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Gene silencing is a negative feedback mechanism that regulates gene expression to
define cell fate and also regulates metabolism and gene expression throughout the
life of an organism. In plants, gene silencing occurs via transcriptional gene silencing
(TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via
the methylation of 5′ untranslated region (5′UTR), whereas PTGS causes the methylation
of a coding region to result in transcript degradation. In this review, we summarized the
history and molecular mechanisms of gene silencing and underlined its specific role in
plant growth and crop production.

Keywords: transcriptional gene silencing, post-transcriptional gene silencing, genomics imprinting,
paramutation, RNAi, CRISPR/Cas9

INTRODUCTION

Gene silencing is a molecular mechanism that knocks down the gene expression in plants both
in nature and in response to external stimuli (Wassenegger, 2002). It plays a pivotal role in
plant defense mechanisms by detecting an aberrant RNA via nonsense-mediated messenger
RNA (mRNA) decay (NMD), which could be fatal in case of remains in the RNA pool of the
cell. Gene silencing mechanisms in plants are transcriptional gene silencing (TGS) and post-
transcriptional gene silencing (PTGS) (Kelly and Aramayo, 2007). TGS is a nuclear-localized
mechanism, which quenches transcription by blocking a promoter region for the binding of
transcriptional machinery (Vaucheret and Fagard, 2001). Different methods of TGS are RNA-
directed DNA methylation (RdDM), genomic imprinting, paramutation, transposon silencing,
transgene silencing, and position effect. Notably, TGS is predominantly responsible for transposon
and transgene silencing, but PTGS plays a limited role in this silencing (Wakimoto, 1998).

Post-transcriptional gene silencing is a cytoplasm-localized phenomenon to precisely target
and degrade mRNA transcripts of specific genes (Vaucheret et al., 2001). Different methods of
PTGS are RNA interference (RNAi), clustered regularly interspaced short palindromic repeats
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(CRISPR/Cas9), and NMD (Zebec et al., 2016). Recently,
several studies have been conducted on gene silencing by
deploying RNAi, the virus-induced gene silencing (VIGS),
and CRISPR/Cas9 to enhance the resistance of plants against
pathogens, drought tolerance, and lingo-cellulose pathway
engineering (Borrelli et al., 2018; Abbas et al., 2020). In plants,
small RNAs (sRNAs), such as microRNA (miRNA) and small-
interfering RNA (siRNA) play a key role in plant fight against
pathogens (Axtell, 2013). Gene silencing causes the periodic
knock down of gene expression at the mRNA or protein level.
Gene silencing spatiotemporally controls the regulation of gene
networks, which subsequently regulate developmental processes
in plant metabolism, such as genome stability, the detoxification
of plant waste, and allergens (Mirouze et al., 2009; Ito, 2013).

Position variegation or position effect is a kind of gene
silencing that was first discovered in Drosophila melanogaster by
Muller (1930), which opened up new avenues of studies, such
as genetics and functional genomics, and subsequently paved
the way for the exploration of other possible gene silencing
mechanisms in different organisms. After 1 year, a new type of
gene silencing phenomenon was discovered in petunia, namely
“co-suppression” (Napoli et al., 1990). VIGS was unexpectedly
discovered in a hit and trial experiment (Ruiz et al., 1998). An
mRNA sequence which encodes color pigments was artificially
designed and ligated in a vector of virus origin, which resulted
in the synthesis of double-stranded RNA (dsRNA) with its
complementary counterpart on introduction in to petunia plant,
dsRNA molecules subsequently triggered RNA induced gene
silencing complex (RISC) which cleaved all dsRNA molecules of
that specific gene and resulted in albino phenotype.

A remarkable breakthrough in gene silencing research was the
discovery of RNAi when Fire et al. (1998) introduced artificially
designed single- and double-stranded unc-22-nt RNA molecules
in Caenorhabditis elegans to observe phenotypic outcomes. As
a surprise, albino phenotype was observed because both sense
and antisense RNA strands were completely degraded (Fire et al.,
1998). CRISPR is a robust gene silencing mechanism discovered
in early 1993 by Francisco Mojica in prokaryotes (Nobel Prize)
(Mojica et al., 2005), which was employed first time by Zhang
et al. (2013) for genetic engineering in eukaryotes (Cong et al.,
2013). A pictorial representation of the history of all silencing
techniques has been illustrated in Figure 1. In this review, we
comprehensively underlined the mechanism of gene silencing,
molecular mechanisms behind gene silencing, and their pivotal
roles in plant growth and crop production.

TYPES OF GENE SILENCING

Transcriptional Gene Silencing
RNA-Directed DNA Methylation
RNA-directed DNA methylation is a fundamental epigenetic
gene silencing phenomenon almost found in all living organisms
(Wassenegger et al., 1994). In RdDM, siRNAs transactivate
the RISC of ∼21–24 nt, which regulates gene silencing
via homologous DNA methylation. RISC is comprised of
the following components: Argonaut (AGO) proteins, DNA

methyltransferase (DNMT), chromatin remodeling complexes,
and RNA polymerase IV-V (Mette et al., 2000; Sijen et al., 2001).
The RdDM pathway is induced by the generation of dsRNA
by transposable elements (TEs), transcribed inverted repeats
(IR), viral replication intermediates, and RNA-directed RNA
polymerase (RDR) (Mette et al., 2000; Sijen et al., 2001). DNA
methylation predominantly occurs at the following nucleotide
combinations of an RNA-DNA sequence homology: CG, CHG,
and CHH (H is; A, C, or T) (Pélissier and Wassenegger, 2000).
Both symmetric sequences, such as CG and CHG are methylated
by methyltransferase 1 (MET1) and chromomethylase 3 (CMT3),
whereas an asymmetric sequence of CHH is methylated by
DNMTs, chromomethylase 2 (CMT2), and domains rearranged
methyltransferase 2 (DRM2) (Huang and Zhu, 2014; Ito and
Kakutani, 2014).

The RdDM pathway was originally discovered in Arabidopsis
thaliana, which completes in two sequential steps: the biogenesis
of ∼23–24 nt siRNAs and subsequent de novo methylation
(Figure 2; Wierzbicki, 2012; Matzke et al., 2015). There are two
types of pathways for the biogenesis of siRNAs: canonical and
non-canonical, and the selection of either pathway is decided
by polymerase IV, RDR2, and Dicer homolog 3 (DCL3). The
initiation of the canonical pathway begins with the binding of
DNA transcription factor 1/Sawadee homeodomain homolog 1
(DTF1/SHH1) to lysine 4 (K4) of non-methylated histone 3
(H3) and eventually causes the methylation of lysine 9 (K9),
which stimulates the transcription of a specific DNA region due
to an interaction between polymerase IV and RDR2 with the
assistance of chromatin remodeling SNF2 domain-containing
protein Classy 1 (CLSY1), and finally, the biogenesis of dsRNA
is started (Enke et al., 2011; Haag et al., 2012; Du et al., 2014).
By using the endonuclease activity of endo-ribonuclease DCL3,
dsRNA molecules are cleaved to produce∼23–24 nt siRNAs (Wu
et al., 2012; Kanno et al., 2013). Approximately 23–24 nt mature
siRNAs intercalate with AGO4 or AGO6 to induce methylation
(Kanno et al., 2013).

