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ABSTRACT

Reproductive stage frost poses a major constraint for wheat production in countries such as Australia.
However, little progress has been made in identifying key genes to overcome the constraint. In the pre-
sent study, a severe frost event hit two large-scale field trials consisting of six doubled haploid (DH)
wheat populations at reproductive stage (young microspore stage) in Western Australia, leading to the
identification of 30 robust frost QTL on 17 chromosomes. The major 18 QTL with the phenotype variation
over 9.5% were located on 13 chromosomes including 2A, 2B, 2D, 3A, 4A, 4B, 4D, 5A, 5D, 6D, 7A, 7B and
7D. Most frost QTL were closely linked to the QTL of anthesis, maturity, Zadok stages as well as linked to
anthesis related genes. Out of those, six QTL were repetitively detected on the homologous regions on 2B,
4B, 4D, 5A, 5D, 7A in more than two populations. Results showed that the frost damage is associated with
alleles of Vrn-Ala, Vrn-D1a, Rht-B1b, Rht-D1b, and the high copy number of Ppd-B1. However, anthesis
QTL and anthesis related genes of Vrn-Bla and TaFT3-1B on chromosomes 5B and 1B did not lead to frost
damage, indicating that these early-flowering phenotype related genes are compatible with frost toler-
ance and thus can be utilised in breeding. Our results also indicate that wild-type alleles Rht-B1a and
Rht-D1a can be used when breeding for frost-tolerant varieties without delaying flowering time.
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS. Publishing services by Elsevier
B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

short chilling and frost events at night [2]. The early-flowering
phenotype in modern wheat and barley cultivars has resulted in

Frost can cause significant grain yield and quality losses in
wheat crops [1]. In spring, when plants sense the gradual increase
of temperature and their development proceeds beyond the joint-
ing stage, both winter and spring types show considerable sensitiv-
ity to low temperatures (0-12 °C) and frost (<0 °C), particularly to
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significant grain yield and quality losses from frost damage [3].
Frost damage during reproductive stage can lead to a multiplicity
of symptoms, including dead stems, floret and spikelet abortion,
and empty shells along the spikes, thus significantly reducing the
seed number per spike. In spring wheat cultivation in Australia,
late sowing plants and long season varieties can escape the low
temperatures and get less impact, which is called as a frost escap-
ing mechanism. However, those plants most likely will face
drought and heat stresses during the grain filling period, resulting
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in significant yield losses. Farmers and breeders are looking for-
ward to frost tolerant varieties with early maturity. Therefore,
short season varieties with non-escaping frost mechanism are
desirable in Australia.

In a previous abiotic research, during the reproductive stage,
male organs increase the sensitivity dramatically from the start
of meiosis to the break-up of the tetrad. A single anther needs
approximately 24 h in that event [4]. The significant grain number
loss was happened during the period of 8-17 days before anthesis
when exposing to drought stress [5]. Meiosis (10 days before
anthesis) is the most sensible stage to abiotic stress [6]. At meiosis,
male sterility occurs under non-freezing temperatures below 10 °C
in cereals [7,8].

Many previous wheat frost tolerance studies focused on the
vegetative development stages [9-14]. Genetic segregation for
vegetative frost tolerance (or susceptibility) have been reported
on chromosomes 5A, 5B, 5D, and 7B in wheat, and 5H in barley.
The frost tolerance QTL Fr-A1 and Fr-B1 on chromosomes 5A and
5B were closely linked with the vernalisation genes Vrn-Ala and
Vrn-Bla [11,15]. Frost resistance 2 (FR2) genes are in control of
delayed heading. In combination with VRN1 showed reproductive
frost tolerance [16], it is not clear yet whether these frost tolerance
loci are identical with Vrn-Ala and Vrn-Bla [17]. Similarly, it
remains unclear whether the frost locus on chromosome 7B is
influenced by VRN3 (VrnB4) [9]. In barley, three doubled haploid
(DH) populations were used to identify reproductive stage frost
tolerance QTL [3]. Two major QTL were identified on chromosomes
2H and 5H. The QTL for frost-induced floret sterility and grain dam-
age overlapped with the anthesis QTL on the Vrn-H1 locus in all
three DH populations, whereas in two of the populations the floret
sterility QTL on 2H was not close to the growth QTL or Ppd-H1, but
close to the earliness per se gene (Eps 2), the cold-regulated gene
(Cor14b) and the barley low-temperature gene (BIt14) loci. It seems
that the frost tolerance QTL are closely associated with the vernal-
isation genes in both vegetative and reproductive stages, although
the effects kick in at different growth stages.

Regarding the anthesis related genes, three vernalization gene
groups including VRN1, VRN2, and VRN3 have been well studied
[18]. Three homologous copies of the VRN1 gene, known as Vrn-
Ala, Vrn-Bla and Vrn-D1a were mapped on chromosome 5A, 5B
and 5D, respectively [19-24]. The VRN2 gene was mapped on the
distal region of 5AL which was a repressor of flowering. When
VRN2 is down-regulated by vernalization, the gene expression of
VRN1 was promoted [19,25]. The mutated and dysfunctional
VRN2 resulted in spring lines [25]. VRN3, similar to the Flowering
Locus T (FT) gene, encodes a Rapidly Accelerated Fibrosarcoma
(RAF) kinase inhibitor-like protein [18]. The mutated lines with
Vrn-B3 flowered considerably earlier than the recessive vrn-B3
allele [26]. One of the Vrn-B3 genes was mapped on 7BS (VRN-
B3) [26]. The results of Yan et al. [26] implied that the VRN2 mod-
ulated the quantitative levels of FT (directly or indirectly) and the
absence of VRN2 function showed no effect to VRN1 and VRN3
mutations. Lately, another gene for developing spring growth habit
VRN-D4 was identified in the short arm and close to the cen-
tromeric region of chromosome 5D [27,28]. VRN-D4 is a homolo-
gous gene of Vim-Al.

Photoperiod insensitivity provides wheat with the ability to
flower in short day as well as in long day conditions. The genes
(PPD1) involved in this process are Ppd-A1, Ppd-B1, and Ppd-D1 (for-
merly Ppd3, Ppd2, and Ppd1), located on 2A, 2B, and 2D, respectively
[29-31]. The homologous genes Ppd-Al1 and Ppd-B1 showed less
effect on flowering in short days than the Ppd-D1 [29]. The insensi-
tivity of Ppd-A1l is greater than Ppd-B1 [32], and Ppd-A1 tends to
increase thousand grain weight and yield while Ppd-B1 seems asso-
ciated with high kernel number through increasing spikelet number
[33]. In recent study, a heading time QTL detected on 2B in durum
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wheat and explain 26.2% of the phenotypic variations. The early
heading QTL correspond to higher copy number of Ppd-B1 [34].

The influence of earliness per se (eps) genes tend to influence
developmental rate at a much lower level as compared to vernal-
ization and photoperiod. Numerous eps and the related
flowering-time QTL in wheat have been mapped to chromosomes
1DL, 2B, 3A, 4A, 4B, and 6B [35-37]. Eps loci are associated with
spikelet number and size, thereby affecting wheat yield [38]. An
ortholog to the Arabidopsis thaliana LUX ARRHYTHMO/PHYTO-
CLOCK1 (LUX/PCL1) gene was identified as Eps-3A™ in einkorn
wheat (Triticum monococcum L.). Lines containing Eps-3A™ showed
a distorted circadian clock, spikelet number variation and temper-
ature sensitivity [39]. In wheat, homologs to Arabidopsis Early
flowering 3 (ELF3) gene have been identified on chromosome group
1 [40], namely TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL. The gene
ELF3 was identified as a candidate gene of Eps-A™1. Wheat lines
harbouring ELF3 showed flowered earlier and less spikelets per
spike, and stronger photoperiod sensitivity, which indicate the sig-
nificant epistatic interaction with Ppd1 [41,42]. Eps-D1 deletion
reduced the total expression of TaELF3 indicating TaELF3-1DL is
the major isoform of gene TaELF3 [43]. On average, lines harbour-
ing allele TaELF3-1DLb headed two days earlier compared with
those holding TaELF3-1DLa [40].

