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Abstract: Satellite remote sensing offers a cost-effective means of generating long-term hindcasts of
yield that can be used to understand how yield varies in time and space. This study investigated
the use of remotely sensed phenology, climate data and machine learning for estimating yield
at a resolution suitable for optimising crop management in fields. We used spatially weighted
growth curve estimation to identify the timing of phenological events from sequences of Landsat
NDVI and derive phenological and seasonal climate metrics. Using data from a 17,000 ha study
area, we investigated the relationships between the metrics and yield over 17 years from 2003 to
2019. We compared six statistical and machine learning models for estimating yield: multiple
linear regression, mixed effects models, generalised additive models, random forests, support vector
regression using radial basis functions and deep learning neural networks. We used a 50-50 train-test
split on paddock-years where 50% of paddock-year combinations were randomly selected and used
to train each model and the remaining 50% of paddock-years were used to assess the model accuracy.
Using only phenological metrics, accuracy was highest using a linear mixed model with a random
effect that allowed the relationship between integrated NDVI and yield to vary by year (R2 = 0.67,
MAE = 0.25 t ha−1, RMSE = 0.33 t ha−1, NRMSE = 0.25). We quantified the improvements in accuracy
when seasonal climate metrics were also used as predictors. We identified two optimal models
using the combined phenological and seasonal climate metrics: support vector regression and deep
learning models (R2 = 0.68, MAE = 0.25 t ha−1, RMSE = 0.32 t ha−1, NRMSE = 0.25). While the linear
mixed model using only phenological metrics performed similarly to the nonlinear models that are
also seasonal climate metrics, the nonlinear models can be more easily generalised to estimate yield
in years for which training data are unavailable. We conclude that long-term hindcasts of wheat yield
in fields, at 30 m spatial resolution, can be produced using remotely sensed phenology from Landsat
NDVI, climate data and machine learning.

Keywords: Landsat; NDVI; crop phenology; yield estimation; long-term; hindcasts; seasonal climate
metrics; machine learning

1. Introduction

Crop management decisions depend on our understanding of how changes to man-
agement will affect yield, but management is only one of many determinants of yield. Crop
yield varies in space and time according to soil types, local weather conditions and seasonal
climate variability as well as management. Moreover, spatial and temporal variation in
yield is often much larger than effects of management. Precision agriculture (PA) aims
to optimise crop management across farms and fields to sustainably improve yield and
profit [1,2]. While many sources of information inform PA decision-making, the primary
source is geographically referenced yield data recorded by yield monitors mounted on
harvesting machinery [3]. While yield monitors are standard in most modern harvesting
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equipment, many farmers do not have data for a sufficiently long period to understand
how seasonal climate conditions interact with spatially -varying influences on yield. Use
of yield monitor data is also hampered by lack of data inter-operability and standards [4],
and because poor Internet connectivity in rural areas means that transferring yield maps
from farms cannot be easily automated [5].

Satellite remote sensing offers a cost-effective means of generating comprehensive,
long-term yield maps that can be used instead of yield monitor data to understand spatial-
temporal variation in yield. Crop growth can be monitored using vegetation indices
(VIs) that combined spectral reflectance measurements into a single index that reflects
biophysical characteristics of the crop canopy, such as greenness, biomass and leaf area
index (LAI) [6]. For example, the normalised difference vegetation index (NDVI) measures
the ratio of the difference between the near-infrared and red reflectances and their sum [7].

Land surface phenology considers the development of crops using time-sequences
of remotely sensed VIs [8–11]. Yield estimation from land surface phenology then aims
to identify spatial and interannual variation in phenology and use it to map or predict
yield. Early work simply used the time within the detected growing season for which a VI
had maximum correlation with yield [12,13]. However, this neglected general knowledge
that yield is influenced by the timing of ‘true’ phenological events, such as germination,
flowering and senescence. Higher yields are associated with earlier emergence, longer
growing season and longer green leaf area duration [14–18]. Using this knowledge, various
metrics have been derived from sequences of VIs to better estimate yield. These include
the timing and duration of growth stages identified from the VI sequence [19,20], peak
VI [21] and time-integrated VIs [22–27]. Use of phenological metrics for yield estimation is
further supported by Waldner, et al. [28], who showed that linear regression of LAI metrics
derived from simulated phenology can explain between 30 and 78% of simulated grain
yield variability in the ‘crop-model’ space.

Recent approaches for improving on yield estimates made directly from phenological
metrics include assimilation of remotely sensed data into simple crop models [29,30] and use
of machine learning models to combine phenological metrics with climate data [24,31,32].
These studies aimed to estimate yield over large, national-scale areas and used data from the
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite with spatial resolution
of 250 m or 500 m. This is adequate for regional-scale estimation but is too coarse to
support PA decision-making about how to optimise crop management in fields. In contrast,
the Landsat satellite series is ideal for yield estimation to support PA. It has a long-term
record of archived images dating back to 1982 [33], with a 16-day revisit period and global
coverage at 30 m resolution. Because Landsat data have been freely available since 2008 [34],
they can be used to generate inexpensive information for farmers. Landsat data are used
operationally to map and monitor land condition and land cover change over large areas
in Australia [35,36], North America [37,38] and South America [39]. In the United States,
the Landsat-derived Cropland Data Layer (CDL) released in 2009 [40] is still in operational
use. Recently, Landsat data were used to retrospectively map crops prior to the release of
the CDL, from as early as 1984 [41].

