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Abstract: In this article, a fast krill herd algorithm is developed for prognosis of hybrid mechatronic
system using the improved Wiener degradation process. First, the diagnostic hybrid bond graph
is used to model the hybrid mechatronic system and derive global analytical redundancy relations.
Based on the global analytical redundancy relations, the fault signature matrix and mode change
signature matrix for fault and mode change isolation can be obtained. Second, in order to determine
the true faults from the suspected fault candidates after fault isolation, a fault estimation method
based on adaptive square root cubature Kalman filter is proposed when the noise distributions are
unknown. Then, the improved Wiener process incorporating nonlinear term is developed to build
the degradation model of incipient fault based on the fault estimation results. For prognosis, the fast
krill herd algorithm is proposed to estimate unknown degradation model coefficients. After that,
the probability density function of remaining useful life is derived using the identified degradation
model. Finally, the proposed methods are validated by simulations.

Keywords: diagnostic hybrid bond graph; hybrid mechatronic system; adaptive square root cubature
Kalman filter; improved Wiener process; fast krill herd algorithm

1. Introduction

Hybrid mechatronic systems, which include interacting continuous and discrete
dynamics, are widely used in modern industrial systems, such as automobile, chemical
plant, and aerospace engineering [1,2]. As their complexities increase, higher demand on
safety and reliability requires more accurate fault diagnosis and failure prognosis which
could provide effective means for system maintenance. Consequently, it is important
to detect and isolate system faults as soon as possible and then considerable economic
losses can be avoided [3–5]. Since recent years, many valuable works have been reported
in the hybrid system fault diagnosis and prognosis fields [6–10]. Among these works,
discrete event system model-based methods (e.g., Petri net and automaton) are widely
investigated. The timed Petri net model is used for mode tracking and fault diagnosis of
hybrid systems [6]. This model can only depict the temporal discrete event degradation
of the hybrid system because the continuous dynamics is neglected. The main problem
of this method is that domain-specific knowledge is required to build the fault–symptom
table. In addition, training data obtained from reliability testing are needed to compute
the individual faults prior probability distributions. The hybrid automaton model is
utilized for fault diagnosis of hybrid systems based on structured residuals [7]. The hybrid
automaton model consists of finite state automaton and continuous state-space model. The
continuous state-space model is used to derive structured residuals for fault detection.
The structured residuals can generate the fault signatures for fault isolation. However, for
complex hybrid systems with many modes, this method needs to derive a large number
of state-space models. Therefore, it is difficult to design fault diagnosis algorithms and
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real-time implementation under this situation. Fortunately, hybrid bond graph (HBG),
which is a graphical tool only, utilizes a set of unified equations (i.e., global analytical
redundancy relations (GARR)) for fault diagnosis where information of all modes and
physical component faults are incorporated [10]. According to GARRs, the fault signature
matrix (FSM) and mode change signature matrix (MCSM) can be established, based on
which the isolation of unexpected mode change and component fault can be carried out.

In some cases, the estimations of fault parameters are needed to evaluate the fault
severity (e.g., fault severity is required for fault tolerant control) and at the same time
refine the set of fault candidates (SFC) if some faults in SFC are non-isolable. The Kalman
filter (KF) is a popular method for fault parameter estimation of linear systems with
Gaussian noise where the fault parameter is treated as a special state. It generates recursive
estimations of state vectors by optimally weighting information from the system dynamic
model and current measurements [11]. However, KF is geared toward linear systems [12].
To deal with nonlinear systems, extended Kalman filter (EKF) is developed, and this
method linearizes the nonlinear systems using the Jacobian matrix, which may reduce the
estimation accuracy [13]. To ameliorate the filter performance, some more efficient methods,
e.g., unscented Kalman filter (UKF) and cubature Kalman filter (CKF), are proposed. The
advantage of these methods over EKF lies in that the calculation of Jacobian matrix is
not required (e.g., UKF directly propagates the nonlinear function through unscented
transformation and CKF uses cubature points to approximate the variance and mean). As a
result, UKF and CKF can achieve more accurate filtering performance for strongly nonlinear
systems [14,15]. However, UKF may lead to uncertain solution because it requires the
weight of the central sampling point to be positive [16]. Likewise, the covariance matrix of
CKF cannot be decomposed if its positive definiteness is not ensured, which may obstruct
the algorithm implementation. To solve the above problem, the square root cubature
Kalman filter (SRCKF) which utilizes the square root of the covariance matrix is proposed
to guarantee the non-negative definiteness of the covariance matrix [15]. Nevertheless, it is
not a trivial task to properly set the filter noise covariances for SRCKF.

