
Journal of King Saud University – Computer and Information Sciences (2016) 28, 27–36
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Privacy preserving cloud computation using

Domingo-Ferrer scheme
* Corresponding author at: School of Computer Science, RMIT

University, Melbourne, Australia.

E-mail addresses: abdulatif.alabdulatif@rmit.edu.au (A. Alabdulatif),

mkaosar@effatuniversity.edu.sa (M. Kaosar).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.10.001
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Abdulatif Alabdulatif a,b,*, Mohammed Kaosar c
aSchool of Computer Science, RMIT University, Melbourne, Australia
bThe School of Computer Science, Qassim University, Saudi Arabia
cComputer Science Department, Effat University, Saudi Arabia
Received 21 October 2014; revised 20 October 2015; accepted 22 October 2015
Available online 6 November 2015
KEYWORDS

Homomorphic encryption;

Arithmetic operations;

Maximum/minimum func-

tion;

Cloud computing;

Cloud-based applications
Abstract Homomorphic encryption system (HES) schemes are anticipated to play a significant

role in cloud-based applications. Moving to cloud-based storage and analytic services securely

are two of the most important advantages of HES. Several HES schemes have been recently

proposed. However, the majority of them either have limited capabilities or are impractical in

real-world applications. Various HES schemes provide the ability to perform computations for

statistical analysis (e.g. average, mean and variance) on encrypted data. Domingo-Ferrer is one

scheme that has privacy homomorphism properties to perform the basic mathematical operations

(addition, subtraction and multiplication) in a convenient and secure way. However, it works only

in the positive numbers’ range which is considered as a limitation because several applications

require both positive and negative ranges in which to work, especially those that have to implement

analytical services in cloud computing. In this paper, we extend Domingo-Ferrer’s scheme to be

able to perform arithmetic operations for both positive and negative numbers. We also propose

using a lightweight data aggregation function to compute both maximum and minimum values

of the aggregated data that works for both positive and negative numbers.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The essential idea behind the efforts to involve homomorphic

encryption system (HES) techniques in practical applications is
to employ the advantages of cloud computing services and
resources, as these techniques provide a convenient and secure

environment for uploading private information to a cloud.
HES has existed since the inception of public key cryptogra-
phy. Examples of HES include Rivest et al. (1978), ElGamal

(1985), Benaloh (1994) and Paillier (1999), to name a few.
However, these are somewhat homomorphic encryption sys-
tems (SHES), meaning they only support either addition or

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.10.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:abdulatif.alabdulatif@rmit.edu.au
mailto:mkaosar@effatuniversity.edu.sa
http://dx.doi.org/10.1016/j.jksuci.2015.10.001
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.10.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

28 A. Alabdulatif, M. Kaosar
multiplication, not both. A number of these schemes fail to be
appropriate for practical applications because they are often
inefficient and are unable to perform many required arithmetic

operations to build useful applications in cloud environments.
A fully homomorphic encryption system (FHES) would

support several operations simultaneously. This was a problem

until the breakthrough result of Gentry (2009), which is based
on the properties of ideal lattices (Bayer-Fluckiger, 2002). This
scheme is still quite impractical for real-life applications

because of its limitations in arithmetic operations, time con-
sumption and the amount of resources that are required for
computations. Shortly after, a FHES was introduced that used
only elementary arithmetic operations (Van Dijk et al., 2010).

While this modified scheme reduced the complexity of a fully
homomorphic encryption process by allowing it to be
described in simple terms, it is still complex enough to be use-

ful in any real-life applications. The aforementioned FHES
schemes and other similar schemes, such as Gentry (2009,
2010), have a common drawback, which includes computa-

tional overhead in terms of efficiency and execution time. This
led to the conclusion that these schemes are ineffective for real-
life applications, especially in a cloud-based environment.

The Domingo-Ferrer encryption scheme (Domingo-Ferrer,
2002) is considered a lightweight scheme that has the ability to
perform various arithmetic computations in a secure manner
based on homomorphic properties, and it can be a possible

candidate in various practical cloud-based applications. We
believe that the Domingo-Ferrer’s additive and multiplicative
privacy homomorphism scheme (Domingo-Ferrer, 2002) is

one of the most applicable HESs that can perform main basic
arithmetic operations, which include addition, subtraction and
multiplication. This is done in appropriate and secure ways

such as through statistical analysis services in wire and wireless
sensor networks (WSN), where aggregated data are analysed
using aggregation functions. Indeed, it has a convenient

encryption/decryption mechanism, which helps with use in
various cloud-based applications (see Fig. 1).

We are working to adapt Domingo-Ferrer’s scheme
(Domingo-Ferrer, 2002) to be able to operate within practical

applications in cloud-based environments by improving their
capabilities to encompass a wider range of arithmetic opera-
tions, which leads to increased opportunities to move many

of the existing applications to the cloud. In this paper, we high-
light and address the following issues:
Figure 1 Numerous applications can delegate the
� An ability to involve a negative number’s range in

Domingo-Ferrer’s scheme (Domingo-Ferrer, 2002). We
extend Domingo-Ferrer’s scheme to be able to perform
arithmetic operations in both positive and negative num-

bers. We reorganise encryption/decryption parameters in a
way that helps to carry out numbers’ signs. This contribu-
tion allows the deployment of many applications that
require both positive and negative ranges in cloud-based

environments in a secure manner. In real-life situations,
we most often think of negative numbers when we speak
of real-world applications, such as military navigation sys-

tems, human health monitoring systems and many others.
We have to consider how they can be manipulated in a
secure and efficient way, especially those applications that

involve sensitive and private data. A negative number’s
range on encrypted data with homomorphism properties
can contribute to securing many aggregation functions that
use a negative number range as an essential part of their

computations.
� According to the previous contribution, we introduce an
aggregation function to compute maximum and minimum

values among aggregated data based on both positive and
negative number ranges. This aggregation function is based
on Domingo-Ferrer’s additive and multiplicative privacy

homomorphism scheme. We improve an idea that is shown
in Ertaul and Kedlaya (2007). This is based on Domingo-
Ferrer’s scheme of finding maximum and minimum values

among aggregated values through an ability to combine
the two processes to find maximum and minimum in a sin-
gle process rather than complete them separately. This is a
result of taking advantage of both positive and negative

number ranges instead of working in a positive numbers
range only. This aggregation function is compatible to be
applied to the cloud because of its ability to find maximum

and minimum values among a set of values in their
encrypted form without the need to reveal any information
during the implementation of this function.

