

encoding algorithm is proposed to demonstrate some key features inside the image.  The proposed 33 

encoding image is highly effective in recognizing the border of liver, even in the regions close to 34 

the touching organs. Then, a cascade CNN structure for extracting both local and semi-global 35 

features is used which utilized the original image and two other obtained images as the input data. 36 

Rather than using a complex deep CNN model with a lot of hyperparameters, we employ a simple 37 

but effective model to decrease the train and testing time. Our technique outperforms the state-of-38 

the-art works in terms of segmentation accuracy and efficiency. 39 

 40 
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 43 

1. Introduction 44 

The liver is a meaty and large organ that plays a significant role in our digestive system and 45 

located on the right side of the belly. Cancerous growths in the liver (hepatic tumours) can pose 46 

significant risks to human life and almost always occurs after cirrhosis is present. The increasing 47 

occurrence of liver cancer draws attention to the treatment efficacy which relies mainly on its 48 

primary diagnosis. The liver is surely the primary probable candidate amongst possible cancers for 49 

metastases including bronchus, mouth, brain, bladder, lips, lymphoma, lung, prostate, stomach, 50 

cavernous nasal sinus, and appendix. (Yang et al. 2008; Ker et al. 2011). An increasing number of 51 

cancer-related deaths (13% of total deaths overall worldwide) are caused by hepatic tumours 52 

(Sethi, Saini & Singh 2016). Providing the prompt and precise recognition of cancer cells and the 53 



proper localization of the tumours, are the core building block and play a vital role in the planning 54 

process for effective patient treatment and survival (Yang et al. 2008; Yamashita & Wang 2013; 55 

Frid-Adar et al. 2018). 56 

If the cancer cells are successfully detected in the early phases of tumour growth, they can 57 

often be effectively treated by employing medical procedures or surgical resection chiefly of non-58 

cancerous (benign) cells. If the size of the tumor is small and occupies a restricted section of the 59 

liver, this part of the organ can be removed by a surgeon only to stop the cancer growing and 60 

spreading (Ranjbarzadeh & Baseri Saadi 2020).  61 

Computed tomography (CT) that is broadly utilized in hospitals can accurately 62 

perform early screening for cancer cells to recognize hepatic tumours precisely in the presence of 63 

some other organs, such as the heart and the stomach. However, due to intensity similarity in CT 64 

images, the precise distinction of the affected organic tissue (tumour) is certainly an arduous and 65 

difficult task, even for experienced doctors to make correct diagnosis. Also, as a detailed rule, the 66 

visual analysis of CT outputs is insufficient for accurate image interpretation (Wu et al. 2015; Xi 67 

et al. 2020). In recent years, many computer-aided diagnostic systems are employing that are 68 

mainly based on computer vision and artificial intelligence techniques to properly identify the 69 

border differences or even subtle shape between two objects. These procedures are highly 70 

reproducible and can enhance diagnostic accuracy by helping radiologists to be more accurate 71 

using a combination of various classification models with reasonable running time. Due to CT 72 

superior characteristics and capability of discrimination of soft tissues, this kind of imaging has 73 

found the highest diversity of applications such as image labeling or image segmentation 74 

(Ranjbarzadeh & Saadi 2020; Xi et al. 2020). 75 

Finding and labeling objects inside the image is a quite important stage in numerous medical 76 

image analysis and is considered as image segmentation. This processing step can principally be 77 

employed either as a first or final processing stage. In the field of image processing, segmentation 78 

refers to the process of partitioning image into multiple segments or grouping together pixels based 79 

on similar attributes in neighbouring proximity. For instance, pixels in a particular part of the 80 

image can be considered as an analogous region based on various region criteria such as 81 

size, shape, density, colour, and texture characteristics (smooth or rough) (Chen & Pan 2018; 82 

Huang et al. 2018; LI, TSO & HE 2020).  83 

In recent years, to overcome the segmentation difficulty of tumor and liver due to low 84 



contrast, irregular shape and the fuzzy boundary between liver tissue and touching organs from 85 

CT images many highly sophisticated methods have been developed. These sophisticated 86 

frameworks can be classified into one of the three main categories on the basis of 87 

their characteristics, including semi-automatic strategies (Yang et al. 2014; Bakas et al. 2017; 88 

Kavur et al. 2020), interactive approaches (Baâzaoui et al. 2017; Chartrand et al. 2017; Zhou et al. 89 

2018), and automatic frameworks (Li et al. 2013; Ranjbarzadeh & Baseri Saadi 2020). The 90 

problems of the over-segmentation and leakage were overcomed using a semi-automatic approach 91 

consisting of three steps in (Xu et al. 2020). Firstly, the binary images were obtained by a series 92 

of techniques from the input image. Next, some random seed points are selected on the binary 93 

image to obtain the primary shape of the liver tissue. Finally, a novel level set active contour 94 

method is used to refine the primary liver border. The semi-automatic and interactive models 95 

normally are used by various user directions or human-machine interaction (HMI), leading to 96 

increased radiologist’s mistake in hospitals and contributing to rising healthcare costs. To address 97 

this, recently, fully automatic systems have been used in various applications to develop accuracy 98 

and steadily reduce the costs and time of diagnosis. 99 

In the field of the tumour and liver analysis, current algorithms mainly can be split into two 100 

broad groups, including anti-learning and learning methods (Lu et al. 2017). The anti-learning 101 

methods regularly include (Luo, Li & Li 2014) the active contour (Guo, Schwartz & Zhao 2019; 102 

Xu et al. 2020), clustering (Cai 2019; Ranjbarzadeh & Baseri Saadi 2020), region growing (Lu et 103 

al. 2014; Zhou et al. 2018; Zeng et al. 2018; Liu et al. 2019), graph cut (Liao et al. 2016; Huang et 104 

al. 2018; Liu et al. 2019), and level set (Hoogi et al. 2017; Li et al. 2020) algorithms. Region 105 

growing approach selects the touching pixels with a high degree of similarity in intensity or 106 

variance value as the same object or area. The efficiency of this technique highly depends on the 107 

choice of the seed points. Graph cut is a powerful energy optimization (minimization) technique 108 

that characterizes the image to an undirected weighted graph. In this approach, prior knowledge or 109 

learning is unrequired and each pixel p ∈ I in the digital image is displayed as a node inside the 110 

graph (p implies pixels and I indicates the image). Also, every edge connects two adjacent nodes 111 

(pixels), so that the weight of the edge specifies the criteria of the similarities between each pair 112 