With the goal of producing long-term hindcasts of yield at within-field resolution
to support PA decision-making, we investigate the use of sequences of Landsat NDVI
for estimating wheat yields in a study area in Western Australia (WA). While many VIs
are used for remotely sensed phenology detection, including the enhanced vegetation
index [42], the wide dynamic range vegetation index [43] and more [9], we use the NDVI
because it is well-understood by farmers and is frequently used by farm managers for
crop monitoring. However, use of Landsat NDVI for yield estimation is limited by the
presence of cloud and cloud shadows, which occur most frequently during wet periods
that drive crop growth [44–47]. Because MODIS has higher temporal frequency and more
cloud-free images available, methods developed for yield estimation using MODIS-derived
phenology may not work for Landsat data. Spatially weighted growth curve (SWGC)
estimation is a new method designed specifically for Landsat NDVI to fill spatial and
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temporal gaps caused by cloud contamination during the growing season [48]. SWGC
estimates crop growth curves using data from a local neighbourhood around each cell,
where the data are weighted according to geographical distance from the central cell. It
combines spatial smoothing by use of spatial weights with temporal smoothing by growth
curve estimation to improve estimation of land surface phenology from Landsat NDVI.
Because it is not dependent on individual cells having sufficient cloud-free images within
the growing season, SWGC enables phenology detection at more cells than non-spatial
approaches which typically exclude cells with insufficient observations (e.g., [44,49]).

To support decision-making about how to optimise crop management within fields,
this study aims to determine whether phenological and seasonal climate metrics obtained
from SWGC estimation have utility for estimating wheat yield. We use the SWGC estimated
growth curves to identify the timing of phenological events and derive phenological metrics
that describe the timing and degree of crop growth stages occurring at each cell. Detected
phenology is then combined with daily weather data to produce seasonal climate metrics
that describe the water availability and growing degree days during different growth stages
of the crop. We aim to use the metrics as predictors of wheat yield. Previous studies that
combined phenological metrics with climate data to predict yield reported large differences
in accuracy using different statistical and machine learning models [24,31,32]. We therefore
compare six of these models for our purpose: multiple linear regression, linear mixed
models, generalised additive models, random forests, support vector regression using
radial basis functions and deep learning.

The specific objectives of this study are to: (1) Investigate relationships between
phenological and seasonal climate metrics derived from Landsat NDVI using SWGC
estimation with wheat yield; (2) assess and compare statistical and machine learning
models for estimating wheat yield using phenological metrics as predictors; (3) quantify
improvements in accuracy of yield estimation when seasonal climate metrics are also used
as predictors; and (4) identify an optimal model and produce long-term hindcasts of wheat
yield at 30 m resolution.

2. Materials and Methods
2.1. Data
2.1.1. Study Area

The study area is located in the Western Australian grainbelt at around 31.28 S and
118.16 E (Figure 1a). It is approximately 17,000 ha in size. Grain crops are grown in a
dryland system that is heavily reliant on winter rainfall during the May to October growing
season. Average growing season rainfall is between 200 and 300 mm with large inter-
annual variability (Table 1). Wheat is the main crop grown, with barley, lupins, canola and
pasture included in cropping rotations. Besides crop fields, the study area includes areas of
remnant vegetation (native trees and shrubs) and salt scalds caused by dryland salinity.

2.1.2. Landsat Data

All bands of Landsat-7 (path/row: 111/082) data from 2003 to 2019 were obtained
from the United States Geological Survey (USGS) web site (https://earthexplorer.usgs.
gov accessed on 2 February 2021). There were 366 Landsat-7 images available during
2003 to 2019. Data pre-processing including geometric correction, top of atmosphere
reflectance correction and surface reflectance correction were completed using the USGS
Earth Resources Observation and Science (EROS) Centre Science Processing Architecture
(ESPA) online interface (https://espa.cr.usgs.gov accessed on 3 February 2021). Cells
with cloud contamination or cloud shadow were removed using the cell quality control
band. The corrected red and near-infrared reflectances were used to calculate NDVI for all
available image dates.

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://espa.cr.usgs.gov
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Figure 1. The study area: (a) Study area location in the eastern grainbelt of Western Australia; and (b) false-colour compo-
sites of the near-infrared, red and green bands of the Landsat-8 OLI image acquired 29 August 2019 with 44 paddocks 
with wheat yield data overlaid in blue. 

2.1.3. Wheat Yield Data 
Yield monitor data were obtained for 44 paddocks (5281 ha) across the study area 

(Figure 1b) during 2003 to 2019. The yield data were cleaned to remove high (above the 
99th percentile) and low (below the 1st percentile) outliers and kriged to produce 30-m 
resolution raster maps using the R ‘gstat’ package [50,51]. The number of wheat paddocks 
and the total area of wheat grown vary from year to year (Table 1). The total number of 
paddock-year combinations is 426. Yields ranged from 0 to 4 tonnes per hectare (t ha−1) 
with substantial spatial and year to year variation. The total number of 30-m resolution 
cells containing yield data during the 17-year period was 421,766. 

