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ABSTRACT: Quantitative plasma lipoprotein and metabolite profiles were
measured on an autonomous community of the Basque Country (Spain)
cohort consisting of hospitalized COVID-19 patients (n = 72) and a
matched control group (n = 75) and a Western Australian (WA) cohort
consisting of (n = 17) SARS-CoV-2 positives and (n = 20) healthy controls
using 600 MHz 1H nuclear magnetic resonance (NMR) spectroscopy.
Spanish samples were measured in two laboratories using one-dimensional
(1D) solvent-suppressed and T2-filtered methods with in vitro diagnostic
quantification of lipoproteins and metabolites. SARS-CoV-2 positive patients
and healthy controls from both populations were modeled and cross-
projected to estimate the biological similarities and validate biomarkers.
Using the top 15 most discriminatory variables enabled construction of a
cross-predictive model with 100% sensitivity and specificity (within
populations) and 100% sensitivity and 82% specificity (between populations). Minor differences were observed between the
control metabolic variables in the two cohorts, but the lipoproteins were virtually indistinguishable. We observed highly significant
infection-related reductions in high-density lipoprotein (HDL) subfraction 4 phospholipids, apolipoproteins A1 and A2,that have
previously been associated with negative regulation of blood coagulation and fibrinolysis. The Spanish and Australian diagnostic
SARS-CoV-2 biomarkers were mathematically and biologically equivalent, demonstrating that NMR-based technologies are suitable
for the study of the comparative pathology of COVID-19 via plasma phenotyping.

KEYWORDS: COVID-19, SARS-CoV-2, NMR spectroscopy, plasma IVDr, metabolic phenotyping, diagnostic modeling, lipoproteins,
phenoconversion, population cross-validation

■ INTRODUCTION

SARS-CoV-2 infection gives rise to well-described, but highly
variable, acute pulmonary disease and a complex set of
multiorgan systemic pathologies and symptoms.1−3 These
pathologies are reflected in collective complex changes in the
blood plasma biochemistry expressed in perturbations in
multiple metabolic, amino acid, lipidic, and multiparametric
lipoprotein signatures.4,5 Nuclear magnetic resonance (NMR)
spectroscopy of plasma/serum has long been known to be of
value in characterizing metabolic diseases and is analytically
extremely robust and reliable,6,7 and detection of a wide range of
chemical classes of low-molecular-weight (MW) metabolites
can be achieved using a variety of NMR experiments.8−10 NMR
spectroscopic signatures of SARS-CoV-2 infection have
uncovered metabolic perturbations reflecting the acute
responses to infection.4,5,11−16 “Post-Acute COVID-19 Syn-
drome” (PACS) patients also experience poor systemic recovery

and exhibit multiple long-term symptoms and biochemical
abnormalities.17,18

The clinical utility of metabolic biomarkers in the diagnosis,
prognosis, and stratification of a disease is dependent upon the
analytical and biological reproducibility of the metabolic
signature across populations. The robustness of in vitro
diagnostic NMR methods has been demonstrated in interlabor-
atory trials19−21 comparing standards and individual sample
profiles. In the case of major emergent diseases such as COVID-
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19, it is important to understand the comparative biochemistry
based on cross-validated methods, ideally performed with
multiple technologies applied to the same samples to allow
rapid and meaningful comparison of data frommultiple cohorts.
NMR spectroscopic characterization of SARS-CoV-2 infection
has uncovered lipoprotein, acute phase reactive glycoprotein,
and small-molecule abnormalities associated with the dis-
ease,4,11,14,22,23 and multiple NMR spectroscopic experiments
performed on the same samples have been applied to extract a
range of diagnostic biochemical components and compartments
that report on disease-induced phenoconversion11,24 and
biochemical recovery phenoreversion.18

In addition to analytical variation across laboratories,
metabolic variations between populations can contribute to
observed interstudy differences in the metabolic signatures of a
disease.25,26 Genes and the environment interact to create
metabolic phenotypes and disease risks in individuals and whole
populations,26,27 which can help stratify patients into disease
subtypes, and also affect responses of individuals to disease
therapies.7 In the case of SARS-CoV-2 infection, we have shown
that metabolic signatures of pathological conditions produce

greater contributions to metabolic phenotypes over the
background physiological variation and can be predictively
modeled to extract population risk biomarkers.28 However,
there are few real-world patient diagnostic studies, where both
cross-validation of the analytical methods and population
differences are independently evaluated in different laboratories
and then comodeled to improve biomarker selection. Here, we
present a combined analytical and biological interlaboratory
cross-validation study of two independent patient cohorts from
Spain and Australia. We demonstrate the robustness of the
NMR-based diagnostic approach and biomarker integrity for the
biochemical sequelae of SARS-CoV-2 infection and extract
integrated cross-population biomarkers for acute phase SARS-
CoV-2 infections.

