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Abstract
Whole-genome resequencing (WGRS) of 396 lines, consisting of 104 hybrid parental

lines and 292 germplasm lines, were used to study the molecular basis of mid-

parent heterosis (MPH) and to identify complementary heterotic patterns in pigeon-

pea [Cajanus cajan (L.) Millsp.] hybrids. The lines and hybrids were assessed for

yield and yield-related traits in multiple environments. Our analysis showed posi-

tive MPH values in 78.6% of hybrids, confirming the potential of hybrid breeding in

pigeonpea. By using genome-wide prediction and association mapping approaches,

we identified 129 single nucleotide polymorphisms and 52 copy number variations

with significant heterotic effects and also established a high-yielding heterotic pattern

in pigeonpea. In summary, our study highlights the role of WGRS data in the study

and use of heterosis in crops where hybrid breeding is expected to boost selection

gain in order to ensure global food security.

Abbreviations: A-lines, cytoplasmic male-sterile lines; B-lines, maintainer lines; BLUE, best linear unbiased estimations; CMS, cytoplasmic male sterile;

CNV, copy number variation; FST, fixation index; GWAS, genome-wide association study; MPH, mid-parent heterosis; QTL, quantitative trait locus; R-lines,

restorer lines; SNP, single nucleotide polymorphism; WGRS, whole-genome resequencing.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2021 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America

Plant Genome. 2021;e20125. wileyonlinelibrary.com/journal/tpg2 1 of 13
https://doi.org/10.1002/tpg2.20125

https://orcid.org/0000-0002-9405-3570
https://orcid.org/0000-0002-2824-677X
https://orcid.org/0000-0003-4569-8900
https://orcid.org/0000-0002-4562-9131
mailto:r.k.varshney@cgiar.org
mailto:rajeev.varshney@murdoch.edu.au
mailto:reif@ipk-gatersleben.de
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/tpg2
https://doi.org/10.1002/tpg2.20125


2 of 13 SAXENA ET AL.The Plant Genome

1 INTRODUCTION

Plant-based proteins are the best solution for providing cheap
and high-quality protein. Pulses are very promising in this
context; among these, pigeonpea [Cajanus cajan (L.) Millsp.]
with 20% protein content, is a greatly valued crop, as it can
grow well under diverse climatic conditions and require fewer
inputs. The productivity of pulses, especially pigeonpea, has
been stagnating for many decades. At present, pigeonpea suf-
fers from a low yield plateau, and there is a need to enhance
the productivity of this crop. The development and promotion
of high-yielding hybrids appears to be a game-changing step
in the right direction. With this objective, an efficient hybrid
breeding technology with an on-farm yield advantage of 30 to
40% has been developed in pigeonpea (Saxena et al., 2018).
This breakthrough has made pigeonpea a unique pulse and
legume crop where commercial hybrids have become avail-
able. The success of hybrid pigeonpea breeding will depend
on an understanding of the mechanism underlying the pro-
cess of heterosis and its extensive utilization through cluster-
ing suitable germplasm into genetically complementary het-
erotic groups.

Heterosis is the phenomenon of the first filial (F1) genera-
tion outperforming their homozygous parental lines, which is
widely used in plant breeding. The specific definition of het-
erosis varies depending on the benchmark of the parental per-
formance used for the comparison. As the F1 hybrid inherits
half of its genome from each parent, it is plausible to study
the mid-parent heterosis (MPH), defined as the difference
between the genetic values of the hybrid and the average of the
parents. Though the phenomenon of heterosis at the molecular
level has been studied in the past, but this has been restricted to
either the model plant Arabidopsis thaliana (L.) Heynh. (Kim
et al., 2002) or three cereal crops, namely rice (Oryza sativa
L.) (He et al., 2010), maize (Zea mays L.) (He et al., 2013),
and wheat (Triticum aestivum L.) (Jiang et al., 2017), as well
as some vegetable crops like tomato (Solanum lycopersicum
L.) (Krieger et al., 2010). Despite of all this effort and exper-
imental validation, the mechanism(s) of the molecular basis
of heterosis is poorly understood. Nevertheless, complemen-
tary heterotic groups have been defined in maize and other
crops for better exploitation of heterosis to generate improved
parental lines and hybrids (Fan et al., 2009). In most of these
crops, heterotic groups were defined by testing hybrid combi-
nations of parental lines in field evaluations. However, eval-
uating all the possible hybrid combinations in larger set of
parental lines in the field, especially for crops with narrow
genetic diversity, is not possible. Therefore, complete infor-
mation on combining ability of potential parental lines in a
hybrid breeding program cannot be generated. To address
these issues, a number of approaches, including molecular
marker-based genetic distance (Melchinger, 1999), identifi-
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cation of genome-wide superior alleles (Springer & Stupar,
2007), heterotic quantitative trait loci (QTLs) (Lippman &
Zamir, 2007), molecular heterozygosity and hybrid perfor-
mance (Reif et al., 2003), and metabolite-based predictions
(Riedelsheimer et al., 2012) have been used. Furthermore, to
maximize the short- and long-term selection gains in wheat, a
simulated annealing algorithm based on genome-wide predic-
tion has been established for defining heterotic groups (Zhao
et al., 2015). However, in the legumes, which play an impor-
tant role in food and nutrition security as well as environ-
mental sustainability, none of the above approaches have been
used.