(Luo, Li & Li 2014; Lu et al. 2017).  113 

Cai (Cai 2019) for segmentation of the liver in a non-uniform background proposed a kernel 114 

space fuzzy clustering method. Firstly, a high-dimensional feature space (high-dimensional Hilbert 115 



kernel space) has been gained using a mapping algorithm in the Euclidean space by using a kernel 116 

function. Euclidean distance between the clustering center 𝑐𝑗 and the mean value of the sample 𝑥𝑖̅ 117 

is demonstrated using a fuzzy index 𝑚. Also the influence of pixel information in the neighboring 118 

region on the current pixel clustering is described by parameter ∝, which is an important factor to 119 

define the fuzzy index 𝑚. Next, by combining the current pixel and all pixels around it and 120 

considering space information in the CT image, the linear weighted filtering image has been 121 

achieved. Finally, by using the Lagrange multiplier technique in kernel space of the fast fuzzy 122 

clustering, the two-dimensional histogram between the segmented pixel and its vicinity mean was 123 

implemented. Wang et al. (Wang et al. 2017) employed an approach based on a statistical shape 124 

model for solving the problem of similarity matching of image blocks. Their structure used the 125 

sparse coefficients and dictionary together to develop the segmentation efficiency of the a priori 126 

technique and the difficulty of the initialization of the deformation model. In the first step, to 127 

normalize the a priori shape models a generalized Procrustes analysis (GPA) is utilized. In the 128 

second step, all mark points are chosen from the corresponding vertexes. Next, using the a priori 129 

shape models and their corresponding marks the inquiry dictionary is created.  In the fourth step, 130 

the sparse codes are calculated using the dictionary for mark points. In the next step, the sparse 131 

statistical shape model is created using the sparse codes. Finally, the boundary energy, sparse 132 

matching constraints, and intensity energy are employed to deform the statistical shape model.  In 133 

(Ranjbarzadeh & Saadi 2020) a novel approach for removing the unwanted border of the liver was 134 

presented that is able to increase segmentation accuracy using a combination of the convex and 135 

concave points. The eight direction filter masks (Kirsch filter) were employed to increase the 136 

accuracy of the edge detection. They also applied a mean-shift clustering strategy to improve the 137 

local contrast. Moreover, by using these concave and concave points the problem of segmenting 138 

touching organs is successfully solved. Finally, by using the fuzzy c-means (FCM) clustering 139 

method the promising results were obtained.  140 

A combination of the globally optimized surface evolution strategy and a 3D CNN is applied 141 

in (Hu et al. 2016) for segmenting the liver tissue in a CT slice automatically. In the first step, by 142 

learning the method of the initial surface, the probability map of the liver tissue was recognized. 143 

To increase the accuracy, all global and local information of the shape of the liver tissue was 144 

incorporated into a segmentation model by employing prior partitioning. As their network utilized 145 

both global and local features, the model can have recognized blurred boundaries effectively. 146 



Although promising performance has been reported, their model is not well-designed and requires 147 

optimization of several auxiliary side networks. Due to the fact that the weighting of some 148 

networks for the overall loss function in the fuzzy borders cannot be an easy task, their model is 149 

not able to define the border between two touching organs effectively. A deep belief network 150 

(DBN) employed by (Ahmad et al. 2019) based on an automatic feature learning method for 151 

segmenting the liver. In their strategy a DBN for supervised fine tuning and unsupervised pre-152 

training was trained. Although due to accurate feature learning their network is able to recognize 153 

the tumor area within the liver superbly, but it is not enough sensitive to the tumor on the boundary 154 

of a liver. The drawback of their structure is due to the low contrast, fuzzy boundaries, weak edges, 155 

and overlapping areas of touching organs at liver boundaries that caused misclassification. In 156 

(Budak et al. 2020) two deep encoder-decoder CNN (EDCNN) were implemented for segmenting 157 

of both the liver and tumors. The first EDCNN is responsible for detecting the border of the liver 158 

and the second EDCNN can detect the tumor area. Their model reaches acceptable results in terms 159 

of all evaluation metrics even at the presence of the fuzzy borders. The main drawbacks of their 160 

model are the inappropriate performance of the EDCNN on a quantity-limited dataset and the slow 161 

training speed which lead its applications encountered a lot of restrictions. Also, their proposed 162 

method was unable to obtain the acceptable performance against hepatic tumors. 163 

In this study, a new pipeline to distinguish the exact border of the liver and tumors from 164 

medical CT images is introduced.  It is generally considered to be challenging to extract the borders 165 

of the liver and lesions meticulously due to sharing similar intensity values across the liver. We 166 

first propose a new encoding method to increase the malleability of border detection with shape 167 

variation and extract the key local shape details more faithfully, particularly when a few samples 168 

of training images are available. Then another encoding algorithm (Z-Score normalization) is 169 

employed that improves the distinction capability of touching organs. Finally, a segmentation 170 

approach based on a two-path CNN structure is suggested which uses both local and semi-global 171 

features to accurate segmentation. 172 

2. Material and Methods 173 

This study structured as follows. In part 2.1, the Z-Score normalization strategy is explained. 174 

In part 2.2, a new encoding method (LDOG) is proposed. In part 2.3, the architecture of the 175 

convolutional neural network (CNN) is described. In part 2.4, we demonstrate our CNN model. 176 

The experiment and concluding remarks are explained in section 3. The workflow of our technique 177 



is depicted in Fig. 1. As is illustrated in Fig. 1, our approach comprises of three steps; 1) 178 

Normalizing the original image to highlight key information, 2) Representing the original image 179 

in different form (encoding image) to emphasize of some key structures of the image, 3) Applying 180 

three different images to a two-path Convolutional Neural Network. 181 

 182 

Fig. 1. Schematic of our framework for extracting the borders of the liver and lesion (tumor). 183 

 184 

2.1 Z-Score normalization 185 

As mentioned in (Willner et al. 2015; Bae, Lee & Hong 2020) when we are dealing with a 186 

CT image of a liver, due to the presence of the noise, there is a deviation in the Hounsfield units 187 

about a mean that leads to high variance in intensity in each image (Hounsfield units is a 188 

quantitative scale for describing radio density). These important noises in CT images can be 189 

categorized into three sources: 1) electronic noise. 2) noise of the reconstruction process. 3) 190 

stochastic noise. 191 

The main source of the noise in these images is stochastic noise that can be reduced in the 192 

imaging process by increases the number of photons. However, in received images from any clinic 193 



or hospital, still there is a significant amount of noise which has to be diminished before the 194 

segmentation step. So, to overcome this issue, a normalization approach is vital to be applied so 195 

that all the non-zero pixels inside the image have zero mean and unit variance (Jain, Shukla & 196 

Wadhvani 2018; Ranjbarzadeh et al. 2021). Equation. 1 demonstrates how to accomplish the Z-197 

Score normalization (Robitaille et al. 2012). 198 

𝑍 = (𝑥 − 𝜇) 𝜎⁄                     (1) 199 

where 𝜎 and 𝜇 represent the standard deviation and the mean of the intensity of non-zero 200 

pixels, respectively. Also, 𝑥 depicts the current pixel intensity. 201 

 202 

 203 

Fig. 2. An illustration of applying Z-Score normalization. There are four images from our dataset 204 

which indicate the difficulty of recognizing the liver border in the touching organs areas. a) 205 