■ MATERIALS AND METHODS

Participant Enrollment and Sample Collection

Autonomous Community of the Basque Country
(Spain). The cohort consisted of (i) patients who tested
positive for SARS-CoV-2 infection from upper and/or lower
respiratory tract swabs by the reverse transcription-polymerase

Figure 1. (A) Interlaboratory comparison of analytical methods: Biomarkers obtained by measuring the Spanish cohort in two different laboratories
were compared. All 75 control and 72 SARS-CoV-2 positive samples were measured in 5 mm diameter tubes at the CIC bioGUNE laboratory.
Measurements were repeated in 5 mm diameter tubes for 75 controls and 35 of the positive samples at the ANPC laboratory with the remaining 37
SARS-CoV-2 positive samples for the Spanish cohort being run in 3 mm diameter tubes (due to insufficient remaining volume). Quantification using
the IVDr-extracted signals enabled data acquired using different experimental conditions to be merged, therefore data from the 3 mm tubes were used
along with 5mm tubes in interlaboratory comparisons of the targetedmodels (lipoproteins and low-MWmetabolites). Only spectra measured in 5mm
tubes were used in the interlaboratory comparison of the full spectral profiles. (B) Cohort comparison: Full spectral data and IVDr-extracted data for
lipoprotein and small-molecule parameters from two independent cohorts, from Spain and Western Australia (WA), were compared. The Spanish
cohort was used to train and build a model, and theWA cohort was used as a validation data set (and vice versa). Again, data obtained from 3mm tubes
were only used in targeted models. (C) Fusion of cohorts: Statistical significance of SARS-CoV-2 infection “biomarkers” obtained by combining the
two cohorts was compared with the results obtained for the individual models for the Spanish and Australian cohorts generated in step B compared
with the one obtained by combining both cohorts.
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chain reaction (RT-PCR) (n = 72) and (ii) 75 healthy control
participants (Figure 1A and Table S1). All serum samples were
collected by the Basque Biobank for research (BIOEF). Healthy
serum samples were collected before the COVID-19 pandemic
from the active population while the COVID-19 samples were
collected at the Cruces University Hospital (Barakaldo, Spain)
from patients who presented compatible symptoms, confirmed
by a RT-PCR assay on nasal swab samples. All participants
provided informed consent to clinical investigations, according
to the Declaration of Helsinki, and all data were anonymized to
protect their confidentiality. The sample-handling protocol was
evaluated and approved by the Comite ́ de Ética de Investigacioń
conmedicamentos de Euskadi (CEIm-E, PI+CES-BIOEF 2020-
04 and PI219130). Shipment of human samples to ANPC had
the approval of the Ministry of Health of the Spanish
Government. Samples were stored at −80 °C.
Western Australian Test Cohort. Blood plasma samples

were collected from a cohort of adult individuals in a study
initiated at Fiona Stanley Hospital in the Western Australia
South Metropolitan Health Service catchment as part of the
International Severe Acute Respiratory and Emerging Infections
Consortium (ISARIC)/World Health Organisation (WHO)
pandemic trail framework (SMHS Research Governance Office
PRN:3976 and Murdoch University Ethics No. 2020/052).
Healthy control participants from Western Australia were
enrolled as volunteers. Study details were provided, and written
consent was obtained prior to data collection in accordance with
the ethical governance (Murdoch University Ethics No. 2020/
053). Patients who were presented with COVID-19 disease
symptoms and subsequently tested positive for SARS-CoV-2
infection from upper and/or lower respiratory tract swabs by
RT-PCR (n = 17 participants) were recruited from the Fiona
Stanley and Royal Perth Hospitals (Western Australian cohort)
and additional healthy control participants (n = 20) were
recruited (Tables S2 and S3). Plasma samples were stored at
−80 °C. Sample processing was performed according to Bruker
IVDr protocols for the small-molecule and lipoprotein data19

and according to our recommended procedures for IVDr
metabolic analysis of COVID-19 plasma samples.28 We have
previously published an analysis of this patient group with
respect to metabolic biomarker discovery as determined by
NMR spectroscopy and mass spectrometry.4 In the present
study, we use these data as a test set to project onto the Spanish
cohort training set models measured and generated independ-
ently in the ANPC and the CIC bioGUNE laboratories in Spain
(Figure 1B).

1H NMR Sample Preparation at CIC bioGUNE. Samples were
stored at −80 °C until the day of analysis, when they were
defrosted at room temperature for 30 min. NMR samples were
prepared in a SamplePro Tube (Bruker Biospin) robot system
for liquid handling with integrated temperature control. Every
sample was automatically prepared as a mixture of phosphate
buffer (75 mM Na2HPO4, 2 mM NaN3, 4.6 mM sodium
trimethylsilyl propionate-[2,2,3,3-2H4] (TSP) in H2O/D2O 4:1,
pH 7.4 ± 0.1) and serum at a 1:1 ratio for a final volume of 600
μL into 5 mm SampleJet NMR tubes. Samples were then
manually shaken for several seconds and stored at 5 °C inside
the SampleJet automatic sample changer until measurement
(<24 h).