We revisit previous work and background concepts in Sec-
tion 2. The proposed extended scheme is described in Section 3.
In Section 4, we illustrate arithmetic and logical operations

and their specifications based on the proposed scheme. We pre-
sent implementation details and performance analysis in Sec-
tion 5. Finally, we conclude the paper in Section 6.
ir data processing to the cloud based on HES.

Privacy preserving cloud computation 29
2. Background

In this section, we provide an overview of secure computation
schemes and describe specifications of Domingo-Ferrer’s addi-

tive and multiplicative privacy homomorphism scheme.

2.1. Secure computation operations

Secure computation allows a single or multiparty to execute
specific functions on their inputs and return the result without
revealing any private information to other parties. In practical-

ity, several applications must have single or multiparty compu-
tations, especially those applications that perform statistical
analysis computations shared by distributed multiparties,
and the main concern with these applications is preserving

data privacy. Secure multiparty computation (SMC)
(Prabhakaran and Sahai, 2013), considered an important part
of cryptography concepts, is directly involved in these types of

applications. Atallah and Blanton (2013) illustrate an overveiw
of some techniques for computation outsourcing. However,
these techniques have some limitations in terms of computa-

tion capabilities that fail to achieve secure analysis services
requirements. In general, there are two common techniques
for multiparty computations: garbled circuits, such as Yao
(1986), and secret sharing, such as Chaum et al. (1988) and

Ben-Or et al. (1988). These techniques are involved in many
existing multiparty computation protocols. However, we focus
on SMCs that are based on HES techniques.

Recently, several FHES schemes, such as Gentry (2009),
Van Dijk et al. (2010) and López-Alt et al. (2012), and SHES
schemes, such as Damgård et al. (2012), have been introduced

as efficient solutions compared to other techniques in the sense
of less interaction required between different parties. However,
they have either of the following two disadvantages: a lack of

efficiency caused by overhead computations in both encryption
and decryption processes, which make them impractical for
real-world applications, or an inability to perform various
functions on both positive and negative numbers that are

required as part of many real-world applications, especially
in statistical analysis applications.

Upon what has been previously mentioned, SMCs should

maintain two main principles: an efficiency in both encryption
and decryption processes and an ability to execute various func-
tions as required. We believe that Domingo-Ferrer’s scheme

(Domingo-Ferrer, 2002) is one of the most efficient schemes
to perform at least main basic operations (addition, subtraction
and multiplication) based on homomorphism properties. These
operations give an opportunity to execute more complex oper-

ations based on targeted application requirements.

2.2. Domingo-Ferrer’s additive and multiplicative privacy
homomorphism scheme

Domingo-Ferrer introduced in Domingo-Ferrer (2002) an
HES that has the ability to perform main basic arithmetic

operations (addition, subtraction and multiplications) in a
secure and convenient manner. Domingo-Ferrer’s scheme is
classified as a symmetric-key encryption scheme and is proven

secure against chosen ciphertext attacks (Wagner, 2003). This
scheme does not have the ability to carry numbers’ signs mean-
ing that it cannot distinguish between positive and negative
numbers’ ranges, which is considered an important issue, espe-
cially in the case of applying this scheme to applications that
use a negative number range as a part of their functionalities.

A brief description of Domingo-Ferrer’s scheme in (First
appendix).

From our observation, we conclude that this scheme can

perform operations on encrypted data without considering
sign, which limits the scheme’s abilities because most real-
world applications have to carry a value’s sign in their imple-

mentation. Accordingly, we attempt to determine a solution
for this issue by performing experiments on encryption/decryp-
tion parameters, including adjusting these parameters in such a
way that it would support carrying a value’s sign. This allows

for an extension of this scheme to be appropriate for many
real-life applications.

3. Proposed secure computations

In the section, we describe our proposed aim to extend
Domingo-Ferrer’s scheme (Domingo-Ferrer, 2002) to encom-

pass the negative numbers’ range through the ability to carry
a number’s signs.

The essential contribution of this paper relies on restructur-

ing the parameters of Domingo-Ferrer’s scheme in such a way
that it is collaborative to carry the sign of number. The new
configuration assists in performing self or in performing com-

putations in a remote, untrusted third party with the advantage
of having both positive and negative number ranges. In this
paper, we use similar notations as shown in Domingo-Ferrer
(2002), for more explicit and easy observations.
3.1. Keys and parameters

Public parameters m and d are two public parameters where the
former is a large integer with many divisors, the latter is a

small integer and d > 2.
Private parameters m0 and r. The former is a small divisor

of m and m0 > 1. m0 should be large enough to involve the

legitimate computation range to avoid overflow, as received
values may fall outside that range. The latter is r 2 Zm, as long

as r�1 modulus m exists. We have an additional secret param-
eter l, which determines the legible range that allows us to
carry numbers’ signs. We choose l based on the m parameter,

as follows:

l ¼ � m0
2

� �� 1
� �

m0
2

� �
if m0 is even

� m0�1
2

� �� 1
� �

m0�1
2

� �� �
if m0 is odd

(

For instance, we can choose m ¼ 14, which is considered an
even number the legitimate range l ¼ ½�6; 7�. The parameter l
is involved in the encryption process in Eq. (1). This allows

us to generate random numbers in a specific range l, which
helps to distinguish between negative and positive numbers.
Precisely, each received value x is converted to different ran-

dom small values based on Eq. (1), and the legitimate range
l is used to keep the scope of the generated random values in
a manner that allows tracking of both positive and negative

numbers’ ranges. In Fig. 2, we illustrate that our scheme has
the ability to carry out numbers’ signs or negative numbers
precisely, which is not applicable based on Domingo-Ferrer’s
scheme.

Figure 2 An example of how the scope of our proposed scheme is different from that of Domingo-Ferrer’s scheme under a given

specification.

30 A. Alabdulatif, M. Kaosar
3.2. Encryption/decryption processes

We build up encryption/decryption processes in such a way

that our target of carrying numbers’ signs is achieved. In the
following demonstration, we assume that the public parameter
d ¼ 2.