Original images. b) Z-Score normalization by using non-zero pixels. c) Z-Score normalization by 206 

using all pixels. 207 

 208 

By doing this method along with other following approaches, we are trying to obtain more 209 

accuracy of the final tumor and liver segmentation. The result of normalization is shown in Fig. 2. 210 



In Fig. 2, the first row indicates the original CT images, the second and third rows are demonstrated 211 

the Z-Score output by using only non-zero pixels and all pixels, respectively. In each column, the 212 

original image and the results of normalization of that image using different initialization are 213 

shown. Initialization means which kind of pixels inside the image should participate in the 214 

normalization procedure. When we are using all pixels inside the image, the output image is much 215 

smoother than another method, but also finding the border of touching organs is much difficult 216 

(most of the time, it is impossible.). Using only the non-zero pixels lead to obtaining a gap between 217 

organs, so that border recognition can be easier. We indicate the key regions using the red windows 218 

(Fig. 2) that clarify the difference between the two methods visually. As is clearly shown in Fig. 219 

2(b), in contrast to Fig. 2(c), the white elliptical objects (masses arising in the ribs) can be easily 220 

detected and many complicated borders are easily recognized. 221 

2.2 LDOG algorithm 222 

Texture analysis endeavors to explore the characterization of a surface such as colors, 223 

contrast, and shapes. In the encoding procedure of texture, the local descriptors are employed to 224 

convert the image into a new representation based on a pre-defined coding algorithm or code-book 225 

of visual patterns. As discussed in (Di Cataldo & Ficarra 2017; Song et al. 2018; Pourasad, 226 

Ranjbarzadeh & Mardani 2021), numerous types of descriptors can be applied to denote biological 227 

textures. Local Binary Pattern (LBP) and local ternary patterns (LTP) operators are the simple and 228 

efficient texture analyzer approaches that depend on the change of the intensity of surrounding 229 

neighbor pixels in clockwise or counter-clockwise to encode the low-level information of the 230 

curve, line, spot, edges and other local features in the image and consider the result as a binary 231 

number (Liu et al. 2016; Di Cataldo & Ficarra 2017; Karimi, Ranjbarzadeh Kondrood & Alizadeh 232 

2017; Rakshit, Nath & Kisku 2018; Sotoodeh, Moosavi & Boostani 2019; Ghazouani & Barhoumi 233 

2020). Due to the more stability of the gradient rather than gray­level intensity, in recent studies, 234 

pixel’s gradient magnitude-based approaches such as local directional number patterns (LDN) and 235 

local directional patterns (LDP) have been gained much attention. 236 



 237 

Fig. 3. Kirsch non-linear edge detector masks in eight directions (Ranjbarzadeh & Saadi 2020). 238 

The red color is used to emphasize the direction of the filter. 239 

 240 

In this study, we represent a new encoding technique based on both gradient magnitude and 241 

gray­level intensity to create the illumination-invariant representations that are much useful for 242 

textural analysis. The first step for encoding the image in our study is obtaining all significant 243 

edges. It is accomplished by using the compass Kirsch filter. These non-linear edge detector 244 

kernels detect the edges and the maximum value generated by one of the eight filters that are 245 

rotated by 45° in the eight directions (Fig. 3) characterizes the edge direction (Li, Sang & Gao 246 

2016; Luo et al. 2016; R. & Chandra 2016; Uddin et al. 2017; Punarselvam & Suresh 2019; 247 

Ranjbarzadeh, Saadi & Amirabadi 2020). An example of applying the non-linear edge detector to 248 

the CT images is illustrated in Fig. 4.  In Fig. 4, there are three images from our dataset which 249 

indicate the difficulty of recognizing the liver and tumor borders due to the irregular shapes and 250 

complex tissues. In each column, the original image and the results of the edge extracting and 251 

encoding image are shown. 252 

 253 

https://en.wikipedia.org/wiki/Nonlinearity
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Nonlinearity
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Nonlinearity
https://en.wikipedia.org/wiki/Edge_detection


 254 

Fig. 4. The result of encoding the images. The first row indicates the original images. The second 255 

row depicts edge detection using the eight directional Kirsch filters. The third row illustrates the 256 

results of the LDOG method. By applying the LDOG encoding method more information about 257 

the structure of the image (textural information) can be extracted. 258 

 259 

The Local Direction of Gradient (LDOG) is represented to produce the illumination-invariant 260 

representation of a CT image. This strategy computes a local demonstration of texture and is based 261 

on the selection of two vicinity group surrounding each pixel. For a better understanding of the 262 

algorithm, we clarify it visually with different possible colors in Fig. 5. Also, Fig. 6 demonstrates 263 

a simplified representation of the pseudo-code of the LDOG algorithm. This part causes a 264 

significant increase in exact segmentation, especially in tumor borders. Due to its discriminative 265 

capability and insensitivity to noise, the LDOG encoding texture can be utilized in numerous 266 



applications in the computer vision field.  267 

 268 

 269 

Fig. 5.  The procedure of encoding an image using LDOG approach. 270 

 271 

For encoding image based on the LDOG algorithm, firstly, we need to select a 5 × 5 window 272 

from the original image, which the location of the center of the window demonstrates the location 273 

of the calculated value inside the encoded image. In the second step, as depicted in Fig. 5, all 25 274 

pixels inside the window are divided to four 2 × 2 and four 1 × 2 distinct patches. Then, all values 275 

inside each patch are sorted in descent order. In the next step, every sorted value subtracted from 276 

adjacent smaller value to compute the gradient value between them. These gradient value are 277 

replaced with smaller value, but maximum value inside of the patch still remains intact. In the next 278 

step, mean values of all eight patches are computed and are sorted in ascending order. Next, all 279 

eight sorted mean values are located in a 3 × 3 template patch based on their original location 280 

inside the 5 × 5 window. Each value inside the in the 3 × 3 is labeled and replaced with the sorted 281 

number. Then, the plus sign is applied to N, S, W, and E directions and others receive the minus 282 

sign. Finally, all mean values with their own sign are added together and the final value is 283 

generated. This final value represents the encoded value in the same location of the original image. 284 



 285 

 286 

Fig. 6. Pseudo code of Local Direction of Gradient strategy. 287 

 288 

2.3 Convolutional Neural Network Design 289 

Pattern recognition is the science of distinguishing patterns by computers and is closely 290 

related to machine learning and artificial intelligence for countless applications like biomedical 291 

and biological imaging. In today’s pattern recognition applications and methods, the convolutional 292 

neural network (CNN) structures represent a huge breakthrough in image analyzing. The CNN 293 

structures largely exploit the texture content and can be found at the core of everything from remote 294 

sensing to automated tumor segmentation (Mahmood et al. 2017; Ullah et al. 2018; de Assis Neto 295 

et al. 2020; Cecotti et al. 2020). 296 

 This neuron-based network, that has a grid-like topology (1D grid for time series data and 297 