In order to understand the molecular basis of heterosis
for grain yield and to establish a promising heterotic pattern
in pigeonpea hybrids, we conducted the present study. We
used multiyear and multilocation phenotyping data from 104
parental lines and 435 of their single-cross hybrid progeny,
combined with 292 lines from a previous study (Varshney
et al., 2017). Whole-genome resequencing (WGRS) data for
all 396 inbred lines were used to identify loci contributing to
MPH and to define the heterotic groups.

2 MATERIALS AND METHODS

2.1 Plant materials and field evaluation

The plant material used in this study consisted of 738 single-
cross hybrids derived from 104 parental lines (Supplemental
Table S1). However, according to the seed availability, 435
unique single-cross hybrids generated by crossing 56 restorer
lines (R-lines; males) with nine cytoplasmic male-sterile lines
(A-lines; female) could be used in field evaluations. In total,
104 parental lines, 435 unique single-cross hybrids, and 14
checks were tested in two environments. Field trials were con-
ducted in two replications in alpha lattice designs with 51
blocks and a block size of 10 plots. In addition, 292 lines from
304 inbred lines evaluated in previous study (Varshney et al.,
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2017) were also included in this study. In brief, the pheno-
typing data were collected from 2 yr in two locations (Inter-
national Crops Research Institute for the Semi-Arid Tropics
and Gulbarga) in India. The 304 inbred lines were tested in
each location with two replications in alpha lattice designs
with eight blocks and a block size of 38 plots. Three indi-
vidual plants from each genotype (inbred lines and hybrids)
in every replication were used to collect the trait phenotyping
data for nine agronomic traits including grain yield per plant
(g per plant), days to 50% flowering, days to 75% maturity,
plant height (cm), number of pods per plant, 100-seed weight
(g), number of seeds per pod, number of primary branches per
plant, and number of secondary branches per plant. The phe-
notyping procedure and scoring standard followed the prac-
tices outlined in the Genebank manual (Upadhyaya & Gowda,
2009).

2.2 DNA extraction and sequencing

In the present study, single plants from each of the 104
parental lines were used to collect young leaves and total DNA
was extracted with the cetyltrimethylammonium bromide
method following standard procedure. Paired-end sequencing
libraries with an insert size of approximately 400 bp were con-
structed using genomic DNA and sequenced on an Illumina
HiSeq 2000 sequencer. Resequencing reads were mapped on
to the pigeonpea reference genome (Varshney et al., 2012) by
BWA (Version 0.5.9) (Heng & Durbin, 2009) with the default
parameters. Mapped reads were converted into BAM files by
SAMtools (Version 0.1.18) (Li et al., 2009) and duplicated
reads were removed. The genome coverage of the mapped
reads on the reference genome was calculated with GATK
(Version 1.4-11) (McKenna et al., 2010).

2.3 Sequence variations and annotation

BCFtools (Version 0.1.17) (Heng & Durbin, 2009) in SAM-
tools was used to detect sequence variations including sin-
gle nucleotide polymorphisms (SNPs) and indels in 104
parental lines. Identified sequence variations were annotated
with annovar (Version 2011Nov28) (Wang & Hakonarson,
2010) and SnpEff (Version 3.2) (Cingolani et al., 2012).
Further, the SNPs were counted with VCFtools (Version
0.1.10) (Danecek & Auton, 2011") and the indels counted
with bedops (Version 2.4.3) (Neph et al., 2012) and in-house
perl scripts. Furthermore, combined sequencing data from
396 lines including previously published sequence data on
292 inbred lines (Varshney et al., 2017) and 104 parental lines
were also used for sequence variation analysis, as mentioned
above.

2.4 Analyses of phenotyping data across
environments

2.4.1 Inbred lines

We performed a combined analysis for the 104 parental lines
generated in this study and the 304 lines evaluated previously.
The following linear mixed model was used to estimate the
variance components and the best linear unbiased estimations
(BLUEs) across environments (an environment is the combi-
nation of a location and a year):

𝑌 ∼ 𝐺 + 𝐸 + 𝐺 ∶ 𝐸 + 𝑅, (1)

where Y is the yield, G is the genotype, E is the environment,
and R is the residual effect.

To estimate the BLUEs, the genotype effects were treated
as fixed effects and the remaining effects, including the resid-
uals, were treated as random. To estimate the variance com-
ponents, all effects were treated as random. The broad-sense
heritability was then calculated as the ratio of genotypic to
phenotypic variance:

ℎ2 =
σ2
𝐺

σ2
𝐺
+

σ2
𝐺×𝐸
𝑁𝐸

+ σ2
𝐸

𝑁𝐸×𝑁𝑅

, (2)

where 𝑁𝐸 refers to the number of environments, 𝑁𝑅 is the
average number of replications per location. σ2

𝐺
is the genetic

variance, σ2
𝐺×𝐸 is the variance of the genotype × environment

interaction, and σ2
𝐸

refers to the variance of the residuals.

