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Abstract

Whole-genome sequencing is essential to many facets of infectious disease research. How-

ever, technical limitations such as bias in coverage and tagmentation, and difficulties char-

acterising genomic regions with extreme GC content have created significant obstacles in

its use. Illumina has claimed that the recently released DNA Prep library preparation kit, for-

merly known as Nextera Flex, overcomes some of these limitations. This study aimed to

assess bias in coverage, tagmentation, GC content, average fragment size distribution, and

de novo assembly quality using both the Nextera XT and DNA Prep kits from Illumina. When

performing whole-genome sequencing on Escherichia coli and where coverage bias is the

main concern, the DNA Prep kit may provide higher quality results; though de novo assem-

bly quality, tagmentation bias and GC content related bias are unlikely to improve. Based on

these results, laboratories with existing workflows based on Nextera XT would see minor

benefits in transitioning to the DNA Prep kit if they were primarily studying organisms with

neutral GC content.

1. Introduction

The introduction of whole-genome sequencing to research in the life sciences has propelled a par-

adigm shift in diagnosing and managing human and animal infectious diseases. Initially restricted

to large research laboratories due to prohibitive costs, this technology has become widespread in

smaller diagnostic facilities, allowing for the development of pipelines aimed at rapid disease diag-

nosis and characterisation of infectious agents at an improved scale and resolution [1]. It is now

widely used in outbreak investigations of infectious agents in both medical and veterinary settings

[2], understanding the mechanisms of transmission host-jump and evolution of pathogenic

microorganisms [3, 4], genomic characterisation of mobile genetic elements responsible for trans-

mission of antimicrobial resistance genes, and vaccine development [5, 6].

Among the second generation of sequencing technologies, the Illumina platforms continue

to be the most commonly used [3–6]. Sequencing using Illumina chemistry requires purified

genomic DNA to be processed using a library preparation kit, which takes genomic DNA as

an input and produces amplified, purified, sequencing-ready DNA libraries [7]. Illumina has
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released a variety of library preparation kits for different applications, with Nextera XT being

widely used for small genomes. The Nextera XT library preparation kit uses a modified trans-

posase that has been engineered to fragment and insert adapters onto genomic DNA in a five-

minute reaction that Illumina has coined tagmentation [8].

Studies comparing the Nextera and Nextera XT library preparation kits against other mar-

ket leaders that do not use enzymatic fragmentation have had mixed conclusions on potential

biases introduced by the system [8–13]. The most widely reported concerns have been linked

to GC content related biases resulting from the PCR steps required for library amplification

[10, 14–20]. There has also been evidence of negative impacts on de novo assembly quality

[11]. To a lesser degree, insertion biases caused by the modified transposase responsible for

tagmentation have also been observed [8, 14, 16, 21]. The presence of coverage bias in a

sequencing run can dramatically reduce the amount of information available for analysis and

can result in the absence of important loci in the assembled genomes, as well as a loss of impor-

tant single nucleotide variants [11, 14, 19]. Uniform sequencing coverage of adequate depth

can be paramount to the successful characterisation of a bacterial genome [9].

To address the issues associated with Nextera XT, Illumina launched the new Nextera Flex

library preparation kit in late 2017 (rebranded in 2020 to DNA Prep) [22]. DNA Prep uses a

modified bead-linked transposome, claimed to decrease bias in tagmentation and uses an

inbuilt fragment size normalisation mechanism. The bead-linked transposomes remove the

need for a strict input DNA volume requirement by only tagmenting DNA after the bead is

saturated with DNA. This study aimed to determine whether DNA Prep outperformed Nex-

tera XT when used for the sequencing of Escherichia coli, in reducing coverage bias, tagmenta-

tion bias and GC content related bias, in addition to producing libraries with a more even

fragment size distribution and better downstream de novo assembly quality.

2. Materials and methods

Escherichia coli isolates included in this study originated from faecal samples collected from

feral pigeons (Columba livia) and little penguins (Eudyptula minor) as part of a separate study

[23]. Samples (n = 16) were recovered from storage at -80˚C by culture onto Columbia sheep

blood agar (Micromedia), followed by overnight incubation at 37˚C. Following recovery from

frozen stock, species identification was confirmed using matrix-assisted laser desorption/ioni-

sation time-of-flight (MALDI-TOF) mass spectrometer (Bruker).