2D or 3D grid for image data) enables us to extract characteristics efficiently from the image 298 



content by passing through a series of convolution layers (Affonso et al. 2017; Golrizkhatami & 299 

Acan 2018; Dang et al. 2019). This grid-like structure comprises some trainable weights and biases 300 

and is utilized for feature extraction, prediction, and classification. These trainable weights can be 301 

defined randomly at the beginning. The core building block or main part of any convolutional 302 

neural network is described as the convolutional layer that calculates the dot product between a set 303 

of learnable filters (two-dimensional arrays) and input data (image) (Chen et al. 2018; Özyurt et 304 

al. 2019). Routinely, the first convolution layers are located at the beginning of the CNN 305 

architecture and play a key role as the prior layer for extracting features from an input image 306 

(Bengio 2012; Mahmood et al. 2017). To control the size of the feature maps, pad the input matrix 307 

with zeros (zero paddings) in the convolving process that can be chosen. 308 

Basically, the Spatial and Temporal dependencies are able to successfully capture by the 309 

convolutional layers (Petersen, Rodrigues & Pereira 2019). The multiplying operation that 310 

performs a dot product (algebraic operation) the values of the kernel with any receptive field and 311 

related pixels on the depth of the input can be considered as the convolutional operation (Dolz, 312 

Desrosiers & Ben Ayed 2018). The kernel with the arbitrary size of the receptive field is a matrix 313 

of numbers that requires to have as depth as the input image. For instance, the input image and 314 

filter are dimensions of 150 × 150 × 3 and ~ × ~ × 3, respectively. Where ~ is an odd number. In 315 

contrast to the non-convolutional neural network, in the convolutional layers (include stacks of  316 

2D or 3D filters), every component of the kernel array is convolved with the input 2D or 3D data 317 

(gray-scale or color image) more than once which takes up 80% to 90% of the execution time 318 

(Mahmood et al. 2017). 319 

Note that the final output image is much smaller than the size of the input image. The 320 

reduction in the dimension of the image depends on the kernel (filter) size applied for the 321 

convolution process and also the dimension and shape of the strides. In the procedure of 322 

convolving a filter, the stride represents the number of pixels that a center of the kernel is dislocated 323 

while iterating through the input image (Torres et al. 2018). 324 

The output of the convolution layer defines as the input for an activation layer (Ting, Tan & 325 

Sim 2019). To diminish the effect of the vanishing gradient difficulty, an activation function is 326 

employed for each feature map which leads to improving computational effectiveness by 327 

inducing sparsity (Morabito et al. 2018). Moreover, by applying the smaller size of the kernels 328 

comparison to the input image, the number of connections between the output and the input layer 329 

https://www.sciencedirect.com/topics/engineering/activation-function
https://www.sciencedirect.com/topics/engineering/sparsity


is diminished and sparse connectivity can be achieved (Mahmood et al. 2017).  330 

As in object recognition, there are no matters what the size or location of the object is, only the 331 

spatial variance need to be extracted. To accomplish this, a downsampling layer (subsampling 332 

layer) is used. By reducing the size of each activation map (feature map), the efficiency of feature 333 

extraction is increased. Also, since the number of pixels in each feature map generated in the 334 

previous layer (in both column and row) is decreased, it leads to a decrease in model computing 335 

time and control overfitting (Zhong et al. 2019; Ranjbarzadeh et al. 2021).  336 

An appropriate strategy for dimensionality reduction of feature maps needs to be robust to 337 

alter the high-frequency information (vital information) and preserves significant features (Bengio 338 

2012). This reduction happens by using a filter with a predefined size that moves across the 339 

extracted feature map taking the average or the maximum of the adjacent values selected by the 340 

filter that called average pooling and max pooling, respectively. In this paper, the max-pooling 341 

layer is utilized that partitions the feature map into a set of areas that don’t overlap and then selects 342 

the maximum illumination value inside each region. The max pooling technique also exerts as a 343 

noise suppression approach (Yin et al. 2016; Doğantekin et al. 2019). 344 

Moreover, a Fully-Connected layer (FC) can be applied for gaining more high-level features 345 

in an input image. Each node inside the FC layer with its learnable corresponding weight multiplies 346 

each input vector and outputs the sum of the nodes are totalized to a learnable bias before 347 

performing an activation function operation (Shen et al. 2019; Singh et al. 2020). 348 

Training a CNN needs learning weights and biases for each layer so that a cost function is 349 

minimized. The minimization of a cost function is accomplished iteratively using a gradient 350 

descent strategy which involves the calculation of fractional derivatives of the cost function. 351 

Moreover, computing of this cost function is accomplished by the backpropagation algorithm 352 

(Husain, Dellen & Torras 2017).  353 

For the training step, while a CNN structure is used, it is essential to have a relatively big 354 

dataset. When we are working with a small dataset, it is extremely straightforward and easy for 355 

the model to be specialized according to its application area and based on a few sets of rules (to be 356 

less intelligent). So there are two main approaches to overcome this issue. Firstly, a transform 357 

learning method can be used to bring some trained weights and biases into our algorithm rather 358 

than randomly chosen them at the first (He et al. 2016; Khatami et al. 2018; Salaken et al. 2019; 359 

Efimova, Shalamov & Filchenkov 2020). Secondly, the diversification and number of training 360 

https://www.sciencedirect.com/topics/engineering/gradient-descent
https://www.sciencedirect.com/topics/engineering/gradient-descent
https://www.sciencedirect.com/topics/engineering/backpropagation-algorithm


examples are artificially boosted (Dvornik, Mairal & Schmid 2019). We utilized the affine 361 

transformations, blurring, contrast changes, hue/saturation changes, and random intensity variation 362 

approaches of data augmentation in this paper.  363 

2.4 Proposed Convolutional Neural Network model 364 

As mentioned in the previous section, CNNs are more capable to extract significant 365 

information from an input image. So, in this work, we designed a novel pipeline based on the 366 

combination of local and global features to classify each pixel inside the image into three classes; 367 

tumor border, liver border, or other tissues. Also, to improve the segmentation accuracy, the three 368 

input images including original image, Z-Score generated image, and LDOG generated image 369 

were used. Using these extra two images as the input of the network cause the network can be 370 

learned faster with a high degree of the accuracy. The flowchart of this complex strategy is shown 371 

in Fig. 7. 372 

When we are dealing with the CNN models which are having millions of parameters, the best-373 

suited feature maps are produced based on the best possible probability to calculate 374 

class probability. Although many CNN architectures have been proposed for liver and lesion 375 

(tumor) segmentation in prior studies, none of them has focused on combining and integrating the 376 

textural encoding approach and CNN. Our strategy comprises of multiple input feature maps 377 

corresponding to a different image and related textural features (extracted by LDOG).  It means 378 

the pixels inside each patch of three images (3D patches) are applied together into the network. 379 