2.1.4. Climate Data 
Point-source and gridded weather data, at 5-km resolution, are available for Aus-

tralia via the Long Paddock SILO data base (https://www.longpaddock.qld.gov.au/silo 
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highly influenced by intense winter rainfall events, we use point-source weather data 
from an actively recording weather station instead of gridded data. Daily point-source 
weather data from 2002 to 2019 were obtained from the Long Paddock ‘Patched Point’ 
Database for the nearest recording weather station to the study area, Nungarin (ID = 
10112, 31.18 S and 118.10 E). ‘Patched Point’ data have had temporal data gaps filled with 
an estimate obtained by interpolating data from surrounding weather stations. Conse-
quently, they form a complete daily data record with no missing data. 

  

Figure 1. The study area: (a) Study area location in the eastern grainbelt of Western Australia; and (b) false-colour
composites of the near-infrared, red and green bands of the Landsat-8 OLI image acquired 29 August 2019 with 44 paddocks
with wheat yield data overlaid in blue.

Table 1. Number of wheat paddocks, area of wheat grown and growing season (May to October)
rainfall for each year from 2003 to 2019.

Year Number of Wheat Paddocks Area of Wheat Grown (ha) Growing Season Rainfall (mm)

2003 7 629 327
2004 18 1812 265
2005 23 2028 264
2006 17 1572 270
2007 9 932 178
2008 10 722 275
2009 43 4284 225
2010 31 2549 141
2011 28 2364 353
2012 35 3168 178
2013 32 3176 275
2014 31 2695 215
2015 36 2674 224
2016 29 2554 284
2017 30 2868 218
2018 30 2849 235
2019 17 1385 171

2.1.3. Wheat Yield Data

Yield monitor data were obtained for 44 paddocks (5281 ha) across the study area
(Figure 1b) during 2003 to 2019. The yield data were cleaned to remove high (above the
99th percentile) and low (below the 1st percentile) outliers and kriged to produce 30-m
resolution raster maps using the R ‘gstat’ package [50,51]. The number of wheat paddocks
and the total area of wheat grown vary from year to year (Table 1). The total number of
paddock-year combinations is 426. Yields ranged from 0 to 4 tonnes per hectare (t ha−1)
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with substantial spatial and year to year variation. The total number of 30-m resolution
cells containing yield data during the 17-year period was 421,766.

2.1.4. Climate Data

Point-source and gridded weather data, at 5-km resolution, are available for Australia
via the Long Paddock SILO data base (https://www.longpaddock.qld.gov.au/silo accessed
on 3 February 2021). Because wheat yield in dryland cropping systems can be highly
influenced by intense winter rainfall events, we use point-source weather data from an
actively recording weather station instead of gridded data. Daily point-source weather
data from 2002 to 2019 were obtained from the Long Paddock ‘Patched Point’ Database
for the nearest recording weather station to the study area, Nungarin (ID = 10112, 31.18 S
and 118.10 E). ‘Patched Point’ data have had temporal data gaps filled with an estimate
obtained by interpolating data from surrounding weather stations. Consequently, they
form a complete daily data record with no missing data.

2.2. Methods
2.2.1. Spatially Weighted Growth Curve Estimation

The spatially weighted growth curve (SWGC) estimation method estimates growth
curves for each year using data from a spatial neighbourhood around each cell, where
the data are weighted according to distance from the central cell using a distance-decay
kernel [48]. Spatial weights are applied using a truncated or ‘moving window’ Gaussian
kernel, where the distance weights are set to zero for all cells (x, y) outside of a rectangular
region centred on the location for which the growth curve is being estimated. The moving
window size is specified by MAXD and has width and length equal to (2 ∗ MAXD + 1)
metres (m). Within the window, distance weights are given by:

wx, y = exp

(
−1

2

(
dx,y

b

)2
)

(1)

where wx,y is the weight for cell (x, y), dx,y is the distance of (x, y) from the location for
which the growth curve is to be estimated and b is the Gaussian kernel bandwidth. To
ensure filling of spatial gaps in Landsat-7 data caused by the scanline corrector failure in
2003, we use bandwidth b = 60 m and MAXD = 200 m. This bandwidth ensures sufficient
data with non-zero weights in the estimation of SLC failure gaps. MAXD is chosen to
be as small as possible while retaining all data with weights within three decimal places
from zero.

Crop growth is modelled using an asymmetric double Lorentz function for the two
main phases of crop development as measured by NDVI, which we refer to as the vegetative
phase (from germination to maximum vegetative growth) and the grain-fill phase (from
maximum growth to senescence). The curve takes the form:

y =

{
c + (d− c) / (1 + b (x− e)2, x ≤ e
c + (d− c) / (1 + b (x− f )2, x > e

(2)

where x is the day of year, 0 ≤ c ≤ 0.9 is the minimum NDVI, 0.1 ≤ d ≤ 1 is the maximum
NDVI, 0 ≤ e ≤ 260 is the day of year at which maximum NDVI is observed and b and f
are the shape parameters for the curve before and after maximum NDVI is observed.

Figure 2a demonstrates SWGC estimation using spatial weights and an asymmetric
double Lorentz function.