Following species confirmation, DNA extraction was performed using the MagMAX-96

DNA Multi-Sample Kit (Thermo Fisher Scientific) with the following amendments to the

manufacturer’s instructions: Five isolated single colonies from each sample were picked and

suspended in 200 μL Multi-Sample DNA lysis buffer. All plate shaking steps were performed

using a Compact Digital Microplate Shaker (Thermo Fisher Scientific) set to 900 RPM, and an

additional plate shaking step was performed following colony addition to the lysis buffer. The

MagMAX Express-96 Deep Well Magnetic Particle Processor (Life Technologies) was used

with a modified version of the 4413021 DW Blood protocol where the RNase A step was omit-

ted. DNA was eluted in 30 μL of each of the supplied elution buffers. DNA purity was assessed

using a NanoQuant Plate (TECAN) and Spark Multimode Microplate Reader (TECAN). The

DNA concentration was calculated using a Qubit dsDNA HS Assay kit (Invitrogen).

Library preparation was performed on extracted genomic DNA from all samples (n = 16)

with both the Nextera XT library prep kit (Illumina) and the DNA Prep library prep kit (Illu-

mina) according to manufacturer’s instructions. The average fragment size, defined as insert

length plus adapter length, for each sample was calculated prior to pooling in preparation for

whole-genome sequencing with the LabChip GX Touch HT Nucleic Acid Analyzer. This data
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was then tested for a statistical significance retrospectively using a paired t-test (α of 0.05) to

establish whether the fragment size distribution was different depending which library prepa-

ration kit was used.

Samples were sequenced on an Illumina NextSeq 500 platform using a V2 mid-output

300-cycle flow cell to obtain paired end 150 bp reads. FASTQ files were downloaded from

BaseSpace after being de-multiplexed and subject to adapter trimming. This sequencing run

produced two sets of FASTQ files per isolate, with one file corresponding to the Nextera XT

library preparation kit and the other corresponding to the DNA Prep library preparation kit.

Quality control was performed on all FASTQ files using FastQC v0.11.7, which reported qual-

ity metrics including per base sequence quality, per tile sequence quality, per sequence quality

scores, per base sequence content, per sequence GC content, per base N content, sequence

length distribution, sequence duplication levels, overrepresented sequences, and adapter con-

tent [24]. After quality control, the FASTQ files were de novo assembled under default settings

using SPAdes genome assembler v3.12.0 [25].

For quality assessment of the de novo assemblies produced by SPAdes, QUAST v5.0.2 pro-

vided a set of metrics including number of contigs, size of the largest contig, total length of

assembly and N50 [26]. These values were used to determine whether there was any difference

in de novo assembly quality that could be attributed to which library preparation kit was used.

A paired t-test was used for statistical analysis of this data (α of 0.05).

The potential for tagmentation bias was also explored using FastQC with the per base

sequence content metric, which calculated the average proportion of each of the four bases at

each read position within a FASTQ file [24]. The FASTQ files were merged based on which

library preparation kit was used, producing one FASTQ file for the Nextera XT samples and

one for the DNA Prep samples. Each merged FASTQ file was parsed through FastQC, and the

per base sequence content output was compared for each library preparation kit to confirm

whether either of the tagmentation enzymes favoured a sequence motif.

To investigate whether there were any gaps in coverage that were unique to either of the

library preparation kits, each set of FASTQ files were mapped to the E. coli K12 MG1655 refer-

ence genome (accession number: NC_000913.3) using Bowtie2 v2.3.4.1 under default settings

[27, 28]. The resulting output from each isolate was two alignment files corresponding to each

of the library preparation kits. Using SAMtools v1.9, each alignment file was then compressed

and sorted before a coverage count at each position across the reference genome for each sam-

ple was computed [29]. All statistical analyses were performed using RStudio v1.1.456 [30].