In the non-canonical pathway, non-coding RNAs of the
telomere-associated satellite (TAS) gene are transcribed by
polymerase II, which subsequently bind with AGO1 or AGO7.
Some TAS transcripts are cleaved by miRNAs, and one cleaved
RNA is transformed into dsRNA by RNA-dependent RNA
polymerase 6 (RDR6), which acts as a substrate of Dicer-like
4 (DCL4) to finally produce ∼21–22 nt transacting siRNAs
(ta-siRNAs) (Kanno et al., 2013). Finally, if ta-siRNAs make
a complex with AGO4 or AGO6, then the TGS pathway is
activated, contrastingly, if ta-siRNAs make a complex with AGO1
or AGO7, then the PTGS pathway is activated (Pontier et al.,
2012; Marí-Ordóñez et al., 2013; Nuthikattu et al., 2013; Panda
and Slotkin, 2013).

DNA methyltransferase is responsible for the methylation of
DNA, which acts as a switch on/off of gene expression (Harris
et al., 2018), and depends upon polymerase V, AGO4 bound∼21–
24-nt RNA complex, DNMT, DRM2, SRA-domain-containing
proteins SUVH1, SUVH2, SU(VAR)3-9, and several other
proteins (Fischer et al., 2006). SUVH proteins are predominantly
responsible for the establishment of a heterochromatin chromatic
domain using H3K9me. Arabidopsis harbor 10 members of the
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FIGURE 1 | History of gene silencing.

SUVH gene family, of which SUVH1, SUVH2, and SUVH4
have non-unanimous effects on heterochromatic methylation.
SUV39H1 is involved in H3K9me of heterochromatin and along
with Sirtuin 1 (SIRT1) regulates facultative heterochromatin
(Vaquero et al., 2007). SUV39H1 binds with DNMTs 1 and 3a
with the help of its PHD-like and HP1beta motif to regulate both
global epigenetic modifications, such as DNA methylation and
histone methylation (François et al., 2003). SUVH1 and SUVH3
are involved in the methylation of euchromatin by binding
with DNAj1 and DNAj2, and act as transcriptional antisilencing
factors (Harris et al., 2018). SUVH2 plays a key role in gene
silencing in Arabidopsis by the heterochromatin formation, any
mutation in SUVH2 resulted in the hypomethylation of DNA
at chromocenter heterochromatin and its overexpression causes
ectopic heterochromatization, which also resulted in severe loss
in growth (Fischer et al., 2006).

The initiation of methylation starts with the initiation of
transcription of the target DNA locus with the binding of
polymerase V and methyl-DNA-binding proteins SUVH2/9,
where the role of SUVH2 is dominant over SUVH9 (Johnson
et al., 2014; Liu et al., 2014). SUVHs are comprised of a
DDR complex [defective in meristem silencing 3 (DMS3),
dopamine receptor D1 (DRD1), and DRM2], which mediates
polymerase V functionality, enhances DNA methylation, and
quenches the target gene expression (Law et al., 2011). Finally,
chromatin remodeling takes place by SUVH2/9, while in this
study, the role of SUVH9 is significant in the inhibition
of IDM1. SUVH9 also mediates with SWI/SNF-dependent
chromatin remodeling and development of a microconidia
MORC6 complex (Zhu et al., 2013). Thus, the silencing of a target

gene is accomplished with the end of chromatin remodeling
(Figure 2; Matzke and Mosher, 2014).

Genomic Imprinting
Genomic imprinting is an epigenetic phenomenon in which
alleles of the same gene express divergently depending upon
the parent of origin like in alternative splicing (Feng et al.,
2010). Genomic imprinting may affect the inactivation of entire
chromosomes, such as paternal X-chromosome in marsupials
(Cooper et al., 1971). Based on the dominance, imprinted
genes are of two types, such as maternally expressed imprinted
genes (MEGs) and paternally expressed imprinted genes (PEGs)
(Garnier et al., 2008; Köhler et al., 2012). In plants, all dominant
imprinted genes are expressed only in the endosperm of flowering
plants (García-Aguilar and Gillmor, 2015). During endosperm
development, multiple nuclear divisions are followed by the
formation of distinct mitotic domains, which determine the
peripheral endosperm (PEN), micropylar endosperm (MCE),
or chalazal endosperm (CZE) (Boisnard-Lorig et al., 2001;
Stangeland et al., 2003). Noticeably, the imprinted genes in plants
and animals are only 2% and predominantly express in the CZE
endosperm (Gehring, 2013). For example, paternally inherited
Pr1 reciprocal kernel-color allele of maize displayed colorless
or spotted kernels, whereas maternally inherited same allele
displayed colored kernels.

Chromatin modifications have serious implications over
the pattern of imprinted gene expression, such as methylated
paternal allele remains transcriptionally silent in case of the
demethylated maternal allele being transcriptionally active
(Gehring et al., 2009). Genomic imprinting in A. thaliana got
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FIGURE 2 | Arabidopsis models of RNA-directed DNA methylation (RdDM): double-stranded RNAs (dsRNAs) proceed into small-interfering RNAs (siRNAs) via
canonical and non-canonical pathways. Both pathways undergo two steps: (A) in the first step, siRNAs are produced, which subsequently bind with argonaut (AGO)
and (B) in the second step, DNA methylation leads to chromatin remodeling resulting in gene silencing via transcriptional gene silencing (TGS).

switched on due to a differential demethylation of DEMETER
(DME) gene by DNA glycosylase, which dominantly expresses in
female gametophyte (Choi et al., 2002; Schoft et al., 2011). The
demethylation of DNA sequence repeats and TEs predominantly
takes place by the removal of 5-methylcytosine. DMT is
predominantly responsible for parental DNA methylation, and
RdDM only occurs at MEG loci of parental allele (Figure 3;
Köhler et al., 2012; Gehring, 2013; Zhang et al., 2013). H3K27me3
causes the suppression of the hypomethylated DNA of the
maternal allele, but the polycomb repressive complex 2 (PRC2)
interferes with the hypermethylated DNA of the parental allele
at PGG to refrain it from the action of H3K27me3 resulted
in the activation of the maternal allele (Figure 3; Weinhofer
et al., 2010; Deleris et al., 2012; Makarevitch et al., 2013;
Jermann et al., 2014).

Paramutation
Paramutation is an epigenetic phenomenon in which heritable
changes in one allele are induced due to trans-interaction
between two alleles at the same locus or different locus, which
include DNA methylation and histone modifications (Chandler
and Stam, 2004). The term “paramutation” was first coined by
Alexander Brink to describe a puzzling phenomenon at the r1
locus in maize (Brink, 1956). A positive paramutagenic allele is
capable of transforming the second allele from a paramutable
state to a new paramutagenic allele state (Chandler and Alleman,
2008). Paramutation is a kind of trans-regulation mechanism,
which falls under the category of TGS (Hollick et al., 2000;
Wagner et al., 2008). Noticeably, the mechanism of paramutation
is similar to genetic recombination, transposition effect, and
other genetic mutations (Hale et al., 2007).
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FIGURE 3 | Molecular mechanism of alternative imprinting gene expression: (A) in the maternally expressed imprinted genes (MEGs) pathway, differential methylation
of both maternal alleles occurs (green color), i.e., DEMETER (DME) downregulates DNA methylation by the hypomethylation process resulted in parental allele normal
expression (red color), but increased methylation by DMT and polycomb repressive complex 2 (PRC2) causes histone methylation resulted in allele suppression, (B)
in the paternally expressed imprinted genes (PEGs) pathway, the hypermethylated parental allele switches from the silent to active state under the action of PRC2
due to a halt in methylation by DMT, contrastingly hypomethylated maternal allele switches the active to silent state under the action of PRC2 via histone methylation.