2.4.2 Hybrids

The phenotypic data were analyzed via a one-step approach
assuming heterogeneous variance of the residuals for each
location. We used the following linear mixed model to esti-
mate the BLUEs of the genotypes across the locations:

𝑌 ∼ 𝐺 + 𝐸 + 𝐺 ∶ 𝐸 + 𝐸 ∶ Rep + 𝐸 ∶ Rep ∶ 𝐵 +𝑅, (3)

where Y is the yield, G is the genotype, E is the environment,
Rep is the replicate, B is the block, and R is the residual. Geno-
type was treated as a fixed effect and the others were ran-
dom effects. The distributions of the BLUEs for these traits
revealed that hybrids had higher yield and earlier maturity
than their parental inbred lines. The genetic variance was fur-
ther decomposed into the variance of the general combining
ability effects of male (σ2

𝐺𝐶𝐴𝑚
) and female lines (σ2

𝐺𝐶𝐴𝑓
) and

specific combining ability effects (σ2
𝑆𝐶𝐴

) by the following lin-
ear mixed model:

𝑌 ∼ 𝐺𝑟 + 𝐸 +𝑀 + 𝐹 +𝑀 ∶ 𝐹 + 𝐸 ∶ Rep + 𝐸

∶ Rep ∶ 𝐵 + 𝑅, (4)
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where Y is the yield, Gr is the group, E is the environment,
M is the male lines, F is the female lines, Rep is the repli-
cate, B is the block and R is the residual effect. Group refers
to a fixed effect for the check, male, female, and hybrids. All
other effects were treated as random effects with heteroge-
neous error variance in each environment. Broad-sense heri-
tability was calculated as the ratio of genotypic to phenotypic
variance.

2.5 Applying a quantitative genetic
framework to study the genetic basis of
heterosis

The phenotyping and WGRS data were combined to investi-
gate the genetic architecture of MPH for grain yield. Hybrids
with missing phenotyping data were filtered out and 62
parental lines and 378 hybrid progeny remained. After qual-
ity control for missing values (<5%), minor allele frequency
(>5%), and heterozygosity (<2.5%), 128,067 high quality
SNPs were considered in the analyses. We applied the quan-
titative genetic framework developed by Jiang et al. (2017) to
study the genetic basis of MPH. Below, we briefly describe
the approach. For more details, we refer to the reader Jiang
et al. (2017).

2.5.1 Mid-parent heterosis for grain yield

The MPH was defined as:

𝑀𝑃𝐻 = 𝐹1 −
1
2
(
𝑃𝑚 + 𝑃𝑓

)
, (5)

where 𝐹1 denotes the value of a hybrid, and 𝑃𝑚 and 𝑃𝑓

denote the values of the male and female parent, respectively.

2.5.2 Partitioning of genetic variance
components for MPH

Genetic variance components for MPH were estimated by
fitting an extended genomic best linear unbiased predic-
tion model including dominance and digenic epistatic effects
(Jiang & Reif, 2015; Xu et al., 2014). Briefly, the model can
be described as follows:

𝑦 = 𝑔𝑑 + 𝑔𝑎𝑎 + 𝑔𝑎𝑑 + 𝑔𝑑𝑑 + 𝑒, (6)

In this model, 𝑦 is the vector of the MPH val-
ues for all hybrids; genetic values are represented as
dominance (𝑔𝑑), additive-by-additive (𝑔𝑎𝑎), additive-
by-dominance (𝑔𝑎𝑑), and dominance-by-dominance (𝑔𝑑𝑑)

effects; and 𝑒 is a residual term. In the model, we assumed that
𝑔𝑑 ∼ 𝑁(0, 𝐾𝑑σ2𝑑), 𝑔𝑎𝑎 ∼ 𝑁(0, 𝐾𝑎𝑎σ2𝑎𝑎), 𝑔𝑎𝑑 ∼ 𝑁(0, 𝐾𝑎𝑑σ2𝑎𝑑),
𝑔𝑑𝑑 ∼ 𝑁(0, 𝐾𝑑𝑑σ2𝑑𝑑), and 𝑒 ∼ 𝑁(0, 𝑇 𝑇 ′σ2

𝑒
), where 𝐾𝑑 , 𝐾𝑎𝑎,

𝐾𝑎𝑑 , and 𝐾𝑑𝑑 are marker-derived kinship matrices for the
different genetic effects. 𝑇 is a 𝑟 × (𝑟 + 𝑠) matrix of linear
transformation from the vectors of the original trait (grain
yield) to the vectors of MPH, where 𝑟 is the number of
hybrids and 𝑠 is the number of parental lines. The reason why
the residual term was not independently distributed is that we
assumed independent residual terms for the original trait, but
the MPH values were derived from the original trait values in
the form of the linear transformation 𝑇 . The marker-derived
kinship matrices are also specific to MPH instead of the
original trait. The variance components σ2

𝑑
, σ2

𝑎𝑎
, σ2

𝑎𝑑
, and σ2

𝑑𝑑

were estimated by the multi-kernel method in the R package
BGLR (Pérez & De Los Campos, 2014).