1H NMR Sample Preparation at the ANPC. Plasma samples
were thawed at 20 °C for 30min and then centrifuged for 10min
at 13 000g at 4 °C. For the Western Australian test cohort, all
plasma samples were prepared in 5 mm outer diameter

SampleJet NMR tubes, following the recommended procedures
for in vitro analytical and diagnostic procedures29 using 300 μL
of plasma mixed with 300 μL of phosphate buffer (75 mM
Na2HPO4, 2 mM NaN3, 4.6 mM sodium trimethylsilyl
propionate-[2,2,3,3-2H4] (TSP) in H2O/D2O 4:1, pH 7.4 ±
0.1).
For the Spanish sample cohort, all healthy control samples

were prepared in 5 mm outer diameter SampleJet NMR tubes.
For the SARS-CoV-2 positive samples, 35 were prepared in 5
mm outer diameter SampleJet NMR tubes as described for the
Western Australian cohort while the remaining SARS-CoV-2
positive samples (n = 37), with a limited sample volume, were
prepared in 3 mm outer diameter SampleJet NMR tubes (Figure
1A). For the 3 mm outer diameter SampleJet NMR tubes, 90 μL
of plasma was mixed with 90 μL of phosphate buffer (75 mM
Na2HPO4, 2 mM NaN3, 4.6 mM sodium trimethylsilyl
propionate-[2,2,3,3-2H4] (TSP) in H2O/D2O 4:1, pH 7.4 ±
0.1) and 180 μL transferred into an NMR tube.

1H NMR Spectroscopy Data Acquisition and Processing
Parameters. NMR spectroscopic analyses were performed with
two 600 MHz Bruker Avance III HD spectrometers, each
equipped with a 5 mm BBI probe and fitted with the Bruker
SampleJet robot cooling system set to 5 °C. A full quantitative
calibration was completed prior to the analysis using a protocol
described elsewhere.29 All experiments were acquired using the
Bruker In Vitro Diagnostics research (IVDr) methods. For each
sample prepared in 5 mm tubes, two experiments were
completed at 310 K in automation mode, amounting to a total
of 8.3 min acquisition time per sample: a standard one-
dimensional (1D) experiment with solvent presaturation (32
scans, 98k data points, a spectral width of 30 ppm) and a Carr−
Purcell−Meiboom−Gill (CPMG) spin-echo experiment (32
scans, 74k data points, a spectral width of 20 ppm), which filters
the spectrum by differential T2 relaxation, removing signals from
fast relaxing protons on large molecules. For each sample
prepared in 3 mm tubes, two experiments were completed in
automation mode (28 min total experimental acquisition time),
a standard 1D experiment with solvent presaturation (128 scans,
98k data points, a spectral width of 30 ppm) and a T2-filtered
(spin-echo) experiment (128 scans, 74k data points, a spectral
width of 20 ppm). Data were processed in automation using
Bruker Topspin 3.6.2 and ICON NMR automation to achieve
phasing and baseline correction. In addition to the information
extracted from the full spectral data from the standard 1D and
T2-filtered (spin-echo) spectra, a total of 112 lipoprotein
parameters for each sample were generated using the Bruker
IVDr lipoprotein subclass analysis (B.I.-LISA) method whereby
the −(CH2)n at δ = 1.25 and −CH3 at δ = 0.80 peaks of the 1D
spectrum after normalization to the Bruker QuantRef manager
within Topspin were quantified using a PLS-2 regression model.
B.I.LISA data consist of the total plasma lipid analyte
cholesterol, free cholesterol, phospholipids, triglycerides,
apolipoproteins A1/A2/B100 and the B100/A1 ratio, and
distributions of analytes in different density classes of plasma
lipoproteins: high-density lipoprotein (HDL, density 1.063−
1.210 kg/L), intermediate-density lipoprotein (IDL, density
1.006−1.019 kg/L), low-density lipoprotein (LDL, density
1.09−1.63 kg/L), and very low-density lipoprotein (VLDL,
0.950−1.006 kg/L). The main lipoprotein classes HDL, LDL,
and VLDL were subdivided into different density subclasses.
LDL subdivisions included: LDL-1: 1.019−1.031 kg/L, LDL-2:
1.031−1.034 kg/L, LDL-3: 1.034−1.037 kg/L, LDL-4: 1.037−
1.040 kg/L, LDL-5: 1.040−1.044 kg/L, and LDL-6: 1.044−
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1.063 kg/L. HDL subfractions were also assigned to four density
classes: HDL-1: 1.063−1.100 kg/L, HDL-2: 1.100−1.125 kg/L,
HDL-3: 1.125−1.175 kg/L, and HDL-4: 1.175−1.210 kg/L,
and the VLDL subfractions were divided into five density
classes. A list of all of the 112 lipoprotein subfractions and
parameter annotations are shown in Table S4. In addition to the
112 lipoprotein parameters, 23 low-molecular-weight metabo-
lite concentrations were obtained from the Bruker IVDr
quantification in plasma/serum B.I.Quant-PS (acetic acid,
acetoacetic acid, acetone, alanine, citric acid, creatine, creatinine,
formic acid, glucose, glutamic acid, glutamine, glycine, histidine,
D-3-hydroxybutyric acid, isoleucine, lactic acid, leucine, lysine,
methionine, phenylalanine, pyruvic acid, tyrosine, valine).
Metabolites that were below the limits of detection were
excluded from the analyses.
NMR Data Modeling. The electronic reference spike30 was