Apart from the well-known anthesis-related genes mentioned
above, on 3A, 3B and 3D, there is a set of T. aestivum GIGANTEA
(TaGI) encoding genes, whose products interact with FLAVIN-
BINDING, KELCH REPEAT, and F-BOX 1 (FKF1) domains to form a
complex regulating photoperiod-dependent flowering by regulat-
ing CONSTANS (CO) expression [44].

A SOC1 (Suppressor of Overexpression of CO 1)-like gene on chro-
mosome 4DL, WSOC1, was reported to influence flowering time in
wheat [30]. A gene for wheat vegetative to reproductive transition
on the chromosome 7 group, TaVRT-2, interacts with VRN1 and
VRN2 and regulates the floral transition [45]. Three short-day
flowering-time genes on 1B, including flowering locus T3 (TaFT3-
B1), WUSCHEL-like (TaWUSCHELL-B1) and TARGET OF EAT1
(TaTOE1-B1) have been cloned [46], with the early-flowering func-
tion for TaFT3-B1 having been validated. A set of heading-date
genes (TaHD1) identified on 6A, 6B and 6D, are regulated by
long-day conditions and the circadian clock, directly affecting ver-
nalisation genes under long-day conditions. Its mutants showed a
delayed flowering response in a long-day environment [47,48].

It is difficult to screen frost tolerance in the field at the repro-
ductive stage, since trials need to be hit by a natural frost event
at the right developmental stage, which is purely a matter of
chance. To increase the chance, trials consisting of a wide range
of genotypes usually need to be planted on multiple sowing dates
[3,49]. The type of damage to the affected plants will also be influ-
enced by the weather on days leading to the frost event and after.
This goes a long way in explaining why untangling the complex
genetic basis of frost tolerance under controlled conditions in
glasshouses and cold chambers has been of limited utility to
breeders.

Our 2018 large-scale field trials encountered such a chance
event exactly at the right stage, which provides a valuable resource
for QTL detection for frost damage. Six DH populations, namely,
Bethlehem/Westonia (BW); Gregory/Bethlehem substitution line
7AS (G7A); Spitfire/Bethlehem substitution line 7AS (Sp7A). Spit-
fire/Bethlehem (SpB); Spitfire/Mace (SpM); and Suntop/Bethlehem
substitution line 3BL (St3B), representing genetically divergent ori-
gins were impacted by frost in two distinct environments. All pop-
ulations suffered considerable frost damage. Genes and markers
contributing to the frost tolerance or susceptibility phenotype
were identified. Frost tolerance segregation patterns in the current
study provide valuable genetic information that can be used in
wheat frost tolerance breeding.
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2. Materials and methods
2.1. Plant materials

This study was conducted using six DH populations derived
from the following crosses: Bethlehem/Westonia (BW); Gregory/
Bethlehem substitution line 7AS (G7A); Spitfire/Bethlehem substi-
tution line 7AS (Sp7A). Spitfire/Bethlehem (SpB); Spitfire/Mace
(SpM); and Suntop/Bethlehem substitution line 3BL (St3B). Mace,
Spitfire, Suntop, Westonia and Wyalkatchem are mid to early flow-
ering varieties and produce good yield (note: Mace is a high-
yielding cultivar) (Tables S1 and S2). Bethlehem and Bethlehem
substitution lines 3BL (B_3B) and 7AS (B_7A) flower early and are
considered as frost sensitive wheat lines producing medium yield
(Tables S1 and S2). Gregory, Tungsten and Yitpi are late-
flowering and are considered frost tolerant varieties and produces
medium to high yield in high rainfall seasons (Tables S1 and S2).
The population sizes of the six DH populations were 105, 327,
304, 168, 222, and 350 for BW, G7A, Sp7A, SpB, SpM, and St3B,
respectively (Table S3). The wheat varieties Wyalkatchem, Tung-
sten and Yitpi (Tables S1 and S2) were included as internal controls
in the 2018 field trials. A total of 171 historical lines were used to
investigate the proportion of mutated Virn-Ala, Vrn-Bla, Vrn-Dla,
Rht-B1b and Rht-D1b genes (described in Table S4).

2.2. Field and glasshouse experiments

In 2017, individual lines from the six DH populations were
planted as 1-m? plots in Katanning (Kat), Wongan Hills (WH) and
South Perth, while four DH populations, namely BW, SpM, SpB,
and Sp7A were also planted in 4-litre pots in a glasshouse at Mur-
doch University.

In 2018, the field experiments with the six DH populations were
conducted at three locations across Australia representing distinct
environments including 1716 plots at Narrabri in New South
Wales, 1884 plots at Muresk and 2316 plots at Williams in Wes-
tern Australia. The majority of the DH lines (greater than 96%) were
replicated two times at one or more than one of the three locations.
Eight parental lines and three control varieties were also utilised in
each of the field experiments. The partially replicated experiments
were designed using DiGGer in R [50]. Since no frost were recog-
nized in Narrabri, the Zadok data recorded in Narrabri were used
to validate the flowering QTL in this study.

To identify the young microspore stage, the parental lines,
together with other varieties, were grown in Muresk in 2019.

Field-grown plants were rainfed under standard agronomic
management practices, whereas adequate water and fertilizer
were provided to plants grown in pots in the glasshouse [51].

2.3. Growth stage measurement

Given the importance of establishing the plant growth stage
during the frost events, anthesis date and plant growth stages dur-
ing ear emergence were recorded for all populations in the glass-
house, in Wongan Hills and Katanning in 2017, and in Williams
and Muresk during the 2018 trials (Fig. S1). The days to anthesis
were calculated by the anthesis date minuses the sowing date. In
the Narrabri trials in 2018, the Zadok stages around 50-60 were
recorded. In Williams trials 2018, days to maturity were estimated
as follows for each plot except the St3B population: on October 31,
based on the plant maturity performance, the plant maturity scor-
ing was entered as 0 (mature) to 15 (based on an estimate of
15 days to maturity). The days to maturity were the estimated
maturity date minuses the sowing date (June 4, 2018).
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2.4. Temperature recording

In 2018, probably because of high rainfall and low soil temper-
atures in August, the average anthesis time was delayed by 15 to
20 days in the WA field trials. Flowering time ranged from Septem-
ber 25 to October 12 in Williams, and from September 13 to Octo-
ber 6 in Muresk. The lowest temperatures (—1.1 and 0.3 °C,
respectively) were recorded from whether station beside the field
trials on September 14, 15 and 16 in Williams, and September 15
and 16 in Muresk (Fig. 1a; Table S5). The low temperatures
(<2 °C) lasted 975 and 300 min in Williams and Muresk, respec-
tively. The low temperatures during heading and anthesis caused
frost damage in all six DH populations. The days between frost
and anthesis were calculated by the average days to anthesis of
each line minus the days to frost (September 15, 2018).

2.5. Frost damage measurement

The highest frost damage was to spikes (Fig. 1b). On the field,
frost damage was scored visually by a single person using a 0-15
scale (0: no frost damage; 1-2: a proportion of 0.5%-5% of spikes
damaged by frost within a plot (95%-99% of grain remaining);
3-4: 5%-20% damaged (80%-95% of grain remaining); 5-6:
20%-40% damaged (60%-80% of grain remaining); 7-8: 40%-60%
damaged (40-60% of grain remaining); 9-10: 60%-80%
damaged (20%-40% of grain remaining); 11-12: 80%-90% damaged
(10%-20% of grain remaining); 13-15: 90%-100% damaged (0-10%
of grain remaining) (Table S6; Fig. S2).