2.5.3 Definition of heterotic effects

The heterotic effect of a locus is the genetic contribution of the
locus to MPH, which is a complex combination of the dom-
inance effect of the locus itself and the epistatic interaction
effects with the entire genetic background (Jiang et al., 2017).
The precise definition is as follows:

Let 𝑄 be the set of all QTL for the original trait. Quantita-
tive trait loci were coded as 0, 1, or 2, depending on the num-
ber of chosen alleles at each locus. Considering one hybrid,
we use 𝑅𝑘𝑙 (𝑘, 𝑙 = 0 or 2) to denote the subset of loci where
the female parent has Genotype 𝑘 and the male parent has
Genotype 𝑙. For 𝑖, 𝑗 ∈ 𝑄, 𝑑𝑖 is the dominance effect of the 𝑖th

QTL, 𝑎𝑎𝑖𝑗 is the additive-by-additive epistatic effect between
the 𝑖th and the 𝑗th QTL, 𝑎𝑑𝑖𝑗 is the additive-by-dominance
epistatic effect between the 𝑖th and the 𝑗th QTL, and 𝑑𝑑𝑖𝑗 is the
dominance-by-dominance epistatic effect between the 𝑖th and
the 𝑗- QTL. The heterotic effect of the 𝑖th locus was defined
as:

ℎ𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑖 −
1
2

∑
𝑗∈𝑅20

𝑎𝑎𝑖𝑗 +
1
2

∑
𝑗∈𝑅02

𝑎𝑎𝑖𝑗 +
1
2

∑
𝑗∈𝑅22

𝑎𝑑𝑗𝑖

− 1
2

∑
𝑗∈𝑅00

𝑎𝑑𝑗𝑖 +
1
2

∑
𝑗∈𝑅20∪𝑅02

𝑑𝑑𝑖𝑗 𝑖𝑓 𝑖 ∈ 𝑅20

𝑑𝑖 −
1
2

∑
𝑗∈𝑅02

𝑎𝑎𝑖𝑗 +
1
2

∑
𝑗∈𝑅20

𝑎𝑎𝑖𝑗 +
1
2

∑
𝑗∈𝑅22

𝑎𝑑𝑗𝑖

− 1
2

∑
𝑗∈𝑅00

𝑎𝑑𝑗𝑖 +
1
2

∑
𝑗∈𝑅20∪𝑅02

𝑑𝑑𝑖𝑗 𝑖𝑓 𝑖 ∈ 𝑅02

1
2

∑
𝑗∈𝑅20∪𝑅02

𝑎𝑑𝑖𝑗 if 𝑖 ∈ 𝑅22

− 1
2

∑
𝑗∈𝑅20∪𝑅02

𝑎𝑑𝑖𝑗 if 𝑖 ∈ 𝑅00

.

(7)
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With this definition, the MPH value of each hybrid is
the sum of heterotic effects across all loci (i.e., 𝑀𝑃𝐻 =∑

𝑖∈𝑄 ℎ𝑖 ).

2.5.4 Genome-wide scan for significant
heterotic effects

We applied the following three-step procedure to detect sig-
nificant heterotic effects: First, a genome-wide association
study (GWAS) was performed to identify significant domi-
nance and digenic epistatic effects. We used a standard linear
mixed model with a marker-derived kinship matrix control-
ling for the structure of multiple levels of relatedness and poly-
genic background effects (Yu et al., 2006). Since the presence
of epistasis was assumed, it was necessary to apply a model
controlling the polygenic background effects, which consisted
of both main and epistatic effects (Xu, 2013). The model can
be described as follows:

𝑦 = 𝑚α + 𝑔𝑑 + 𝑔𝑎𝑎 + 𝑔𝑎𝑑 + 𝑔𝑑𝑑 + 𝑒, (8)

where 𝑦, 𝑔𝑑 , 𝑔𝑎𝑎, 𝑔𝑎𝑑 , 𝑔𝑑𝑑 , and 𝑒 are the same as in Equa-
tion 6. In particular, α is the genetic effect being tested
and 𝑚 is the corresponding coefficient. More precisely, α is
the dominance effect of any marker or the epistatic inter-
action effect for any pair of markers. We assumed that α
is an unknown fixed parameter. The other assumptions are
the same as in Equation 6. In the second step, the signif-
icant component effects were integrated into the heterotic
effects. All nonsignificant effects were set to zero. In order
to reduce any possible upward bias from accumulating the
GWAS-estimated effects for highly correlated marker pairs,
we re-estimated the significant effects with the Bayesian ridge
regression model before integrating the effects. Finally, the
heterotic effect (ℎ𝑖) of each locus was tested by a permuta-
tion test. More precisely, for each locus, the MPH values of
all the hybrids can be predicted from the heterotic effect of
this particular locus. Next, the Pearson correlation coefficient
between the predicted and observed MPH values was calcu-
lated and a permutation test for the correlation coefficient was
performed.

2.5.5 Estimating the number of independent
markers and marker pairs

To investigate the number of independent markers for all sig-
nificant markers detected by GWAS, we applied a princi-
pal component analysis to the matrix of significant markers
and sought for the minimal number of PCs that explained
99% of the variance. For marker pairs that showed significant
epistatic effects, we first produced pseudomarkers derived

from the scores of the two markers, then applied this approach
to the matrix of pseudomarkers.

2.5.6 Testing the heterotic effects of copy
number variations

At each site where a copy number variation (CNV) was
detected, the CNV was treated as a multiallelic marker (i.e.,
each possible copy number at the site was considered as a spe-
cific allele). In particular, we did not assume linear effects
with respect to the number of copies. To test the contribu-
tion of CNVs to heterosis, we applied the multiallelic version
of the quantitative genetic framework (Jiang et al., 2017); the
model was the same as the haplotype-based model described
therein. We considered only the dominance effects of the
CNVs, meaning the interaction effects among different alleles
within each CNV. The interaction effects across CNVs were
not included in the model because the power of association
test would be severely impaired by the extremely low frequen-
cies of multilocus, multiallele genotypes.