The coverage counts were explored graphically using the R package, ggplot2 v3.2.0 to visually

determine regions of low coverage and establish whether the extent of low coverage differed

depending on which library preparation kit was used [31]. Initially, a frequency histogram was

produced using the coverage count data from each alignment file to observe whether there

were more positions of low coverage that corresponded to one library preparation kit over the

other. To determine whether there were specific regions of low coverage across the reference

genome that were unique to one library preparation kit, the coverage data was also plotted on

a bar graph with the position in the reference genome on the x-axis and coverage count on the

y-axis. The percentage of the reference genome covered at a given read depth was also explored

graphically using ggplot2 v3.2.0 [31]. After outlier removal, the mean coverage counts for each

alignment file and the total number of reads for each FASTQ file were tested for statistical sig-

nificance using a paired t-test. In a representative subset of samples (n = 3, accession numbers:

SAMN14395278, SAMN14395266, SAMN14395270), regions of low coverage (� 5) in the

BAM files that were only present in either the DNA Prep or Nextera XT prepared counterpart

had GC content percentage calculated. Low coverage regions spanning less than 10 bp were

removed. The remaining low coverage data was then plotted using ggplot2 v3.2.0 [31].
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3. Results

3.1 Coverage bias

The DNA Prep library preparation kit yielded whole-genome sequencing data with more uni-

form coverage than the Nextera XT library preparation kit. In samples where there was no sig-

nificant difference in mean coverage irrespective of which library preparation kit was used,

DNA Prep coverage was more tightly distributed with less variation in contrast to the Nextera

XT prepared sample which demonstrated a higher frequency of low coverage positions (Fig 1A

and 1B). The same pattern was also observed in samples where mean coverage in the DNA

Prep dataset was higher (Fig 1C and 1D). In cases where mean coverage was much higher in

the Nextera XT prepared isolate, steep dips in coverage were observed which the DNA Prep

dataset covered more evenly (Fig 1E and 1F). Coverage data for all isolates included in the

study (n = 16) is provided in S1 and S2 Figs. Further analysis of the low coverage regions

found that there was no relationship between low coverage regions and GC content when

using either library preparation kit (Fig 2). Additionally, DNA Prep samples had fewer posi-

tions of zero coverage however this was not statistically significant (S3 Fig).

To explore whether the coverage bias findings may have been influenced by overall cover-

age differences or number of reads between each test group, a paired t-test was used to deter-

mine whether mean coverage or number of reads was impacted by which library preparation

kit was used (Fig 3A and 3B). The average phred score across all samples was 34, therefore no

reads from any sample were removed during quality control due to high quality of the

sequencing run overall. A higher mean coverage was observed in DNA Prep samples

(mean = 140.39, 95% CI [109.25, 171.53]) compared to their Nextera XT counterparts

(mean = 117.49, 95% CI [98.64, 136.34]), although this was not statistically significant (t =

-1.211, df = 15, p = 0.2446, d = -0.3027). A higher number of reads per FASTQ file was also

observed across DNA Prep samples (mean = 2412785, 95% CI [1937443, 2888127]) compared

to Nextera XT FASTQ files (mean = 2073048, 95% CI [1765140, 2380956]), though again this

was not statistically significant (t = 1.0867, df = 15, p = 0.2943, d = -0.2717). This finding indi-

cated that the coverage bias observed was not a result of uneven pooling or higher DNA input.

3.2 Average fragment size

DNA Prep prepared isolates had a lower and more consistently distributed fragment length

(mean = 746, 95% CI [663, 828]) compared to Nextera XT prepared isolates (mean = 965, 95%

CI [854, 1077]) (Fig 4). The results of the paired t-test indicated that the difference in average

fragment length between kits was statistically significant (t = -2.8354, df = 15, p = 0.01253, d =

-0.7088).

3.3 Tagmentation bias

To determine whether a tagmentation bias was present in either library preparation kit, the

FastQC per base sequence content metric was used to evaluate the average proportion of each

of the four bases at each position across all the reads in a FASTQ file (Fig 5) [24]. FASTQ files

were merged based on which library preparation kit was used prior to analysis. As demon-

strated in Fig 5, the results from this module indicate the transposase in both library prepara-

tion kits preferentially inserted into DNA with a 5’-GTNYWRNAC-like sequence motif.