To evaluate the reliability of field scoring of frost damage, a set
of randomly selected lines were assessed for the floret sterility and
the data was compared with the field visual scoring results. For
validating the visual scoring, ten heads were picked from each plot
around 20 days after anthesis for frost assessment. Three parental
lines (Bethlehem, Mace, and Westonia) and two control lines
(Wyalkatchem, Yitpi) from three different anthesis time windows
were used, and 7 to 14 plots for each line were randomly selected
for floret sterility assessment (Fig. S3a). The two outside florets of
each spikelet in a spike were used for sterility calculation. The
sterility percentage equals to the sterile florets divided by the total
florets in each spike, then times 100. The average sterility of the ten
heads of each plot formed the whole plot frost damage level. The
correlation coefficient between visual frost damage and floret
sterility was 0.79 (P < 0.01) in randomly selected parental and con-
trol lines (Fig. S3b).

2.6. Plant height measurement

Plant height was measured using three main tillers of three rep-
resentable plants in each plot. The plant height of G7A and St3B
populations was used for QTL analysis in this study as the semi-
dwarf genes were segregating in these two populations (Fig. S4).

2.7. Meiosis stage measurement

In 2019 field trials in Muresk, plants were sampled in 2-3 days
interval since the auricle distance was 1 cm and the main tillers
with the same auricle distance as sampled plants were tagged.
The sampled plants were stored above ice and the spikes were dis-
sected and photographed with a ruler. The anthers stained by ace-
tocarmine solution (45%) were placed on a light microscopy
(400 x magnification) and the pollen developmental stages were
captured. The days between meiosis and anthesis were calculated
by the days to anthesis minus the meiosis date.
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Fig. 1. Frost occurred 9-18 days before anthesis. (a) Daily temperature below 2 °C presented in Muresk and Williams sites (temperature was recorded every 15 min). In
Muresk, the low temperature appeared on the 15th and 16th of September 2018 while it mainly occurred on the 14th, 15th, 16th in September, shorter time period on the
11th, 13th, 17th, 18th, 25th of August, and 6th of September in Williams. (b) Different types of frost damage occurred in both Williams and Muresk sites. A1, Frost impacted
on the lower part of spikes and the top of peduncles; B1 and B2 showed Bethlehem frost impacted spikes and seed settings, respectively; W1 and W2 showed Westonia frost
impacted spikes and seed settings, respectively. (c) Data of days to anthesis and days between last frost event and anthesis on each parental line and control variety in two
population areas of SpB and BW in Muresk (M) and Williams (W), respectively. Numbers represent days for different statistical classes. The vertical bars represent SE. (d)
Number of days between the frost event and anthesis on different parental lines and control varieties. Empty column means the missing line in the assayed area. Values with

the same letter are not different at P = 0.05.

2.8. Linkage map construction

Genomic DNA was extracted from a single plant for each DH
line and their parents [52]. SNP linkage maps were constructed
for six DH populations, including two linkage maps of 90K SNP
and four linkage maps of 12K Targeted Genotyping-By-
Sequencing (tGBS). SNP genotyping was performed using an Infi-
nium iSelect assay on an Illumina iScan instrument according to
the manufacturer’s protocols (Illumina, San Diego, CA). SNP clus-
tering and genotype calling was performed using GenomeStudio
v2011.1 software (Illumina, San Diego, CA) with the custom
genotype-calling algorithm described by Cavanagh group [53].
Identical lines were detected and removed using non-metric mul-
tidimensional scaling (MDS) of genetic dissimilarity using software
from Numerical Taxonomy System (NTsys) v2.2 and Plymouth
Routines in Multivariate Ecological Research (PRIMER v6) [54,55].
Lines with large proportion of missing values on SNP genotyping

were also removed, together with distorted markers and double-
cross markers. Most co-segregating markers were made redundant
and removed from the genetic map. As results, a fine-map of BW
population was constructed using 77 lines and 2387 SNP markers;
and so as the maps of G7A by 218 DH lines and 3592 SNP markers,
Sp7A by 191 DH lines and 2367 SNP markers, SpB by 94 DH lines
and 2570 SNP markers, SpM by 188 DH lines and 2235 SNP mark-
ers, and St3B by 185 DH lines and 1924 SNP markers. (Table S3).
Gene-based markers were used in conjunction with SNPs to
account for the fact that in spring wheat, anthesis is highly con-
trolled by the vernalisation genes [56] and seed number per spike
is strongly associated with the wild-type of Rht-Dla gene [51].
Markers for Rht-B1b, Rht-D1b, Vrn-Ala, Vrn-Bla, and Vrn-D1a were
used to construct the final maps of the six DH populations using
Map Manager [57] and the QTL mapping package R/qtl [58]. Pri-
mers for VRN1 (Vrn-Ala, Vrn-Bla, and Vrn-D1a), and Rht-B1, Rht-
D1 were as described [51,56]. Primers for TaELF3-1A, TaELF3-1B
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and TaELF3-1D, VRN-D4 genes were used for PCR amplifications in
all parental lines. The gene-specific markers were adopted from
Alvarez et al. [41], Wang et al. [40], and Kippes et al. [28].

2.9. QTL mapping

As proposed for additive, dominant and epistatic QTL mapping
in biparental populations [59], we employed inclusive composite
interval mapping (ICIM) for QTL detection, using IciMapping V4.1
(http://www.isbreeding.net). A LOD score of 2.5 was used as signif-
icance of QTL detection. Permutations were set to 1000 at a signif-
icant level of 0.05. The inclusive composite interval mapping
addition (ICIM-ADD) method was selected for QTL mapping [60].

2.10. TagMan assays for Ppd1-2B copy number determination

Significant anthesis and frost QTL were detected in the Ppd1-2B
region. As variable copy number of the Ppd1-2B gene among paren-
tal lines was suspected, TagMan assays were conducted to deter-
mine copy number in those lines. Based on a published protocol
[61], 20 uL PCR reactions were set up including 10 pL ddPCR Super-
mix for Probes (Bio-Rad), 0.4 uL probe plus forward and reverse
primers (10 pmol L™!), 5 puL DNA (10 ng pL~!), and 4.6 pL RNase/
DNase-free water. The primer and probe sequences for Ppd1-2B
gene and TaCO2 internal control were as those published by Diaz
et al. [61]. PCR cycling parameters were 95 °C for 15 min; 40 cycles
of 95 °C for 15 s; and 60 °C for 60 s. Ppd1-2B copy number was anal-
ysed based on the ratios of absolute copy numbers against the
TaCO2 control.

2.11. Statistical analysis

Linear mixed models (LMM) were fitted with ASReml-R [62] in
the analysis of the frost and growth stage phenotypic traits, where
the variance parameters in the mixed model are estimated using
the residual maximum likelihood (REML) procedure [63]. Residual
diagnostics were performed to examine the validity of the model
assumption (normality and homogeneity of variance). The best lin-
ear unbiased predictions (BLUPs) were used for the phenotypic
traits.

Phenotypic data were analyzed by multivariate analysis of vari-
ance (MANOVA) using the general linear model implemented in
IBM SPSS statistics 24 (https://www.ibm.com/au-en/products/
spss-statistics). Wilks Lambda was used as the multivariate test
statistic. Post-hoc Tukey’s Multiple Range tests were used to iden-
tify significant groupings. Pearson correlations of the parameters
investigated were analysed by SPSS software using the BLUP values
across environments. The broad-sense heritability was calculated
through R-studio.