The health monitoring not only needs to diagnose the fault, but also needs to prevent
the failure by predicting the remaining useful life (RUL). Roughly speaking, RUL prediction
(or prognosis) methods are mainly composed of model-based approaches and data-driven
approaches [17–21]. A model-based sequential prognosis method is developed for an
electric scooter in the presence if intermittent fault [17]. However, it is challenging to obtain
the accurate mathematical model of the degradation process which makes the application
of model-based prognosis methods difficult. Therefore, many literatures investigate data-
driven approaches which rely on the quality and quantity of history data as alternatives.
Yang et al. propose an intelligent RUL prediction method based on a double convolutional
neural network model architecture [19]. Both the above model-based and data-driven
methods use deterministic degradation models where the randomness of the degradation
process is not considered [10,17–19]. To overcome this shortcoming, the Wiener process,
which incorporates stochastic nature in degradation models, is proved to be a suitable
tool [20]. In [21], Wiener process with linear drift is utilized for the preventive maintenance
of microelectromechanical systems. However, most degradation processes are nonlinear
where the standard Wiener process may not be a promising solution.

To cope with the aforementioned difficulties, this article proposes a new prognosis
method based on improved Wiener process for the hybrid mechatronic system. The main
contributions of this article are threefold:

(1) An adaptive square root cubature Kalman filter (ASRCKF) which can adaptively
estimate the unknown noise distributions is proposed to accurately estimate the fault
parameter.

(2) An improved Wiener process with nonlinear term is developed to capture the
degradation of incipient fault.
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(3) A prognosis method using fast krill herd (FKH) algorithm is proposed where the
FKH is developed to estimate the degradation model coefficients based on the identified
fault data from fault estimation module.

The remainder of this article is organized as follows. Section 2 models the hybrid
mechatronic system based on the diagnostic hybrid bond graph (DHBG) theory. In
Section 3, the ASRCKF-based fault estimation is introduced. Section 4 presents the RUL
prediction based on improved Wiener process whose coefficients are estimated by FKH.
Section 5 analyzes the simulation results. Finally, the concluding remarks are given in
Section 6.

2. FDI Based on DHBG Model

Due to the capability in modeling systems with multi-energetic domains, bond graph
(BG) theory, which is based on energy conservation law, is a reasonable choice for fault
diagnosis and isolation (FDI) of complex mechatronic systems [4]. In BG methodology,
different types of multiport elements are utilized to model the physical components and
their behaviors in a variety of energy domains. Generic BG elements consist of source
elements (S f and Se), dissipative element (R), storage elements (C and I), two junctions
(0 junction and 1 junction), and two transducers (TF and GY) [17]. The half arrow bond is
used to connect these generic BG elements. For each bond, there are two power variables
(effort e and flow f ) which can describe the energy exchange between different elements.
In addition, there is a perpendicular stroke at one end of a bond to represent the cause and
effect relation between power variables. In summary, the BG modeling uses the generic
BG elements and bonds with causalities to describe the behaviors of physical system. In
Figure 1, the hybrid mechatronic system which includes continuous and discrete states
consists of several subsystems. Thus, it is preferred to use HBG to model the hybrid
mechatronic system in a compact manner. The basic BG method is applied to the modeling
of continuous systems, while the HBG extends the capability of basic BG to model hybrid
systems with the aid of controlled junctions, by which the dynamic characteristic of discrete
states characterized by modes can be described. For the purpose of FDI, the sequential
causality assignment procedure for hybrid system diagnosis is developed to achieve DHBG,
where the sensor causalities are inverted and controlled junctions are put in preferred
causalities [10]. After that, the GARR can be obtained from DHBG.
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Figure 1. DHBG model of the hybrid mechatronic system.

The DHBG model of the hybrid mechatronic system is shown in Figure 1. The system
can be divided into five parts: DC motor, transmission shaft, gearbox, conveyor belt,
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and load. The model input Se:U is an effort source, representing the input torque. The
representation of Se:U follows the convention of BG modeling where the physical parameter
of an element (i.e., U for effort source) is attached to the symbol of the element (i.e., Se for
effort source) by a colon. This representation applies to all generic BG elements except
junction elements. The DC motor mechanical part is composed of the rotor inertia I:Jm and
mechanical friction R: fm. The stiffness K of the transmission shaft is represented by the
capacitive element C. The gearbox is modeled by three TF elements with gear ratios N1,
N2 and N3. Likewise, the transformer element TF is used to model the conveyor belt with
transmission ratio N4. The load is characterized by rotational inertia I:Js and mechanical
friction R: fs. The angular velocities of motor and load are measured by two flow sensors
D f :θ̇1 and D f :θ̇2.