2.6 Genome-wide prediction for hybrid
performance

We applied the ridge regression best linear unbiased predic-
tion model that included additive and dominance effects. The
general form of the model is as follows:

𝑦 = 1𝑛 μ +𝑍𝐴𝑎 +𝑍𝐷𝑑 + 𝑒, (9)

where 1n is a vector of ones and 𝑛 is the number of lines; μ
refers to the overall mean across environments; ZA is a design
matrix of size n × m for the additive effect of the markers,
where 𝑚 refers to the number of markers and the elements
of ZA are coded as −1, 0, and 1; 𝑎 = (𝑎1, 𝑎2,… , 𝑎𝑚)𝑇 is a
vector of length 𝑚, where 𝑎𝑖 denotes the additive effect for
the ith marker; ZD is a matrix with a n × m design for the
dominance effect of the markers in which the elements of ZD
are coded as 0 and 1; 𝑑 = (𝑑1, 𝑑2,… , 𝑑𝑚)𝑇 is a vector of
length 𝑚, where 𝑑𝑖 denotes the dominance effect for the ith
marker; and 𝑒 = (𝑒1, 𝑒2,… , 𝑒𝑛)𝑇 is a vector of length n and,
where 𝑒𝑗 is the residual for the jth line.

We evaluated the ability to predict grain yield via cross-
validations with different relatedness between the training and
test sets. The training set comprised the 292 inbred lines and a
subset of hybrid parental lines as well as some of their hybrid
progeny. More precisely, we randomly sampled seven (out of
nine) female and 35 (out of 56) male parental lines as well as
160 hybrids derived from them. From the remaining hybrids,
test sets with three successively decreasing degrees of related-
ness to the training sets were formed. Test set T2, which was
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most closely related to the training set, included only hybrids
derived from the same parents as the hybrids in the training
set, whereas the less related test set (T1) included hybrids
sharing one parent with the hybrids in the training set and the
least related test set (T0) included only hybrids that had no
parents in common with the training set. This sampling pro-
cess was repeated 100 times, and the number of hybrids in the
test sets ranged from 61 to 87, 176 to 198, and 41 to 54 for
the T2, T1, and T0 populations, respectively. For each sam-
pling round, we estimated the marker effects in the training
set, which was then used to predict the performance of the
hybrids in the T2, T1, and T0 test sets. The prediction accu-
racy for each test set was estimated as the Pearson correlation
coefficient between the predicted and the observed hybrid per-
formance divided by the square root of the heritability.

2.7 Establishing high-yielding heterotic
groups

Establishment of the heterotic groups can be briefly described
as follows: First, we predicted the yield performance of all
possible 78,210 single-cross hybrids that could be derived
from the 396 inbred lines (104 parental lines + 296 addi-
tional inbred lines) with the 396 lines and 435 hybrids used as
the training population and the same model as mentioned in
Equation 9 in the previous subsection. Based on the predicted
performance of all 78,210 hybrids, the simulated annealing
algorithm (Zhao et al., 2015) was implemented to search for
promising heterotic groups. The group size was set to be 20
lines for each group.

3 RESULTS

3.1 Boosting grain yield through hybrid
breeding in pigeonpea

A hybrid pigeonpea population consisting of 435 single-cross
hybrids was generated in a partial factorial design that crossed
104 parental lines including nine cytoplasmic male sterile
(CMS) or A-lines, 13 maintainer (B-lines), and 82 R-lines
(Supplemental Table S1). Replicated field trials for all hybrids
and their parental lines were conducted at two locations in
India. The heritability estimates amounted to 0.9 for grain
yield (Supplemental Table S2), indicating the high quality of
the phenotypic data. Hybrids outyielded their parental lines
(Supplemental Figure S1) and MPH, defined as the differ-
ence between the performance of the hybrid and the average
of its parents, averaged 28.1 g per plant (Supplemental Figure
S2). In total, 297 hybrids (78.6%) showed positive MPH val-
ues, which were in accordance with estimates from a histori-
cal dataset consisting of 68 hybrids derived from 44 parental

lines (see the the models in Section 2.4). Thus, analysis of the
phenotypic data supported the potential to increase grain yield
through hybrid pigeonpea breeding.

3.2 Whole genome resequencing (WGRS)
of hybrid parental lines and sequence variations

High-quality WGRS data were generated for the 104 parental
lines. We generated 5.2 billion paired-end reads with an aver-
age read length of 247.5 bp (∼511 Gb of sequence) that were
mapped to the reference genome of the pigeonpea cultivar
‘Asha’ (ICPL 87119) (Varshney et al., 2012) by BWA (Heng
& Durbin, 2009). We obtained sequencing depths in the range
of 5× to 8× and genome coverage of approximately 87% (Sup-
plemental Table S1). The WGRS data provided >4.4 million
variants across the 104 hybrid parental lines (Table 1, Sup-
plemental Table S3). This included ∼4.0 million SNPs and
∼0.4 million small indels of 1–5 bp. Maintainer lines pos-
sessed higher levels of sequence variation (11.54% higher for
SNPs and 11.23% higher for the indels) than the CMS lines
(Supplemental Table S4, Supplemental Table S5), whereas
among the restorer lines, the highest level of sequence vari-
ation was presented (Supplemental Table S6).