Three models are used to describe paramutation: RNA model,
physical interaction, and RNA–physical interaction (Figure 4;
Stam, 2009). In the RNA model, only paramutagenic repeats
are first transcribed into mRNA and then catalyzed by RdRP to
transform into dsRNA, and finally dsRNA is cleaved by Dicer-
like protein into siRNA (Grewal and Jia, 2007; Slotkin and
Martienssen, 2007; Zaratiegui et al., 2007). These methylated
free-state siRNAs are responsible for RdDM, which resulted
in the silencing of a paramutable allele (Bühler et al., 2006).
In the physical model, a physical interaction is established
between both paramutable and paramutagenic alleles with the
help of a pairing protein complex and transform paramutagenic
alleles into paramutable alleles (Gohl et al., 2008). In the last
combo-model, RdDM is accompanied by the physical interaction
between paramutable and paramutagenic alleles.

Transposon Silencing
Transposable elements are auto-replicative short DNA repeats
that can translocate within the genome (Sun et al., 2015). The
main classes of TEs are DNA transposons and retrotransposons
(RTs), which are further divided into two subclasses, such
as autonomous and sub-autonomous (Feschotte et al., 2002).

Autonomous TEs can translocate by themselves while non-
autonomous TEs are dependent on other TEs for their
translocation. The family of RTs is comprised of long terminal
repeats-RTs (LTR-RTs) (class I), non-LTR-RTs (class II), short
interspersed nuclear elements (SINEs), and pseudogenes. LTR-
RTs are 100 bp to >5 kb long major internal coding repeats
found in the genome of fungi, plants, and protists. LTR-
RTs harbor reverse transcriptase, integrase, protease, RNase
H, and capsid/gag proteins, which are inevitable for their
transposition. Based on their encoded gene products and degree
of sequence similarity, LTRs are of the following types: Ty1-
copia RTs, Ty3-gypsy RTs, BEL/pao family, terminal repeat
RTs in miniature (TRIMs), and endogenous retroviruses (ERV)
(Havecker et al., 2004).

The initiation of TE silencing occurs via the following
two pathways, such as homology-dependent/identity-based and
homology-independent/expression-based initiation of silencing
(Figure 5; Fultz and Slotkin, 2017). In the upstream phase
of a homology-dependent pathway, polymerase IV, RDR2, and
DCL3 make a complex to produce 24-nt-long siRNAs from TEs
associated with H3K9me (Nobuta et al., 2007; Huang et al.,
2013; Law et al., 2013). In the downstream phase, a 24-nt-long
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FIGURE 4 | There are three models of paramutation: (A) RNA model, in which paramutagenic repeats of DNA are transcribed into dsRNA under the action of RdRP,
which subsequently transformed into siRNA by a Dicer-like protein. Methylation of siRNA occurs via RdDM, which causes chromatin silencing of paramutable
repeats by the addition of silencing complex inside enhancer complex resulted in the occurrence of paramutation. (B) Physical interaction, in which both
paramutable and paramutagenic repeats physically interact by pairing protein complex and paramutation occurs epigenetically. (C) RNA-physical interaction, which
is a combination of both abovementioned models, in which paramutable and paramutagenic repeats transcribed by RaRP into dsRNA, which are subsequently
transformed into siRNA by a Dicer-like protein, and only cause chromatin silencing of paramutagenic sequence by RdDM. Subsequently, physical interaction is
established via siRNA and pairing protein complex resulted in the modification of paramutable repeats.

siRNA molecule along with AGO4 or AGO6 protein interacts
with polymerase V scaffold transcript resulting in transcriptional
silencing of homologous TEs by the methylation of both DNA
and H3K9me (Teixeira et al., 2009; Ito et al., 2011; Wierzbicki,
2012). Expression-dependent silencing of TEs is a kind of post-
transcriptional silencing, which unleashes the synthesis of 21–
22-nt-long siRNAs of target TEs with the help of miRNAs.
Subsequently, the activation of the RNAi pathway helps in
identifying and cleaving TE transcripts (Dunoyer et al., 2010;
McCue et al., 2012).

Transgene Silencing
Sometimes, the expression level of a successful transgene is
not up to the mark due to: (a) the transgene insertion
in heterochromatin or junk DNA (Tzfira et al., 2004) and
(b) formation of complex T-DNA structures due to the binding
of multiple integrated T-DNAs at a single locus (Gelvin, 2003).
Transgene silencing occurs via: (a) PTGS triggered mechanisms

by sense or antisense transgenes, IR, hairpin RNAs (hp-
RNAs), and (b) VIGS (Figure 6; Wassenegger, 2002; Wang
and Metzlaff, 2005). In transgene silencing, the first single-
stranded sense RNA (ssRNA) becomes the dsRNA under the
action of RDR6, RNA-binding suppressor of gene silencing 3
(SGS3), and RNA helicase (SDE3), and then cleaved by the RISC
(Bond and Baulcombe, 2015). On the other hand, antisense
ssRNA either directly hybridizes with endogenous ssRNA or
indirectly hybridizes with the ssRNA of sense transgene to
produce dsRNA to be finally cleaved by the RISC. Dicer-like
enzymes (DCLs) determine the selection of pathways for the
conversion of ssRNA to dsRNA, such as DCL3 being responsible
for the selection of the TGS pathway and DCL4 for the PTGS
pathway (Brodersen and Voinnet, 2006).

In the PTGS pathway, DCL4 performs an exonuclease activity
to cleave dsRNA into 21-nt siRNAs, which are subsequently
methylated by sRNA-specific methyltransferase Hua Enhancer 1
(HEN1) (Li et al., 2005). Methylated siRNA binds with AGO1 to
make the RISC, which cleaves the entire mRNA of transgene and
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FIGURE 5 | Homology-independent initiation of silencing is a primary pathway, which is unleashed with the expression of unique transposable elements (TEs) under
the action of Pol II and messenger RNA (mRNA) undergoing post-transcriptional silencing via RNA interference (RNAi). In this pathway gene, silencing occurs by the
following methods: (A) Dicer homolog 3- (DCL3-) RdDM, in which 24-nt siRNAs play a major role in a homology-dependent pathway, and (B) RNA dependent RNA
polymerase 6- (RDR6-) RdDM, in which AGO protein-based silencing complex causes the silencing of Pol V transcripts. Homology-dependent pathway, in which
TEs are transcribed by Pol IV and digested into 24-nt siRNAs by RDR2 and DCL3, which subsequently bind with AGO4 or AGO6 to become active and interact with
polymerase V scaffolding transcript resulted in transcriptional TE silencing. Finally, silencing state is restored with the help of methyltransferase 1 (MET1),
chromomethylase 2 (CMT2), chromomethylase 3 (CMT3), and DECREASE IN DNA METHYLATION 1 (DDM1).

results in no phenotype or transgene silencing (Vazquez et al.,
2004). Surprisingly, in some cases of transgene silencing, both
sense and antisense strands undergo the TGS pathway under
the action of DCL3 proteins, such as multicopy transgene loci,
hp-RNA, and VIGS (Mishiba et al., 2005). The first mRNA
of the transgene is converted into dsRNA with the help of
RDR2 protein, cleaved into 24-nt siRNAs by DCL3, methylated
by HEN1 to become capable of binding with AGO4 to make
the RNA-induced transcriptional silencing (RITS) complex that
finally causes DNA methylation of the transgene (Wassenegger,
2002; Wang and Metzlaff, 2005).