calibrated against a sample of known concentration and each
sample was then calibrated against the electronic spike to
account for variation in performance between spectrometers.
This was achieved by dividing both the standard, 1D with water
suppression and the T2-filtered (spin-echo) spectra by the eretic
factor in an elementwise fashion. Both the standard 1D and T2-
filtered (spin-echo) NMR spectral data sets were calibrated to

the α-anomeric proton signal of glucose at δ5.23 ppm. Each
spectrum was baseline corrected using an asymmetric least-
squares routine, spectral regions corresponding to the residual
water resonance signals (4.60−4.85 ppm) or regions predom-
inantly containing noise (<0.5 and >9.5 ppm) were excluded
from analyses.31 Data were mean-centered and scaled to unit-
variance prior to multivariate modeling. Principal component
analysis (PCA) was used to assess themain sources of structured
variation within each data set (lipoprotein classes and subclasses,
low-MWmetabolites, and 1D and T2-filtered spectra), while the
orthogonal projection to latent structures-discriminant analysis
(OPLS-DA)32 method was used to model the infection-related
variance in the data and to extract discriminating features. The
optimal number of orthogonal components for each model was
determined using the area under the receiver operator
characteristic curve (AUROC) calculated from predictive
component scores, generated using an internal sevenfold
cross-validation (CV) procedure. All models are shown in
Figures 2−6 and S1−S8.

Analytical Validation. To compare analytical reproducibility
between laboratories (Figure 1A), eight OPLS-DA models that
differentiate SARS-CoV-2 positive participants from healthy
controls were built for the Spanish cohort using the lipoprotein

Figure 2. (A) PCA scores plot of the spin-echo NMR data for the Spanish cohort measured in the CIC bioGUNE lab (open triangles) overlaid with
equivalent data generated in the ANPC lab (filled triangles) (BioGUNE lab PC1 = 19.7%, PC2 = 8.0% and ANPC lab PC1 = 20.0%, PC2 = 8.4%).
Selected regions of the statistically reconstructed first principal component (PC1) measured (B) at CIC bioGUNE and (C) at ANPC. The trace and
the color code represent the covariance and the correlation of the scores with the data matrix. (D) Ranked index of the correlation between the scores
and the data matrix to highlight the similarity between PC1 (B, C) measured in both laboratories (black line = BioGUNE and red line = ANPC). (E)
Median trace for each group (red = SARS-CoV-2, n = 33; blue = control, n = 33) plotted together with the corresponding experimental error for each
group.
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parameters, extracted metabolites, and the standard 1D and T2-
filtered spectral data sets. Each model was constructed using a
training sample set that comprised a single time point from
PCR-confirmed SARS-CoV-2 patients (n = 72) and healthy
control participants (n = 75).

The Cliff’s delta statistic, a nonparametric effect size measure
that quantifies the group differences of a variable, was calculated
for all models. Absolute Cliff’s delta values range from 1 that
denotes the maximum difference, to zero that denotes no
differences between the two groups. The arithmetic sign

Figure 3.OPLS-DA scores and loadings plots of the lipoproteins of the Spanish cohort measured in the CIC bioGUNE and ANPC laboratories. (A)
OPLS-DA scores plot of the lipoprotein parameters fromCIC bioGUNE (open triangles; AUROC = 0.99) overlaid with those generated at the ANPC
(closed triangles; AUROC = 1.00); (B) eruption plot of the lipoprotein data acquired in the CIC bioGUNE laboratory; and (C) eruption plot of the
lipoprotein data acquired in the ANPC laboratory. (D) Lipoproteins −log 10 (p-values) between healthy controls and SARS-CoV-2 positive patients
of the Spanish cohort run at the CIC bioGUNE and ANPC labs and the Western Australia cohort run at the ANPC lab. (E) Lipoproteins OPLS-DA
loadings between healthy controls and SARS-CoV-2 positive patients. Only unadjusted p-values are shown in the figure for comparison, while tables of
the OPLS-DA loadings, Cliff’s delta, and associated p-values (unadjusted and adjusted for multiple hypothesis testing with the false discovery rate
(FDR) correction) for all of the lipoproteins can be found in the Supporting Information. The two gray vertical dashed lines delineate the confidence
interval.
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indicates an elevation or decrease of that variable with reference
to the control group. To test for statistical significance, a two-
tailed paired Wilcoxon rank sum was applied and p-values
adjusted using the false discovery rate (FDR) correction of
multiple hypothesis testing. The statistical significance level was
set to α = 0.05. The description of each parameter, Cliff’s delta,
and p-values can all be found in the Supporting Information

(Tables S4−S9 for IVDr-extracted lipoproteins and Tables S10
and S12 for low-MW metabolites).