Analytical redundancy relation (ARR) is a dynamic constraint only containing the
known information (i.e., sensor measurements, inputs and physical parameters) of the
system. According to the real-time numerical evaluation of ARR (i.e., residual), the fault
can be detected if the observed residual exceeds the corresponding threshold. In the DHBG
model, the structure and dynamic characteristics of the system are different under diverse
modes, and the basic ARR is unable to describe the constraints under different modes
in an unified manner. In order to efficiently utilize the residuals generated from DHBG
models, the concept of the GARR is introduced. The main distinction between GARR and
basic ARR is that GARR carries mode information. The general form of GARR can be
represented as follows [22]:

Gj

(
a, θ, U, De, D f

)
= 0, j = 1, 2...ng (1)

where Gj represents the jth GARR, a is the mode, θ denotes the physical parameter, U
is the system input, and De and D f represent the sensor measurements. In Figure 1, 13,
14, and 15 are controlled junctions and the corresponding mode is a = [a1 a2 a3], where
ai ∈ {0, 1}, i = 1, 2, 3, and ∑3

i=1 ai = 1 (indicates that at any instant only one gear ratio is in
operation). In DHBG, the junctions attached with sensors of inverted causality are used to
derive the GARR equations. In the causality inversion method, the causality of sensor is
inverted and the output of the sensor-attached junction is zero (e.g., f3 = 0 for junction 11).
Thus, the necessary condition of deriving an ARR (i.e., the junction output variable must
be measured by a sensor) can be relaxed. In this way, the ARR can be established using the
constitutive relation of the sensor-attached junction [17]. For junction 11 connected to the
sensor with inverted causality, the constitutive relation can be obtained as follows:

e1 − e2 − e3 − e4 − e5 = 0 (2)

To derive the GARR from junction 11, the unknown variables in (2) should be elimi-
nated by covering the causal paths. Thus, the unknown variables in (2) can be expressed as

e1 = U

e2 = fm f2 = fm θ̇1

e3 = 0

e4 = Jm
d f4

dt
= Jm

dθ̇1

dt
= Jm θ̈1

e5 = K
∫ [

θ̇1 − NaN4θ̇2
]

dt

(3)

where Na = ∑3
i=1 ai Ni is the gear ratio which is in operation.

Substituting (3) into (2) leads to GARR1 as follows:

GARR1 = U− fm θ̇1 − Jm θ̈1 − K
∫ (

θ̇1 − NaN4θ̇2
)

dt (4)
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For junction 17 with sensor of inverted causality, the constitutive relation can be
formulated as

e17 − e18 − e19 − e20 = 0 (5)

In the similar way, the unknown variables in (5) can be solved as

e17 = N4e16 = NaN4K
∫ (

θ̇1 − NaN4θ̇2
)

dt

e18 = fs f18 = fs θ̇2

e19 = 0

e20 = Js
d f20

dt
= Js

dθ̇2

dt

(6)

Substituting (6) into (5) results in GARR2 as follows:

GARR2 = NaN4K
∫ (

θ̇1 − NaN4θ̇2
)

dt− fs θ̇2 − Js θ̈2 (7)

when the fault or the unknown mode change occurs, the corresponding GARR will exceed
the threshold. Therefore, a binary coherent vector CV= [c1 ... cng ] is defined to represent
the consistency of GARRs. The decision rule of cj is defined as follows:

cj =

{
1, |gj| > ιj

0, other
, j = 1, 2, . . . , ng (8)

In the developed prognosis method, the first step is to detect and isolate the unex-
pected mode change by comparing the CV with the MCSM. The MCSM is shown in Table 1,
where Db represents the detectability. If the unexpected mode change is detected, all
possible modes are put in the GARRs. The mode that makes the GARRs consistent is the
actual mode. If no unexpected mode change is detected, the nonzero CV is caused by the
parameter fault, and the SFC can be obtained by comparing the CV with the FSM in Table 2.
Take an example of the actuator fault in U, CV= [1 0], which cannot be caused by the
unexpected mode change, is detected upon the fault occurrence. After comparing the CV
with FSM, the SFC = {U, fm, Jm} is obtained. To refine the SFC, the ASRCKF-based fault
estimation is enabled, where the possible fault parameters in SFC are treated as special
states in the state-space model derived from GARRs. Based on the fault estimation results,
the fault data representing the fault parameter degradation can be obtained, by which
the coefficients of improved Wiener process-based degradation model can be estimated
by the FKH algorithm. Once the degradation model is obtained, the prognosis can be
implemented using the predefined failure threshold. The framework of the developed
prognosis method is illustrated in Figure 2.

Table 1. Mode change signature matrix.

r1 r2 Db

a1 1 1 1
a2 1 1 1
a3 1 1 1
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Table 2. Fault signature matrix.

r1 r2 Db

fm 1 0 1
Jm 1 0 1
fs 0 1 1
Js 0 1 1
K 1 1 1
U 1 0 1
N4 1 1 1

Hybrid mechatronic 

system

Inputs Outputs

GARRs

Mode Parameters

GARRs

Mode change isolation 

based on MCSM

Yes

Fault isolation based 

on FSM

No

Mode change 

identification

Fault estimation based 

on ASRCKF

Prognosis based on 

improved Wiener 

process

Fault data

PDF of RUL

Faulty mode

Unexpected mode 

change?

Figure 2. Block diagram of the developed prognosis method.