2.2.2. Phenological Metrics

Phenological metrics (PM) are derived from the estimated SWGC growth curves
as follows. We define the start of growing season (SOS) and end of growing season
(EOS) as the days of the year when NDVI is 20% higher than minimum NDVI (c in

https://www.longpaddock.qld.gov.au/silo
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Equation (2)). The peak of season (POS) is the day of the year that NDVI is at its maximum
(e in Equation (2)). Peak of season vegetative growth (POSV) is identified by maximum
NDVI (d in Equation (2)). Three integrated NDVI measures are created that sum NDVI in
three stages of the crop growth cycle: iNDVI for the whole growing season (SOS to EOS),
VLAD for the vegetative stage (SOS to POS) and GLAD for the grainfill phase (POS to
EOS). Growth periods and metrics are shown in Figure 2b.
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highest) and NDVI data for the cell are shown in blue and (b) calculation of phenological metrics.

2.2.3. Seasonal Climate Metrics

Seasonal climate metrics (SCM) are produced by combining detected phenology with
daily weather data. Water availability has been shown to be the main driver of wheat
yield in dryland cropping systems of Western Australia [52]. It is defined as the sum
of growing season (May to October) rainfall and one-third of summer (November to
April) rainfall. We modify this using estimated phenological dates to define annual water
availability (AWavail) as the sum of rainfall falling between SOS and EOS and one-third of
rainfall falling during the 180-day period preceding SOS. We also consider total rainfall
falling during the growing season (GSR), vegetative phase (VR) and grainfill phase (GR).
In addition, growing degree days, defined as the sum of one half of daily maximum
temperature minus minimum temperature, are calculated for the three periods: growing
season (GSDD), vegetative phase (VDD) and grainfill phase (GDD).

2.2.4. Data Exploration

We explore the relationships between the phenological and seasonal climate metrics
and yield using the Pearson correlation coefficient (R). We consider both the correlation
between phenological and seasonal climate metrics and across all years and the mean of
their annual correlations with yield. To visualise differences in relationships between the
metrics and yield and how the relationships vary with seasonality, we plot the metrics
against yield for each year.

2.2.5. Statistical and Machine Learning Models

We test six predictive models for yield estimation: multiple linear regression (MLR),
linear mixed models (LMM), generalised additive models (GAM), random forests (RF),
support vector regression using radial basis functions (SVR) and deep learning using
multilayer perceptrons (DL). We perform all analyses in the R environment [53].

Multiple linear regression (MLR) is used as a baseline against which to compare other
predictive models. Feature selection for MLR is performed using a stepwise forward
selection process to find the optimal set of explanatory variables to use in each model. The
forward selection process starts with the intercept only model and adds predictors to the
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model one at a time. At each step, the single variable that improves the goodness-of-fit
of the model as measured by the Akaike Information criterion (AIC) [54] is added until a
minimum AIC is attained. The ordering in which predictors are added provides a measure
of the importance of each predictor.

Linear mixed models (LMMs) are an extension of MLR that allows both fixed and
random effects [55,56]. Fixed effects have a common linear relationship for all the data, as
is the case for predictors in MLR. Random effects can be used to account for structure in
the data. We estimate LMMs using the optimal set or predictors identified by stepwise
forward selection for MLR plus one random effect that allows the relationship between a
single important predictor and yield to vary by year. The predictor with maximum mean
annual correlation with yield is used as the random effect. We use the ‘lmer’ function from
R package ‘lme4′ [57] to perform linear mixed modelling.

Generalised additive models (GAMs) are generalised linear models with a linear pre-
dictor composed of smooth functions of the predictors [58,59]. Practical variable selection
for GAMs can be performed by adding penalty terms that can shrink components of the
linear term to zero, thereby eliminating predictors from the model [60]. We adopt this ap-
proach, using thin plate regression splines [61] for the smooths. We use the ‘gam’ function
from R package ‘mgcv’ [62] for estimation of GAMs. To prevent overfitting and improve
generalisation, we also impose an additional constraint to enforce smoother models by
setting the ‘gamma’ parameter equal to six.

A regression tree is a hierarchic structure, where a test is applied at each level to either
one predictor or a linear combination of predictors that may have one of two outcomes. The
result is a partitioning of the predictor space into disjoint regions that each correspond to a
single prediction. Random forests (RF) perform nonlinear regression by model averaging
of many regression trees where each tree uses a random number of predictors sampled
with replacement according to a uniform probability distribution [63]. We use the ‘ranger’
function with default parameters from R package ‘ranger’ for random forests [64].

Support vector regression (SVR) identifies the optimal regression hyperplanes by
minimising the linear regression coefficients within specified error tolerances. Nonlinear
regression is performed by first transforming the data into a high-dimensional feature
space using a nonlinear kernel function [65]. In this study, we use Gaussian radial basis
kernels to transform the data. We use the ‘svm’ function from R package ‘kernlab’ to
estimate the kernel scale parameter and perform epsilon-sensitive loss regression [66].

Deep learning neural networks are artificial neural networks or multilayer perceptrons
with multiple inner layers [67]. We train a deep learning network with three inner layers
with 64, 128 and 64 nodes respectively. Rectified linear unit (ReLU) activation functions are
used for the first two inner layers, and a linear activation function is used for the third. To
prevent overfitting and improve generalisation, we perform regularisation by dropping
out 20% of the nodes in each layer during training [68]. Estimation is performed using root
mean square propagation (RMSProp) [69]. We use the Tensorflow interface [70] for training
and prediction of deep learning models, accessed via R package ‘keras’ [71].