3.2.1. Encryption process

The encryption process is performed through randomly split-

ting a selected value a 2 Zm0 into small secret values
ða1; a2 . . . ; adÞ, where d determines a tuple size for each splitted

value as previously mentioned. The splitting process must sat-
isfy the following:

a ¼
X2

i¼1
ai mod m0 where ai 2 Zm ð1Þ

based on that, we must generate two random values a and b to

satisfy Eq. (4) as follows:

1. Choose a random value a1 from the legitimate range l.

2. Choose a random value a2 based on three values, which are
a1, a received value a and a secret parameter m, as shown in
the following equation:

a2 ¼ mþ a� a1 ð2Þ
Eq. (5) is extensible based on the value of the parameter d,
which determines the number of random values that are

required to be generated. After that, the actual encryption pro-
cess is performed as follows:

EkðaÞ ¼ ða1 � r1 mod m; a2 � r2 mod mÞ ð3Þ
At the end of the encryption process, a tuple of encrypted

values is used to represent its plaintext value in encrypted
form, and it can be used to perform arithmetic operations with
other encrypted tuples. In Algorithm 1, we illustrate the

encryption process procedure in more detail.
3.2.2. Decryption process

The decryption process is performed through calculating a sca-

lar product of the, i-th element in a tuple by r�1 mod m to
retrieve ai mod m, as follows:

ða1r�1 mod m; a2r
�2 mod mÞ ð4Þ
Algorithm 1. Encryption process

Require: m, d, m
0
, r, a tuple z and

a a received value

Ensure: d 2; m0 > 1; r�1 mod m exists; ð0; 0Þ z

if m0 is even then

l½ � ¼ � m0
2

� �� 1
� �

m0
2

� �
a1 ¼ l½i� // Pick a random element i of an array l½ �
a2 ¼ mþ a� a1
z ¼ EkðaÞ ¼ ða1r mod m; a2r

2 modÞ ¼ ðz1; z2Þ
else {m0 is odd}

l½ � ¼ � m0�1
2

� �� 1
� �

; m0�1
2

� �� �
a1 ¼ l½i� // Pick a random element i of an array l½ �
a2 ¼ mþ a� a1
z ¼ EkðaÞ ¼ ða1r mod m; a2r

2 modÞ ¼ ðz1; z2Þ
//ðz1; z2Þ an encrypted result

end if

Then, all elements in a resulted tuple are added

through recalling Eq. (4) to retrieve an original value of a, as
follows:

a ¼
X2

i¼1
ai mod m0 ð1Þ

All arithmetic operations on encrypted data are carried out

over ðZmÞd at an unclassified level. Algorithm 2 represents the
decryption process, which is essentially the reverse of the

encryption process.

Privacy preserving cloud computation 31
Algorithm 2. Decryption process

Require: m; m0; r�1, an encrypted tuple a and a dimension of the

tuple a ¼ d

Ensure: r�1 mod m exists; ða1; . . . ; adÞ a;

ðð0Þ1; . . . ; ð0ÞdÞ z sum 0; result 0

z ¼ ða1 � r�1 mod m; a2 � r�2 mod m; . . . ; ad � r�d mod mÞ
z ¼ ðz1; z2; . . . ; zdÞ
sum ¼Pd

i�1zi
result ¼ sum mod m0 // a plaintext result

// The result is mapped based on l range to get the exact

result.

We describe a numerical example to illustrate the idea
behind our proposed scheme in more detail though concentrat-

ing on the computations that show how negative numbers’
ranges can be processed based on the proposed scheme. In this
example, we choose public and private parameters, as follows:

Public parameters: m is the public modulus and it is chosen
to be m ¼ 28. We choose d ¼ 2.

private parameters: We choose r ¼ 3 and m0 ¼ 14 to be the

secret key. We make sure r�1 mod m exists, which is r�1 ¼ 19 in

this case. Since we chose m? ¼ 14, which is considered an even
number, the legitimate range will be l ¼ ½�6; 7�. The formal
interpretation of the legitimate range l in this example is con-

sidered as dividing the decrypted results into two ranges of
numbers, positive and negative, as follows:

1. If the final decrypted result is in the range between [0,7], the
final plaintext result remains the same in the sense that any
number in this range with modulus m0 has the same value.

2. If the final decrypted result is in the range between [-6 , -1],

the final plaintext result with modulus m0 is interpreted as
follows:

ð13Þ ! ð�1Þ; ð12Þ ! ð�2Þ; ð11Þ ! ð�3Þ
ð10Þ ! ð�4Þ; ð9Þ ! ð�5Þ; ð8Þ ! ð�6Þ

Fig. 3 shows how a negative number range is deduced based
on a legitimate range lthat is considered a part of the security

parameters.
We perform two addition operations combined with a

single multiplication operation in the following formula,
Figure 3 A transformation process for a negative number range

based on the example specifications.
ðx1 þ x2Þx3 where x1 ¼ 1; x2 ¼ �4 and x3 ¼ 2. The first stage
is to encrypt all the plaintext values by recalling both Eqs. (1)
and (2), respectively, for each single plaintext value.

Generate random value of x1 ¼ 1�! ð�6; 21Þ
Generate random value of x2 ¼ �4�! ð4; 6Þ
Generate random value of x3 ¼ 2�! ð3; 13Þ

The next step is encrypting all plaintext values by utilising

Eq. (2) based on random values that are generated through
Eq. (1).