Biological Validation. The cohorts from Spain and Western
Australia were used to cross validate each other, i.e., one cohort
was used to build a model for SARS-CoV-2 infection versus
healthy controls while the remaining one was used as a validation
set and was predicted into the model (Figure 1B). The models
were built, as described in the previous section, and the

Figure 4. OPLS-DA scores and loadings plots of the low-MW metabolites measured in the CIC bioGUNE and ANPC laboratories. (A) OPLS-DA
scores plot of the extracted metabolites from CIC bioGUNE (open triangles; AUROC = 1.0) overlaid with those generated at the ANPC (closed
triangles; AUROC = 1.00); (B) eruption plot of the metabolite data acquired in the CIC bioGUNE lab; and (C) eruption plot of the small-molecule
data acquired in the ANPC lab. (D) IVDr-extracted low-MW metabolites −log 10 (p-values) between healthy controls and SARS-CoV-2 positive
patients of the Spanish cohort run at CIC bioGUNE and the ANPC labs and theWestern Australian cohort run at the ANPC. (E) IVDr-extracted low-
MWmetabolite OPLS-DA loadings between healthy controls and the SARS-CoV-2 positive patients. Only unadjusted p-values are shown in the figure
for comparison, while tables of the OPLS-DA loadings, Cliff’s delta, and associated p-values (unadjusted and adjusted for multiple hypothesis testing
with the false discovery rate (FDR) correction) for all of themetabolites can be found in the Supporting Information. The two gray vertical dashed lines
delineate the confidence interval.
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validation data set was used to compute a confusion matrix.
Thus, an orthogonal projection to latent structures-discriminant
analysis (OPLS-DA) model was constructed using a training
sample set comprising a single time point from PCR-confirmed
SARS-CoV-2 patients (n = 35, only including 5 mm tubes) and
healthy control participants (randomly sampled from the full set
n = 40). This model was then used as a predictor for theWA data
set (n = 17 SARS-CoV-2 positive samples and n = 20 healthy
controls). A confusion matrix calculated using a validation set
prepared from the remaining Spanish samples was used for
comparison (with equal sample size) and the sensitivity and
specificity reported. This procedure was repeated for each data
set of the Spanish cohort, generating four models. The models
can be found in Figures 5 and S8.
Fusion of Cohort Data. The two cohorts were combined and

modeled as an integrated data set to ascertain whether the
predictive strength of the candidate biomarkers identified for the
individual cohorts improved with increasing sample size (Figure
1C). The data from both the Spanish and Western Australian
cohorts were concatenated and modeled with OPLS-DA, as
described in the “NMR Data Modeling” section.
All computation and data visualization were performed using

R and RStudio IDE with the open-source R package metabom8
(version 0.4.2), available from GitHub (github.com/tkimhofer/
metabom8), while the figures were integrated and prepared
using Inkscape (https://inkscape.org, version 1.0.2).

■ RESULTS AND DISCUSSION

Cross-Validation of NMR Spectral Profile, Lipoprotein, and
Low-Molecular-Weight Metabolite Data for Laboratory
Interoperability

The split samples from the Spanish cohort measured in the CIC
bioGUNE and ANPC laboratories were comapped in the PCA
scores space for the T2-filtered experiment (Figure 2A),
illustrating the analytical robustness of the sample preparation
and NMR experimental methods. The clear differentiation of
the SARS-CoV-2 infected and control groups, reflecting the
biological variance between the infected and control groups, was
greater than any variation attributed to analytical sources. As
with the scores, the reconstructed loadings for the first
component (PC1) were found to be in excellent agreement
for both laboratories and both NMR experiment types (as
illustrated for selected windows of the NMR serum spectra
Figure 2B,C). This is also illustrated in Figure 2D where the
variable importance for the full spectral range (represented by
the color code of the traces in Figure 2B,C) is provided as a
ranked index for both laboratories. Furthermore, the median
trace for each group (SARS-CoV-2 and control) is displayed
with its corresponding experimental errors (Figure 2E)
estimated by summing the difference between each replicate
pair depicted in red (SARS-CoV-2 infected) and blue (control).
The experimental error is largely constant across all spectral
regions and overall is of much lower magnitude than the
biological effect of interest. For example, the magnitude of the
signals for GlycA and GlycB far exceed the analytical variation
across the two laboratories. A similar result was obtained for the
standard water-suppressed 1D NMR data (Figure S7). Thus,
based on the above data the two laboratories generated
analytically equivalent results. It should be noted that only the
samples with enough volume to be prepared in 5 mm tubes in
both laboratories were included in these comparisons using full
spectra, i.e., 33 (two samples were excluded) of the SARS-CoV-2

positive samples. Consequently, the number of healthy controls
was adjusted to balance the two populations.
It was possible to incorporate samples from both 5 mm outer