3.4 De novo assembly quality

Four measures were used to determine whether there were any notable differences in de novo
assembly quality between the Nextera XT and the DNA Prep samples, which included largest
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contig in the assembly, total number of contigs, total assembly length and N50 (Fig 6). Overall

there was no significant difference in assembly quality metrics between the library preparation

Fig 1. Differences in uniformity of coverage between the Nextera XT and the DNA Prep kits. (A, C, E) Coverage

count data from three representative samples displayed as frequency histograms where mean coverage was very similar

between the two kits (A), mean coverage was higher in the DNA Prep kit than the Nextera XT kit (C) and mean

coverage was higher in the Nextera XT kit than the DNA Prep kit (E). (B, D, F) Coverage count data displayed as bar

plots from three representative samples where the DNA Prep dataset showed more uniform coverage than the Nextera

XT dataset despite mean coverage being comparable between the two kits (B), which was also the case where mean

coverage was higher in the DNA Prep kit than the Nextera XT kit (D) and where mean coverage was higher in the

Nextera XT kit than the DNA Prep kit (F).

https://doi.org/10.1371/journal.pone.0253440.g001

PLOS ONE Evaluating coverage bias in next-generation sequencing of Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0253440 June 24, 2021 5 / 15

https://doi.org/10.1371/journal.pone.0253440.g001
https://doi.org/10.1371/journal.pone.0253440


kits. The largest contig in the assembly was larger in DNA Prep samples (mean = 400637, 95%

CI[338334.3, 462939.7]) than in Nextera XT samples (mean = 363591, 95% CI[309802.5,

417379.5]) however this was not statistically significant (t = -1.487, df = 15, p = 0.1577, d =

-0.3717). The number of contigs in DNA Prep assemblies (mean = 123.0, 95% CI[106.11,

139.89]) was very similar to Nextera XT assemblies (mean = 124.7, 95% CI[108.34, 141.06]), as

was the total assembly length of DNA Prep assemblies (mean = 4851046, 95% CI[4742937,

4959155]) compared to their Nextera XT counterparts (mean = 4849838, 95% CI[4741605,

4958071]). The N50 of DNA Prep assemblies (mean = 136931, 95% CI[110266.8, 163595.2])

was also very similar to Nextera XT assemblies (mean = 130586, 95% CI[103921.8, 157250.2]).

4. Discussion

This study aimed to establish whether the DNA Prep kit reduced sequencing bias associated

with the library preparation of samples undergoing whole-genome sequencing, when com-

pared to the Nextera XT kit. While the DNA Prep kit did reduce coverage bias, a key finding of

this research was that there was no relationship between low coverage and GC content among

any of the samples in both Nextera XT and DNA Prep datasets. There have been several con-

flicting reports on the role of the Nextera XT kit in GC content bias in sequencing data. When

the Nextera library preparation kit was first released, GC content bias was only reported in

samples with low GC content (� 45%), and this was mitigated by a PCR-free protocol [8]. This

Fig 2. The relationship between GC-content and low coverage regions of the E. coli chromosome. (A-C) Graph displays the GC-content percentage of low

coverage regions (coverage less than 5, each region of length greater than 10 bp) of each representative E. coli sample.

https://doi.org/10.1371/journal.pone.0253440.g002
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was supported by observations of no GC content bias in GC-neutral samples such as in Escher-
ichia coli genomes, and samples with low GC content having profound coverage bias [9, 10].

Others have found no substantial differences in coverage bias when using the Nextera XT kit

compared to other market leaders with both PCR and PCR-free protocols [11–13], while sig-

nificant differences have been noted in coverage bias, with the Nextera XT kit performing

unfavourably when compared to the PCR-free systems [14–16]. Recent comparisons of the

Nextera XT and DNA Prep kits have found significant inadequacies of the former due to GC

content-related bias [10, 17]. It has been suggested that the Nextera XT kit contributed to

errors in serotyping Salmonella (namely detection of the O antigen) due to poor coverage of

gene clusters with low GC content (� 30%) despite the average genomic GC content of Salmo-
nella spp. being approximately 52% [18–20]. Approximately 0.058% of the E. coli genome con-

tains GC-rich sequences (�75%) with the overall base composition of the genome being GC

neutral [32], potentially explaining the lack of GC content bias observed in the present study.