Eðx1Þ ¼ ðð�6� 3Þ mod 28þ ð21� 9Þ mod 28Þ ¼ ð�18; 21Þ
Eðx2Þ ¼ ðð4� 3Þ mod 28þ ð6� 9Þ mod 28Þ ¼ ð12; 26Þ
Eðx3Þ ¼ ðð3� 3Þ mod 28þ ð13� 9Þ mod 28Þ ¼ ð9; 5Þ

All previous steps are processed in a secure environment,

which is considered as a classified level. Now, we implement
the formula ðx1 þ x2Þx4 on encrypted data at an unclassified
level, such as a cloud-based environment. We add (x1 þ x2)

to the encrypted forms, as follows:

X2

i¼1
EðxiÞ ¼ ð�18þ 12 mod 28; 21þ 26 mod 28Þ ¼ ð�6; 19Þ

Then, we multiply Eðx3Þ with the addition results ð�6; 19Þ,
ð�6;19Þ�Eðx4Þ¼ ð�6;19Þ�ð9;5Þ
¼ ð0;�6�9mod 28;ð�6�5þ19�9Þmod 28;19�5mod 28Þ
¼ ð0;�26;1;11Þ

Finally, the result is returned to a classified level to perform

the decryption process based on Eq. (3) to obtain the plaintext
result, as follows:

ð0� r�1 modm;�26� r�2 modm;1� r�3 modm;11� r�4 modmÞ
¼ ð0�19mod 28;�26�192 mod 28;1�193 mod 28;

11�194 mod 28Þ
¼ ð0;�6;27;15Þ

The final step in the decryption process is adding all ele-

ments in the resulted tuple over Zm0 to get 36 mod 14 ¼ 8.
In the same classified level, the final result transformed to
the new positive and negative ranges based on the legitimate

range l (see Fig. 2). Therefore, the final result is ð�6Þ, which
is the correct result if we perform the same operations on
plaintext values.

We demonstrate this example to state that our proposed
scheme has the ability to extend Domingo-Ferrer’s scheme
through carrying out numbers’ signs. Accordingly, we propose

an aggregation function to compute maximum and minimum
values among aggregated data based on our contribution that
relies on both positive and negative numbers’ ranges. This

function combines the two processes to find maximum and
minimum values in a single process rather than completing
them separately, as in Ertaul and Kedlaya (2007).

4. Arithmetic and logical operations

In this section, we describe the specifications of arithmetic and
logical operations, based on the proposed scheme, through

algorithms that show the operational transactions in detail.

32 A. Alabdulatif, M. Kaosar
We utilise our scheme to build aggregation maximum/
minimum function for the aggregated data. This function relies
on additive homomorphic property to find both maximum and

minimum values among aggregated data. We employed our
contribution to reduce the number of operations that are
required to perform this function in Ertaul and Kedlaya

(2007) by obtaining the benefits of a negative number’s range.

4.1. Addition and subtraction operations

As previously illustrated, our scheme has the ability to perform
both addition and subtraction operations in such a way that
can carry numbers’ signs. This involves both positive and

negative numbers’ ranges. Algorithm 3 represents the general
steps to perform a specific encrypted computation for addition
and subtraction.

Algorithm 3. Addition and subtraction operations

Require: m, (an addition or subtraction operation �),
a and b (encrypted values), a tuple z

Ensure: ða1; a2Þ a ðb1; b2Þ b; ð0; 0Þ z

z ¼ ða1 � b1 mod m; a2 � b2 mod mÞ
z ¼ ðz1; z2Þ // zn ðan � bnÞ
// a tuple z is an encrypted operation result
4.2. Multiplication operation

We designed the multiplication operation in our scheme to
have the ability to work in a negative numbers’ range. In Algo-
rithm 4, encrypted multiplication steps are shown in detail.

Algorithm 4. Multiplication operation

Require: m, (a multiplication operation �),
a and b (encrypted values), a tuple z

Ensure: ða1; a2Þ a ; ðb1; b2Þ b; ð0; 0; 0; 0Þ z

z ¼ ½0; a1 � b1 mod m; ða1 � b2 þ a2 � b1Þ mod m;

a2 � b2 mod m� // carried as polynomials

z ¼ ½0; z1; z2; z3; z4�
// a tuple z is an encrypted operation result

The encrypted division operations are carried out in a
rational format, such that EðaÞ=EðbÞ because the polynomials

are not considered as a field but a ring.
4.3. Maximum/minimum function

A proposed maximum/minimum function applies to an
existing scheme (Yokoo and Suzuki, 2002) as a part of its

operations over aggregated data.We propose necessary modifi-
cations to this technique to accommodate negative numbers.
Let’s say there are two parameters: a weight w and dimension

n that are chosen such that ð1 � w � nÞ and n is a large enough
value to represent the largest value that can be received from
outside sources in this scheme. We utilise a new parameter
�n to represent a negative dimension of this scheme such that

ð�n � w � 0Þ and ð0 � w � nÞ. Each received weight w is
classified and encrypted as follows:
w ¼
Case 1 : The weight w is a positive value

Case 2 : The weight w is zero

Case 3 : The weightw is a negative value

8><
>:

Case 1: The weight w is located in a positive numbers’
range. Therefore, the encryption process is as follows:

EðwÞ ¼ Eð0Þ|ffl{zffl}
0

;EðzÞ; . . . ;EðzÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
w

;Eð0Þ; . . . ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n�w

ð5Þ

where EðwÞ is an encrypted value of received weight, EðzÞ is a
random encrypted value z that is not equal to 0 and Eð0Þ is the
encrypted value of 0. These parameters are uniform in all the
mentioned three cases. In this case, Eð0Þ is assigned to all num-

bers in the negative range from �1 up to �n.
Case 2: The weight w is zero. Therefore, the encryption pro-

cess is as follows:

EðwÞ ¼ Eð0Þ; . . . ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl};
Negative range

Eð0Þ|ffl{zffl};
0

Eð0Þ; . . . ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
positive range

ð6Þ

In this case, Eð0Þ is assigned to numbers in both positive
and negative ranges from �1 up to �n and from 1 up to n.

Case 3: The weight w is located in a negative numbers’
range. Therefore, the encryption process is as follows:

EðwÞ ¼ Eð0Þ; . . . ;Eð0Þ;|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
�n�w

EðzÞ; . . . ;EðzÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl};
w

Eð0Þ|ffl{zffl}
0

ð7Þ

In this case, Eð0Þ is assigned to all numbers in the positive

range from 1 up to n.
Each received weight is transformed into a set of encrypted

random non-zero and zero values that are represented in a

specific range ð�n; nÞ based on previous mention classification.
Domingo-Ferrer’s scheme Domingo-Ferrer, 2002 is employed
to perform the encryption process for random values EðzÞ to
be used for the transformation process because it has the abil-
ity to achieve an additive field operation on encrypted data. A
random value z is chosen such that z� r < m0, where r is a
number of the expected weights that are passed to the function

and z–0. The next stage after passing all received weights to
question (5)(6)(7) based on their classification is to perform
additive field operations to find both maximum and minimum

values among all weights. We calculate both maximum and
minimum values in a single process based on the following
formula:

a ¼
Xi¼r
i¼1
ðEi;jðxjÞ;Ei;jþ1ðxjþ1Þ; . . . ;Ei;nðxnÞÞ ð8Þ

where r is the number of passed weights to the function and
j ¼ �n. Eq. (8) covers both negative and positive ranges for
each transformed weight in a set r. Each encrypted value
Ei;jðxjÞ is either random value –0 or 0.