2.2.6. Yield Predictors

Using cells in all paddocks with wheat data, we test two sets of predictors for yield
prediction: (1) Phenological metrics derived from the SWGC estimated growth curves;
and (2) phenological metrics combined with seasonal climate metrics (Table 2). To avoid
collinearity, for all models except linear mixed models, we do not use predictors that are
sums of other predictors. These include iNDVI (equal to VLAD + GLAD), GSR (VR + GR)
and GSDD (VDD + GDD). For linear mixed models, we include one random effect that is
chosen to be the predictor that has maximum mean annual correlation with yield. That
predictor may be one of the summed predictors.
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Table 2. Sets of yield predictors tested: phenological (PM) and phenological plus seasonal climate
metrics (PM + SCM).

Predictor Set Metrics

PM SOST, POST, EOST, POSV, VLAD, GLAD
PM + SCM SOST, POST, EOST, POSV, VLAD, GLAD, AWavail, VR, GR, VDD, GDD

2.2.7. Model Comparison

Model comparison aims to determine the optimal machine learning model for produc-
ing long-term spatial hindcasts of yield to improve our understanding of crop response to
environmental conditions and management. We use a 50–50 train-test split on paddock-
years where 50% of paddock-year combinations are randomly selected and used to train
each model. The remaining 50% of paddock-years are used as test data to assess model
accuracy. Accuracy is measured using the coefficient of determination (R2) between ob-
served (yi) and predicted (ŷi) yields, mean absolute error (MAE), root mean square error
(RMSE) and normalised root mean square error (NRMSE), defined as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

NRMSE =
RMSE

y
(6)

The coefficient of determination provides the proportion of variance in the observed
data explained by a model, relative to observed mean. The MAE and RMSE provide
measures of the model error. NRMSE is the ratio of the model error and mean observed
value. The optimal model is identified by having highest R2 and lowest MAE, RMSE
and NRMSE.

2.2.8. Optimal Model Validation

After the optimal model is identified we perform further validation of the results
using the test data. To understand how the model performs in different years, we consider
scatterplots of observed versus predicted yield for each year.

2.2.9. Yield Hindcasts

The machine learning model with highest R2 and lowest MAE, RMSE and NRMSE
is selected as the optimal yield prediction model. The model is then trained using all the
yield data, and the estimated model parameters are used to predict yield in each year to
form a set of long-term yield hindcasts.

3. Results
3.1. Spatially Weighted Growth Curve Estimation

The SWGC method for spatially weighted growth curve estimation was applied to
each cell in the study area (n = 189,280) for 2003–2019. Figure 3 shows an example of the
estimated growth curves for a cell in a field where wheat was grown in 10 years out of
17 years. It shows that there are different numbers of cloud-free Landsat images in different
years. In 2003, there were only two cloud-free images during the May–October growing
season. Years 2005 and 2009 have few cloud-free images during the vegetative growth
phase, while 2006, 2011, 2014 and 2018 have few images during the grainfill phase. In some
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years, when there were no cloud-free images available around the peak of season, such as
2011 and 2012, SWGC estimates higher peak NDVI values than observed.
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3.2. Phenological and Seasonal Climate Metrics

We calculated the phenological and seasonal climate metrics for all cells where wheat
was grown. Maps of all metrics are included in the Supplementary Material to this article
(Supplementary Material 1).

3.3. Data Exploration

Table 3 shows the correlation between phenological and seasonal climate metrics and
yield across all years and the mean of their annual correlations. Figure 4 shows scatter
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plots of the phenological and seasonal climate metrics against yield for each year, with data
coloured to show their correlation. Annual water availability (AWavail) has maximum
correlation with yield across all years (R = 0.64), but its annual correlation with yield is
lower and varies from year to year. This indicates that AWavail has potential usefulness
for explaining temporal yield variability. Integrated NDVI over the entire growing season
(iNDVI) has the next highest overall correlation with yield (R = 0.56) with strong positive
annual correlations with yield that range from 0.10 in 2014 to 0.72 in 2015, with a mean
annual correlation of 0.45. This indicates that iNDVI has usefulness for explaining both
temporal and spatial variability. As seen in Figure 4, yield tends to increase with increasing
iNDVI until it reaches a maximum, sometimes linearly (e.g., 2003, 2008), but it can appear
that the rate of increase slows and the amount of yield variability increases with increasing
values of iNDVI. The relationship between the peak of season NDVI (POSV) and yield is
similar to the relationship between iNDV and yield but is less strong. Vegetative phase
(early season)-integrated phenological metric (VLAD) has higher correlation with yield
than grainfill phase (late season)-integrated metric (GLAD) across all years, but lower
mean annual correlation with yield. Similarly, vegetative phase rainfall (VR) has higher
correlation with yield than grainfill phase rainfall (GR) across all years, but VR has lower
mean annual correlation with yield. However, grainfill phase degree days (GDD) has
higher correlation with yield across all years and annually than vegetative phase degree
days (VDD), so the relative importance of vegetative phase and grainfill phase metrics
varies depending on the metric. Start of season timing (SOST) is negatively correlated with
yield and end of season timing (EOST) is positively correlated with yield, indicating that
early sowing and late harvest result in increased yield, but this is not the case in all years.

Table 3. Overall and annual relationships between phenological (PM) and seasonal climate metrics
(SCM) and yield.