Using Illumina sequencing chemistry, amplification bias can result from PCR amplification

during library preparation and cluster generation on the flow cell [7]. Difficulties sequencing

GC-rich [21, 33, 34], and GC-poor sequences [35–37], and more specifically AT-dinucleotide

repeats, poly-G and poly-C homopolymers have been widely reported [32]. Some have found

Fig 3. Comparison of mean sequencing coverage and number of reads per sample between the DNA Prep and Nextera XT kits. (A) Difference in mean

sequencing coverage between the Nextera XT and DNA Prep kits, (B) Variation in the number of reads per sample between the Nextera XT and DNA Prep

kits.

https://doi.org/10.1371/journal.pone.0253440.g003
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that amplification of AT-rich sequences can be enhanced by choice of polymerase used during

PCR [38, 39–42], while others have found this not to be the case [16]. Strong advocates have

emerged for either PCR-free library preparation or low-cycle number PCR amplification to

reduce bias, noting that coverage bias still occurred in PCR-free libraries [11, 32, 38, 43, 44–

49].

The Nextera XT system utilised a hyperactive Tn5 transposase that enabled fragmentation

and adapter ligation in a single step [8], with the DNA prep kit introducing a novel bead-

linked transposase based on this enzyme [22]. This study assessed the potential for biased

insertion of both transposases using the FastQC per base sequence content metric, which plot-

ted the average proportion of each of the four bases at each position across all the reads in a

FASTQ file [24]. The results from this study suggested that the transposase used in both library

preparation kits preferentially targeted the same sequence motif 5’-GTNYWRNAC (Fig 5).

While wild type Tn5 transposases do have low target specificity [50], Goryshin et al. (1998)

[51] reported the consensus target sequence of the wild type Tn5 transposase as 5’-A-GNTY-

WRANC-T. Initial comparisons of transposase-mediated enzymatic fragmentation with

mechanical and endonuclease-mediated fragmentation found that the Nextera transposase

Fig 4. Comparison of average fragment size between the Nextera XT and DNA Prep kits. The DNA Prep kit yielded fragments with a smaller and more

tightly distributed size range compared to the Nextera XT kit.

https://doi.org/10.1371/journal.pone.0253440.g004
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had low levels of insertion bias, targeting a motif that weakly resembled the wild type [8]. Sub-

sequent reports found that the Nextera XT transposase had a preference for inserting in AT-

rich regions, however no negative consequences were detected downstream as a result [16, 21].

A contrary report has stated that the insertion bias of the Nextera transposase is significant,

and observed difficulties sequencing genomes that did not contain many copies of the 5’-

A-GNTYWRANC-T consensus sequence with the Nextera XT kit due to inefficient tagmenta-

tion [14]. While the details of the changes to the transposase used in the DNA Prep kit outside

of bead-linking are unknown [22], the results of this study suggest that the novel DNA Prep kit

enzyme does not resolve the issues associated with insertion bias that were frequently reported

with the Nextera XT kit.

This study found that the DNA Prep kit produced DNA libraries with a more consistent

fragment size distribution than the Nextera XT kit. One of the most important outcomes of

library preparation is ensuring that fragment size is optimal for efficient cluster generation

[7]. During cluster generation, fragments that are too short cluster very efficiently and

reduce the amount of useful data generated from the sequencing by synthesis reaction.