The final stage after performing additive homomorphic

encryption is the decryption process in a classified secure level
from a positive range ðEi;nðxnÞÞ to a negative range

ðEi;�nðx�nÞÞ, from right to left, to find a maximum value of a

set r and in the reverse mean from the negative range

ðEi;�nðx�nÞÞ to ðEi;nðxnÞÞ, from left to right is used to find a

minimum value of a set r. The decryption process is performed

in both ranges in parallel mean, and it continues until non-zero
values are detected during this process. Each encrypted value

Privacy preserving cloud computation 33
has a corresponding value j that represents an element order in
a set r. The given parameter j is utilised to determine a maxi-
mum or minimum value based on the first non-zero values that

are detected during the decryption process of both negative
and positive ranges.

We accentuate the main steps to perform maximum/mini-

mum function in Algorithms 5–7. This function consists of
two main stages: generating random encrypted values which
occur in a classified secure level, and encrypting computations,

which occur in an unclassified public level.
We assume that random encrypted values are generated

based on algorithms in the previous section. Algorithm 5
shows the distribution process of random encrypted data

based on a range of received data.

Algorithm 5. Distribution of random encrypted values process

Require: a(a received value) ; ½�n; n� (legitimate range),

R½ �(random encrypted values) ; t½ �
Ensure: t½ � Pn

i¼�nt½xi� ¼ 0

if a > 0 thenPa
i¼1t½xi� ¼ R½i� // i is an element in R½ �Pn
i¼aþ1t½xi� ¼ 0// the rest of positive range set to zeroP0
i¼�nt½xi� ¼ 0 // all negative range set to zero

else if a < 0 thenPa
i¼�1t½xi� ¼ R½i� // i is an element in R½ �P�n
i¼a�1t½xi� ¼ 0// the rest of negative range set to zeroPn
i¼0t½xi� ¼ 0 // All positive range set to zero

else {a = 0}

t½0� ¼ 0// i is an element in R½ �Pn
i¼1t½xi� ¼ 0// the positive range set to zeroP�1
i¼�nt½xi� ¼ 0 // All negative range set to zero

end if

In Algorithms 6 and 7, additive field operations are per-
formed for all arrays where we assume 5 arrays in this case
for simplicity. They keep random encrypted and zero values
and obtain a new array after performing additive field oper-

ations. The resulting array is decrypted in a classified secure
level to obtain maximum and minimum values.

Algorithm 6. Find maximum value

Require: Ti;5½ � (a set of arrays), ½1; n� (legitimate range) Result[],

x, count1, count2, Max, Min

Ensure:
Pn

i¼1Result½xi� ¼ 0;x 0; count1 n;Max 0

for j :¼ 1 to n step 1 do

for i = 1 to 5 step 1 do

Resultj½� Resultj½� þ Ti;j½�
end for

end for

for j :¼ n to 1 step -1 do

x ¼ decryptðResult½j�Þ
if x = 0 then

count1 ¼ count1 � 1

else {}

break;

end if

end for

Max count1
Algorithm 7. Find minimum value

Require: Ti;5½ � (a set of arrays), ½�n; 0� (legitimate range),

Result½ �;x; count2;Min

Ensure:
P0

i¼�nResult½xi� ¼ 0;x 0; count2 �n;Min 0

for j :¼ -n to 0 step 1 do

for i = 1 to 5 step 1 do

Resultj½� Resultj½� þ Ti;j½�
end for

end for

for j :¼ -n to 1 step 1 do

x ¼ decryptðResult½j�Þ
if x = 0 then

count2 ¼ count2 þ 1

else {}

break;

end if

end for

Min count1

We describe a numerical example to disclose the idea
behind maximum/minimum function in more detail. We apply

the same parameters of the previous example in encryption/
decryption processes, and we assume the expected range
ð�n; nÞ is ð�6; 6Þ and r ¼ 4 such that we have

ðr1; r2; r3; r4Þ ¼ ð3;�2; 1; 0Þ, based on each weight ri being pro-
cessed, as follows:

r1 ¼ 3 is considered in a positive numbers’ range. We trans-
form r1 by calling Eq. (5):

Eð3Þ ¼ E1;0ð0Þ|fflfflffl{zfflfflffl}
0

;E1;1ðz1Þ;E1;2ðz2Þ;E1;3ðz3Þ|ffl{zffl}
3

;E1;4ð0Þ; . . . ;Eð0Þ1;6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
6�3

All elements in the negative numbers’ range ð�6; �1Þ are
set to encrypted values of zero (E1;jð0Þ).

r2 ¼ �2 is considered to be in a negative numbers’ range.
We transform r2 by calling Eq. (7):

Eð�2Þ ¼ E2;�6ð0Þ; . . . ;Eð0Þ2;�3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�6�ð�2Þ

E2;�2ðz�2Þ;E2;�1ðz�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�2

;E2;0ð0Þ|fflfflffl{zfflfflffl}
0

All elements in the positive numbers’ range ð1; 6Þ are set to
encrypted values of zero (E2;jð0Þ).

r3 ¼ 1 is considered to be in a positive numbers’ range. We

transform r3 by calling Eq. (5):

Eð1Þ ¼ E3;0ð0Þ|fflfflffl{zfflfflffl};
0

E3;1ðz1Þ|fflfflfflffl{zfflfflfflffl};
1

E3;2ð0Þ;E3;3ð0Þ; . . . ;Eð0Þ3;6|ffl{zffl}
6�1

All elements in the negative numbers’ range ð�6; �1Þ are
set to encrypted values of zero (E3;jð0Þ).

r4 ¼ 0 is considered to be zero. We transform r4 by calling

Eq. (6):