Position Effect
Position effect is a variation in gene expression due to
translocation or inversion as a result of crossing over,
chromosomal aberration, and transgene insertion (Weiler
and Wakimoto, 1995). Position effect variegation (PEV) and
telomeric position effect (TPE) are the two reasons of gene
silencing during position effect. The reasons for gene silencing
in PEV are the translocation of a gene from euchromatin to
heterochromatin and vice versa (Girton and Johansen, 2008),
modification in nucleosome by histone methylation,
deacetylation, or structural changes (Bannister et al., 2001),

and a close distance between gene and heterochromatin (Ryan
and Vandenbergh, 2002). Gene silencing in TPE occurs when
the transgene is inserted within or nearby a telomeric region
(Pedram et al., 2006). Mosaic repeats, such as TAS-like sequences
play a key role in gene silencing (Doheny et al., 2008). Gene
silencing in mosaic repeats entirely depends upon histone
modifications, such as standard tri-methylation H3K4, H3K9,
and H4K20 (Boivin et al., 2003; Andreyeva et al., 2005).

Epigenetic models that describe the molecular mechanism
of PEV are cis-spreading and trans-interaction (Figure 7;
Wakimoto, 1998). In the cis-spreading model, heterochromatin
directly causes conformational changes in the packaging of
euchromatin of transgene to refrain the binding of transcriptional
machinery at a promoter resulted in transcriptional inhibition
(Elgin, 1996). The cis-spreading model does not cover all aspects,
such as some inserted genes induced variegation mode despite
the long distance between the insertion site and breakpoint
of heterochromatin (Henikoff and Dreesen, 1989; Weiler and
Wakimoto, 1995). Trans-interactions or nuclear compartment
is a comprehensive model to describe PEV, which means
multiple interactions of different regions of heterochromatin and
extensive chromosomal rearrangement resulted in gene silencing
(Csink and Henikoff, 1996; Dernburg et al., 1996).

Frontiers in Plant Science | www.frontiersin.org 7 September 2021 | Volume 12 | Article 705249

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-705249 September 7, 2021 Time: 14:45 # 8

El-Sappah et al. Gene Silencing

FIGURE 6 | Transgene silencing occurs by the following two pathways: (A) post-transcriptional gene silencing (PTGS), which is initiated by sense or antisense
transgenes, IR, hp-RNAs, and virus-induced gene silencing (VIGS). The sense strand is transcribed into mRNA, and transformed into dsRNA under the action of
RDR6, suppressor of gene silencing 3 (SGS3), and RNA helicase (SDE3). Subsequently, dsRNA is either transformed into methylated 21-nt siRNAs by Dicer-like 4
(DCL4) and Hua Enhancer 1 (HEN1) or transformed into 24-nt siRNAs by AGO3 to cause gene silencing by the TGS pathway. The 21-nt siRNAs bind with AGO1 to
make the RNA-induced gene silencing complex (RISC) that causes the degradation of mRNA of the target gene. Antisense strand is transcribed into mRNA, which
either follows the same pathway with sense strand, or, like endogenous mRNA, transformed into dsRNA and bind with AGO to trigger the RISC. IR and VIGS follow
either of the two available silencing pathways depending on the type of DCL. (B) TGS pathway, which is initiated with the transcription of transgene, dsRNA is
formed under the action of RDR6, which is further cleaved into 24-nt siRNAs by DCL3, is methylated with HEN1, and make the RNA-induced transcriptional
silencing (RITS) complex with the help of AGO4, which finally causes silencing.

Post-transcriptional Gene Silencing
RNA Interference
RNA interference is a homology-dependent gene silencing
phenomenon that depends on dsRNA in gene silencing at the
post-transcription level (Fire et al., 1998). The whole RNAi gene
silencing factory consists of the following components: DCL,
AGO, RDR, and dsRNA-binding domain (dsRBP) (Sabbione
et al., 2019). sRNA biosynthesis is of primary importance

in RNAi, which includes miRNAs and the following types
of siRNAs: natural-antisense siRNA (nat-siRNA), ta-siRNA,
heterochromatic siRNA (hc-siRNA), or repeated-associated
siRNAs (ra-siRNAs) (Figure 8; Borges and Martienssen,
2015; Zheng et al., 2018). The cleavage of primary miRNAs
(pri-miRNAs) into the precursor miRNAs (pre-miRNAs)
is performed inside the nucleus under the action of DCL1,
hyponastic leaves 1 (HYL1), and dsRBP. Then, pre-miRNA
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FIGURE 7 | In position effect variegation (PEV) silencing: (A) cis-spreading model in which a repressor complex, namely, invading heterochromatin proteins H-Raps
stop transcription by binding with a promoter of euchromatic gene. (B) Trans-interaction in which a new chromosomal orientation leads to silencing due to the loss of
transcriptional machinery. In telomeric position effect (TPE) silencing, (C) cis-spreading model in which heterochromatin quenches adjacent genes resulted in gene
silencing. (D) Trans-interaction in which distantly related euchromatin and heterochromatin come closer via DNA loop formation so that heterochromatin becomes
capable of quenching the expression of euchromatin.

undergoes the second cleavage by DCL1 and HYL1 to finally
produce miRNA duplex (Lu and Fedoroff, 2000; Vazquez
et al., 2004). Subsequently, duplex miRNA is methylated by
sRNA-specific methyltransferase HEN1 and exported to the
cytoplasm with the help of exportin-5 ortholog HASTY (HST)
(Park et al., 2002). Inside the cytoplasm, mature single-stranded
miRNA binds with AGO1 to activate an RISC, which cleaves all
homologous transcripts (Mallory and Vaucheret, 2006).

The second pathway of RNAi is dependent on the following
long dsRNAs, nat-siRNA, ra-siRNA, ta-siRNA, and hc-siRNA,
which could be exogenous due to viral infection or endogenous,
such as transposons (Zheng et al., 2018). The nat-siRNA pathway
is initiated with the transcription of natural-antisense gene
pairs/overlapping genes distributed throughout the genome
of plants. Overlapping genes are transcribed into two-three
complementary mRNAs, which ligate each other to produce
dsRNAs (Borsani et al., 2005). Subsequently, dsRNAs are cleaved

by DCL2, SGS3, and RDR6 to generate 24-nt-long nat-siRNAs
(Phillips et al., 2007), which bind AGO to activate the RISC to
finally cleave out only cis-antisense mRNA strands. Trans-sense
strand eventually becomes dsRNA under the action of RDR6
and SGS3, cleaved into 21-nt-long nat-siRNAs with the help of
DCL1 and AGO1/7 to activate the RISC, and finally cleaves all
homologous transcripts (Borsani et al., 2005).

Repeated-associated siRNAs and hc-siRNA are directly
associated with methylation. In the ra-siRNA pathway, the
promoter region of genes is methylated, so aberrant transcripts
are produced with the help of RNA polymerase II, transformed
into dsRNA under the action of RDR2, and follow further steps
of gene silencing, or, dsRNA goes under the action of polymerase
IVa to produce additionally aberrant RNA in a self-perpetuating
loop (Xie et al., 2012). Subsequently, dsRNA is digested into 24-
nt-long methylated ra-siRNAs under the action of DCL3 and
HEN1, which binds with AGO4 to activate the (AGO4)-PolV
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FIGURE 8 | Naturally occurring gene silencing pathways in plants are PTGS gene silencing pathways, such as microRNA (miRNA), transacting siRNA (ta-siRNA),
and natural-antisense siRNA (nat-siRNA), whereas TGS gene silencing pathways are repeated-associated siRNA (ra-siRNA) and heterochromatic siRNA (hc-siRNA).
Meanwhile, VIGS is considered as artificial silencing methods that occurs via both TGS and PTGS pathways.

complex or transcriptional silencing complex (RITS), causing the
methylation of the complementary region of DNA with the help
of SNF2-like chromatin remodeling proteins DRD1, DRM2, and
alternative forms of polymerase Vb (Lippman et al., 2004; Xie
et al., 2004). In the case of hc-siRNA, modified heterochromatin
or DNA repeats are transcribed polymerase IV into mRNA,
transformed into dsRNA under the action of RDR2, cleaved by
DCL3 into 23–24-nt-long hc-siRNA (Chapman and Carrington,
2007; Matzke et al., 2009), binds with AGO6/9 to activate the
RITC complex, and resulted in the TGS pathway (Chellappan
et al., 2010; Fei et al., 2013). VIGS is another type of RNAi
inbuilt defense system against viruses that can trigger both TGS
and PTGS pathways of gene silencing in plants (Bartel, 2004;
Burch-Smith et al., 2006; Lange, 2010).