Metric Metric Type R Mean Annual R

SOST PM −0.23 −0.10
POST PM −0.03 −0.12
EOST PM 0.32 0.08
POSV PM 0.34 0.36
iNDVI PM 0.56 0.45
VLAD PM 0.49 0.33
GLAD PM 0.41 0.36

AWavail SCM 0.64 0.12
GSR SCM 0.50 0.12
VR SCM 0.39 0.08
GR SCM 0.31 0.10

GSDD SCM 0.29 0.08
VDD SCM 0.19 0.02
GDD SCM 0.24 0.13

3.4. Model Comparison

Table 4 shows the accuracy statistics for estimating yield, calculated for the indepen-
dent test data, for each of the machine learning models. The time taken to estimate each
model is also shown. The nonlinear models (GAM, RF, SVR and DL) had higher accuracy
than MLR. The LMM included a random effect that estimated different linear iNDVI-yield
relationships for each year. This resulted in the highest accuracy of all models that used
only phenological metrics as predictors (R2 = 0.67, MAE = 0.25 t ha−1, RMSE = 0.33 t ha−1,
NRMSE = 0.25).
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Use of seasonal climate metrics improved accuracy for all models except LMM. By
estimating different iNDVI–yield relationships for each year, the LMM using only pheno-
logical metrics appeared to capture much of the interannual information provided by the
seasonal climate metrics to the other models. Adding seasonal climate metrics to the model
provided little improvement.

Two equally optimal models were identified: support vector regression with radial
basis functions (SVR) and deep learning (DL) models (R2 = 0.68, MAE = 0.25 t ha−1,
RMSE = 0.32 t ha−1, NRMSE = 0.25) using combined phenological and seasonal climate
metrics. There is little difference between the predictions of the two models across all years
(R = 0.98). Figure 5 shows that the annual error (observed−predicted) distributions using
the SVR and DL models are also similar. However, model estimation for SVM was more
computationally intensive, taking almost 20 times as long to run than DL (Table 4). Because
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the SVM and DL models perform similarly but DL is faster, we select DL as the optimal
machine learning model.

Table 4. Machine learning model comparison for hindcasting wheat yields in paddocks (using a
50–50 train-test split on paddock-years). Models tested include multiple linear regression (MLR),
generalised additive model (GAM), linear mixed model (LMM), random forest (RF), support vector
regression with radial basis functions (SVR) and deep learning (DL). Predictors used include pheno-
logical metrics (PM) and seasonal climate metrics (SCM). Timing is the computational time required
to fit the model to the training data (n = 205,889) on a Dell Latitude laptop with 2.8 GHz CPU and
32 GB RAM.

Model Predictors R2 MAE (t ha−1) RMSE (t ha−1) NRMSE Timing

MLR
PM 0.39 0.37 0.45 0.35 1 s

PM + SCM 0.56 0.30 0.38 0.30 5 s

LMM
PM 0.67 0.25 0.33 0.26 10 s

PM + SCM 0.68 0.25 0.33 0.25 17 s

GAM
PM 0.44 0.34 0.43 0.33 34 s

PM + SCM 0.65 0.26 0.34 0.27 80 s

RF
PM 0.48 0.32 0.41 0.32 3 m 5 s

PM + SCM 0.66 0.26 0.34 0.26 3 m 42 s

SVR
PM 0.49 0.31 0.41 0.32 3 h 58 m 30 s

PM + SCM 0.68 0.25 0.32 0.25 4 h 18 m 6 s

DL
PM 0.51 0.31 0.40 0.31 11 m 20 s

PM + SCM 0.68 0.25 0.32 0.25 13 m 13 s
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Figure 5. Boxplots showing error distributions (observed−predicted yield) for each year using the two machine learning
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3.5. Optimal Model Validation

Figure 6 shows the scatterplots of observed versus predicted yield using the deep
learning model. The accuracy of the DL model varies across different years. It explained
nearly 70% of the yield variability in 2015 (as it does overall, see Table 4), but much less
in many years. R2 was lower in low-yielding years (e.g., 2007, 2010, 2012, 2019) than in
high-yielding years (e.g., 2015, 2017, 2018), but there are exceptions: 2005 and 2016 had
high yields and low R2. It might be expected that the error statistics MAE and RMSE
would be lower in lower-yielding years, and this was generally the case. In general, the
predicted yields had a lower range than observed and the model over-predicts low yields
and under-predicts high yields.

3.6. Yield Hindcasts

Yield hindcasts for all wheat fields from 2003 to 2019 were produced using the deep
learning (DL) model trained on all available data. Figure 7 shows the maps of the observed
and predicted yield for each year. High-resolution maps can be viewed in the Supplemen-
tary Material to this article (Supplementary Material 2). There is evidence of reduced range
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of predicted versus observed yields, as suggested by Figure 6. However, the predicted
yield maps show spatial consistency with the observed yield maps, with each showing
similar spatial patterns of yield variation. There is a degree of spatial smoothing evident in
the predicted maps, when viewed closely. This is due to the spatial smoothing component
of spatially weighted growth curve estimation [48], which is propagated into the predicted
yields.
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4. Discussion