Eð0Þ ¼ E4;�6ð0Þ; . . . ;E4;�1ð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Negative range

;E4;0ð0Þ|fflfflffl{zfflfflffl}
0

;E4;1ð0Þ; . . . ;E4;6ð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
positive range

All elements in both the positive and negative numbers’
ranges ð1; 6Þ and ð�6; �1Þ are set to encrypted values of zero

(E4;jð0Þ).
We generate random values ðz1; z2; z3; z4; z5Þ to encrypt them

under Domingo-Ferrer’s scheme with the same previous speci-
fications. The random values are used for the transformation

34 A. Alabdulatif, M. Kaosar
process as part of the maximum/minimum function stages. We
assume the values of ðz1; z2; z3; z4; z5Þ are ð3; 1; 2; 0; 0Þ, respec-
tively. The encryption process for these random values is per-

formed as follows:

Eðz1Þ ¼ Eð3Þ ¼ Eð�1; 18Þ ¼ Eð�3; 22Þ
Eðz2Þ ¼ Eð1Þ ¼ Eð5; 10Þ ¼ Eð15; 6Þ
Eðz3Þ ¼ Eð2Þ ¼ Eð6; 10Þ ¼ Eð18; 6Þ
Eðz4Þ ¼ Eð0Þ ¼ Eð�6; 20Þ ¼ Eð�18; 12Þ
Eðz5Þ ¼ Eð0Þ ¼ Eð1; 13Þ ¼ Eð3; 5Þ

We can encrypt extra zero values zi based on Domingo-
Ferrer’s scheme to make both transformation and additive
homomorphic operations more random and secure. Next,

these encrypted values are utilised to fill non-zero values
EðzÞ randomly during the transformation process. The first
value r1 ¼ 3 is transformed as follows:

S1 ¼ Eð3Þ ¼ Eð0Þ|ffl{zffl}
0

;Eð2Þ;Eð1Þ;Eð3Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
3

;Eð0Þ;Eð0Þ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
6�3

S1 ¼ Eð0Þ|ffl{zffl}
0

;Eð18; 6Þ;Eð15; 6Þ;Eð�3; 22Þ|ffl{zffl}
3

;Eð0Þ;Eð0Þ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
6�3

Each Eð0Þ is filled by either z4 or z5 randomly, and all ele-
ments in the negative numbers’ range ð�6; �1Þ are set to
encrypted values of zero (Eð0Þ). The next received value is

r2 ¼ �2,
S2 ¼ Eð�2Þ ¼ Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�6�ð�2Þ

;Eð1Þ;Eð3Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�2

; Eð0Þ|ffl{zffl}
0

S2 ¼ Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�6�ð�2Þ

;Eð15; 6Þ;Eð�3; 22Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�2

; Eð0Þ|ffl{zffl}
0

Each Eð0Þ is randomly filled by either z4 or z5 and all ele-

ments in the positive numbers’ range ð1; 6Þ are set to encrypted
values of zero (Eð0Þ). The next received value is r3 ¼ 1,

S3 ¼ Eð1Þ ¼ Eð0Þ|ffl{zffl}
0

; Eð2Þ|ffl{zffl}
1

;Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ|ffl{zffl}
6�1

S3 ¼ Eð0Þ|ffl{zffl}
0

;Eð18; 6Þ;Eð15; 6Þ;Eð�3; 22Þ|ffl{zffl}
3

;Eð0Þ;Eð0Þ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
6�3

Each Eð0Þ is randomly filled by either z4 or z5 and all ele-

ments in the negative numbers’ range ð�6; �1Þ are set to
encrypted values of zero (Eð0Þ). The last received value is r4 ¼ 0,
S4 ¼ Eð0Þ ¼ Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ|ffl{zffl}
Negative rangeð�6�0Þ

; Eð0Þ|ffl{zffl}
0

;Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ|ffl{zffl}
positive rangeð6�0Þ
Each Eð0Þ is randomly filled by either z4 or z5. The next stage
is performing additive field operations over ðS1;S2;S3;S4Þ.
After performing the additive operation, we have a set of tuples
in both the positive and negative ranges, shown as follows:

First, the negative range of the additive operation result is:

Result1 ¼ Eð0Þ;Eð0Þ;Eð0Þ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
negative range

;EðN�2Þ;EðN�1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
negativerange

; Eð0Þ|ffl{zffl}
0

All added tuples’ results in the negative range are zero val-
ues, except N�2 and N�1 because they are already filled with
non-zero values in S1 and added to zero values in S2;S3 and

S4.
Second, the positive range of the additive operation is:

Result2 ¼ Eð0Þ|ffl{zffl}
0

;EðN1Þ;EðN2Þ;EðN3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
positive range

;Eð0Þ;Eð0Þ;Eð0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
positive range

All added tuples in the positive range are zero values except
N1;N2;N3 because they are already filled with non-zero values
in S1 and S3, and added to zero values in S2 and S4.

The final stage is performed in a classified secure level,
which includes the decryption process from both directions
from left to right in Result1, which is considered a negative

range decryption and from right to left in Result2, which is
considered a positive range decryption. In Result1, all tuples
are decrypted from j ¼ �6 up to j ¼ �3 to get zero values.
At j ¼ �2, the decrypted result is a non-zero value, therefore

it is considered as a minimum value of all received values.
On the other hand, in Result2, all tuples are decrypted from
j ¼ 6 up to j ¼ 4 to get zero values. At j ¼ 3, the decrypted

result is a non-zero value, so this is considered a maximum
value of all received values. By comparing our proposed func-
tion with an existing function Ertaul and Kedlaya, 2007, we

can conclude that our function reduces the redundancy that
happens when the function Ertaul and Kedlaya, 2007 performs
separate operations to find maximum and minimum values

through combining these in a single operation by using the
negative numbers’ range as a part of finding maximum and
minimum values rather than working in just a positive num-
bers’ range.