diameter tubes and 3mm tubes within the same statistical model
for the quantitated lipoprotein parameters measured across the
two laboratories since the IVDr method generates absolute
concentrations and this accommodates the difference in the
experimental conditions between the tube types, e.g.,
compensating for signal to noise discrepancies. The OPLS-DA
models for the two IVDr quantified data sets for lipoproteins and
low-molecular-weight molecules (Figures 3 and 4, respectively)
again show good agreement between the measurements
acquired in the two laboratories. The superimposed scores
plots (Figures 3A and 4A) and the corresponding eruption plots
stratified at the laboratory (Figures 3B,C and 4B,C) show that
the presence/absence of infection accounts for the majority of
the variance, with the eruption plots4 manifesting similar
geometries. To better illustrate this similarity, the log of the
significance (Figures 3D and 4D) of each extracted parameter in
differentiating the infected and control groups for the Spanish
cohort was displayed side-by-side (with bioGUNE denoted in
orange and ANPC in green). The order of variable significance is
largely preserved for the parameters that exert significant
weighting in the models, for example, the LDL triglycerides and
apolipoprotein A1 (ABA1) (higher in COVID-19) and HDL-
related parameters (associated with the healthy group) are
ranked in similar order, whereas a greater disparity in the rank
order is apparent for the nonsignificant or “noisy” parameters.
Within the highly discriminatory lipoprotein parameters, L5TG,
L4TG, and ABA1 showed a slight difference in rank-ordered
significance between the two laboratories. The magnitudes of
the statistically constructed loadings (Figures 3E and 4E) for the
data set generated in each laboratory are ranked and displayed
side-by-side. Some of the least stable parameters in the models,
for example, VLTG, V1TG, IDTG, V1FC, V2FC, and IDFC
have been shown to be susceptible to freeze−thaw cycles.28,33 In
the case of the low-MW metabolites, citrate, acetate, and
acetoacetate have also been reported to be strongly influenced
by freeze−thaw cycles,33 whichmay account for the instability in
these parameters between the two measurement sites, since the
infected samples underwent one more freeze−thaw cycle at the
ANPC laboratory than bioGUNE.
Combining the 3 and 5 mm IVDr data sets for lipoproteins

and low-MW metabolites in the current study allowed an
increase in the group size from 40 to 75 in the control and from
35 to 72 in the infected groups, thereby substantially increasing
the statistical power of the analysis. Nevertheless, although the
IVDr quantification enabled increased numbers of samples to be
included in the model through combination of different tube
sizes, the T2-filtered experiment on lower sample numbers still
marginally outperformed the quantified extracted parameters’
OPLS-DA models in terms of the sensitivity and specificity
values. (Figure S8). This indicates that the full spectra contain
extra systematic variation, which contributes to the model that is
not contained in the lipoprotein data.

Comparison of theMetabolic Consequences of SARS-CoV-2
Infection Measured in Two Independent Cohorts

A more sophisticated level of interlaboratory investigation
concerns the direct comparison of the different population
cohorts for biological similarity using identical analytical
platforms (Figure 1B). We used OPLS-DA to build a training
set model for the Spanish patient cohort analyzed at the ANPC
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(healthy controls versus active COVID-19 cases) and then used
the WA cohort as a completely independent test set to estimate
classification accuracy. The OPLS-DA scores plots of the 1D
NMR and the top 15 discriminatory IVDr parameter data sets
(Figure 5A,B) show that all of the Western Australia healthy
controls are correctly predicted into the healthy control model
for the Spanish cohort. This projection of the basic measured
WA NMR data (with no data alignment) showed extremely
similar distributions of both SARS-CoV-2 infected groups. All
but three of the WA SARS-CoV-2 positive controls are classified
correctly in the 1DNMR spectral model. It should be noted that
one of the three individuals that did not classify correctly were
from a patient with a high BMI and diabetes (marked with an
asterix). It can be clearly seen that these samples misclassify as
healthy controls in the 1D, T2-filtered, and lipoprotein models
but not in the low-MWmetabolite model (Figures 5 and S8). An
analogous comparison of the IVDr data (Figure S8B,C)
indicated that the models based on full spectral data were
more predictive of the external validation cohort than the
models based on quantified parameters. One of the reasons for
this observation is that while both the lipoproteins and extracted
low-MW metabolite are major contributors to the differential
molecular signature of SARS-CoV-2 infection, other molecules
that are not quantified by either of the IVDr methods also
contributed highly in the model (Figure S8B,C) such as GlycA
and GlycB, indices of inflammation that have been shown to be
key “biomarkers” of the infection.4,13