3. Results

3.1. Frost impact levels associated with growth stages in DH parental
and control lines

In the 2018 field trials sown at Williams and Muresk (WA), low
temperatures during heading and anthesis caused frost damage to
all six DH populations (Fig. 1a). The most visible frost damage was
on spikes (Fig. 1b). Probably because of the different developmen-
tal stages between main spikes and tiller spikes, the levels of frost
damage to spikes of the same wheat variety in the whole plot show
large variation, such as “white spikelets”- spikelets appear white
and dead; “half-cut” and “bald-pointed” spikes- only the lower
part of the ear has grains; “toothed ears”- grains set in several spi-
kelets. Since flowering times were different not only between field
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trial locations but also between sowing areas within the same loca-
tion, the representative anthesis data for the parental and control
lines in the areas sown to Spitfire/Bethlehem (SpB) and Bethle-
hem/Westonia (BW) are presented in Table S2 and Fig. 1c, d. On
average, anthesis times for cultivars Gregory, Tungsten and Yitpi
were significantly later than those for the other parental cultivars
at both locations. The cultivar Suntop flowered two and five days
later than the rest of cultivars in Williams and Muresk, respec-
tively. The cultivar Bethlehem and its substitution lines B_3B and
B_7A were the earliest flowering lines, while Westonia, Spitfire
and Mace flowered two to three days later. The cultivar Wyalk-
atchem was one and two days later than Mace and Westonia. In
Muresk, the anthesis time of Suntop showed large differences
(three days) between the SpB and BW sown areas (119 and 122),
which may lead to significantly different levels of frost damage.
In Williams, the earlier-flowering lines of Bethlehem, B_3B and
B_7A, were impacted the most by frost whereas the late-flowering
lines Gregory, Tungsten and Yitpi were not affected (Fig. 2a, b;
Table S7). Among the cultivars with a similar flowering window,
such as Spitfire, Mace and Wyalkatchem, Westonia was the most
susceptible to frost, whereas Mace showed the highest level of tol-
erance. The same trend was observed in Muresk. Spitfire displayed
frost tolerance in Williams but was susceptible in Muresk. Its
anthesis window was very close to that of Mace in the SpB sown
area and to Wyalkatchem in the BW area. Suntop showed high
frost tolerance in Williams but was susceptible in Muresk, where
its flowering window was shorter. Floret sterility also showed
the same levels of frost impact in selected parental and control
lines belonging to the three anthesis windows (Fig. S3a, b).
According to the date of the frost event (September 14, 15 and
16, 2018), the time of impact was between 9 and 18 days before
the average anthesis time. The 2019 Muresk field trial data for Sun-
top at 16 days before anthesis (DBA) are presented in Fig. S3c-g.
The data show that wheat plants were at the flower development
and anther differentiation stages at 16 DBA, according to Bonnett’s
description [64], and some flowers were at meiosis stage. Based on
Koonjul et al. [4], lines are most vulnerable to abiotic stress during
spikelet development and meiosis stages. The 2018 frost events
incidentally hit the most susceptible meiosis stages of our trial.

3.2. Phenotype differentiations across DH populations and
environments

Different frost impact levels were observed in six DH popula-
tions. On average, the frost impact levels in BW (8.0), Sp7A (8.0),
SpB (8.1) and St3B (6.2) were higher than that in G7A (5.0) and
SpM (3.7) populations. The impact levels in Muresk (8.6) were
almost doubled in Williams (4.4) (Table S8). The coefficients of
variation were significantly higher in Williams compared with
Muresk. The high heritability in frost impact was observed (0.71-
0.84) in all six populations across two environments. Apart from
the frost impact, plant height showed the highest heritability
(0.96), followed by Zadok stages (0.79-0.95), anthesis (0.52-0.82)
and maturity (0.4-0.87). The significantly positive correlation
levels of frost impact (P < 0.01) between replicates and environ-
ments further demonstrated that the traits were under genetic
control (Table S9).

3.3. Rht, VRN and related anthesis gene segregations in DH populations

A screen of a suite of phenology genes in the DH lines identified
18 haplotypes segregating for Vin-Ala, Vrn-Bla, Vrn-D1a, Rht-B1b,
Rht-D1b, ELF-1 Da, VRN-D4 and Ppd-B1 (Figs. 2c, S5a—e). In DH pop-
ulations, SpB and Spitfire x B_7A (Sp7A) segregated for Vrn-Ala,
while Vrn-D1a segregated in Spitfire/Mace (SpM) and BW, and
Vrn-Bla in the BW, SpB, Sp7A and St3B populations. For Rht genes,
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segregation Sp7A Sp7A; BW G7A G7A SpM St3B Sp7A;
St3B G7A G7A;
St3B St3B

+: mutant; -: recessive; /+(DH): mutant in DH population.

Fig. 2. Sensitivities of parental lines to frost impact associated with parental line maturity in different population areas in Muresk and Williams. (a) Sensitivities in
G7A, Sp7A and SpB area in both Muresk (M) and Williams (W). (b) Sensitivities in SpM, BW and St3B area in both Muresk (M) and Williams (W). The vertical bars represent
SE; values with the same letter are not different at P = 0.05; * represents no replicate; empty column means the missing line in the assayed area. (c) Summarized table for
parental lines with or without VRN1, Rht, ELF3-1 Da and VRN-D4 genes; Ppd-B1(Ppd1-2B) copy number ratio and the gene segregated populations.
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only Suntop and Gregory carry both the Rht-B1b and the wild-type
Rht-D1a alleles. The other six parental lines have the opposite
genotype for these alleles. Therefore, Rht-B1b and Rht-D1b segre-
gated in two populations of Suntop x B_3B (St3B) and
Gregory x B_7A (G7A). No amplification was detected by primer
markers of gene TaELF3-1A and TaELF3-1B. Fragments of 709 bp
amplified by primers of TaELF-1DL-F5/R4 presented in Gregory,
Mace, Suntop, Westonia and Chinese Spring which hold allele
TaELF3-1DLa (delaying heading two days) whereas no amplifica-
tion was in Bethlehem, B_3B, B_7A and Spitfire (Fig. S5d). The
results indicate the TaELF3-1D segregations in BW, SpM, G7A and
St3B population (Fig. 2c). Fragments of 1.4 kb and 1.28 kb were
amplified by primer pairs of VRND4-ins.F4/R3 and VRND4-ins2.
F1/R1 in both upstream and downstream of VRND4 insertion,
respectively, and showed that Bethlehem, B_3B, B_7A, Gregory,
Mace and Spitfire harbour VRN-D4 while the Suntop and Westonia
were negative (Fig. S5d), indicating the VRN-D4 segregations in the
populations of St3B and BW (Fig. 2¢). Copy number differences for
the Ppd-B1 allele were detected in parental lines and the segrega-
tions in SpB, Sp7A, G7A, and St3B populations were expected
(Fig. S5e).

3.4. Cross population verified frost QTL and related potential candidate
genes

Thirty individual frost QTL were detected in the six DH popula-
tions. Out of these, there were 18 major QTL that were each
responsible for a phenotypic variation greater than 9.5% and were
distributed across 13 chromosomes (2A, 2B, 2D, 3A, 4A, 4B, 4D, 5A,
5D, 6D, 7A, 7B, and 7D). Most frost QTL were closely linked to the
QTL for anthesis and physiological maturity Zadok stages and to
anthesis-related genes. The QTL results for individual DH popula-
tions are included in Table S10.