The sequence variation data were used to understand
the genetic relationships among the parental lines. Analy-
ses based on pairwise dissimilarities via neighbor joining
revealed two distinct groups (Figure 1a). Group I contained
three A-lines, four B-lines, and nine R-lines. Group II
included six A-lines, nine B-lines, and the remaining 73
R-lines. Many of the A-lines were assigned as the closest
neighbor to their respective B-lines, supporting the notion of
iso-nuclear lines. The extent of similarity between A- and B-
lines also corresponded to backcross generations (i.e., A-lines
with higher number of backcrosses showed higher similarity
to their corresponding B-lines). Pairwise genome-wide
fixation index (FST) values (Weir & Cockerham, 1984) also
revealed the close relationship between A-lines and B-lines
(FST = 0.09). In contrast, pronounced differentiation was
observed between the A-lines and R-lines (FST = 0.26), and
between B-lines and R-lines (FST = 0.29) (Supplemental
Table S7). The diversity among the parents makes this panel
suitable for studying the genetic basis and exploitation of
heterosis.

3.3 Dissecting the genetic architecture of
heterosis via WGRS data

As the first step, we investigated the relationship between the
genetic diversity and heterosis. The correlation between the
Rogers’ distance in parental lines and the MPH was very low
and nonsignificant (r = 0.05, with a P-value of .35). Even if
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we restricted the analysis to the hybrids with a MPH above
50 g per plant, the correlation was still weak (r = 0.26, with a
P-value of .02).

Therefore, a genome-wide prediction model including
dominance and digenic epistatic effects (Jiang et al., 2017)
was applied to partition the genetic variance components for
MPH. The differences between the proportions of genetic
variance explained by the four types of genetic effect were not
large (Figure 1b). Additive-by-additive and dominance-by-
dominance epistasis explained a slightly larger proportion of
genetic variance than dominance and additive-by-dominance
epistasis did. However, the relative contributions to MPH of
the different genetic effects represent only a rough estimate
because of the confounding effects of the different genetic
effects, as indicated by the high correlations between the
marker-derived kinship matrices for dominance and digenic
epistasis (Supplemental Table S8). The confounding effect
was further substantiated by the prediction abilities of MPH
evaluated in a fivefold cross-validation (Table 2). The predic-
tion ability was highest for the model including dominance
and additive-by-additive effects. Nevertheless, with additive-
by-additive effects alone in the model, a similar prediction
ability could be reached. Adding additive-by-dominance or
dominance-by-dominance effects into the model could not
further increase the prediction ability.

To elucidate the genetic architecture of grain yield het-
erosis in further detail, the quantitative genetic framework
(Jiang et al., 2017) was implemented. In the first step, GWAS
was performed to detect significant dominance and digenic
epistatic effects among all 128,067 SNPs. We observed no
significant dominance effect even with a liberal threshold
of false discovery rate <0.1 despite the dominance effects
explaining 22% of the genetic variance. We also performed a
GWAS for the dominance effects directly, based on the hybrid
performance (Supplemental Figure S3). With the same lib-
eral threshold, two significant marker loci were identified.
Nevertheless, their dominance effects together only explained
4.1% of the phenotypic variance of MPH. Thus, it was likely
that many loci with small dominance effects contributed to
MPH. With a very stringent threshold of P < .05 after Bonfer-
roni correction for multiple testing, 192 additive-by-additive
and 188 dominance-by-dominance effects were significant,
although no additive-by-dominance effects passed the thresh-
old (Figure 2, Supplemental Table S9, Supplemental Table
S10). The SNP pairs with significant epistatic effects were not
independent of each other because of linkage disequilibrium.
By applying principal component analysis, we found that the
number of independent SNP pairs was 36 for additive-by-
additive effects and 50 for dominance-by-dominance effects.
In the second step, the significant effects detected in the
GWAS were integrated to heterotic effects for each SNP,
defined as a complex combination of the dominance effect
of the SNP itself and the epistatic interaction effects with
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F I G U R E 1 An overview of the genetic relationships in the parental lines and the relative contribution of the genetic components to mid-parent

heterosis for grain yield. (a) Genetic relationship analysis of 104 parental lines of the hybrids: nine cytoplasmic male sterile (CMS; A-lines, in red

and marked with square boxes), 13 maintainers (B-lines, in green and marked with triangles) and 82 restorer (R-lines, in black colour). The analysis

used single nucleotide polymorphisms (SNPs) detected in the whole genome resequencing data. (b) Relative contributions of the genetic components

of mid-parent heterosis for grain yield estimated via Bayes generalized linear regression

the entire genetic background (see the Materials and Meth-
ods for details). As the final step, the significance of the het-
erotic effect for each SNP was tested by a permutation test
for the Pearson correlation coefficient between the observed
MPH values and those predicted by the heterotic effect of the
SNP alone. We observed 129 SNPs that showed significant
heterotic effects (Figure 2, Supplemental Table S11), whereas
the number of independent SNPs was estimated to be 40 (Sup-
plemental Table S12). Together, these SNPs explained 27%
of the phenotypic variance of MPH, indicating that each SNP
had a rather small effect. Out of the 40 SNPs with significant
heterotic effects, only five were present in genic regions that
played a role in molecular functions; the remaining 35 were
found in intergenic regions (Supplemental Table S12).