3. Fault Estimation Based on ASRCKF

With the SFC, the next step is to identify the true fault. In this work, the CKF is em-
ployed for fault parameter estimation. Compared with the EKF, CKF which uses cubature
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points to approximate the variance and mean can achieve better filtering performance
for some highly nonlinear systems. To avoid the situation that the covariance matrix of
CKF cannot be decomposed, the SRCKF is proposed. However, both CKF and SRCKF
require the prior statistical characteristics of noises which are usually unavailable in real
applications. Motivated by this observation, ASRCKF is proposed to adaptively update the
unknown covariance matrix of process noise and measurement noise.

To implement the ASRCKF for the joint estimation of state and fault parameters, the
system state x̄ = [θ1, θ̇1, θ2, θ̇2]

T requires to be augmented as xk = [θ1, θ̇1, θ2, θ̇2, Φ]T , where
Φ represents the vector which contains all fault parameters in the SFC (e.g., U, fm, and Jm
if CV = [1 0]). Consequently, the nonlinear discrete stochastic model can be derived as{

xk = f (xk−1, wk)
zk = h(xk, vk)

(9)

Before introducing the ASRCKF, it is necessary to describe the cubature point selection
strategy. According to the third-degree spherical-radial rule, the cubature points are
defined as

ξi =

√
m
2
[1]i, ωi =

1
m

, i = 1, 2, . . . , m, m = 2n (10)

where n is the state dimension of the system and [1]i is the ith element in the operator space

[1] =




1
0
...
0

,


0
1
...
0

, . . . ,


0
0
...
1

,


−1
0
...
0

,


0
−1

...
0

, . . . ,


0
0
...
−1


, [1]i ∈ [1] (11)

In summary, the ASRCKF can be described as follows.
(1) Initialize state x0 and covariance matrix P0 and factorize the covariance matrix

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1, k = 1, 2, . . . , end (12)

(2) Calculate the cubature points of state vector and cubature points of prediction values of
state vector

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1, i = 1, 2, . . . , m (13)

X∗i,k|k−1 = f (Xi,k−1|k−1, wk), i = 1, 2, . . . , m (14)

(3) Calculate the predicted state vector and the square root factor of the predicted error

x̂k|k−1 =
1
m

m

∑
i=1

X∗i,k|k−1 (15)

SQ,k|k−1 = Tria([X∗k|k−1, SQ,k]) (16)

where Tria denotes a general triangularization algorithm (e.g., the QR decomposition),
SQ,k = chol(QK) and X∗k|k−1 is calculated as

X∗k|k−1 =
1√
m
[X∗1,k|k−1 − x̂k|k−1, X∗2,k|k−1 − x̂k|k−1, . . . , X∗m,k|k−1 − x̂k|k−1]

(4) Calculate the cubature points of predicted state vector and cubature points of prediction
values of measurement vector

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1, i = 1, 2, . . . , m (17)
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Yi,k|k−1 = h(Xi,k|k−1) (18)

(5) Calculate the predicted measurement vector and square root factor of the innovation
covariance matrix

ẑk|k−1 =
1
m

m

∑
i=1

Yi,k|k−1 (19)

SR,k|k−1 = Tria([Yk|k−1, SR,k]) (20)

where SR,k = chol(Rk) and Yk|k−1 is expressed as

Yk|k−1 =
1√
m
[Y1,k|k−1 − ẑk|k−1, Y2,k|k−1 − ẑk|k−1, . . . , Ym,k|k−1 − ẑk|k−1]

(6) Calculate the cross-covariance matrix and Kalman gain matrix

Pk|k−1 = Xk|k−1YT
k|k−1 (21)

Kk = (Pk|k−1/ST
R,k|k−1)/SR,k|k−1 (22)

where Xk|k−1 is expressed as

Xk|k−1 =
1√
m
[X1,k|k−1 − x̂k|k−1, X2,k|k−1 − x̂k|k−1, . . . , Xm,k|k−1 − x̂k|k−1]

(7) Update the state estimation and calculate the square root factor of the error covari-
ance matrix

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (23)

Sk|k = Tria([Xk|k−1 − Kk ×Yk|k−1, SR,k]) (24)

(8) Calculate the residual sequence and update the process noise covariance matrix and
measurement noise covariance matrix

εk = zk − ẑk|k−1 (25)

Qk = KkCkKT
k (26)

Rk = Ck +
2n

∑
i=0

ωi(Yi,k|k−1 − zk + Ck)(Yi,k|k−1 − zk + Ck)
T (27)

where Ck =
∑k

q=k−κ+1 εqεT
q

κ .
In the update stage of noise covariance matrixes, the output velocity residual sequence

is used to adaptively estimate Qk and Rk.
To summarize, the different steps of the ASRCKF algorithm implementation are given

in Algorithm 1.
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Algorithm 1: Pseudocode of ASRCKF.
1. Initialize state vector and covariance matrix x0, P0
For each time step: k = 1, 2 . . . , end
2. Calculate the cubature points of state vector and cubature points of prediction values of

state vector
Xi,k−1|k−1 = chol(Pk−1|k−1)ξi + x̂k−1|k−1
X∗i,k|k−1 = f (Xi,k−1|k−1, wk), i = 1, 2, . . . , m
3. Calculate the predicted state vector and square root factor of predicted error covariance
x̂k|k−1 = 1

m ∑m
i=1 X∗i,k|k−1

SQ,k|k−1 = Tria
([

1√
m [X∗1,k|k−1 − x̂k|k−1, X∗2,k|k−1 − x̂k|k−1, . . . , X∗m,k|k−1 − x̂k|k−1], chol(Qk)