Since diverse images or textural features definitely comprise complementary and detailed 380 

information, our experimental results indicate that this complex multi-input technique is effective 381 

in enhancing the value of the evaluation indexes.  382 

 383 



 384 

Fig. 7. Our implemented two-path way CNN pipeline. 385 

 386 

As is clearly demonstrated in Fig. 7, our CNN architecture is based on a two-path feature 387 

extraction approach (Cascading). In some complex textural images such as CT images, there are 388 

some borders of touching objects (organs) that cannot be segmented properly without the 389 

knowledge of neighbor features in a little further of the pixel location. So, in this study, we are 390 

considering both local and semi-global features (information) around each target pixel to 391 

categorize the target pixel. This means that we select a 21×21×3 patch with the central location 392 

of the current pixel as a local window and also a 64×64×3  patch with the central location of the 393 

current pixel as a semi-global window. Where the number of three represents the three different 394 

input images. The function of the first convolutional layers is detecting the low-level features such 395 

as curves points, and edges. Moreover, the higher-level features such as ears, legs, and face are 396 

identified in the deeper layer of the model (Zhong et al. 2019; Zhang, Wu & Li 2020; Ranjbarzadeh 397 

et al. 2021).  398 

The semi-global patches give us more information about the similar touching tissues to draw 399 

a segmentation line between them which leads to increasing the dice score significantly. Moreover, 400 

the result of the algorithm for tumor segmentation highly depends on information extracted from 401 

the semi-global windows. In Table 1, we demonstrate the effect of applying both local and semi-402 

global windows in the final result of the method. The best accuracy related to the best size of the 403 

patches is illustrated in bold. 404 

 405 



Table 1. Evaluating the accuracy of the proposed liver and tumor segmentation approach by 406 

applying different dimension of the patches to the final result of the method. The best outcomes 407 

are shown in the bold form. 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

Size of the 

local patch 

Size of the 

semi-global 

patch  

Liver 

segmentation 

(DICE %) 

Tumor 

segmentation 

(DICE %) 

11×11× 3 30×30× 3 40 % 63 % 

11×11× 3 40×40× 3 45 % 66 % 

11×11× 3 50×50× 3 37 % 70 % 

11×11× 3 60×60× 3 42 % 60 % 

11×11× 3 64×64× 3 41 % 60 % 

11×11× 3 70×70× 3 44 % 55 % 

11×11× 3 80×80× 3 38 % 53 % 

15×15× 3 30×30× 3 76 % 71 % 

15×15× 3 40×40× 3 78 % 75 % 

15×15× 3 50×50× 3 80 % 76 % 

15×15× 3 60×60× 3 82 % 76 % 

15×15× 3 64×64× 3 81 % 74 % 

15×15× 3 70×70× 3 77 % 70 % 

15×15× 3 80×80× 3 77 % 69 % 

21×21× 3 30×30× 3 85 % 87 % 

21×21× 3 40×40× 3 87 % 87 % 

21×21× 3 50×50× 3 88 % 90 % 

21×21× 3 60×60× 3 89 % 92 % 

21×21× 𝟑 64×64× 𝟑 92 % 95 % 

21×21× 3 70×70× 3 90 % 93 % 

21×21× 3 80×80× 3 88 % 90 % 

25×25× 3 30×30× 3 90 % 94 % 

25×25× 3 40×40× 3 86 % 90 % 

25×25× 3 50×50× 3 85 % 85 % 

25×25× 3 60×60× 3 85 % 84 % 

25×25× 3 64×64× 3 84 % 82 % 

25×25× 3 70×70× 3 82 % 80 % 

25×25× 3 80×80× 3 83 % 81 % 



The local extracted patch has a dimension of 21×21×3, which 3 indicates the number of the 429 

input images. Then these 3D patches are convolved to the 64 kernels with the receptive field of  430 

3×3×3 in order to produce the 64 feature maps with 2D dimensions. In the next step, the number 431 

and size of filters are changed to 128 and 7×7, respectively.  432 

Unlike the path related to the local features, in the feature extraction procedure of the semi-433 

global patch, there are four convolutional layers with increasing the number of the kernels. After 434 

extracting both semi-global and local features in two distinct paths, all features need to be 435 

concatenated. In this step, there are 384 feature maps with a size of 9×9 which are fed to the next 436 

convolutional layer. Next, all generated 2D feature maps (128 feature maps) are transformed into 437 

a 1D feature vector with a size of 2048×1 features. Finally, using a Softmax layer all features all 438 

labeled to one of three possible classes (1 represents the liver border, 2 indicates the tumor border, 439 

and 3 shows a non-important pixel). 440 

Our network was learned through stochastic gradient descent (Wahab, Khan & Lee 2017) for 441 

minimizing the  value of this cross-entropy loss (cost function) in Eq. (3), that maximize the final 442 

accuracy using calculating the amount of discrepancy between actual (ground-truth labeled 443 

images) and predicted (estimated) output for liver and tumour segmentation. The output layer 444 

three logistic units were employed in the output layer, to generate the probabilities of the given 445 

sample pattern relating to either of the three predefined outputs. The backpropagation method with 446 

respect to the design parameters was utilized to calculate the derivative of the objective function. 447 

𝑙𝑜𝑠𝑠𝑖 = −𝑙𝑜𝑔 (
𝑒𝑈𝐾

∑ 𝑒𝑈𝑑𝑂
𝑑=1

)                              (3) 448 

where 𝑙𝑜𝑠𝑠𝑖 indicates the loss for training sample i, 𝑈𝐾 shows the un-normalized production 449 

value for the ground-truth of the predefined class K and can be attained by multiplying the outputs 450 

from the former FC neurons with the parameters of the corresponding logistic unit. To obtain a 451 

normalized value (score) for each class between 0 and 2, the denominator aggregates the scores 452 

for all the logistic units O. As in this study there are only three final neurons at the end of the 453 

model, in the above equation O is equal to three, which normalizes the output score and is 454 

considered as a probability score. It means each pixel is categorized into one of three classes. Also, 455 

to reduce the overfitting effect by controlling the fitting process, a dropout layer (Srivastava et al. 456 

2014) (before the FC layer) with a 35% dropout probability, was incorporated into the proposed 457 

CNN model. 458 



3. Experiments 459 

3.1 Datasets and Evaluation metrics 460 

Our novel TPCNN model and seven techniques (Concave and Convex Points (CCP) 461 

(Ranjbarzadeh & Saadi 2020), Cascaded deep convolutional encoder-decoder neural networks 462 

(EDCNN) (Budak et al. 2020), Laplacian Mesh Optimization (LMO) (Chartrand et al. 2017), 463 

Graph Cuts (GC) (Liao et al. 2017), Deep Belief Network (DBN-DNN) (Ahmad et al. 2019), 464 

Adaptive Scale-Kernel Fuzzy Clustering Model (FCM) (Cai 2019), and multiphase contrast-465 

enhanced FCN (MC-FCN) (Sun et al. 2017)) were evaluated in different scenarios on non-public 466 