Clustered Regularly Interspaced Short Palindromic
Repeats/Cas9
CRISPR is a natural immune system of Streptococcus pyogenes
against viruses based on camera unit (Jinek et al., Science). A
copy of invading virus genome is saved in bacterial geneome
namely CRISPR array to deter future viral attack, and Cas9
protein cleaves out viral genome to refrain it from hijacking
bacterial genome and cause disease (Makarova et al., 2011), and
Cas9 protein cleaves out viral genome. The CRISPR/Cas system

is further divided into Class I-III, and CRISPR/Cas9 lies under
the umbrella of bacteria-specific Class II (Figure 9; Heler et al.,
2015; Wei et al., 2015). Class I of the type II Cas system is further
divided into three major types: I, III, and IV, whereas class II is
further divided into the following major types: II, V, and VI. Type
I CRISPR/Cas system is widely distributed among bacteria and
archaea, which is subdivided into six subtypes (A to F) (Sinkunas
et al., 2011). Cas3 has been amplified in all subtypes except A, B,
and D, with a few variations in the protein sequence (Sinkunas
et al., 2011). The second type of Cas system is comprised of
Cas1, Cas2, and Cas9, furthermore, Cas2 belongs to type II-A
(Barrangou et al., 2007; Heler et al., 2015) and Cas4 belongs to
type II-B (Li et al., 2014). Noticeably, type I and type II Cas
systems depend on the following two factors for gene editing, (a)
CRISPR RNA (crRNA) spacer and (b) protospacer adjacent motif
(PAM) (Mojica et al., 2009).

Generally, the CRISPR/Cas system is accomplished in three
sequential steps: spacer acquisition, crRNA processing, and
interference (Rath et al., 2015; Amitai and Sorek, 2016;
Wang et al., 2016). On viral infection, Cas operon first expressed
into a Cas1-Cas2 protein complex, which recognizes and makes
a copy of protospacer of viral DNA, and integrates it between
the repeated sequences of CRISPR array of the host genome.
Subsequently, three CRISPR-related genes, trans-activating
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FIGURE 9 | Cas protein mechanism is as follows: (A) Type I system depends on Cas3 protein, which recognizes new viral infection and counters it, (B) Type II
system depends on Cas9 proteins and tracrRNA for the biogenesis of crRNA, and (C) Type III system depends on either Cas6 or Cas10 in which Csm targets DNA
while Cmr targets viral RNA.

CRISPR RNA (tracr), and CRISPR array are transcribed into
tracrRNA and pre-crRNA while the Cas9 gene encodes Cas9
protein. In the second step, tracrRNA anneals with the repeated
sequence of pre-crRNA, and Cas9 protein binds with duplex.
RNA transcript complex triggers RNase III enzyme to cleave
pre-crRNA repeats (Jinek et al., 2012), nuclease finally produces
the CRISPR/Cas9 complex by trimming extra nucleotides from
5́ end of pre-crRNA and leaving 20-nt-long spacer sequence
(Liu et al., 2017). Finally, an interference step is kicked off, which
activates the effector complex to recognize foreign DNA through
its PAM site, such as 5́NGG3́. Subsequently, a spacer sequence of
mature crRNA effector complex binds with the target sequence
of viral DNA, which further activates RuvC and HNH domains
of Cas9 protein (Gasiunas et al., 2012; Nishimasu et al., 2014).
The RuvC domain cleaves non-target DNA strand, whereas the
HNH domain cleaves the second strand to produce a blunt-end
double-strand break in a 3-bp spacer region very next to the PAM
site (Cong et al., 2013).

Nonsense-Mediated Decay
Nonsense-mediated decay is considered as one of the most
important RNA surveillance pathways, which occur at the post-
transcriptional level (Gloggnitzer et al., 2014). NMD performs
the two primary functions: (a) the regulation of transcription

and (b) protein expression (Maquat, 2005), and remodel a
gene product from proteins by targeting premature termination
codons (PTCs) (Bhuvanagiri et al., 2010; Schweingruber
et al., 2013; Miller and Pearce, 2014). Occasionally, abnormal
translation during the NMD pathway occurs due to two reasons:
(a) the ribosome is unable to bind with an exon junction complex
(EJC) and (b) the ribosome removes the EJC (Figure 10; Kurosaki
et al., 2014). At the same time, the PABPC1 is too distant from the
PTC, so UPF1 usually combines with the termination complex
leading to an independent NMD pathway (Amrani et al., 2004;
Ivanov et al., 2008). EJC model is common in mammal cells, in
which ≥50–55 nt upstream of the exon-exon junction a PTC
exists while EJC is downstream of termination codon (Nagy and
Maquat, 1998; Thermann et al., 1998).

In the NMD pathway, ribosome first binds with mRNA to
initiate translation, removes existing EJC during the elongation
of translation and stop at PTC, then eukaryotic release factors
1 and 3 of PABPC1 bind with the ribosome to make
eRF1-eRF3 translation termination complex for translation
termination (Kurosaki et al., 2014). Simultaneously, transient
interaction between CBP80 and UPF1 enhances the attachment
of serine/threonine kinase SMG1 complex to UPF1, which
leads UPF1 to associate with eRF1 and eRF3 in the SURF
complex (Kashima et al., 2006; Hwang et al., 2010). CBP80-UPF1
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FIGURE 10 | In an exon junction complex (EJC) pathway-dependent
nonsense-mediated mRNA decay (NMD) model, the termination of translation
occurs at the premature termination codon (PTC) level of ≥50–55 nt upstream
of EJC, so that the ribosome is unable to dislocate it. In an EJC-independent
pathway, PABPC1 distantly occurs from PTC to control eRF1-eRF3, which is
related to the termination of translation.

promotes SMG1-UPF1 binding to PTC-distal EJC in the
DECID complex (Kashima et al., 2006). UPF1 is phosphorylated
under the action of SMG1, which later causes mRNA decay
and translational repression (Okada-Katsuhata et al., 2012;
Durand et al., 2016).

ROLES OF GENE SILENCING IN PLANTS

Transgene Silencing
Genetic engineering is a promising technology for interspecies
and intraspecies gene transfer to get desired traits, such as
biotic and abiotic stress resistance, biofortification, higher
yield in plants, but a serious constraint is transgene silencing

(Stam et al., 1997). Gene silencing is a natural defense mechanism
of living organisms against invaders including transgene
(Rajeev Kumar et al., 2015). It was first observed in transgenic
petunia transformed by chalcone synthase-A (CHS-A) gene, in
which PTGS-directed gene silencing resulted in unexpected loss
of flower pigments (Napoli et al., 1990). In particular, transgene
silencing occurs via co-suppression, endogenous homology
gene-induced PTGS pathway, and endogenous heterologous
gene-induced PTGS pathway (Hamilton and Baulcombe, 1999).
The PTGS pathway is initially induced in specific tissues and
then transmit signals to nearby tissues, it does not only induce
gene silencing in homologous transgenes but also in viral
genes (VIGS) (Hamilton and Baulcombe, 1999). Furthermore,
transgene along with a large number of intrinsic direct repeats
significantly increases the frequency of induction of inheritable
PTGS (Ma and Mitra, 2002).