A large proportion (83%) of the detected frost QTL were showed
up consistently in two or more DH populations, except for the QTL
on SpM_1A, SpM_1D, SpM_3D, Sp7A_6D, and G7A_3B (Fig. S6). A
frost QTL was detected on the homologous region on the short
arm of chromosome 2A in the SpB and SpM populations, while
the other two frost QTL distant from each other in SpM were clo-
sely linked to the anthesis and physiological maturity loci on the
long arm of chromosome 2A (Table S10; Fig. S7). The photoperiod
(Ppd) allele Ppd-A1 is located on the short arm of 2A (Table S11). In
the SpB and SpM populations, the Ppd1-2A (2A: 36.9 Mb) allele is
located between 2AM5988 (2A: 31.7 Mb) and 2AM67517 (2AL
40.8 Mb) and tightly linked to the frost QTL on 2A. The frost QTL
on the 2A long arm in the SpM population is a new locus segregat-
ing for frost.

A highly significant frost QTL (the highest LOD score 9.2) was
detected on homologous regions of the 2B chromosome in four
populations of Sp7A, SpB, G7A and St3B, and the additive effects
were all contributed by Bethlehem and its substitution lines, while
another QTL (LOD score 3.9) in SpM was also closely associated
with the homologous region, with the phenotype contributed by
Mace (Table S10; Fig. 3). A Ppdi-2B gene (gene bank number
DQ885765) was used to identify the physical map location. The
potential location of Ppdi1-2B was on the short arm of 2B at
56.2 Mb, which was close the marker 2BM46469 (2B: 58.8 Mb)
in Sp7A, SpB and G7A, and between markers of 2BM29812 (2B:
53.4 Mb) and 2BM73250 (2B: 77.2 Mb) in St3B (Table S11). Strik-
ingly, the location of Ppdi1-2B was in the frost and anthesis QTL
region in those four populations, and the QTL results matched
the potential segregation of Ppd-B1 gene copy number (Fig. 2c;
Fig. S5e), which points toward a contribution of Ppd-B1 copy num-
ber to the phenotype. This QTL corresponds to the newly identified
Ppd1-2B location in this study.
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On linkage groups 2D3 and 2D2, frost QTL were detected in both
SpM and Sp7A, contributed by Mace and Spitfire, respectively.
These QTL were associated with anthesis time, as anthesis QTL
were closely linked to the homologous region of 2D (Fig. S8). Gene
Ppd1-2D was located at 2D: 33.9 Mb from the upstream on the
short arm of 2D. SNP M22365 (2D: 18.2 Mb) on Sp7A_2D1 and
SNP M15795 (2D: 17.3 Mb) on SpM_2D1 were close to Ppd1-2D
on the physical map. The frost and anthesis QTL on SpM_2D3
and Sp7A_2D2 tend not to be associated with the Ppd1-2D locus,
since the Ppd-D1a locus does not expect to segregate in those pop-
ulations (Fig. S5b). This frost QTL may imply a new phenology gene
on 2D, associated with anthesis time.

On chromosome 3A, the frost QTL in SpB population was located
on the short arm, whereas in St3B it was located on the long arm.
The QTL on the short arm overlapped with anthesis QTL (Fig. S9).
TaGl gene sequences (AF543844) were isolated [65] and were
located on 3A (3A: 84.1 Mb), 3B (3B: 117.9 Mb), and 3D (3D:
71.9 Mb). One frost QTL in SpB_3A was located between SNP mark-
ers 3AM63098 (3A: 56.4 Mb) and 3AM34922 (3A: 107.7 Mb)
(Table S11). TaGI-3A is most likely the candidate gene contributing
to this frost QTL and the associated anthesis QTL. The 3A long arm
QTL in the St3B population was located between 3AM9626 (3A:
711.0 Mb) and 3AM39004 (3A: 729.7 Mb), which are not associ-
ated with the TaGI gene. The Genbank number of KF769443 was
used to identify the location of Eps-3A™ on the physical map. Eps-
3A™ (3A: 740.1 Mb) was located between the markers 3AM10770
(3A: 739.3 Mb) and 3A73079 (3A: 741.2 Mb), about 10 cM away
from the frost QTL (Table S11).

Significant frost QTL were consistently detected on the long arm
of chromosome 4A in the SpM, G7A, and St3B populations
(Fig. S10). Interestingly, the phenotypes were all attributable to
the male parents of Mace, B_7A and B_3B. The frost QTL in SpM
and G7A populations were located on the anthesis QTL region,
and the late anthesis QTL were contributed by the female parents,
Spitfire and Gregory. In other words, the early-flowering pheno-
type contributed by male parents led to frost susceptibility. The
homologous gene of the DELLA protein (rht1-D1a; AJ242531) on
4A is TraesCS4A02G271000 (4A: 582.4 Mb), which is located
between markers 4AM76744 (4A: 575.0 Mb) and 4AM43375 (4A:
597.6 Mb), and above the common marker 4AM77169
(Table S11). Interestingly, the newly identified rht1-4A locus in
the current study was located 20 cM away from the minor frost
QTL regions on the short arm of 4A in SpM and G7A populations.
The homologous gene sequence of WSOC1-4D is TraesC-
S4A02G320300, on chromosome 4A: 608.8 Mb, near SNP marker
4AM77381(4A: 612.1 Mb), which is 30-40 cM away from the frost
QTL on the long arm regions of 4A in the G7A and St3B populations
(Table S11). The potential WSOC1-4A locus is further away from the
frost QTL in the SpM population.

Significant frost QTL were detected on the Rht-B1b region on
chromosome 4B in G7A and St3B populations segregating for
Rht-B1b (Fig. 4a; Table S11), which were contributed by the female
parents, Gregory and Suntop, and both harbour the Rht-B1b allele.
No flowering QTL were detected in those regions. The plant height
QTL with the LOD values over 14 were overlapped with the frost
QTL in the semi-dwarf genes Rht-B1b region and were contributed
by male parents B_7A and B_3B containing the wild-type Rht-Bla
on 4B. Wide-type of Rht-B1a attributed the average height pheno-
type of 20%-30% and the semi-dwarf gene Rht-B1b contributed to
frost damage QTL on 4B in G7A and St3B populations (Table S10;
Fig. 4a).

A significant frost QTL with a LOD score of 16.0, attributable
to Mace, was repeatedly detected on the distal region of chromo-
some 4B short arm in the SpM population. The QTL region was
about 80 cM away from the recessive Rht-Bla gene loci. The con-
tributing gene for this QTL is unknown. A minor frost QTL was
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Fig. 3. Frost QTL were overlapped with anthesis QTL on the homologous region on 2B in five populations of Sp7A, SpB, G7A, St3B and SpM. The location of Ppd1-2B in
High Confidence (HC) 1.0 physical map was indicated.
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Fig. 4. Significant frost QTL were detected on the Rht1 (Rht-B1b) and Rht2 (Rht-D1b) regions. (a) Frost and plant height QTL on Rht1 (Rht-B1b) region in the populations of
G7A and St3B while the frost QTL in BW and SpM were on the distal downstream and upstream, respectively. A new gene of WSOC1-4B may close to the frost QTL on 4B in BW

population. (b) Significant frost and plant height QTL were detected on the Rht2 (Rht-D1b) region in the populations of G7A and St3B.
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detected in the BW and G7A populations on the homologous
region of the long arm of chromosome 4B. In the BW population,
the frost QTL were closely linked to the anthesis QTL. Interest-
ingly, frost QTL in the BW population was in the 4BM4887
(4B: 646.6 Mb) region, which is only 6.4 Mb away from the
WSOC1-4B and the anthesis QTL, close to 4BM8859 (4B:
660.7 Mb) (Table S11). These results suggest that WSOC1-4B
might be a new gene influencing flowering time and contribut-
ing to segregation for frost.