])
4. Calculate the cubature points of predicted state vector and cubature points of prediction
values of measurement vector
Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1
Yi,k|k−1 = h(Xi,k|k−1), i = 1, 2, . . . , m
5. Calculate the predicted measurement vector and the square root factor of innovation co-
variance matrix
ẑk|k−1 = 1

m ∑m
i=1 Yi,k|k−1

SR,k|k−1 = Tria
([

1√
m [Y1,k|k−1 − ẑk|k−1, Y2,k|k−1 − ẑk|k−1, . . . , Ym,k|k−1 − ẑk|k−1], chol(Rk)

])
6. Calculate the cross-covariance matrix and Kalman gain matrix
Pk|k−1 = 1√

m [X1,k|k−1 − x̂k|k−1, X2,k|k−1 − x̂k|k−1, . . . , Xm,k|k−1 − x̂k|k−1]× 1√
m [Y1,k|k−1 − ẑk|k−1,

Y2,k|k−1 − ẑk|k−1, . . . , Ym,k|k−1 − ẑk|k−1]
T

Kk = (Pk|k−1/ST
R,k|k−1)/SR,k|k−1

7. Update the state estimation and calculate square root factor of error covariance matrix
x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1)

Sk|k = Tria
([

1√
m [X1,k|k−1 − x̂k|k−1, X2,k|k−1 − x̂k|k−1, . . . , Xm,k|k−1 − x̂k|k−1]− Kk × 1√

m [Y1,k|k−1

−ẑk|k−1, Y2,k|k−1 − ẑk|k−1, . . . , Ym,k|k−1 − ẑk|k−1], chol(Rk)
])

8. Calculate the residual sequence and update the process noise covariance matrix and me-
asurement noise covariance matrix
εk = zk − ẑk|k−1

Qk = Kk
∑k

q=k−κ+1 εqεT
q

κ KT
k

Rk =
∑k

q=k−κ+1 εqεT
q

κ + ∑2n
i=0 ωi

(
Yi,k|k−1 − zk +

∑k
q=k−κ+1 εqεT

q
κ

)(
Yi,k|k−1 − zk +

∑k
q=k−κ+1 εqεT

q
κ

)T

4. RUL Prediction Based on Improved Wiener Process
4.1. Improved Wiener Process

The Wiener process is widely used in the modeling of degradation process. The basic
form of the Wiener process can be represented as follows [23]:

W(t) = W(0) + αt + σB(t) (28)

where W(0) represents the fault value at time 0, α is the drift coefficient, σ is the diffusion
coefficient, B(t) is the Brownian motion which denotes the randomness of degradation
process, and αt represents the mean accumulated effect of the incipient fault.

To predict RUL by Wiener process, the relationship between the degradation process
and the distribution of the end of life (EOL) needs to be determined by which the probability
distribution of RUL can be deduced. The definition of EOL in this article is based on the
first hitting time (FHT), denoted as T, which can be represented as [23]

T = inf
{

t > 0 : W(t) ≥W f |W(0) < W f

}
(29)
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where W f is the failure threshold.
In the Wiener process, the FHT obeys the inverse gaussian distribution which describes

the probability distribution of the time required for Brownian motion to reach a fixed
positive value W f for the first time. Therefore, the probability distribution of EOL can be
obtained as

fT(t) =
W f√

2πσ2t3
exp

(
−
(W f − αt)2

2σ2t

)
(30)

Assuming that the fault value at time tk (tk ≥ 0) is W(tk), the RUL can be formulated
as [24]

Lk = inf
{

lk > 0 : W(tk + lk) ≥W f |W(tk) < W f

}
(31)

and the probability density function (PDF) of the RUL can be formulated as follows [24]:

fLk (lk) =
W f −W(tk)√

2πσ2l3
k

exp

(
−
(W f −W(tk)− αlk)2

2σ2lk

)
(32)

However, the degradation process is usually nonlinear for most industrial systems,
the linear term αt in (28) may not be sufficient to capture the nonlinear degradation process.
To deal with this issue, the linear term αt in (28) is replaced by the logarithmic function
Λ(t) = α logβ(t + 1), where β is the base of the logarithmic function. After that, the
improved Wiener process can be formulated as

W(t) = W(0) + α logβ(t + 1) + σB(t) (33)

The corresponding modified PDF of RUL can be computed as

fLk (lk) =
W f −W(tk)−

[
Λ(tk + lk)−Λ(tk)−

dΛ(tk+lk)
dt lk

]
√

2πσ2l3
k

exp

−
[
W f −W(tk)− (Λ(tk + lk)−Λ(tk))

]2

2σ2lk


(34)

4.2. Estimation of Coefficients of the Improved Wiener Process Based on FKH

For RUL prediction using the improved Wiener process, the corresponding process
coefficients should be available to compute the PDF of RUL based on (34). To this end,
a certain method is required. In recent years, many computational intelligence methods
have been investigated extensively [25–30]. In this work, FKH is proposed to estimate the
unknown degradation model (i.e., the improved Wiener process) coefficients. Krill herd
(KH) algorithm is a biologically inspired algorithm which is developed in [30]. The KH
has some drawbacks such as slow convergence and premature. To improve the algorithm
performance, the FKH is proposed where the inertia weight is adaptively updated.