Role of Gene Silencing in Developmental
Genes
The group of genes, which play a role in the developmental
processes of plants, such as primary growth, secondary
growth, meristem growth, leaf morphogenesis, secondary
root elongation, organogenesis, and flowering, are called
developmental genes. From the whole transcriptome, few
numbers of coding mRNAs are translated into proteins to
perform a specific function in a cell (Berget et al., 1977; Chow
et al., 1977; Djebali et al., 2012). Contrastingly, non-coding
mRNAs are undesired because they are unable to be translated
into protein but occasionally encode sRNAs (Rajagopalan et al.,
2006). The sRNAs target transcriptional and post-transcriptional
silencing of developmental genes to maintain transcriptional
equilibrium to enhance the adaptation of plant (Dunoyer et al.,
2010). Natural RNAi, such as siRNAs and miRNAs, play a
significant role in plant tissue development (Voinnet, 2009) by
controlling the expression of AGO1 and DCL1 genes (Xie et al.,
2003). Moreover, miR168 and AGO1-derived siRNAs participate
in feedback mechanisms to regulate the expression of the AGO1
gene (Mallory and Vaucheret, 2006; Rajagopalan et al., 2006).
The regulation of gene expression in plants is performed by
ta-siRNAs during the RNAi pathway (Peragine et al., 2004; Allen
et al., 2005), by targeting mRNAs (Howell et al., 2007).

Genetic imprinting also affects the imprinting of
developmental genes, such as angiosperms gene, which is
involved in endosperm and seed size development (Bauer and
Fischer, 2011; Haig, 2013). Genome-wide analysis of endosperm-
related gene expression of rice revealed 162 MEGs and 95 PEGs
relevant to imprinted differentially methylated loci, long non-
coding RNAs (lncRNAs), miniature inverted-repeat TEs, and
a few 21–22-nt-long siRNAs. One-half of PEGs and one-third
of MEGs were related to nutrient metabolism and endosperm
development, and thus represent grain yield quantitative trait
loci (Yuan et al., 2017). Furthermore, few imprinted genes
relevant to the transcription in endosperm cellularization and
cell proliferation control seed size (Bauer and Fischer, 2011).
Similarly, MEGs encoding transcription factor OsMADS13
regulate the seed size in rice (Li et al., 2011), and PRC2 and
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AGL62 regulate the seed size in Arabidopsis (Kang et al., 2008;
Lu et al., 2012). Furthermore, few TFs responsible for seed
development in maize and Arabidopsis are also regulated under
MEGs (Asano et al., 2002; Luo et al., 2005; Fu and Xue, 2010;
Xin et al., 2013).

Taming of TEs
Transposons or jumping genes are self-replicative short DNA
sequences that can translocate within the genomes of the plant
(Feschotte and Pritham, 2007; Sun et al., 2015). TEs are a severe
threat to genome stability and are dealt with by TEs silencing
(Kasschau et al., 2007; Slotkin and Martienssen, 2007), that is why
a significant number of TEs remain silent in the plant genome
(Okamoto and Hirochika, 2001). On the other hand, TEs can
be beneficial in one population in the form of sRNAs (Ito et al.,
2011; Parent et al., 2012), such as the activation of germinal
cell RTs under stress stimulate the transcription of 24-nt-long
siRNAs in Arabidopsis (Ito et al., 2011). TEs could be active
or silent at a specific place and time within a genome, such as
genes responsible for the silencing of pollen vegetative nuclei
(VN) during seed development are downregulated, which were
active during vegetative growth. Similarly, the final product of
TEs from siRNAs enhances silencing mode in germ nuclei or
sperm cell (SC) (Slotkin et al., 2009). Furthermore, TEs in double
haploid rice plants cultured from anthers are reactivated after
silencing as a result of somaclonal variations (Kikuchi et al.,
2003). A relation exists between VN and SCs, which was observed
in Arabidopsis and tobacco, causes the transcription of 21-nt-long
siRNAs (McCormick, 2004).

Gene Silencing Is a Key to Genomic
Stability
Multiple factors influence genomic instability by DNA damaging
or rearrangement, such as translocation and integration of TEs
from one site to another within genome (Curcio and Derbyshire,
2003; Feschotte and Pritham, 2007). Transposons cause mutation
within a genome, which are rectified under the PTGS pathway
for genomic stability, and methylation also causes gene silencing
resulted in a decrease in transposon activity. For example, the
methylation of MET1 resulted in a decrease in PTGS activity
and an increase in transposon activity (Ronemus et al., 1996;
Morel et al., 2000; Kato et al., 2003), whereas a mutation in
DECREASE IN DNA METHYLATION 1 (DDM1) causes a halt
in a ratio of CG/non-CG methylation and increase the activity
of transposons in Arabidopsis and C. elegans (Hirochika et al.,
2000; Miura et al., 2001; Tsukahara et al., 2009). Similarly, three
mutations rde2, rde3, and mut7 in the PTGS pathway resulted
in a higher activity in transposons in C. elegans, and mut6 in
Chlamydomonas also displayed the activation of transposons. In
conclusion, TGS and PTGS pathways along with different siRNAs
quench the activity of transposons to avoid genomic instability in
plants (Mirouze et al., 2009; Ito, 2013).

Detoxification of Toxins and Allergens in
Plants
Plants are a major source of nutrition for all living organisms, but
a few plant species harbor health-hazardous toxins and allergens

that should be detoxified (Johansson et al., 2004; Lee and Burks,
2006). Furthermore, 90% of all food allergens are found in the
following eight types of foods: soybean, peanut, wheat, tree nuts,
fish, egg, shellfish, and milk (Zuidmeer et al., 2008), and to date,
there is no proper treatment of food allergy except precautionary
measures (Sicherer and Sampson, 2006). The PTGS mechanism
of gene silencing, such as RNAi is pivotal to detoxify toxins
and allergens in rice and soybean (Gu et al., 2016). In rice,
antisense mRNA strategy of gene expression leads to a loss in
a 14–16-kDa allergenic protein motif (Sheehy et al., 1988; Tada
et al., 1996), while soybean harbors Gly-m-Bd-60K, Gly-m-Bd-
30K, and Gly-m-Bd-28K seed-specific allergens (Ogawa et al.,
2000), and Gly-m-Bd-30K (P34) was completely detoxified using
transgene-induced gene silencing (Herman et al., 2003). RNAi is a
super-duper technique against toxins and allergens, for example,
the knock down of 7-Nmethylxanthine methyltransferase gene
(CaMXMT1) resulted in 70% reduced caffeine contents in
transgenic plants (Ogita et al., 2003). Similarly, the knock down
of cytochrome P450, CYP79D1, and CYP79D2 resulted in 90%
loss in cyanogenic glucoside contents tubers of cassava (Manihot
esculenta) (Siritunga and Sayre, 2003).

The downregulation of phytochelatin synthase gene (OsPCS1)
in rice with the help of RNAi resulted in reduced accumulation
of toxic metal Cd (Li et al., 2007), and nicotine demethylase
gene knocks down in tobacco with the help of RNAi resulted
in reduced nitrosamines [tobacco-specific N-nitrosamines
(TSNAs)] carcinogen (Lewis et al., 2008). sRNAs successfully
reduced terpenoid gossypol toxin contents in seeds and oil of
cotton (Sunilkumar et al., 2006). Mal d1 allergen of apple (Malus
domestica), Lyc e1 and Lyc e3 allergens of tomato, and Ara h2
allergen of peanut were significantly reduced with the help of
RNAi (Gilissen et al., 2005; Le et al., 2006a,b; Dodo et al., 2008).
The downregulation of the pathogenesis-related 10 (PR 10) gene
with the help of RNAi resulted in decreased Dau c1.01 and Dau
c1.02 allergens in patients (Peters et al., 2011).