Likewise, significant frost QTL were detected on the Rht-D1b
gene region on 4D in the G7A and St3B populations segregating
for the Rht-D1b gene, contributed by B_7A and B_3B, which har-
bour the Rht-D1b allele (Fig. 4b; Table S11). The plant height QTL
with high LOD value over 14 were located on Rht-D1b region and
contributed 20% — 44% of the total phenotype by Gregory and Sun-
top containing Rht-Dla on 4D. The wide-type of Rht-Dla con-
tributed to plant height whereas the semi-dwarf Rht-D1b
attributed to the frost damage QTL on 4D in G7A and St3B popula-
tions (Table S10; Fig. 4b).

Frost QTL were consistently detected on the homologous region
of chromosome 5A in SpM, Sp7A and SpB populations, with the
highest LOD score of 7.7 found in Sp7A (Fig. 5). The frost QTL were
in the Vrn-Ala region, attributed to B_7A and Bethlehem in the
Sp7A and SpB populations (Table S11), respectively, whereas it
was contributed by Spitfire in the SpM population. The frost QTL
in the Sp7A population overlapped with the anthesis QTL con-
tributed by Spitfire. Both B_7A and Bethlehem host a Vin-Ala
mutant and flower early. The results further indicate that frost
damage was caused by the early flowering genotypes of B_7A
and Bethlehem. A minor frost QTL in the St3B population was on
the distal region of the short arm 5A, away from the anthesis
QTL, and not associated with the flowering genes or their related
phenotypes.

In the case of chromosome 5D, frost QTL were detected in SpM,
BW and St3B populations (Fig. 6). The largest frost QTL (the highest
LOD score 14.2) on 5D was in the Vrn-D1a region in the SpM pop-
ulation while in the BW population it was close to Vin-Dla
(Table S11). The frost phenotype in the SpM and BW populations
was contributed by Spitfire and Bethlehem, which harbour Vrn-
D1a, whereas for the St3B population in the Williams trial, the con-
tributed phenotype was attributed to Suntop. Several anthesis and
maturity QTL were detected in the Vrn-D1a region, indicating that
frost damage is closely associated with plant growth stages.
Another vernalisation related gene, VRN-D4, which is a homologue
of Vrn-Ala, originated from a large segment of chromosome 5A
inserted into the short arm of 5D [27,28]. According to the physical
map of VRN-D4 (5D: 193 Mb), the gene location should be close to
marker 5DM45442 (5D: 278 Mb) on the St3B _5D map, while it is
next to 5DM62708 (5D: 154 Mb) on the BW map (Table S11). The
frost QTL may stem from the VRN-D4 locus as the VRN-D4 was seg-
regating between the parental lines of Bethlehem and Westonia,
Suntop and B_3B, respectively.

Significant frost QTL were detected on chromosome 7A in SpM,
SpB and BW populations (Fig. 7), with the highest LOD score of 10.
The phenotype in the SpB and BW populations was contributed by
Bethlehem. Frost QTL in the SpM population were located in three
positions, mainly attributing to Mace. According to the physical
map of TaVRT-2-7A (7A: 128.8 Mb), the closest SNP marker is
7AM1849 (7A:128.5 Mb), close to 7AM75587, which was tightly
linked to the frost QTL in the SpB and BW populations, while in
the SpM population the location was closely linked to the anthesis
QTL on 7A (Table S11). One frost QTL was detected in the SpM and
SpB populations on the homologous distal region on chromosome
7A. This corresponds to a new segregating locus for frost impact on
7A, which was not associated with the flowering genes or their
related phenotypes.
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For chromosome 7B, frost QTL were detected in the SpM and
BW populations (Fig. S11a). However, the frost QTL regions were
distinct from each other. The frost QTL in the SpM population, con-
tributed by Mace, was on the terminal region of the short arm of
chromosome 7B, away from the anthesis QTL, whereas in the BW
population, the frost QTL were closely linked to the QTL for anthe-
sis and maturity, and were contributed by Westonia. The anthesis
QTL in the SpM and BW populations were located on the homolo-
gous region on 7B. Another anthesis QTL detected exclusively in
the SpM population was located on the distal region of the long
arm of 7B. In the SpM population, the physical map of VRN-B3
(7B: 9.7 Mb) was close to marker 7BM76084 (7B: 6.7 Mb), which
may contribute the frost phenotype in SpM (Table S11), while
the location was 30 cM away from the frost QTL in the BW popu-
lation. Based on the physical map, TaVRT-2-7B (7B: 90.1 Mb) is
located between 7BM53206 (7B: 64.7 Mb) and 7BM10089
(7B:115.2 Mb) on the BW map (Table S11), closely linked to the
QTL for anthesis and frost, suggesting the involvement of this locus
in frost damage in the BW population. In the SpM population,
TaVRT-2-7B is not close to the frost QTL.

A QTL with a LOD score of 4.6 also appeared on the homologous
regions on chromosome 7D in the Sp7A and SpB populations
(Fig. S11b). The frost phenotype was contributed by B_7A and
Bethlehem and was highly associated with anthesis QTL. TaVRT-
2-7D (7D: 128.9 Mb) was close to the upper SNP marker
7DM76171 (7D: 112.0 Mb) in Sp7A population and distant to the
lower SNP marker 7DM42766 (7D: 182.6 Mb) in both the Sp7A
and SpB populations (Table S11). This gene tends to contribute
the significant frost QTL on 7D.

3.5. Anthesis QTL not segregating for frost tolerance

No frost damage QTL were detected on chromosome 1B. How-
ever, anthesis and maturity QTL were present on the central chro-
mosome regions in the G7A and SpM populations and on the distal
region of 1B short arm in the SpB population (Fig. 8). Gene TaFI3-
1B (1B: 581.4 Mb) was tightly linked to SNP marker 1BM77588
(1B: 581.6 Mb), which is next to the anthesis QTL region
(1BM54518) in the G7A population (Fig. 8; Table S11). In the
SpM population, the TaFT3-1B locus was possibly located above
1BM73284 (1B: 662.9 Mb), on the anthesis QTL region
(Table S11). On the physical map, TaELF3-1B was located on the
distal region of the long arm in these three populations. Two other
anthesis-related genes, TaWUSCHELL-1B (1B: 53.3 Mb) and TaTOE1-
1B (1B: 59.1 Mb), were close to markers 1BM42781 (1B: 56.8 Mb)
and 1BM47932 (1B: 58.7 Mb) on the Chinese Spring physical map
(Table S11). These two genes were located 25 cM away from the
maturity QTL in the SpB population. It is not clear whether the
QTL was influenced by them.

Another chromosome without frost damage QTL was 5B, even
though anthesis QTL are present in the St3B, SpB, Sp7A and SpM
populations, and Vrn-Bla was segregating in the St3B, SpB and
Sp7A populations (Fig. 9). The anthesis QTL was on or closely
linked to the Vrn-Bla allele in the St3B and SpB populations
(Table S11), and to the distal regions of either the long arm in
the Sp7A population or the short arm in the SpM population.