The models relating to all spectral data sets and the IVDr-
extracted parameters demonstrated high sensitivity (≥98%
internal validation with the bioGUNE data sets and external WA
data set), with the exception of the IVDr low-molecular-weight
internal (bioGUNE) cross-validation data, which yielded a
model with slightly lower sensitivity (95%). The specitivities of
the models were slightly lower ranging from 85 to 97% for the
internal cross-validation of the bioGUNE data sets. Cross-
validation against the WA cohort caused a drop in sensitivity of
6.6 and 15%, respectively, for the 1D and T2-filtered spectral
data sets. Again the IVDr-extracted parameter models for the
lipoprotein and low-MW metabolite sets, respectively.
The two cohorts investigated here, although both Caucasian,

were from different ethnic backgrounds with differences in the

diet and culture. The Spanish cohort is predominantly from the
Basque region, which in itself is culturally and genetically
different from the main Spanish population.34 Although we do
not have detailed genetic or dietary data for either of the cohorts,
there is a reasonable expectation that there will be some
systematic differences between the populations at the genetic
and environmental/lifestyle levels.35,36 Furthermore, there may
also be differences in the range of severity of infection between
the two patient groups, and so it is highly pertinent to question
whether or not such diverse and largely uncontrolled groups can
be cross-modeled in integrated data sets. Indeed, a PCA model
comparing the control groups from the Spanish andWA cohorts
showed inherent differentiation of the two populations with
higher concentrations of serum triglycerides (data not shown)
defining theWA cohort and higher concentrations of lactate and
glycine being characteristic of the Spanish cohort (Figure S5).
This reveals small but consistent metabolic variations between
individuals from different countries and accounts for why the
controls do not perfectly cross-model using theWA and Spanish
cohorts, consistent with previous studies.37−39

The molecular signature of SARS-CoV-2 infection derived
from standard 1D and T2-filtered experiments for both the
Spanish and WA cohorts was consistent with the previous
literature reporting on the WA cohort (compare Lodge et al.11

Figures 1 and 2with Figure 2B,C). The lipoprotein and low-MW
metabolite data for theWA cohort (Figures 3D,E and 4D,E, blue
bars) ranked in similar order to those of the Spanish cohort
denoted by the orange and green bars representing measure-
ments made at the ANPC and bioGUNE laboratories,
respectively. As expected, the statistical significance of the
parameters in the WA cohort (Figures 3D and 4D blue bars) is
lower than those derived from the Spanish cohort, due to the
substantially smaller sample numbers in the WA cohort (n = 37
WA; n = 147 Spanish). Although a high degree of similarity in
the ranked significance of the lipoprotein parameters was
evident, some differences in the lipoprotein chemistries between
the two cohorts were observed. For example, TPTG, V2TG,
VLPL, VLTG, and VLFC showed good technical stability but
were more influential in the Spanish cohort.

Figure 5. OPLS-DA training models generated using the healthy controls (blue closed triangles) and SARS-CoV-2 positive patients (red closed
triangles) from the Spanish sample cohort analyzed in the ANPC lab are plotted for theWestern Australian test set for the healthy (blue open triangles)
and SARS-CoV-2 positive samples (red open triangles). (A) 1D 1H NMR with the presaturation OPLS-DA Spanish cohort training model with the
WA cohort projected in. (B) Ten most significant IVDr lipoprotein parameters combined with the five most significant IVDr low-MW metabolites
obtained from modeling of the Spanish cohort with the Western Australian cohort projected as a validation set.
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Figure 6. OPLS-DA scores and loadings plots of the comodels. (A) OPLS-DA scores plots of the Western Australian cohort comodeled with the
Spanish sample cohort analyzed at the BioGUNE laboratory (AUROC = 0.98) and the (B) corresponding Cliff’s delta eruption plot. (C) OPLS-DA
scores plots of the Western Australian cohort comodeled with the Spanish sample cohort analyzed at the ANPC lab (AUROC = 0.97) and (D)
corresponding eruption plot. The two gray vertical dashed lines delineate the confidence interval.
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Comodeling Independent SARS-CoV-2 Disease Cohorts
and Characterization of the Metabolic Effects of Infection

In addition to testing the interoperability between laboratories,
the Western Australian sample cohort was comodeled (Figure
1C) with the Spanish cohort analyzed in both the CIC
bioGUNE and the ANPC laboratories. The comparison and
fusion of the data sets were enabled by normalization of the
spectra by adjusting to the eretic factor of each sample.30 The
performance of all spectrometers differs slightly, but using IVDr
methods and normalizing subsequent spectra using the eretic
factor for each sample, the “batch” effect of the sample run can
be eliminated.
The OPLS-DA models generated for the lipoproteins and

metabolite IVDr data generated similar scores and eruption
plots (Figure 6) to those generated for the individual cohorts
(Figures 3 and 4). While the model quality for the combined
cohort model andmodels for the individual cohorts were similar,
the statistical power was increased. However, despite this higher
statistical power with the combination of the cohorts, there was
little change in either the eruption plots or the ranked loadings
(Figure S9). The identities of the COVID-19 discriminating
lipoproteins matched those reported previously. The most
discriminatory low-MW metabolites across both populations
were glutamate, lactate, pyruvate, formate, phenylalanine
(higher concentrations associated with SARS-CoV-2), and
glutamine (lower concentrations associated with SARS-CoV-
2), of which glutamic acid and glutamine were the most
significant across both the individual and the combined
populations. For most metabolites, the significance of the
variable was proportional to the number of samples used to
generate the model.