Regulation of Expression of the
Endogenous Genes
Genes are always under a specific promoter that controls both
the site and time of their expression, which is regulated by
different kinds of gene silencing, i.e., transgene silencing. On
exogenous or transgene expression, endogenous genes undergo
non-symmetrical methylation by an RNA-chromatin mechanism
resulted in the silencing of endogenous genes by the activation
of the TGS pathway (Meyer et al., 1993; McGinnis et al., 2006).
Furthermore, if a transgene induces the PTGS pathway, it can
stop the expression of both exogenous and its homologous
endogenous gene (Napoli et al., 1990; Van der Krol et al.,
1990). The transgenic effect, in which both exogenous and
endogenous genes are suppressed is known as co-suppression,
which was observed in Petunia for the first time when CHS-
A gene of pigmentation was overexpressed, which resulted
in the suppression of both transgene and endogenous genes
(Napoli et al., 1990).

Antisense and hp-RNA transgenes induced silencing in two
endogenous genes in Arabidopsis resulted in more 4n than
2n plants due to a high level of methylation in tetraploid
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plants (Finn et al., 2011). The effect of gene silencing on the
endogenous gene has also been observed in tobacco plants, in
which the occurrence of co-suppression to nitrite reductase,
nitrate reductase, and SAM synthase resulted in necrotic or
chlorotic phenotypes (Palauqui et al., 1996). Comparatively,
the transgene is more efficient against RNA silencing than
endogenous genes in plants (Rajeev Kumar et al., 2015).
RNAi-induced PTGS pathway of gene silencing also suppresses
endogenous genes (Zhang et al., 2015). RNAi plays a significant
role in silencing endogenous genes relevant to metabolic disease
pathways, such as gluconeogenesis and phosphoenolpyruvate
carboxykinase (PEPCK) enzyme (Zimmermann et al., 2006).
PTGS enhances the gene silencing of endogenous genes, but
bidirectional cytoplasmic RNA decay hinders its action on
the endogenous gene (Zhang et al., 2015). NMD also plays a
substantial role in the dynamic regulation of gene expression by
controlling alternative splicing (Palusa and Reddy, 2010).

Gene Silencing Provides Immunity
Against Biotic Stress
Biotic stress factors exert serious implications on plants including
viruses, bacteria, fungi, insects, and nematodes (Romanel et al.,
2012). Gene silencing enhances the immunity of plants, which
plays a pivotal role to counter biotic stress. Plant viruses seriously
affect plant growth, which resulted in a significant loss in yield.
Although plant viruses do not directly affect animals and humans,
losses in food quality and crop yield are noted. In this study,
RNA silencing plays a key role to deter viral genome integration
in the host genome by cleavage and protects the plant against
several viruses (Pumplin and Voinnet, 2013). RNA silencing
depends on sRNAs, which are further subdivided into two classes:
siRNAs and miRNAs (Wang and Smith, 2016). siRNA performs
a preferred antiviral activity, which induces gene silencing by
transitive siRNA and defensive signal, but its limitation is that it
remains inactive until the infection begins (Eamens et al., 2008).

Contrastingly, the expression of miRNAs is constitutive and
directly targets the viral genome on entry inside the host cell
to assure plant protection while siRNA indirectly activates the
biogenesis of 22–24-nt-long siRNAs, which subsequently respond
to viral infection (Simón-Mateo and García, 2011). For example,
miR156 and miR164 express P1/HC-Pro turnip mosaic virus—
(TuMV-) encoded RNA silencing suppressors in Arabidopsis
(Kasschau et al., 2003). Noticeably, artificially designed miRNA
(amiRNAs) also induced resistance against grapevine virus A
in tobacco (Roumi et al., 2012). Recently, CRISPR/Cas9 and
CRISPR/Cas13a are being employed in enhancing the resistance
against both RNA and DNA viruses by mutating susceptible
genes in the host (Chandrasekaran et al., 2016).

Bacterial pathogens cause severe diseases in the targeted
plant organs, such as scabs, leaf spots, and cankers, which
can be controlled by gene silencing. For example, crown
gall disease caused by Agrobacterium is being controlled by
targeting silencing viz and iaaM genes by RNAi (Dunoyer
et al., 2006). miRNAs and siRNAs play a pivotal role in
defense against bacterial infection, such as the regulation of
an auxin signaling pathway by miR393, resulted in enhancing

plant antibacterial PTI (Navarro et al., 2006), and miR167,
miR393, and miR160 play a role against bacteria in tomato
(Fahlgren et al., 2016). NMD is a kind of PTGS gene silencing
pathway, which contains bacterial infection by enhancing
innate immunity of plants against bacterial infection by
controlling numerous TIR domain-containing, nucleotide-
binding, leucine-rich repeat (TNL) immune receptor-encoding
mRNAs (Gloggnitzer et al., 2014). CRISPR/Cas9 and its
roles in enhancing plant resistance against bacteria (Zaynab
et al., 2020), such as CRISPR/Cas9-induced OsSWEET13 rice
mutants displayed enhanced immunity against bacterial blight
(Zhou et al., 2015).

Fungi cause 70% of the total plant diseases including smut,
rusts, and mildew (Dean et al., 2012). Host-pathogen interaction
at the surface of the host cell is established via haustorium and
resulted in an exchange of signal and nutrients (Panstruga, 2003).
Gene silencing enhances plant resistance against a broad range of
fungal pathogens by the transfer of siRNAs or silencing signals
from the host to the pathogen (Duan et al., 2012). For example,
Avra10 in wheat and barley is a host-induced gene that limits
fungal pathogen Blumeria graminis due to silent point mutations
(Nowara et al., 2010). Similarly, the overexpression of miR1138
in wheat countered infection caused by Puccinia graminis (Gupta
et al., 2012), and the downregulation of miR1448 and miR482 in
cotton resulted in severe Verticillium infection (Jagadeeswaran
et al., 2009). Moreover, the confirmed roles of some miRNAs-
like Md-miRln20 allow enhancing resistance in apple against
Glomerella leaf spot (Zhang et al., 2019). CRISPR/Cas9 has a
potential role in the activation of genes to confer the resistance
against fungi, such as the transient expression of TcNPR3
via CRISPR/Cas9 resulted in conferring the resistance against
Phytophthora tropicalis in Theobroma cacao (Fister et al., 2018).

RNA interference and CRISPR/Cas9 are being widely used
in improving plant protection against insect pests, such as
artificially designed dsRNAs that have been transformed to
enhance plant resistance against Coleoptera and Lepidoptera
(Price and Gatehouse, 2008). For example, the larval stage of
cotton bollworm was reduced by transforming 22–24-nt-long
artificially designed P450 monooxygenase genes, resulted in short
feeding on plant tissues (Mao et al., 2007). Four wild populations
of flour beetle (Tribolium castaneum) displayed that most of its
variants harbor Cas9 target sites, and some of them are immune
to drive and can be targeted (Drury et al., 2017). Nematodes also
cause diseases and severe reduction of yield in many crops, which
are being contained via gene silencing (El-Sappah et al., 2019).
Approximately 30 miRNAs inArabidopsis and 40 in soybean were
differentially expressed during cyst nematodes infection (Hewezi
et al., 2008), and miR159 plays a key role in gall and giant cell
infection (Medina et al., 2017). RNAi is a robust technique for the
development of plant resistance against nematode by reducing
gall formation (Huang et al., 2006; Yadav et al., 2006).