3.6. Allele frequency of VRN1 and Rht genes in historical lines

According to the frost trial results, except for Vrn-Bla, the
mutated Vrn-Ala, Vrn-D1a and Rht alleles were highly associated
with the frost QTL and contributed to the frost damage phenotype.
Since global warming accelerates terminal drought severity, early
flowering genes with early maturity phenotype have been gradu-
ally introduced into modern varieties through wheat breeding for
avoiding late dry season. In the meantime, the proportions of Rht
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Fig. 5. Significant frost QTL were overlapped with anthesis QTL where Vrn-Ala (VPA) tightly linked in Sp7A and SpB populations. The frost QTL on SpM_5A was about
25 cM below the Vrn-Ala and 90 cM above VRN2 loci while it was on the upstream on St3B_5A.

genes were also increased. The utilization of these gene may
increase the frost sensitivity in modern varieties. Therefore, it is
interesting to see the allele frequency of these mutated genes in
historical varieties. In the current study, a set of 171 commercial
wheat cultivars, released between 1890 and 2015, were surveyed
for the VRN1 and Rht allele frequencies. For VRN1 and Rht, recessive
alleles made up 95%-100% of varieties released before 1967, except
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for vrn-B1 (15%) (Fig. S12). After 1968, Vrn-Ala was maintained at
around 61% whereas Vrn-Bla dropped from 85% to 50% and
remained at that level thereafter. The Vrn-Dla allele appeared
mainly in the varieties released after 2000. The Rht-B1b allele
was presented in a large proportion of varieties released after
1968 (56%-69% of lines) while the Rht-D1b allele gradually
increased to near 41% in recent years.
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Fig. 6. Significant frost QTL were overlapped with anthesis QTL in SpM where Vrn-D1a (VrnD) tightly linked in SpM. The Frost QTL were linked to Vrn-D4 gene in BW and

St3B populations on chromosome 5D.

4. Discussion
4.1. The most sensitive growth stage to frost

In previous drought studies in wheat, the young microspore
stage of pollen development, before anthesis, appears to be the
most sensitive to mild water stress [4,66]. It has been reported that
in rice cold-induced pollen sterility at the young microspore stage
had effects comparable to those of drought stress [2]. Cold-tolerant
lines at the microspore stage are also tolerant to drought stress.
The same mechanism was observed in sorghum [67,68].

The young microspore stage in wheat is the time when the auri-
cle distance (AD) between flag leaf and penultimate leaf is 5-8 cm,
around 10 days before anthesis [5,66]. In our 2019 wheat trials at
the Muresk site, the young microspore stage of Suntop was 16 days
before anthesis and the AD was 6 cm. In 2018, the frost events at
the Williams and Muresk locations occurred 9-18 days before
the average anthesis time, which was the most vulnerable growth
stage for wheat to endure low temperatures. Although the lowest
temperature in Muresk remained above 0 °C, plants still suffered
from the sudden temperature drop. According to previous studies
[69,70], cold stress induces ABA accumulation in rice anthers,
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which represses anther cell wall invertase activity. This in turn
hampers sugar transport from the tapetum to the pollen and pollen
sterility occurs. It is interesting that cold and drought stresses
share the same pathways in inducing pollen sterility.

4.2. Non-escaping mechanism related frost tolerance

Since the reproductive stage is the period most sensitive to
frost, flowering time becomes very critical. Ideally, late flowering
is helpful in avoiding frost events, which happens mostly during
early spring. This is, however, contradictory to the needs of avoid-
ing terminal drought, which requires early maturity [71]. Being
able to combine early flowering with reproductive frost tolerance
is thus highly desirable for wheat breeding. In the previous study,
frost QTL were detected in the same region as the Vrn-Ala allele on
chromosome 5A [10,72]. It has been reported that plants with
VRN1 copy showed normal flowering but reducing frost tolerance
[73]. In our study, significant frost QTL were detected close to
the Vrn-Ala allele in both the Sp7A and SpB populations at the Wil-
liams location. In the SpM population grown in Muresk, significant
frost QTL were detected close to the Vrn-D1a allele, where the QTL
for anthesis and maturity were located for all three environments,
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Fig. 7. Significant frost QTL were linked to TaVRT-2-7A gene in SpB and BW populations. One of the frost QTL in SpM were linked anthesis QTL on 7A while TaVRT-2-7A

closely linked two anthesis QTL.
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Fig. 8. Anthesis QTL on 1B in G7A, SpB and SpM populations. The locations of published anthsis related genes of TaFT3-1B, TaWUSCHELL-1B and TaTOE1-1B in physical map
in Chinese Spring and closest SNP markers are indicated.
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Fig. 9. Anthesis QTL detected on 5B in St3B, SpB, Sp7A and SpM populations. Vrn-Bla (VrnB) was segregating in St3B, SpB and Sp7A populations.

which further validated the tight connections between frost dam-

age and the early anthesis alleles Vrn-Ala and Vrn-D1a.

On the other hand, the Vin-Bla allele segregated in the BW, SpB,
Sp7A, and St3B populations, with anthesis QTL closely linked to the
Vrn-Bla gene in the SpB and St3B populations. Strikingly, no frost
damage QTL was detected on chromosome 5B in any of the six pop-

ulations studied at the two locations. The link between frost and

anthesis was not observed on 5B. In our previous study on days

15

to anthesis, the contribution of winter allele vrn-B1 was less than
that of vin-D1 and vrn-A1 [56]. In the historical lines studied, the
frequency of spring alleles Vrn-Ala and Vin-D1a in recent varieties
amounted to 0.62 and 0.40, respectively, while the frequency of
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Vrn-Bla diminished from 0.85 to 0.52 over time. An increased pro-
portion of Vrn-Ala and Vrn-D1a may increase the risk of frost dam-
age. The most popular variety, Mace, only possesses the Vrn-Bla
allele and shows good frost tolerance. This clearly demonstrates
that the early flowering phenotype induced by Vrn-Bla is associ-
ated with higher frost tolerance. In wheat, VRN1 determines the
most natural variation in flowering. The functional VRN1 proteins
are responsible for the apical meristem transition from the vegeta-
tive to reproductive phase. However, VRN1 protein are not essen-
tial for wheat flowering [74]. Although the underlying
mechanism is unknown, it can be speculated that the metabolites
associated with the Vrn-Bla functional network may contribute to
the increased tolerance [75]. Because of the global warming, the
earlier flower lines without frost damage are highly demanded
[76]. Our results revealed that the Vrn-Bla allele can be utilised
in breeding for frost tolerance.

Another potential anthesis gene associated with the non-
escaping frost mechanism is TaFT3-B1 on 1B. Gene TaFT3-1B was
very tightly linked to the anthesis QTL on 1B in G7A and SpM pop-
ulations. The study of Zikhali et al. [46] showed that TaFT3-B1 dele-
tion lines was associated with late flowering while increased the
gene copy number was related to early flowering. TaFT3-B1 gene
was suggested to promote flowering. Two maturity QTL were
detected on 1B in SpB populations, where two potential anthesis
genes TaWUSCHELL-B1 and TaTOE1-B1 were closely linked to. In
Maize, TARGET OF EAT1 was also named as TaSRRI1-BI,
TaWUSCHELL-B1 and TaTOE1-B1, respectively. Similar to TaFT3-B1,
TaTOE1-B1 had higher gene expression during short days and
showed early flowering function [46]. Nevertheless, no frost QTL
were detected on 1B in those three populations in two locations.
It implies that the markers or the copy numbers for the TaFT3-1B
are able to be used for the purposes of shortening the days to
anthesis and reducing frost damage risk.

4.3. Recessive Rht-Bla and Rht-D1a genes associated with frost
tolerance

Significant frost QTL were detected in the proximity of the Rht-
B1b and Rht-D1b gene regions in the G7A and St3B populations, in
which the two genes were segregating. In both populations, the
frost QTL were contributed by the mutated type of Rht-B1b and
Rht-D1b, the semi-dwarf alleles that are associated with short plant
height as the plant height QTL were contributed by the wide-type
of Rht-Bla and Rht-D1a (recessive rht genes). This indicates that the
mutated or short plant genotypes are more prone to frost. On the
other hand, the wild types Rht-Bla and Rht-D1a are relatively frost
tolerant.