Due to the random property of Brownian motion, it is difficult to use FKH to identify
three unknown coefficients (i.e., α, β, and σ) in (33) simultaneously. To remedy this
problem, one may first identify β by the least square method. The mean square error can
be calculated as

MSEβ =
1
s

s

∑
ρ=1

[
logβ(tρ + 1)− Γ(tρ)

]2
(35)

where s is the number of sampling points and Γ(tρ) denotes fault value at time tρ. After β
is obtained, α and σ can be estimated by the FKH.
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In the KH, the optimization process can be represented as

dΨl
dt

= Ml + Fl + Dl (36)

The induced motion is calculated as Ml = Mmax(γlocal
l + γ

target
l ) + ζm Mold

l , where
Mmax is the maximum induced speed, ζm is the inertia weight of induced motion in the
range [0, 1], Mold

l is the last motion, γlocal
l is the local effect provided by the neighbors,

and γ
target
l is the target direction effect provided by the best krill individual. The foraging

motion is formulated as Fl = Vf (δ
f ood
l + δbest

l ) + ζ f Fold
l , where Vf is the foraging speed,

ζ f is the inertia weight of the foraging motion in the range [0, 1], Fold
l is the last foraging

motion, δ
f ood
l is the food attraction effect, and δbest

l is the effect of the best fitness of the lth

krill so far. The random diffusion is expressed as Dl = Dmax
(

1− Υ
Υmax

)
η, where Dmax is

the maximum diffusion speed, Υ is the iteration number, Υmax is the maximum iteration
number, and η is the random directional vector whose arrays are random values in the
range [−1, 1].

The position degradation of a krill during interval [t, t + ∆t] is given as

Ψl(t + ∆t) = Ψl(t) + ∆t
dΨl
dt

(37)

where ∆t = Θt ∑NV
j=1(UBj − LBj) is the scale factor of the speed vector, Θt is a constant

between [0, 2], NV is the total number of optimized variables, and UBj and LBj are lower
bound and upper bound of the jth optimized variable (j = 1, 2, . . . , NV), respectively.

Although KH has been proved to be an efficient method in solving the optimization
problem in various applications, it has some inherent drawbacks such as slow conver-
gence and premature. To accelerate the convergence speed of the algorithm, the FKH
is proposed by reducing the inertia weight of the individuals with poor fitness in the
previous generation.

In the FKH, the fitness function is chosen as Fit = ∑s
ρ=1
[
W(tρ)− Γ(tρ)

]2. Thus, at the
Υth iteration, ζm of lth krill is defined as

ζΥ
m,l =

{
ζΥ−1

m,l Fit(l, Υ) ≤ Fit(l, Υ− 1)

0 Fit(l, Υ) > Fit(l, Υ− 1)
(38)

where Fit(l, Υ) and Fit(l, Υ− 1) are fitness values of the lth krill individual at (Υ− 1)th
iteration and Υth iteration, respectively. ζ f of lth krill is calculated as

ζΥ
f ,l =

{
ζΥ−1

f ,l Fit(l, Υ) ≤ Fit(l, Υ− 1)
1
2 ζΥ−1

f ,l Fit(l, Υ) > Fit(l, Υ− 1)
(39)

In (39), ζ f is not set as 0 directly when the fitness is poor to avoid the local optima. In
addition, Θt is modified as

Θt = 2− ς1(
Υ

Υmax
)− ς2(

Υ
Υmax

)2 (40)

The purpose of (40) is to accelerate the convergence by adjusting Θt dynamically. The
coefficients ς1 and ς2 need to be carefully adjusted as it is critical for the FKH to estimate
coefficients of the improved Wiener process. It is difficult to obtain ς1 and ς2 theoretically.
Thus, a set of simulations are conducted to choose the coefficients properly. It is found that
the estimated accuracy improves with the increase of ς1 and ς2. However, when the ς1 and
ς2 are beyond 0.9, the decrease of convergence speed occurs. As a result, ς1 and ς2 are set
to be 0.9.
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5. Simulation Results

To verify the effectiveness of the proposed prognosis method, simulations are carried
out in MATLAB R2017a for the hybrid mechatronic system. There are two fault scenarios
where the first one is a mode fault injected at 7 s and the second one is an incipient actuator
fault introduced at 7 s. The nominal parameter values of the hybrid mechatronic system is
shown in Table 3.