Motivated by the need for long-term sequences of yield data to support precision
agriculture, this study investigated the use of Landsat NDVI for estimating wheat yields
over a 17,000 ha study area in WA for 17 years from 2003 to 2019. For this purpose, we
tested the use of a new method for estimating crop growth curves from sequences of
Landsat NDVI that may contain spatial and temporal gaps caused by cloud contamination
during the growing season: spatially weighted growth curve (SWGC) estimation. We
used the estimated growth curves to identify the timing of phenological events and derive
phenological metrics to describe the timing and degree of crop growth stages occurring at
each cell. We then combined the detected phenology with climate data to produce seasonal
climate metrics that summarise water availability and growing degree days during different
growth stages of the crop. We investigated the relationships between the phenological
and seasonal climate metrics and yield, and found that in general, the remotely sensed
phenological metrics tend to correlate more highly with annual yields than the seasonal
climate metrics. While annual water availability (AWavail) had maximum correlation
with yield across all years, its correlation with yield in any one year was lower and varied
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from year to year. In contrast, integrated NDVI over the growing season (iNDVI) had
high correlation with yield across all years and annually, but the relationship between
iNDVI and yield varied from year to year. We interpret this as suggesting that iNDVI has
use for explaining both spatial and temporal variability and AWavail may be useful for
explaining temporal yield variability or the interannual variability in the iNDVI–yield
relationship. In general, the remotely sensed phenological metrics tend to correlate more
highly with annual yields than the seasonal climate metrics. Across all years, SOST is
negatively correlated with yield and EOST is positively correlated with yield, which reflects
agronomic knowledge about the impact of early sowing and growing season length on
yield [14–18]. However, this is not the case in all years, suggesting that other unmeasured
factors affect these relationships.

We used the phenological metrics as predictors of yield in six statistical and machine
learning models: multiple linear regression (MLR), linear mixed models (LMM), gen-
eralised additive models (GAM), random forests (RF), support vector regression using
radial basis functions (SVR) and deep learning (DL). The nonlinear models (GAM, RF,
SVR and DL) all had higher accuracy than MLR. The LMM included a random effect that
estimated different iNDVI–yield relationships for each year. This resulted in the highest
accuracy of all models using phenological metrics only (R2 = 0.67, MAE = 0.25 t ha−1,
RMSE = 0.33 t ha−1, NRMSE = 0.25). We then added the seasonal climate metrics to each of
the models and quantified improvements in accuracy using the combined set of predictors.
Use of seasonal climate metrics improved the accuracy for all models except LMM. By
estimating different iNDVI–yield relationships for each year, the LMM using only pheno-
logical metrics appeared to capture much of the interannual information provided by the
seasonal climate metrics to the other models. The nonlinear models all performed similarly.
This contrasts with the range of accuracies reported across machine learning models by
other studies that have compared machine learning models for yield estimation [24,31,32].
This may be because we have used a smaller study area than used in those national-scale
studies, and the range of yields recorded for our study area is likely smaller than the range
of yields across nations.

Two equally optimal models were identified: SVR and DL models (R2 = 0.68,
MAE = 0.25 t ha−1, RMSE = 0.32 t ha−1, NRMSE = 0.25) using combined phenologi-
cal and seasonal climate metrics. They offer only marginally higher accuracy than the
LMM using phenological metrics only. This means that long-term hindcasts of yield can
be performed using only phenological metrics derived from Landsat NDVI. However, the
nonlinear models that also use seasonal climate metrics have an additional advantage
over the LMM. The LMM relies on having sufficient data from each year so that linear
iNDVI–yield relationships can be estimated for each year. This means that the model
cannot be used to estimate yield in years for which there is no training data. It cannot
be used to extrapolate farther into the past, or to predict yield in future years without
obtaining additional training data and re-fitting the model. Because they do not explicitly
encode annual iNDVI–yield relationships but instead use the seasonal climate metrics to
distinguish between different seasonal patterns, the nonlinear SVM and DL models can
be used to make predictions for other years. This is advantageous for operational yield
hindcasting and while we have focused on generating hindcasts in this study, it also has
implications for yield forecasting. Yield forecasts are generally produced prior to the end
of the growing season, when actual yield is unknown. Early forecasts, made before the
crop is sown, can help farmers make decision about crop management, such as which
crop and cultivar to plant, and how much fertiliser to apply at sowing. However, early
forecasts cannot make use of in-season remotely sensed information and generally rely
on the use of seasonal forecasts and crop models [72,73]. In contrast, remotely sensed
phenology can contribute to forecasts made during the growing season that are useful
for management decision about fertiliser, weed and disease management and also for
industry-wide decision-making to support logistics, such as scheduling of grain transporta-
tion by road and rail, marketing and policy-making [10,74–76]. Use of phenological metrics,



Remote Sens. 2021, 13, 2435 16 of 20

climate data and machine learning has shown promise for forecasting wheat yield with
2-months lead time in Australia [31]. Our work supports this, and to enable the possibility
of extending our work from considering hindcasts only to also considering forecasts, we
recommend using climate metrics in nonlinear models, such SVM and DL found optimal
by our study, rather than LMMs.