CT data sets to evaluate the validity,  reliability, and efficiency of experiments.  467 

In this study, we used the dataset in (Ranjbarzadeh & Saadi 2020), but the whole samples 468 

have been increased to 1000 patient cases (most of them include slices with a vague border and 469 

touching organs border.), who underwent CAD screening at some hospitals in Iran. This dataset 470 

contains over 20,000 scan slices from around 1000 patients each having a resolution of 512×512 471 

pixels. The dataset is divided into 10000 benign and 10000 malignant samples. To detect the border 472 

of the liver and lesion tissues accurately, two experienced specialists manually segmented the 473 

borders in all slices in a slice-by-slice manner. It should be mentioned that, by using a data 474 

augmentation approach, all samples have been increased up to 100,000 scan slices which 70 475 

percent for training, 20 percent for the test, and the rest are used for the validation process. 476 

To prove the efficiency and robustness of the proposed technique in terms of different six 477 

performance measures, the result of our method and all baseline models were investigated by 478 

comparing the result of each them with its corresponding reference image (ground-truth). The 479 

significant accuracy/reliability  of our structure was evaluated using the relative volume difference 480 

(RVD), root mean square symmetric surface distance (RMS SSD), volume overlap error (VOE), 481 

average surface distance (ASD), maximum surface distance (MSD), and dice similarity (DICE) 482 

(Heimann et al. 2009; Vinícius dos Santos Ferreira et al. 2018; Ranjbarzadeh & Saadi 2020). For 483 

RVD, ASD, RMS SSD, and VOE, a zero value represents a complete match with the reference 484 

image (ground-truth). The DICE, RVD, ASD, RMS SSD, MSD, and VOE measures can be 485 

formulized as follows (Ranjbarzadeh & Saadi 2020; Tang et al. 2020): 486 

 487 



{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝐷𝐼𝐶𝐸(𝑀𝑠𝑒𝑔 , 𝑀𝑔𝑛𝑑) = (2 ×

𝑀𝑠𝑒𝑔 ∩ 𝑀𝑔𝑛𝑑

𝑀𝑠𝑒𝑔 +𝑀𝑔𝑛𝑑
) × 100%  𝑜𝑟  (2 ×

𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
) × 100%                          

𝑉𝑂𝐸(𝑀𝑠𝑒𝑔 , 𝑀𝑔𝑛𝑑) = (1 −
𝑀𝑠𝑒𝑔 ∩ 𝑀𝑔𝑛𝑑

𝑀𝑠𝑒𝑔 ∪ 𝑀𝑔𝑛𝑑
) × 100%                                                                                                

𝑅𝑉𝐷(𝑀𝑠𝑒𝑔 , 𝑀𝑔𝑛𝑑) =  (
𝑀𝑠𝑒𝑔 −𝑀𝑔𝑛𝑑

𝑀𝑔𝑛𝑑
) × 100%                                                                                                (4) 

𝐴𝑆𝐷 =   
1

|𝐵𝑀𝑠𝑒𝑔| + |𝐵𝑀𝑔𝑛𝑑|
× ( ∑ 𝑑 (𝑥, 𝐵𝑀𝑔𝑛𝑑)

𝑥𝜖𝐵𝑀𝑠𝑒𝑔

+ ∑ 𝑑 (𝑦, 𝐵𝑀𝑠𝑒𝑔)

𝑦𝜖𝐵𝑀𝑔𝑛𝑑

)                                                   

𝑅𝑀𝑆 𝑆𝑆𝐷 (𝑀𝑠𝑒𝑔, 𝑀𝑔𝑛𝑑) =  (√
1

|𝐵𝑀𝑠𝑒𝑔| + |𝐵𝑀𝑔𝑛𝑑|
 ×
√

∑ 𝑑2 (𝑥, 𝐵𝑀𝑔𝑛𝑑)

𝑥𝜖𝐵𝑀𝑠𝑒𝑔

+ ∑ 𝑑2 (𝑦, 𝐵𝑀𝑠𝑒𝑔)

𝑦𝜖𝐵𝑀𝑔𝑛𝑑

)     

𝑀𝑆𝐷 (𝑀𝑠𝑒𝑔 , 𝑀𝑔𝑛𝑑) = max {𝑚𝑎𝑥 (𝑑 (𝑥, 𝐵𝑀𝑔𝑛𝑑)) ,𝑚𝑎𝑥 (𝑑 (𝑦, 𝐵𝑀𝑠𝑒𝑔))}                                                              

  488 

where 𝑴𝒔𝒆𝒈 and 𝑴𝒈𝒏𝒅 denote the proposed method segmentation result and reference labeled 489 

image, respectively, and 𝑩𝑴𝒔𝒆𝒈
 and 𝑩𝑴𝒈𝒏𝒅

  illustrate the borders of the proposed method 490 

segmented result and ground-truth image, respectively. When we apply Boolean data, the TP, FP, 491 

and FN represent true positive, false positive, and false negative, respectively. The dice similarity 492 

coefficient (DSC) equals one for a perfect segmentation. MSD can measure the distance between 493 

each segmentation pixel from its corresponding pixel in the ground-truth border. RVD is a 494 

statistical approach applied to measure the different sizes between segmented results and ground 495 

truth images. The observed positive value shows over-segmentation and a negative value of RVD 496 

indicates under-segmentation. So, the best-observed value is a zero value which represents the 497 

segmented volume is equal to the reference labeled image. 498 

3.2 Experimental Results and Discussions 499 

Our algorithm was implemented in Matlab 2019b, and the experiments were run on Intel I7-500 

7600@3.4 GHz. Also, the computer equipped with a GEFORCE GTX1070 Ti GPU, windows 10 501 

operating system and 16 Gigabytes of RAM. The outcomes of our segmentation model from the 502 

CT images are evaluated according to the ground truths and described in Tables 2 and 3. Slices 503 

with an uneven density, irregular texture, large liver region, not well-defined border (blurred 504 

or unclear margin), and at least one attached component have the most part of the train and test 505 

sample in the dataset to learn and evaluate the proposed architecture.  506 

To exemplify the importance of using the combination of the Z-Score, LDOG, and CNN 507 

algorithms, Figs. 8 and 9 show the results of the proposed technique (denoted by solid colour line) 508 



on a few slices exhibiting ambiguous boundaries, liver, irregular texture, heterogeneous 509 

appearances, intensity inhomogeneity, and various livers and tumour shape. It can clearly be seen 510 

that due to intensity inhomogeneity in the input image, the lesion and liver areas were not suitably 511 

identified when the EDCNN (Budak et al. 2020) and DBN-DNN (Ahmad et al. 2019) strategies 512 

were utilized.  513 

As demonstrated in Fig. 8, segmentation by applying the DBN-DNN (Ahmad et al. 2019) 514 

technique indicates the least match with the reference labeled image when similar intensity values 515 