3.4 Investigating the contribution of CNVs
to heterosis

Complementation of allelic variation could be a contributor
to heterosis, especially in crosses between fixed parental lines
with more CNVs. To study the contributions of CNVs to het-
erosis, 869 CNVs identified across the parental lines of the
hybrids were considered via a multiallelic model (Jiang et al.,
2017). In particular, the CNV at each site was considered as a
multiallelic marker, and the dominance effects (i.e., the inter-
action effects between different alleles) within each CNV was

T A B L E 2 Cross-validated prediction abilities for mid-parent

heterosis (MPH) obtained by a genome-wide prediction model

including different genetic effects

Modela Prediction abilityb

D 0.222 (0.030)

AA 0.238 (0.022)

D + AA 0.240 (0.027)

D + AA + AD 0.239 (0.027)

D + AA + AD + DD 0.236 (0.026)

aD, dominance; AA, additive-by-additive; D + AA, dominance + additive-by-

additive; D + AA + AD, dominance + additive-by-additive + additive-by-

dominance; D + AA + AD + DD, dominance + additive-by-additive + additive-

by-dominance + dominance-by-dominance; b The numbers in parenthesis indicate

the SD estimated in 20 replicates of fivefold cross-validation.

tested (for details, see the Materials and Methods). Therefore,
we did not assume linear effects with respect to the number of
copies. As a result, we identified 52 CNVs that significantly
contributed to MPH at P< .05 after Benjamini–Hochberg cor-
rection (false discovery rate) (Supplemental Table S13). How-
ever, these CNVs together explained only 0.4% of the pheno-
typic variance in MPH.

The results of the previous two subsections indicated that
the genetic architecture of heterosis for grain yield in pigeon-
pea is complex. MPH is caused by many loci with small
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F I G U R E 2 The genetic architecture of mid-parent heterosis for grain yield in pigeonpea. Pigeonpea chromosomes or pseudomolecules are

indicated as bars on the inner circle. Colored links in the center of the circles represent significant digenic epistatic interactions: (a)

additive-by-additive and (b) additive-by-dominance. (c) Manhattan plot for the dominance effects identified in the genome-wide association study

(GWAS). (d) Manhattan plot for the heterotic effects identified in the GWAS. Significant thresholds (P < .05 after Bonferroni–Holm correction for

multiple testing) are indicated as red dashed lines

dominance and digenic epistatic effects, with very small
effects resulting from CNVs. This conclusion made it diffi-
cult to apply the knowledge of genetic architecture of het-
erosis directly to improve hybrid breeding. Thus, we focused
on hybrid performance and used genome-wide predictions to
identify a genetically complementary high-yielding heterotic
pattern.

3.5 Establishing a high-yielding heterotic
pattern

Since the number of individuals in the training population is
an important factor affecting the accuracy of genome-wide
prediction, we combined the dataset analyzed so far with
another dataset consisting of 292 inbred lines of pigeonpea
generated in a previous study (Varshney et al., 2017), which
had also been evaluated for grain yield in multienvironment
trials and sequenced at the whole-genome level. Thus, in total,
there were 396 inbred lines (292 + 104 hybrid parental lines)
and 435 hybrids. Combining the WGRS data of the two panels
resulted in 8,554,715 SNPs. After quality control for missing

values (<5%) and minor allele frequency (>2.5%), 725,701
high-quality markers were used for further analyses (Supple-
mental Figure S4). The average Rogers’ distance among the
396 lines was 0.22, with a range from 0.04 to 0.44 (Supple-
mental Figure S5).

To investigate whether the performance of grain yield in
hybrids can be reliably predicted by WGRS data, we applied
the ridge regression best linear unbiased prediction model,
including the additive and dominance genotypic values (Zhao
et al., 2015), and considered different cross-validation sce-
narios. More precisely, the training population comprised 7
female and 35 male parental lines and 160 of their hybrid
progeny as well as 292 additional inbred lines. The remain-
ing hybrids were divided into three test populations with dif-
ferent degrees of relatedness to the training population (see
the Materials and Methods for details). We observed that for
the T2 scenario, in which both parents of the hybrid being pre-
dicted were included in the training population, the prediction
accuracy for grain yield was 0.24 (Supplemental Figure S6),
which is lower than was previously reported for maize (Tech-
now et al., 2014) and wheat (Jiang et al., 2017) but higher than
for rice (Xu et al., 2014).
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As the next step, we used all 396 lines and 435 hybrids as
the training population and predicted the yield performance
of all 78,210 possible single-cross hybrids derived from the
396 lines. Since all parental lines were included in the training
population, similar prediction accuracy to the cross-validated
T2 scenario was expected. According to the predicted val-
ues, the average yield of the 0.1% top-yielding hybrids was
119.6 g per plant, which was 65% higher than the average
yield of all hybrids, and 191% higher than the average yield of
all inbred lines. Interestingly, only 12 of the 78 hybrids have
been tested so far. The remaining outstanding hybrids, whose
parental lines have not yet been used for hybrid breeding, are
therefore interesting targets for further intensive field evalua-
tions (Supplemental Figure S7). We then identified a group of
39 lines whose hybrid progeny exhibited high yield (Supple-
mental Table S14) by applying hierarchical clustering to the
predicted yield performance of all 78,210 hybrids (Supple-
mental Figure S8A). The average yield of hybrids from this
group was 85.8 g per plant, which was 19% higher than the
average yield of all tested hybrids.