Of the two models identified as optimal, we prefer DL because it is considerably faster
to implement. Validation of the DL model showed that it performed better in some years
than others (Figure 5). Lower R2 was observed for low-yielding years, suggesting that
the phenological and seasonal climate metrics may not provide sufficient information to
capture the complex relationship between crop growth and yield in dry years. For some
years, poorer accuracy may be due to fewer cloud-free Landsat images being available
during the growing season (Figure 2). For example, in 2003 there was only one cloud-free
image between May and October. In 2005, 2009 and 2014 there were a few cloud-free
images during the vegetative or early part of the growing season. In 2011 and 2012, there
were a few cloud-free images available during the peak of season. Accuracy was highest in
years with a reasonable number of cloud-free images regularly distributed throughout the
growing season: 2008, 2013, 2015, 2017 and 2018. This suggests that yield could be mapped
with higher accuracy if more cloud-free images were available. This could be achieved by
combining data from multiple sensors [12,77,78], or by fusing Landsat data with MODIS
data which has a more frequent revisit capacity [79–81].

We trained a DL model using all the available data and produced hindcast maps of
yield at 30 m resolution for each year from 2003 to 2019. The maps showed spatial and
temporal consistency with observed yield. However, the range of predicted yields in some
years was lower than observed, indicating that the model tends to under-predict high yields
and over-predict low yields. This is also demonstrated in plots of observed versus predicted
yields for the test data. This is a common result of using statistical and machine learning
models that fit observations in an average sense: higher errors are observed for extreme
observations. Moreover, it is not uncommon for yield estimation [29,30]. There is no
evidence of systematic error or bias evident in some other studies, such as under-prediction
of high yields [32], or over-prediction of yields [24].

There is a degree of spatial smoothing in the yield hindcasts caused by the use
of SWGC for growth curve estimation (see Evans and Shen [48] for discussion of the
smoothing effect of SWGC). This affects the precision of the hindcasts, but not their value.
A model has value if it helps the user make a better decision. Our goal of producing
long-term hindcasts of yield at within-field resolution is to support precision agriculture
decisions about how to vary crop management within fields. Currently, most decisions
about in-field crop management are based on interpolated yield maps that have been
smoothed [2], thereby reducing the yield range and the yield variability. Moreover, farmers
may not have a sufficiently long record to quantify effects of seasonal variability and
climate change. While our hindcasts may not be as spatially precise as yield monitor data,
they do form a longer temporal record that can be used to understand impacts of seasonal
climate conditions on yield.

Although we are primarily interested in estimating yield within fields, estimation
of yield at field-scale is important to agricultural planning and policy-making. We there-
fore averaged estimated and predicted yields over each field-year combination so that
field-average results could be considered. The accuracy statistics for field-average yield
prediction using the deep learning model, calculated for the test data, was R2 = 0.85,
MAE = 0.14 t ha−1 and RMSE = 0.19 t ha−1. This suggests an added utility of yield estima-
tion using this approach beyond our original goal of supporting on-farm decision-making:
accurate estimates of field-average yields can be produced over large areas to support
off-farm decision-making.
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5. Conclusions

To support decision-making about how to optimise crop management within fields,
this study aimed to determine whether phenological and seasonal climate metrics obtained
from SWGC estimation have utility for estimating wheat yield.

We investigated the relationships between phenological and seasonal climate metrics
and yield and found that integrated NDVI over the growing season (iNDVI) could explain
the spatial and temporal variability in yield, but the relationship between iNDVI and yield
varied from year to year. Annual water availability had the highest correlation with yield
across all years, suggesting its potential for explaining temporal variability in yield or for
explaining the interannual variability in the iNDVI–yield relationship.

We assessed and compared six statistical and machine learning models for estimating
wheat yield using two sets of predictors: phenological metrics only and combined phe-
nological and seasonal climate metrics. Using only phenological metrics, accuracy was
highest using a linear mixed model with a random effect that allowed the relationship
between iNDVI and yield to vary by year (R2 = 0.67, MAE = 0.25 t ha−1, RMSE = 0.33 t ha−1,
NRMSE = 0.25). For all other models, accuracy was higher when seasonal climate metrics
were also used as predictors. We identified two equally optimal models using the combined
phenological and seasonal climate metrics: support vector regression and deep learning
models (R2 = 0.68, MAE = 0.25 t ha−1, RMSE = 0.32 t ha−1, RMSE = 0.25). While the
linear mixed model using only phenological metrics performed similarly to the nonlinear
models that also used seasonal climate metrics, the nonlinear models can be more easily
generalised to estimate yield in years for which training data are unavailable. We selected
the deep learning model as optimal because it is faster to implement than the support
vector regression. We performed further validation of the deep learning model by com-
paring observed and predicted yields for each year and found that it performed better in
higher-yielding years and in years with a reasonable number of cloud-free images regularly
distributed throughout the growing season. We used the model to produce yield hindcasts
for all years from 2003 to 2019.

We conclude that long-term hindcasts of wheat yield in fields, at 30 m spatial resolu-
tion, can be produced by using SWGC estimation to detect remotely sensed phenology from
Landsat NDVI and creating phenological and seasonal climate metrics to use as predictors
of yield in machine learning models. However, better accuracy could be obtained if more
regular time-sequences of NDVI were available. This might be achieved by combining
remotely sensed data from multiple sources or by fusing Landsat data with more frequent
MODIS observations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13132435/s1, Supplementary Materials 1 (Maps of phenological and seasonal climate
metrics) and Supplementary Materials 2 (High resolution maps of observed and hindcast yields).
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