Table 3. Nominal parameter values.

Parameter Nominal Value Parameter Nominal Value

fm 0.0014 (Nms/rad) N1 2
Jm 0.0001 (kgm2) N2 4
fs 0.0001 (Nms/rad) N3 6
Js 0.004 (kgm2) N4 10
K 1 (Nm/rad) U 1 (Nm)

In the first fault scenario, the desired Na in operation and the actual Na in operation are
shown in Figure 3, where the state of mode changes at 7 s and 15 s. The mode fault is set
as [1 0 0] between 7 s and 15 s, where the actual Na is 2 (while the desired Na is 4). Figure 4
illustrates the residual responses where all residuals exceed the thresholds (i.e., ι1 = 0.4 and
ι2 = 0.1) at 7 s. After that, the condition monitoring system is enabled to check whether
the inconsistency is due to a mode fault by comparing the CV = [1 1] with the MCSM. Thus,
[1 0 0] and [0 0 1] are two possible fault modes that may lead to the inconsistency. However,
substituting a = [0 0 1] into GARRs cannot make GARRs consistent. Therefore, the possible
fault mode is [1 0 0], and the GARRs will return within the threshold after a is set as [1 0 0].

a
N

t(s) t(s)

a
N

(a) (b)

[   ]a=

[   ]a=

[   ]a=

[   ]a= [   ]a=

[   ]a=

Figure 3. Na: (a) Desired Na. (b) Actual Na.

G
A
R
R

G
A
R
R

t(s) t(s)

Figure 4. Responses of residuals in the first fault scenario.

In the second fault scenario, the normal torque of the actuator is 1 Nm and an incipient
fault of the actuator is injected at 7 s. The degradation law of incipient fault is defined
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as U = 1 + 0.9× log2(t− t0 + 1) + 0.06× B(t), where t0 is 7 s and B(t) is the Brownian
motion which represents the randomness of degradation process. Figure 5 shows the
responses of residuals by which the CV is [1 0] after fault occurrence. As the nonzero
CV has no matching in the MCSM, the possibility of mode fault is ruled out and SFC
is obtained as {U, fm, Jm} by comparing CV with the FSM. To refine the SFC, the fault
estimation module is activated by using the ASRCKF. Estimation results of fm and Jm by
ASRCKF are shown in Figure 6. According to estimation results, fm and Jm are excluded
from the SFC because their estimated values are close to the nominal ones. Figure 7a
illustrates the estimated U where the estimated value significantly deviates from the
nominal one. As a result, the true fault is U. To verify the superiority of ASRCKF, the EKF
and UKF are also adopted to estimate U for comparison. Initial parameters for all filters are
set as P0 = diag(0.01,0.01,0.01,0.01,0.01,0.01,0.01), Q0 = diag(0.1,0.1,0.1,0.1,0.1,0.1,0.1) and
R0 = diag(0.01,0.01).

G
A
R
R

G
A
R
R

t(s) t(s)

Figure 5. Responses of residuals in the second fault scenario.

(N
m
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)

mf
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t(s) t(s)

-
´

-
´

Figure 6. Estimation results: (a) Estimate of fm. (b) Estimate of Jm.

(N
m
)

U

t(s) t(s)
(a) (b)

(N
m
)

U

Figure 7. Estimation results: (a) Estimate of U. (b) Partial magnification of U estimate.
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In addition to the estimation result of U, the partial magnification of estimation results
between 12 s and 13 s is illustrated in Figure 7b. To make the comparison quantitatively, the
estimation performance of three methods is given in Table 4, where ASRCKF is superior to
other two algorithms due to the employment of the square root factor and the adaptive
estimation of noise covariance matrixes.

Table 4. Comparison of fault estimation performance.

Algorithms Mean Absolute Error Mean Square Error

EKF 0.0591 0.0037
UKF 0.0366 0.0014

ASRCKF 0.0126 0.0009

After fault estimation, the estimation of the degradation model (i.e., the improved
Wiener process) coefficients can be implemented using the estimated fault data of U. The
estimate of β using the least square method is shown in Figure 8a. It is observed that
MSEβ increases as β increases, and MSEβ reaches the minimum value when β is equal to
2. Thus, the optimal value of β is 2. In Figure 8b,c, the estimation results of α and σ are
obtained by the FKH. Initial parameters for KH and FKH are set as l = 25, Υmax = 150,
Mmax = 0.01, Vf = 0.02, Dmax = 0.005, ζm = 0.5, and ζ f = 0.5. Both KH and FKH run
10 times based on the same estimated fault data of U, and the comparison of estimation
results is given in Table 5. It can be observed from the table that KH and FKH could achieve
similar estimation results. However, compared with KH, it is found that FKH is more
efficient in terms of the convergence speed.

M
S
E
b

b

a s

Iteration Iteration
(a) (b) (c)

Figure 8. Estimation results: (a) Estimate of β. (b) Estimate of α. (c) Estimate of σ.