Wheat life cycle can be divided into two phases: one is the stem
elongation from jointing to anthesis and another is the grain filling
stage from anthesis to maturity. The former stage is more impor-
tant for yield as the number of fertile florets at anthesis will be
determined during this stage [77]. The pre-anthesis phase may
be more sensitive to photoperiod or temperature, and different
levels of hormones (gibberellin, auxin or cytokinin) [78-81]. Since
several dwarfing genes are associated with GA biosynthesis or sig-
nalling, the possible effect on spike development may exist [82,83].
It is well known that lines with Rht-B1b and Rht-D1b alleles have
reduced sensitivity to gibberellic acid (GA), and GA-responsive
growth is therefore repressed [84]. This may affect GA levels
among the different combinations of dwarfing genes, and thus lead
to varying flowering times. It has been reported that GA can
increase the transcription level of SOC1 including a MADS-box
gene, promoting flowering [47]. In a study of ethylene effects in
the GA-GID1-DELLA signalling pathway, ethylene leads to a reduc-
tion of GA, which delays floral induction [84]. Nevertheless, previ-
ous research has shown that GA-insensitive dwarfing genes have
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no effect on spikelet primordia at the shoot apex nor on the num-
ber of leaves and internodes [85]. In the current study, no flower-
ing QTL were detected in the Rht-B1b and Rht-D1b gene regions.
This suggests that the regulatory function of the Rht-B1b and Rht-
D1b genes on anthesis is minor. On the other hand, the variations
in plant canopy architecture linked to dwarfing genes, for example,
height, tillering, ear structure etc. may affect the frost tolerant
levels. Selecting taller or wild-type Rht-Bla and Rht-Dla alleles
for frost tolerance in breeding programs will not cause delayed
flowering time or maturity, thus these Rht-Bla and Rht-D1a alleles
can be recommended for frost tolerance breeding.

In previous studies, the semi-dwarfing alleles Rht-B1b and Rht-
D1b did not lead to higher grain yields in drought environments
[51,86]. The QTL analysis showed that the recessive Rht-Bla and
Rht-D1a alleles are associated with higher grain yields while the
semi-dwarfing alleles are associated with lower grain yields [51].
Our results further demonstrated the disadvantages of the Rht-
B1b and Rht-D1b alleles in frost-prone environments. From 1967
to 2015, the frequencies of the Rht-B1b and Rht-D1b alleles have
increased from 0 to 0.6 and 0.4 in Australian wheat varieties,
respectively. This is in line with the first green revolution in that
the dwarfing genes are utilised widely. However, a recent study
has revealed that the short plant phenotype has become a bottle-
neck for wheat grain yield improvement [51,86]. Achieving high
grain yield by increasing plant height has become a newly estab-
lished breeding approach. Our study indicates that eliminating
the dwarfing alleles Rht-B1b and Rht-D1b in breeding can increase
frost tolerance in wheat.

4.4. High copy number of Ppd1-2B increase the sensitivity to frost

Day length (photoperiod) affects plant flowering time. QTL for
frost and the time of anthesis and maturity were repeatedly
detected on chromosomes 2A, 2B and 2D. The Ppd1-2A allele was
tightly linked to the frost QTL on 2A. Remarkably, four out of five
frost QTL (next to anthesis QTL) were detected in the proximity
of Ppdi-2B in five populations. Due to the Ppd1-2B copy number
differences between parental lines of these four DH populations,
it is likely that the significant frost QTL were contributed by the
segregation of Ppd1-2B gene copy numbers, with a high copy num-
ber of Ppd1-2B shortening the days to anthesis and inducing early
flowering [34], thus contributing to the frost QTL. Ppd1-2D did not
segregate in our six populations and no strong linkage to the frost
QTL on 2D was detected.

4.5. Escaping mechanism related frost tolerance

Besides the Vrn-Ala and Virn-D1a, the following early flowering
related genes are associated with the frost damage QTL and the
recessive flowering genes (flower late genes) correspond to frost
tolerance, which led a frost escaping mechanism. Gene VRN-B3
was mapped to the short arm of chromosome 7B (7B: 9.7 Mb)
[26]. In the SpM population, VRN-B3 is tightly linked to a 7B short
arm frost QTL that mapped on the top region (7BM55522) of the
chromosome. This implies that VRN-B3 contributes to the frost
phenotype in the SpM population. In addition, the TaVRT genes
on group 7 appeared to be tightly linked to the QTL of anthesis
and frost. The TaVRT gene is independently modulated by photope-
riod and vernalization. It can inhibit VRNT activity through binding
to the CArG box of the VRN1 promoter in vivo. After vernalization,
both TaVRT2 and VRN2 functions are repressed, which causes VRN1
accumulation for the transition from vegetative to reproductive
phase [87]. The functions of TaVRT genes seem to be critical in
the SpM, Sp7A, SpB, and BW populations.

Numbers of genes in photoperiod pathway also regulate anthe-
sis. TaGI located on 3A, 3B and 3D, regulate CO which then
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mediates photoperiodic flowering [44,65]. In previous studies, TaGI
was found to be initiated by photoperiod and then expressed in
both vegetative and reproductive tissues, suggesting a function in
anthesis regulation [44,65]. Coincidentally, in our study, the frost
and anthesis QTL, and maturity QTL were localized on the TaGI
regions on 3A and 3B in SpB and G7A populations, respectively.
This indicates that TaGI functions are both in anthesis and frost.

Apart from the vernalisation and photoperiod genes, eps genes
are the third factor regulating heading and anthesis. One eps like
QTL identified on the long arm of 1DL, namely, TaELF3, held the
function to the T. monococcum Eps-Am1 locus [37,43]. The
homologs of TaELF3 were also identified in 1AL and 1DL [40].
One significant frost damage QTL contributed by Spitfire holding
TaELF3-1DLb (heading two days earlier) on the long arm of 1D in
SpM population were tightly link to the homologous genes of
TaELF3 on 1D. It indicates the eps gene functions in heading and
contributes to the frost impact in the location of 1D.

Heading related gene TaHD1 also designated as CONSTANS2
(CO2), is the homolog of CO in wheat, and the competitor of
VRN2 [47,48]. TaHD1 are identified on 6A, 6B and 6D. In our study,
one of the frost QTL together with the anthesis QTL were on the
region of TaHD1-6D physical map location, implying that the
TaHD1 gene contributes to the phenotype.

In summary, six DH populations planted at two different loca-
tions in 2018 were hit by a severe frost event at the critical repro-
ductive phase. Evaluation of frost damage showed that the plant
growth stage most susceptible to low temperature (<2 °C) was dur-
ing the young microspore stage (10-18 days before anthesis). Out
of the 30 frost QTL detected, 18 major QTL were mapped onto 13
chromosomes. Most frost QTL overlapped or were closely linked
to the QTL for anthesis and maturity Zadok stages as well as to
anthesis-related genes. However, the frost tolerance contribution
by these QTL clearly stems from the late flowering alleles, illustrat-
ing the frost escape mechanisms and indicating that they are not
useful in wheat breeding for water-limited environments. The
mutated Vrn-Ala, Vrn-D1a, Rht-B1b, and Rht-D1b alleles and a
high-copy number Ppd-B1 allele contributed significantly to frost
damage. Nevertheless, QTL or genetic factors outside the escape
mechanisms were detected in the current study. Anthesis QTL
were repeatedly detected in the proximity of the Vrn-Bla region
and on chromosome 1B, whereas no frost QTL were detected on
these two chromosomes. These striking results strongly imply that
the Vrn-Bla and TaFT3-1B alleles on 5B and 1B should be utilised in
breeding for frost tolerance, as the early-flowering phenotype asso-
ciated with these two genes is frost tolerant. Meanwhile, the reces-
sive non-dwarfing alleles Rht-Bla (rht1) and Rht-Dla (rht2)
associated with normal plant height could also be used in breeding
for reproductive frost tolerance without delaying the flowering
time.
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