Identifying heterotic groups, defined as groups of genet-
ically distinct genotypes which display high hybrid perfor-
mance when crossed with each other, is key to accelerating
hybrid breeding. On the basis of the predicted performance
of all 78,210 hybrids, we implemented a simulated annealing
algorithm (Zhao et al., 2015) to generate two potential high-
yield heterotic groups, each consisting of 20 lines (Supple-
mental Table S14). The average yield of the hybrids derived
by crossing parental lines in the two groups was 90.4 g per
plant, which was 25% higher than average yield of all tested
hybrids (Supplemental Figure S8B). Twenty-nine of the 40
lines were also selected by the clustering algorithm, but the
performance of heterotic groups identified by the simulated
annealing algorithm was, on average, 5% higher than the sin-
gle group selected by the clustering algorithm. We expect that
the high-yielding heterotic groups detected in our study could
serve as a cornerstone for a further in-depth search for the
most promising heterotic groups for pigeonpea.

4 DISCUSSION

Breeding hybrids in various crop species has proven to be one
of the most efficient ways to increase grain yield (Schnable &
Springer, 2013), though there are differences in terms of the
extent of realized heterosis depending on the crop species and
also differences within the crop species. Therefore, in con-
ventional breeding, a large number of hybrid crosses have to
be screened to select the best parental combination maximiz-
ing yield performance. However, many parental combinations
can be disregarded because of relatedness between the parents
or the contributions of different dominance, overdominance
and epistasis interactions in heterosis. Instead, we can rely

on combining ability or performance per se. An integrated
approach was required that can explain the molecular basis
of heterosis and select the best crossing combinations. There-
fore, in the present study, we used WGRS data to understand
the molecular basis of heterosis and define heterotic patterns
through genome-wide predictions of the hybrid performance.
Our results indicated that the genetic architecture of hetero-
sis for grain yield in pigeonpea is complex and is caused by
many loci with small dominance and digenic epistatic effects
with very small effects resulting from CNVs. Although some
previous studies dissecting the genetic basis of heterosis in
maize and rice favored incomplete dominance instead of epis-
tasis (Gerke et al., 2015; Huang et al., 2016), it has also been
reported in many studies that heterosis is caused by an accu-
mulation of dominance and epistatic effects (Hua et al., 2003;
Radoev et al., 2008) or even mainly by epistasis (Melchinger
et al., 2007; Yu et al., 1997). In addition, it was hypothesized
that the genetic basis of heterosis was mainly contributed by
dominance in open-pollinated species, whereas for heterosis
in self-pollinating species, the additive-by-additive epistasis
played a major role (Garcia et al., 2008). This was supported
by a recent study on grain yield heterosis in wheat (Jiang et al,
2017). Thus, our results are not just specific to pigeonpea but
also apply to other crops that are often cross-pollinated. The
WGRS data also provided us with an opportunity to roll out
“apparent epistasis” (Wood et al., 2014). Since additive effects
do not contribute to MPH by definition, the only possible
way that apparent epistasis occurs is that an “epistatic pseudo-
marker” (Lachowiec et al., 2015) is highly correlated with a
marker encoding a dominance effect. However, as WGRS data
were used for GWAS and we observed no significant domi-
nance effect, it seems that apparent epistasis did not occur in
our study.

Another milestone achieved in the present study was the
deployment of WGRS data for predicting yield in hybrids. The
prediction accuracy of genome-wide prediction, especially for
complex traits, has been found to be high with a large num-
ber of markers from WGRS rather than a few thousands of
markers (Li et al., 2018; Meuwissen & Goddard, 2010; Ober
et al., 2012). It can be expected that the divergent heterotic
groups identified in the present study will promote, in the
long term, the role of additive versus dominance genetic vari-
ance (Reif et al., 2007), which will ultimately boost recipro-
cal recurrent selection efficiency in pigeonpea. Furthermore,
additive effects have been found to be reliable for increas-
ing the accuracy of genome-wide prediction in maize (Tech-
now et al., 2014). By applying genome-wide prediction and a
simulated annealing algorithm in the present study, we have
identified an interesting group of 29 lines exhibiting high
hybrid performance when crossed with each other. In view
of the 396 lines used in the present study, the identified set
of 29 lines looks quite small. However, any hybrid breed-
ing program should focus on selecting parental lines that will
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maximize the response for selection. Interestingly, the effec-
tive number of parental lines in hybrid wheat breeding was 16
per heterotic group (Zhao et al., 2015); similarly it was around
16 in maize (van Heerwaarden et al., 2012). Therefore, the
identified set of 29 lines in pigeonpea will provide a strong
platform for sustainable long-term selection gain in a hybrid
breeding program. This study was based on elite lines of
pigeonpea and thus the results are immediately relevant for
breeding hybrid pigeonpea. This study also provides a better
understanding of heterosis in a complex yield trait, which may
allow new schemes for handling heterosis in a precise man-
ner. We believe this study will also serve as a model for other
crops where hybrid breeding efforts are in progress regarding
the use of WGRS data in quantitative genetic framework for
facilitating hybrid breeding and achieving the quantum jump
in crop yield for ensuring global food security.
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