are present close to the margins of other body parts. The outline of the final liver segmented volume 516 

acquired using our structure is similar to the corresponding reference labeled image (ground-truth 517 

image). As it is clearly demonstrated the CCP (Ranjbarzadeh & Saadi 2020) seems to perform 518 

better than the DBN-DNN (Ahmad et al. 2019) and EDCNN (Budak et al. 2020) in segmenting 519 

liver border between two touching organs, whereas our method is much better not only in detecting 520 

such borders but also it can recognize objects with irregular shapes and complex tissues more 521 

accurately. Also, the DBN-DNN (Ahmad et al. 2019) and EDCNN (Budak et al. 2020) techniques 522 

under-segment the long and thin areas and over-segment similar objects with equivalent 523 

illumination especially the touching organs. Moreover, such algorithms are prone to boundary 524 

leakage, especially on the blurred liver and tumour boundaries. The proposed segmentation 525 

algorithm also has higher accuracy and has not significant boundary leakage, under-526 

segmentation, or over-segmentation, predominantly in specific regions with touching objects 527 

(organs). As is shown, the use of the Z-Score algorithm in our algorithm leads to contrast 528 

enhancement of the liver border to obtain better performance in both liver and tumour 529 

segmentation.  530 

 531 



 532 

Fig. 8. Comparisons between four different algorithms for liver segmentation. (a) Input CT 533 

images. Segmentation based on the (b) Deep Belief Network (DBN-DNN) (Ahmad et al. 2019) 534 

(c) EDCNN (Budak et al. 2020), (d) Concave and Convex Points (CCP) (Ranjbarzadeh & Saadi 535 

2020), and (e) Ours methods. The red contours illustrate the ground-truth border. 536 

 537 



 538 

Fig. 9. Comparisons between four different algorithms for tumour segmentation. (a) Input CT 539 

images. Segmentation based on the (b) Deep Belief Network (DBN-DNN) (Ahmad et al. 2019) 540 

(c) EDCNN (Budak et al. 2020), (d) Concave and Convex Points (CCP) (Ranjbarzadeh & Saadi 541 

2020), and (e) Ours methods. The red contours illustrate the ground-truth border. 542 

 543 

Fig. 9 indicates the lesion boundary that was detected using the proposed pipeline and the 544 

DBN-DNN and EDCNN techniques. Considering the heterogeneous textures, blur boundary, and 545 

different sizes of the tumour, it is more evident that the proposed structure suitably finds the tumour 546 

border, which displays its robust performance on countless lesion outlines. 547 



The implemented model illustrates that a higher segmentation robustness can be gained when 548 

other encodings of the input image are provided (representation of information inside the image in 549 

another way), meaning more key features are available to the distinction between classes. Due to 550 

the combination of the Z-Score and LDOG encoding algorithms, the proposed pipeline reaches an 551 

acceptable result with respect to all the assessment indexes. The segmentation accuracy and 552 

performance of the proposed model was assessed based on the dice metric, as demonstrated in 553 

Figs. 10 and 11 for detecting the border of liver and tumour, respectively. It is worth to mention 554 

that the obtained averages of the dice score for the segmented region of the tumour and liver altered 555 

from 90% to 95% and 85% to 92% respectively. This illustrates that the intensity values, texture, 556 

and shape of the target organs can define the segmentation accuracy of the tumour and liver.  557 

Considering the Dice value from the above results and the Figs. 10 and 11, we conclude that 558 

for liver and tumour segmentation at the presence of similar intensity values across the liver, the 559 

use of the proposed algorithm shows more promising results over the others. 560 

 561 

 562 

Fig. 10. The result of the algorithm performance evaluation in term of the dice scores for eight 563 

techniques applied for automated liver segmentation. 564 

 565 



 566 

Fig. 11. The result of the algorithm performance evaluation in term of the dice scores for eight 567 

techniques applied for automated tumor segmentation. 568 

 569 

Tables 2 and 3 appraise our automated segmentation model with the outcomes from seven 570 

recently published techniques in the field of tumor and liver segmentation. 571 

For each index in Tables 2 and 3, for a quantitative comparison the highest ASD, VOE, RVD, 572 

MSD, and RMS values are highlighted in bold. The results of every five measurements are 573 

represented by standard deviation and mean of our dataset. Our automated detection algorithm for 574 

recognizing the border of the liver reaches a smaller mean in all five indexes. The mean VOE is 575 

meaningfully altered between all investigated techniques, while the RMS displays the lowest 576 

variance. There is a minimum difference between obtained RVD values using the LMO and GC 577 

algorithm for liver segmentation, whilst this is valid for the GC and MC-FCN techniques in tumor 578 

segmentation. The mean ASD of the CCP structure is partly similar to the proposed algorithm; 579 

however, this approach has a significantly different RVD. The highest VOE, MSD, and ASD for 580 

liver and tumor segmentation were obtained using DBN-DNN method. Also, this model gets the 581 

highest under-segment result among all evaluated algorithms. Both the LMO and DBN-DNN 582 

techniques indicate a large standard deviation in the RVD; however, a significant standard 583 

deviation in MSD value is observed in FCM and DBN-DNN methods. A lower standard deviation 584 

for a quantitative comparison can be realized in the MSD and RVD values when using the CCP, 585 

EDCNN and MC-FCN techniques, respectively. The RVD metric for LMO, FCM, DBN-DNN, 586 



and CCP approaches are less than zero. In addition, the mean VOE and MSD of the technique 587 

utilized by DBN-DNN and GC for liver segmentation were noticeably higher as compared to our 588 

outcomes. 589 

The segmentation accuracy is significantly higher for our approach and CCP compared with 590 

DBN-DNN and FCM, for abnormal shapes. There is no meaningful difference in dissimilar 591 

intensity. This indicates that using two more encoding images along with the original image is 592 

adversely effecting boundary detection in the regions with massive and similar densities. This 593 

could perhaps be due to representing key features in the densest areas; however, further work 594 

would be required to investigate this in more detail. Based on the information given above, the 595 

DBN-DNN method demonstrated the poorest performance among all the eight methods. Tables 2 596 

and 3 exhibit the superiority of our model in terms of all five measures. 597 

 598 

Table 2. Quantitative comparison of liver segmentation results using the proposed strategy and 599 

seven recently published techniques. The obtained values are based on relative volume difference 600 

(RVD), root mean square symmetric (RMS) surface distance, Volume overlap error (VOE), 601 

maximum surface distance (MSD), average surface distance (ASD). 602 

 603 

 604 

 605 

  606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

Technique 
RMS (mm) VOE (%) ASD (mm) RVD (%) MSD (mm) 