5. Implementation and performance analysis

In this section, we describe implementations of the proposed

scheme and its operations. Our code runs on an Intel Core
i5 Processor 2.40 GHz and 4 GB RAM. Java programming
language (Gosling et al., 2005) is used as a convenient frame-

work. Our implementation has the following three main pro-
cesses: (1) an encryption process, which is involved in
generating random values and transformation to tuples fol-

lowed by an actual encryption process; (2) performing
encrypted operations that mainly include addition, subtraction
and multiplication and (3) a decryption process which is the

final stage after finishing the computation process stage.
In this paper, we implemented a performance analysis by
identifying the amount of time consumption for both encryp-

tion and decryption processes and operational calculations
based on the scenario of having self-computation process
applications that would be adapted in cloud-based environ-

ments. Table 1 illustrates execution time for the different
numerical operations of self-computation processes, and all
results are shown in millisecond unit.

Table 1 Execution time of self-computation processes.

Process type Encryption Addition Subtraction Multiplication Decryption

Execution time 9:195� 10�2 7:22� 10�2 9:66� 10�2 7:27� 10�2 6:97� 10�2

Table 2 Execution time comparison between Gentry and proposed protocol based on Domingo-Ferrer schemes (unit: milliseconds).

Cryptosystem Encryption Decryption Addition Multiplication Size of data

Gentry’s scheme 8:39� 10�3 7:64� 10�4 4:97� 10�5 7:72� 10�4 Per bit

Proposed protocol based on

(Domingo-Ferrer’s scheme)
9:195� 10�2 6:97� 10�2 7:22� 10�2 7:27� 10�2 Per value (integer or float-point number)

Privacy preserving cloud computation 35
It is well-known that there is a trade-off between security
and flexibility in real-world systems. In our protocol, we adapt

a practical homomorphic scheme with other secure mecha-
nisms that ensure the privacy of consumers’ data and perfor-
mance elasticity of provided services. Table 2 illustrates a

performance of execution time for different operations of pro-
posed protocol based on Domingo-Ferrer’s scheme compared
with a well-known homomorphic encryption called Gentry’s

scheme Gentry, 2009.
6. Conclusion

In this paper, we proposed some techniques to perform various
arithmetic and comparison operations to ensure secure compu-
tation in several applications running in cloud environments
using Domingo-Ferrer’s additive and multiplicative privacy

homomorphism scheme. This led to the advantage of moving
applications that require secure computations on both positive
and negative ranges in cloud computing. Moreover, this con-

tribution can be applicable to extend another Domingo-
Ferrer’s scheme named a new privacy homomorphism and
application Ferrer, 1996. According to that, we designed an

aggregation maximum/minimum function based on
Domingo-Ferrer’s scheme that improves the existing scheme
(Ertaul and Kedlaya, 2007) by extending this function to work

in the negative number range and improving the efficiency by
combining the processes of finding maximum and minimum
values in a single process. The performance of the proposed
scheme is quite satisfactory and efficient enough to use in light-

weight applications, and it is convenient to be applied to
cloud-based applications.
Appendix A. Domingo-Ferrer’s additive and multiplicative

privacy homomorphism scheme

In Domingo-Ferrer’s scheme, m and d are two public parame-

ters where the former is a large integer with many divisors and
the latter is a small integer and d > 2. Since each single
encrypted value is represented by a tuple, which is a set of

elements, the parameter d represents the number of elements
in each tuple. The secret parameters are m0 and r. The former
is a small divisor of m;m0 > 1 and the latter is r 2 Zm, as long

as r�1 modulus m exists. In short, we can consider the secret
key in this scheme as k ¼ ðm0; rÞ. All encryption and
decryption processes are performed in a classified level that
is considered a secure part of this scheme; meanwhile, all arith-
metic operations on encrypted data are performed in an

unclassified level, which is considered a public environment,
such as a cloud-based environment.

The encryption process is performed through randomly

splitting the selected value a 2 Zm0 into small secret values

ða1; a2 . . . ; adÞ, where d determines a tuple size for each splitted
value, as previously mentioned. The splitting process must sat-
isfy the following:

a ¼
Xd

i¼1
ai mod m0 where ai 2 Zm ð:1Þ

After that,

EkðaÞ ¼ ða1r1 mod m; a2r
2 mod m; . . . ; adr

d mod mÞ ð:2Þ
At the end of an encryption process, a tuple of encrypted

values is used to represent its plaintext value in encrypted
form, and it can be used to perform arithmetic operations with
other encrypted tuples.

The decryption process is performed through calculating a

scalar product of the, i� th element in a tuple by r�1 mod m to

retrieve ai mod m as follows:

ða1r�1 mod m; a2r
�2 mod m; . . . ; adr

�d mod mÞ ð:3Þ
Then, all elements in a resulted tuple are added through

recalling Eq. (1). to retrieve an original value of a as follows:

a ¼
Xd

i¼1
ai mod m0 ð:1Þ

All arithmetic operations on encrypted data are carried out

over ðZmÞd at an unclassified level. We demonstrate a simple

numerical example of this scheme below to clarify both encryp-
tion/decryption processes and arithmetic computations on
encrypted data, as well. In this example, we choose public

and private parameters, as follows:
Public parameters: m is the public modulus and it is chosen

to be m ¼ 28. We choose d ¼ 2, which represents a number of

elements in a single tuple. For simplicity, it is recommended to
be d > 2 in worst case for security reasons.

Private parameters: We choose r ¼ 3 and m0 ¼ 7 to be the

secret key. We make sure r�1 mod m exists, which is

r�1 ¼ 19 in this case.
We use a formula to perform two addition operations com-

bined with a single multiplication operation, namely
ðx1 þ x2Þx3 where x1 ¼ 2; x2 ¼ 1 and x3 ¼ 0. The first stage

36 A. Alabdulatif, M. Kaosar
is to encrypt all these plaintext values by recalling both Eqs. (1)
and (2) respectively, for each a single plaintext value.

Generate random value of x1 ¼ 2�!ð0; 9Þ
Generate random value of x2 ¼ 1�!ð1; 7Þ
Generate random value of x3 ¼ 0�!ð2; 5Þ

The next step is encrypting all plaintext values by utilising
Eq. (2) based on random values that are generated through

Eq. (1).