Table 5. Comparison of degradation model coefficients estimation performance.

KH FKH

Mean of α 0.8991 0.8993
Mean of σ 0.0595 0.0596
St.dev of α 7.7463 × 10−5 7.4831 × 10−5

St.dev of σ 4.8988 × 10−5 4.5827 × 10−5

Mean iteration 72 60

After the degradation model coefficients are obtained, RUL prediction can be carried
out. The failure threshold of U is 4 Nm. Based on the estimated degradation model
coefficients and (34), the PDF of RUL can be obtained. In Figure 9a, the x-axis, y-axis, and
z-axis represent the time index, RUL, and the PDF of RUL. At each chosen instant, there
is a curve (denoted by a solid line) covering different RULs. It is observed that actual
RULs fall outside the coverage of the PDFs of RULs predicted by the standard Wiener
process. The unsuccessful RUL prediction is due to the limited fitting capability of the
standard Wiener process (i.e., only applicable to linear degradation process). In Figure 9b,
the axes are set the same as in Figure 9a. It is found that the actual RULs are enveloped
by the PDFs of RULs obtained by the improved Wiener process which is not the case for
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the standard Wiener process. For intuitive comparison, the top views of Figure 9a,b are
combined to form Figure 10 where x-axis and y-axis still represent the time index and RUL.
In Figure 10, the predicted mean RUL by standard Wiener process cannot track the actual
RUL since only linear term is used. By contrast, the predicted mean RUL by improved
Wiener process shows consistency with the corresponding actual RUL. Consequently, the
proposed prognosis method using improved Wiener process performs better than the one
using standard Wiener process.
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(a) (b)
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Figure 9. Predicted PDFs of RULs: (a) PDF of RUL obtained by standard Wiener process. (b) PDF of
RUL obtained by improved Wiener process. (“♦”: predicted mean RUL by standard Wiener process;
“∗”: actual RUL; “©”: predicted mean RUL by improved Wiener process).

y-
ax
is
/R
U
L
(s
)
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Figure 10. Mean RUL prediction results.

6. Conclusions

In this article, a computational intelligence-based prognosis method is developed for
the hybrid mechatronic system. Specifically, three main works are presented as follows
(according to different sections): (1) GARRs derived by the DHBG are utilized to obtain
MCSM and FSM, based on which both the unexpected mode changes and SFC can be iso-
lated; (2) a novel filtering algorithm called ASRCKF is proposed for parameter estimation
in the presence of unknown noise distributions. The ASRCKF functions better than other
filtering methods (such as EKF and UKF); (3) the improved Wiener process incorporating
nonlinear term is developed to capture the degradation of incipient fault, where the nonlin-
earity and randomness of degradation process are both taken into account. In addition, to
ensure the accuracy of estimate, the FKH is proposed to estimate the degradation model
coefficients efficiently.

In the future, there are three works that need to be addressed. First, only incipient
fault is considered in this work. However, intermittent fault, abrupt fault, mode fault,
or their combination may occur in the hybrid mechatronic system. Consequently, more
sophisticated algorithms are required to handle this complicated fault situation. Second,
the system is open-loop and no fault compensation is considered in this work. Thus, the
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fault-tolerant controller will be designed along with the effect of modeling and parametric
uncertainties in the future work. Lastly, only simulation results are analyzed. Experiments
will be carried out in modern industrial mechatronic systems to show practice significance
of the proposed method.
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Nomenclature

gj Numerical value of jth GARR.
ιj Threshold of jth GARR.
x̄ State vector.
xk Augmented state vector at time k.
zk Output vector at time k.
f State equation.
h Output equation.
wk Process noise at time k.
vk Measurement noise at time k.
ξi ith initial cubature point.
ωi Weight of ith cubature point.
[1] Operator space.
Qk Process noise covariance at time k.
SQ,k Square root factor of the process noise covariance at time k.
Rk Measurement noise covariance at time k.
SR,k Square root factor of the measurement noise covariance at time k.
chol Cholesky decomposition.
κ Window size.
W f Failure threshold.
T First hitting time.
Lk Remaining useful life at time k.
Ψl lth krill position.
Ml Induced motion of lth krill.
Fl Foraging motion of lth krill.
Dl Physical diffusion of lth krill.
Mmax Maximum induced speed.
Mold

l Last induced motion of lth krill.
γlocal

l Local effect of lth krill provided by the neighbors.
γ

target
l Target direction effect of lth krill provided by the best krill individual.

ζm Inertia weight of induced motion in the range [0, 1].
Vf Foraging speed.
ζ f Inertia weight of the foraging motion in the range [0, 1].
Fold

l Last foraging motion of lth krill.
δ

f ood
l Food attraction effect of lth krill.

δbest
l Effect of best fitness of the lth krill.

Dl Random diffusion.
Dmax Maximum diffusion speed.
Υ Iteration number.
Υmax Maximum iteration number.
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