Biological Significance of the Combined Data Sets

The Spanish cohort lipoprotein and metabolic data effectively
confirm the findings of the earlier, smaller studies on the WA
data alone.4 Certain important metabolic features still stand out
such as the glutamine:glutamic acid ratio and the high
phenylalanine levels. Formic acid emerges as a strong biomarker
for SARS-CoV-2 infection, and this may relate to the
immunological stimulation of the tryptophan−kynurenine
pathway, best measured by mass spectrometry.5,12 Formic acid
is a byproduct of the breakdown of N-formylkynurenine, which
in turn, is formed from tryptophan via immune-stimulated
indoleamine 2,3-dioxygenase activity.40

We observed significant shifts in the HDL/LDL profiles, as
previously reported,4 with significant depletion of multiple HDL
parameters. This has also been observed by other scientists and
indeed low HDL/LDL status has been reported to relate to
disease severity.41 In the present study, the control group was
defined by higher concentrations of HDL cholesterol, total
plasma lipoproteins A1 and A2, and HDL phospholipids. The
SARS-CoV-2 group in both data sets was driven by high
concentrations of L1−L4 triglycerides, VLDL phospholipids,
and a high ratio of apolipoprotein B100 to apolipoprotein A1
(ABA1). The ABA1 ratio is elevated in type 1 diabetes42 and is a
marker of increased atherogenicity43 and cardiovascular risk.44

This observation is potentially of serious long-term concern as
hundreds of millions of patients have been exposed to the virus
and, therefore, have potentially enhanced disease cardiovascular
risks associated with the elevated ABA1 ratio. In a recent study
on a small cohort of mildly affected patients measured 3 months
after the acute COVID-19 phase we found that the ABA1 had
substantially normalized as part of the phenoreversion process.18

However, these data cannot be extrapolated to patients who
have experienced more severe acute episodes of the disease and
this remains to be tested. We also previously noted that
depletion of HDL apolipoproteins A1 and A2 and phospholipids
is associated with carotid artery calcification and intima
thickening.45

It is of particular note that the HDL fraction 4 apolipoprotein
A1 and apolipoprotein A2 components, and cholesterol were the
most severely depleted in the SARS-CoV-2 infected patients
(Figure 3D) andwere themost significant four biomarkers in the
combined data set. We previously found that the HDL4
phospholipid component being highly correlated with a novel
NMR-detected supramolecular phospholipid composite (SPC)
peak was observable in the plasma diffusion and relaxation
editing NMR spectra and this compartmental biomarker was
profoundly depleted in SARS-CoV-2 infected patients.13

Furthermore, reduction of HDL4 phospholipids apolipoprotein
A1 and apolipoprotein A2 were the most significant changes
observed in patients with pulmonary hypertension (PHT) and
reduced levels of these components were significantly related to
associated PHT mortality.46 Detailed proteomic and network
enrichment analysis revealed that HDL4 parameters relate to a
series of proteins that regulate fibrinolysis and depletion of
HDL4 results in negative regulation of blood coagulation,
hemostasis, fibrinolysis, and thrombosis microembolism are also
recognized side effects of SARS-CoV-2 pathology. Further
insights into the mechanistic processes may be gained by more
detailed lipoprotein to lipidomic cross-modeling in future
studies.

■ CONCLUSIONS
We demonstrated that 1D 1H NMR with presaturation, spin-
echo, and quantitative IVDr lipoprotein NMR methods for
lipoprotein and low-MW metabolite quantification all give
substantially equivalent cross-validation models for SARS-CoV-
2 infection biomarkers when samples from a population cohort
are analyzed independently in two laboratories. Furthermore,
OPLS-DA training set models of the Spanish cohort correctly
predict the classification of independent population cohorts with
a different ethnic and lifestyle background. Further work is
required to assess the general interethnic variation in
biomarkers, but these data indicate that the metabolic
phenoconversion responses caused by SARS-CoV-2 infection
greatly outweigh any differences in base population metabolism
and metabolic phenotypes and that comodeling studies lead to
deeper mechanistic insights. By combining the two data sets
some biomarker combinations emerged more strongly as
discriminatory, including several HDL parameters. In particular
HDL subclass 4 phospholipids, apolipoprotein A1 and
apolipoprotein A2 were reduced, which has previously been
associated with a range of cardiovascular risk factors and PHT
mortality, and may have mechanistic significance with respect to
blood haemodynamic and coagulation changes found in SARS-
CoV-2 infections.
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quantification of the Spanish cohort of samples; Figure
S5: principal component modeling of low-MW metabo-
lites for healthy control groups of both Spanish and WA
cohorts; Figure S6: principal componentmodeling of low-
MWmetabolites for SARS-CoV-2 positive groups of both
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