Eðx1Þ ¼ ðð0� 3Þ mod 28; ð9� 9Þ mod 28Þ ¼ ð0; 25Þ
Eðx2Þ ¼ ðð1� 3Þ mod 28; ð7� 9Þ mod 28Þ ¼ ð3; 7Þ
Eðx3Þ ¼ ðð2� 3Þ mod 28; ð5� 9Þ mod 28Þ ¼ ð6; 17Þ

All previous steps are processed in a secure environment,
which is considered a classified level. Now, we implement the

formula ðx1 þ x2Þx4 on encrypted data at an unclassified level,
such as in cloud-based environment. We add (x1 þ x2) in their
encrypted forms, as follows:

X2

i¼1
EðxiÞ ¼ ð0þ 3 mod 28; 25þ 7 mod 28Þ ¼ ð3; 4Þ

Then, we multiply Eðx3Þ with the addition result ð3; 4Þ,
ð3; 4Þ � Eðx4Þ ¼ ð3;4Þ � ð6; 17Þ
¼ ð0; 3� 6 mod 28; ð3� 17þ 4� 6Þ mod 28; 4� 17 mod 28Þ
¼ ð0; 18; 19;12Þ

Finally, the result is returned to a classified level to perform
the decryption process, based on Eq. (3), and obtain the plain-

text result, as follows:

ð0� r�1 mod m;18� r�2 mod m;19� r�3 mod m;12� r�4 mod mÞ
ð0�19mod 28;18�192 mod 28;19�193 mod 28;

12�194 mod 28Þ¼ ð0;2;9;24Þ

The final step in the decryption process is adding all ele-

ments in the resulted tuple over Zm0 to get 35 mod 7 ¼ 0,

which is the correct result if we do the same operations on
plaintext values.
References

M. Atallah, M. Blanton, Techniques for Secure and Reliable Compu-

tational Outsourcing, Technical Report, DTIC Document, 2013.

Bayer-Fluckiger, E., 2002. Panorama Number Theory, 168–184.

Benaloh, J., 1994. In: Proceedings of the Workshop on Selected Areas

of Cryptography, pp. 120–128.

Ben-Or, M., Goldwasser, S., Wigderson, A., 1988. In: Proceedings of

the Twentieth Annual ACM Symposium on Theory of Computing.

ACM, pp. 1–10.

Chaum, D., Crépeau, C., Damgard, I., 1988. In: Proceedings of the

Twentieth Annual ACM Symposium on Theory of Computing.

ACM, pp. 11–19.

Damgård, I., Pastro, V., Smart, N., Zakarias, S., 2012. In: Advances in

Cryptology–CRYPTO 2012. Springer, pp. 643–662.

Domingo-Ferrer, J., 2002. In: Information Security. Springer,

pp. 471–483.

ElGamal, T., 1985. In: Advances in Cryptology. Springer, pp. 10–18.

Ertaul, L., Kedlaya, V., 2007. In: ICWN, pp. 186–192.

Ferrer, J.D.I., 1996. Information Processing Letters 60, 277–282.

Gentry, C., 2009. In: Proceedings of the 41st Annual ACM Sympo-

sium on Theory of Computing, STOC ’09. ACM, New York, NY,

USA, pp. 169–178.

Gentry, C., 2009. A fully homomorphic encryption scheme, Ph.D.

thesis, Stanford University.

Gentry, C., 2010. Commun. ACM 53, 97–105.

Gosling, J., Joy, B., Steele, G., Bracha, G., 2005. Java (TM) Language

Specification. The (Java (Addison-Wesley)), Addison-Wesley

Professional.

López-Alt, A., Tromer, E., Vaikuntanathan, V., 2012. In: Proceedings of

the 44th SymposiumonTheory of Computing.ACM, pp. 1219–1234.

Paillier, P., 1999. In: Advances in Cryptology–EUROCRYPT99.

Springer, pp. 223–238.

Prabhakaran, M.M., Sahai, A., 2013. Secure Multi-party Computa-

tion. IOS Press.

Rivest,R.L., Shamir,A.,Adleman,L., 1978.Commun.ACM21, 120–126.

Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V., 2010. In:

Advances in Cryptology–EUROCRYPT. Springer, pp. 24–43.

Wagner, D., 2003. In: Information Security. Springer, pp. 234–239.

Yao, A.C.-C. In: Foundations of Computer Science, 27th Annual

Symposium on, IEEE, 1986, pp. 162–167.

Yokoo, M., Suzuki, K., 2002. In: Proceedings of the First Interna-

tional Joint Conference on Autonomous Agents and Multiagent

Systems: Part 1. ACM, pp. 112–119.

http://refhub.elsevier.com/S1319-1578(15)00080-4/h0010
http://refhub.elsevier.com/S1319-1578(15)00080-4/h6320
http://refhub.elsevier.com/S1319-1578(15)00080-4/h6320
http://refhub.elsevier.com/S1319-1578(15)00080-4/h6320
http://refhub.elsevier.com/S1319-1578(15)00080-4/h9500
http://refhub.elsevier.com/S1319-1578(15)00080-4/h9500
http://refhub.elsevier.com/S1319-1578(15)00080-4/h9500
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0030
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0030
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0035
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0035
http://refhub.elsevier.com/S1319-1578(15)00080-4/h5555
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0045
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0055
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0055
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0055
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00080-4/h6555
http://refhub.elsevier.com/S1319-1578(15)00080-4/h6555
http://refhub.elsevier.com/S1319-1578(15)00080-4/h9555
http://refhub.elsevier.com/S1319-1578(15)00080-4/h9555
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0085
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0085
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0090
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0095
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0095
http://refhub.elsevier.com/S1319-1578(15)00080-4/h0100
http://refhub.elsevier.com/S1319-1578(15)00080-4/h5000
http://refhub.elsevier.com/S1319-1578(15)00080-4/h5000
http://refhub.elsevier.com/S1319-1578(15)00080-4/h5000

	Privacy preserving cloud computation using Domingo-Ferrer scheme
	1 Introduction
	2 Background
	2.1 Secure computation operations
	2.2 Domingo-Ferrer’s additive and multiplicative privacy homomorphism scheme

	3 Proposed secure computations
	3.1 Keys and parameters
	3.2 Encryption/decryption processes
	3.2.1 Encryption process
	3.2.2 Decryption process

	4 Arithmetic and logical operations
	4.1 Addition and subtraction operations
	4.2 Multiplication operation
	4.3 Maximum/minimum function

	5 Implementation and performance analysis
	6 Conclusion
	Appendix A Domingo-Ferrer’s additive and multiplicative privacy homomorphism scheme
	References