LMO 

(Chartrand et al. 2017) 
3.8±0.7 12±6.1 3.7±0.6 -8.5±7.3 14.7±3.5 

GC 

(Liao et al. 2017) 
4.2±0.5 16.4±6.3 5.8±0.4 8.8±6.2 20.6±4.1 

MC-FCN 

(Sun et al. 2017) 
3.8±0.6 11.9±5.2 3.7±0.4 4.7±5.3 14.9±3.2 

DBN-DNN 

(Ahmad et al. 2019) 
4.4±0.1 19.5±7.5 6.5±0.1 -12.3±7.7 22.1±5.3 

FCM 

(Cai 2019) 
4.2±0.2 13.3±7.2 4.4±0.3 -10.5±4.8 19.8±6.7 

EDCNN 

(Budak et al. 2020) 

3.2±0.4 10.5±4.4 2.4±0.2 

 

7.3±5.7 13.4±3.5 

CCP 

(Ranjbarzadeh & Saadi 

2020) 

2.6±0.1 3.8±2.7 1.6±0.4 

 

 

-2.1±3.5 8.7±4.1 

Proposed 2.3±𝟎. 𝟏 2.2±𝟎. 𝟏 1.3±𝟎. 𝟔 1.9±𝟑. 𝟑 6.3±𝟓. 𝟏 



Table 3. Quantitative comparison of tumor segmentation results using the proposed strategy and 616 

seven recently published techniques. The obtained values are based on relative volume difference 617 

(RVD), root mean square symmetric (RMS) surface distance, Volume overlap error (VOE), 618 

maximum surface distance (MSD), average surface distance (ASD).  619 

 620 

 621 

 622 

 623 

 624 

. 625 

 626 

 627 

 628 

 629 

The results of the liver and tumour segmentation in this study in terms of the VOE, RMS, 630 

MSD, RVD, and ASD metrics, as a quantitative comparison between our approach and seven 631 

recently published techniques, demonstrated in Tables 2 and 3. 632 

It was found that recognition of the liver border was not significantly different between MC-633 

FCN and LMO methods; however, while there are not touching organs the detection of these 634 

borders was significantly better with MC-FCN compared with LMO method. Also, the MC-FCN 635 

method relies on the premise that objects (tumors or liver) have distinguished borders, which is 636 

often not the case, leading to unacceptable boundary leakage. 637 

Table 3 displays the results of tumour boundary recognition in terms of the RMS, VOE, RVD, 638 

ASD, and MSD measures. The RVD metric for DBN-DNN, GC, EDCNN, and MC-FCN methods 639 

is less than zero. Besides that, the DBN-DNN method obtains the highest mean score of RMS. The 640 

RMS values show that the CCP and our approaches produced the best outcomes among the eight 641 

models. Our structure and DBN-DNN approach have significantly different MSDs (Lu et al. 2014). 642 

In contrast, the mean value achieved utilizing the three different input image proposed pipeline is 643 

Technique RMS (mm) VOE (%) ASD (mm) RVD (%) MSD (mm) 

LMO 

(Chartrand et al. 2017) 
5.1±0.1 18.4±4.9 5.9±0.2 7.3±6.7 16.2±4.8 

GC 

(Liao et al. 2017) 
4.3±0.5 14.2±4.7 3.9±0.3 -5.5±6.8 12.3±4.6 

MC-FCN 

(Sun et al. 2017) 
4.7±0.4 17.5±6.2 5.4±0.4 -5.9±7.3 17.6±5.4 

DBN-DNN 

(Ahmad et al. 2019) 
5.3±0.4 19.1±7.5 6.3±0.2 -7.1±8.7 19.5±6.2 

FCM 

(Cai 2019) 
4.5±0.3 15.1±3.8 4.7±0.5 6.5±3.8 14.7±5.1 

EDCNN 

(Budak et al. 2020) 

4.2±0.3 12.6±4.7 3.1±0.1 

 

 

-5.1±6.7 11.1±5.8 

CCP 

(Ranjbarzadeh & Saadi 

2020) 

3.9±0.2 11.2±3.7 2.2±0.3 

 

 

4.2±3.2 9.4±4.1 

Proposed 3.7±𝟎. 𝟒 9.5±𝟎. 𝟗 1.8±𝟎. 𝟓 3.4±𝟒. 𝟏 7.2±𝟒. 𝟒 



considered similar to that of the CCP approach. Considering the ASD, the lowest and highest mean 644 

values belong to our strategy and the DBN-DNN model, respectively.  645 

Tables 2 and 3 illustrate that the proposed algorithm segments wide and erratic tumours 646 

(ranging from a few millimeters wide to several centimeters), asymmetrical tumour and liver 647 

shapes, complex tissues, and various paradigms where the lesion is in the vicinity of tissues with 648 

analogous densities and global distribution inside the liver. In most of the segmentation models 649 

that merely rely on measuring the energy, shape, density, location, illumination, and entropy could 650 

fail when the tumours, liver, and other touching organs have a similar intensity and solidity. Under 651 

such circumstances, applying more distinguishable features from a different kind of images can 652 

improve the segmentation process and played a major role in recognizing different areas associated 653 

with the above-mentioned difficulties. The two-path convolutional neural network could 654 

potentially be more advantageous when analyzing dissimilar CT images with wide-ranging liver 655 

sizes and blurred tumour or liver boundaries. The procedure proposed herein provides an improved 656 

classification in terms of simplicity, time consumption, and segmentation accuracy as compared 657 

to previously proposed approaches. 658 

4. Conclusions 659 

In this paper, a novel and robust architecture was proposed that incorporates the three input 660 

images rather than one CT image, to automatically recognize the border of the liver and tumours 661 

in abdominal CT images. This approach first applied a normalization method (Z-Score) to obtain 662 

a more distinguishable liver border using the original image. Then, a new method (LDOG) was 663 

implemented for encoding images to extract a more significant image. Finally, using the original 664 

image and two other mentioned images, a new two-path CNN structure was trained. 665 

The suggested novel architecture for liver and tumor segmentation was appraised on a dataset 666 

containing 1000 patient cases which include over 20,000 scan slice. Our significant findings infer 667 

that the proposed complex pipeline gained the following: 1) indicated accurate segmentation result 668 

when the liver tissue consists of the sharing extended border with ambiguous touching organs, 2) 669 

was suitably robust as illustrated by the insignificant standard deviations for all investigation 670 

measures, and 3) accomplished well in intricate cases with several different types of the liver 671 

tumours, which had a shadow from fat or fibrous tissue, amoeboid shapes, an abnormally large 672 

amount of scar tissue, and similar densities as the surrounding tissues. 673 

Our structure addresses the problem of failing in recognition of a vague border with an aim 674 



to provide better results. Moreover, the suggested approach does not need any additional parameter 675 

to feed into the software apart from the input image to produce the segmented regions. Also, our 676 

finding represents that the border of tumours is always difficult to recognize on the east side of the 677 

liver, where there is a vague boundary due to the presence of the other similar intensity values 678 

organs. The proposed method illustrated that for obtaining a good segmentation result, it is 679 

essential to provide more representations of the image (using some encoding methods) before 680 

starting to extract key features from the image. 681 
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