Gene Silencing Provides Immunity
Against Abiotic Stress
An adverse effect of non-living surrounding factors on plants
is known as abiotic stress, such as drought, heat, cold, light
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intensity, salinity, mineral deficiency, mineral toxicity, soil
acidity, ozone, SO2, NO2, and higher CO2. Gene silencing
via RNAi, CRISPR/Cas9, and miRNAs are promising to
enhance plant resistance against the abovementioned abiotic
stress conditions (Khraiwesh et al., 2012; Sun, 2012; Sunkar
et al., 2012). Salinity is a critical abiotic factor significantly
affecting crop productivity around the world (Bartels and Sunkar,
2005). Natural resistance, abiotic resistance genes, and miRNAs
play a key role in plant tolerance against salinity (Ding and
Zhu, 2009; Trindade et al., 2010). MiRNAs, miR159, miR160,
miR167, miR169, miR393, and miR397 play a significant role
in several plant species during salt stress (Sunkar and Zhu, 2004;
Zhao et al., 2009; Gao et al., 2011; Kitazumi et al., 2015). During
extended heat stress, miR398 plays a significant role in enhancing
plant tolerance (Guan et al., 2013), whereas miR319 plays a
significant role in extended cold tolerance (Thiebaut et al.,
2019). In drought stress, miR160, miR167, miR169, and miR393
play a key role (Zhao et al., 2009; Sunkar, 2010), for example,
miR171a, miR171b, and miR171c express in response to drought
stress in potato (Hwang et al., 2011). MiRNAs regulate the
cell wall to deter metal stress, for example, miR319, miR390,
miR393, and miR398 express under Cu stress and miR160,
miR164, and miR167 express under Cd stress (Yamasaki et al.,
2007; Abdel-Ghany and Pilon, 2008; Huang et al., 2009) while
miR390, miR168, miR156, miR162, miR166, and miR171 were
downregulated and miR528 was upregulated (Ding et al., 2011).

Improvement of Quality Traits
The quality traits of any crop are shape, color, shelf life,
nutritional value, etc., which can be improved by conventional
breeding and modern molecular techniques (Saurabh et al.,
2014). Noticeably, the biggest challenge during the quality trait
improvement is the loss of other desired characteristics, which
can only be overcome by a selective transformation of flexible
regulatory genes, potentially providing more competence and
accurate regulation in a targeted manner (Tang and Chu, 2017).
Gene silencing by deploying genetic engineering techniques,
such as RNAi and CRISPR/Cas9 play a fundamental role in
the regulation of genes relevant to quality traits in different
crops (Saurabh et al., 2014). A miRNA is also a promising tool
for the improvement of quality traits in different crops at the
post-transcriptional level, such as miR156 and miR397 control
grain size, quality, and yield (Jiao et al., 2010; Si et al., 2016),
miR159 regulates stem elongation and floral development (Tsuji
et al., 2006), and miR160 plays a critical role in the growth,
development, and immunity of rice (Li et al., 2014). miR164
plays a key role in lateral root development, and miR166 in leaf
polarity in maize (Juarez et al., 2004; Li et al., 2012), whereas
miR159 plays an important role in anthers development and
heat response in wheat (Wang et al., 2012). miR172 plays an
essential role in cleistogamous flowering and grain density in
barley (Nair et al., 2010; Houston et al., 2013). miR156 regulates
vegetative and reproductive growth (Silva et al., 2014), whereas
miR159, miR167, and miR4376 regulate flowering in tomatoes
(Buxdorf et al., 2010; Wang et al., 2011; Liu et al., 2014).
Recently, CRISPR/Cas9 has emerged as a promising tool for the
identification of new genes, and genetic modification to improve

quality traits and yield (Wang et al., 2019). CRISPR/Cas9 was
used to improve fruit size by regulating classical CLAVATA-
WUSCHEL (CLV-WUS) stem cell circuit (Ma et al., 2015), and
the identification of new genes relevant to malate contents and
aluminum-activated malate transporter 9 (ALMT9) in tomatoes
(Ye et al., 2017).

Gene Silencing Facilitates Functional
Genomics
Tools in molecular biology have been developed for the
identification, amplification, interspecies, and intraspecies
transformation of desired genes, which predominantly rely on
T-DNA activation and knockout libraries (Weigel et al., 2000).
Comparatively, VIGS is efficient out of all available tools for
the study of functional genomics (Cakir et al., 2010), due to
(a) fast, (b) easy designing due to the independence of full-length
cDNA, (c) transient gene silencing, (d) higher efficacy even in
polyploid species, and (e) easy delivery (Cakir et al., 2010). RNAi
is also being widely employed in studying functional genomics
in many organisms without any limitation (Whitehurst et al.,
2007; Smith et al., 2010). In plants, a lot of studies have been
conducted with the help of RNAi to determine the function
of different genes to improve plant resistance against biotic
and abiotic stress, biofortification, lingo-cellulosic pathway
engineering, and the improvement of quality traits. Furthermore,
the discovery of CRISPR/Cas9 has revolutionized functional
genomics exponentially (Liu et al., 2017).

ADVANTAGES AND DISADVANTAGES OF
GENE SILENCING

Advantages of Gene Silencing
Transposons translocate within the genome and pose severe
threats to genomic stability, which are deterred by gene silencing
(Slotkin and Martienssen, 2007). Gene silencing maintains the
balance of transcripts to ensure the adaptation of a plant
to environmental fluctuations (Dunoyer et al., 2010). Tissue
development and finishing are entirely controlled by gene
silencing (ti-siRNAs and miRNAs) via a negative feedback
mechanism (Voinnet, 2009; Cheng et al., 2021). Gene silencing
plays a key role in crop yield by controlling the expression
of genes related to seed size, for example, the silencing of
OsMADS13, and PRC2 and AGL62 regulate seed size in rice (Li
et al., 2011) and Arabidopsis, respectively (Kang et al., 2008; Lu
et al., 2012). Gene silencing plays a key role to deter pathogenicity
caused by biotic stress factors, such as insects, nematodes,
bacteria, viruses, and fungi, which cause severe loss in crop yield
(Zaynab et al., 2020). Allergy is an incurable disease mainly
caused by the ingestion of daily food items, and gene silencing
is helpful in the detoxification of these allergens (Gu et al., 2016).
Caffeine contents were decreased by 70% in tea by the silencing of
the CaMXMT1 gene, cyanogenic contents were decreased by 90%
by the silencing of cytochrome P450, CYP79D1, and CYP79D2 in
cassava tubers (Ogita et al., 2003; Siritunga and Sayre, 2003), the
silencing of OsPCS1 in rice resulted in a significant loss in toxic
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metal contents (Li et al., 2007), and nicotine demethylase gene
knockdown in tobacco resulted in reduced carcinogen (Lewis
et al., 2008). Gene silencing also downregulates toxins in the seeds
and oil of cotton, in apples, tomatoes, and peanuts.

Disadvantages of Gene Silencing
To achieve higher crop yield, the scientist had developed genetic
transformation techniques to overcome biotic and abiotic stress
factors. Gene silencing negatively affects genetic transformation
by the silencing of transgenes (Stam et al., 1997), such as the
CHS-A gene, which was transformed in petunia to get a dark
brown color but albino phenotype was observed in transgenic
plants (Napoli et al., 1990). RTs are responsible for the activation
of germinal cells in Arabidopsis, which goes silent due to gene
silencing and results in the loss of switch from vegetative to
reproductive growth (Ito et al., 2011).
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