Fragments that are too long are also suboptimal because they do not amplify efficiently and

produce sparse clusters, which also reduces the amount of useful data yielded from the reac-

tion [52]. One of the main differences between the Nextera XT and DNA Prep kits was the

Fig 5. Tagmentation bias observed in both the Nextera XT and DNA Prep library preparation kits. (A, B) The average proportion of each of the four bases at

the first nine positions of each read is displayed here (A: Nextera XT, B: DNA Prep), indicating that a highly similar sequence motif is preferentially tagmented

by the transposome in both library preparation kits (5’-GTNYWRNAC).

https://doi.org/10.1371/journal.pone.0253440.g005
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bead-linked transposase, reported to produce more consistent insert lengths during tag-

mentation. Following library amplification with DNA Prep, a more comprehensive clean-

up using double-sided solid phase reversible immobilisation (SPRI) beads removes low and

high molecular weight fragments to tighten the size distribution of the library [22]. Based

on the results of the present study, the combination of the bead-linked transposases and

double-sided SPRI clean-up was indeed effective in tightening the size distribution of each

DNA library when using the DNA Prep library preparation kit. This may have had a role in

reducing coverage bias by increasing cluster generation efficiency and ensuring more even

representation of the library.

There was little improvement in the de novo assembly produced with the DNA Prep pre-

pared samples based on number of contigs, size of the largest contig, total assembly length or

N50, despite more even sequencing coverage. This finding was in line with the outcomes of a

study by Huptas et al. (2016) [33] which found that factors such as which assembler was used

for de novo assembly and read and insert lengths had a more substantial influence on assembly

quality than sequencing depth. Despite this, it has been claimed that Nextera XT libraries pro-

duce particularly poor de novo assemblies [11]. In this study, the size of the largest contig

appeared to be slightly higher on average in DNA Prep samples, which may be beneficial in

bacterial typing where typing regions contain repeats.

Despite improved coverage uniformity when using the DNA Prep kit, a strong advantage

of using the Nextera XT kit is the superior cost-effectiveness. Previous studies have found

Fig 6. Comparison of de novo assembly quality between the two library preparation kits. (A-D) The difference in number of contigs per assembly (A), size of the

largest contig in the assembly (B), total assembly length (C) and N50 based on which kit was used for library preparation.

https://doi.org/10.1371/journal.pone.0253440.g006
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that using 25–50% of the recommended amounts of library preparation reagents, and in

some cases as low as one-eighth of the recommended amount, can maximise the number of

libraries produced with a single Nextera XT kit with no negative downstream effects on

depth of coverage [12, 16, 41, 53, 54]. Similar benefits have yet to be reported using the

DNA Prep kit.

5. Conclusions

This study has used a methodological approach to investigate the DNA Prep library prepara-

tion kit for sequencing of E. coli isolates, and found it to be advantageous where coverage bias

is a major concern. It must be noted that despite the Nextera XT kit producing libraries with

more coverage bias, based on our data, the differences in de novo assembly were not statisti-

cally significant. The improvements to sequencing coverage observed with the DNA Prep

library preparation kit appeared unrelated to GC content.

Assessment of a more diverse set of input genomes with both extremely high and extremely

low GC content will allow more sound conclusions to be made regarding the role of GC con-

tent bias. While the issues associated with the Nextera XT library preparation kit can be par-

tially circumvented by increasing the concentration of DNA applied to the flow cell, the DNA

Prep library preparation kit may be preferable where expected mean coverage is low, poten-

tially allowing more samples to be pooled and sequenced on the same run without major

impact on downstream analyses. Based on the results of this study it is concluded that DNA

Prep offers minor benefits over Nextera XT, however whether these benefits are sufficient to

warrant laboratories switching established workflows is questionable, particularly when study-

ing GC-neutral organisms.

Supporting information

S1 Fig. Differences in uniformity of coverage between the Nextera XT and DNA Prep kits

(n = 16). On the left, coverage count data is displayed as frequency and on the right, coverage

count data is displayed as bar plots. Nextera XT data is shown in blue and DNA Prep data is

shown in red. Overlapping data points appear purple.

(PDF)

S2 Fig. The percentage of the Escherichia coli K12 reference genome covered by the Nextera

XT and DNA Prep datasets (n = 16). Bar plots indicate the percentage of the reference

genome covered by each library preparation kit at depths ranging from 0–600. Nextera XT

data is shown in blue and DNA Prep data is shown in red. Overlapping data points appear pur-

ple.

(PDF)

S3 Fig. Difference in number of positions of zero coverage across Nextera XT and DNA

Prep datasets (n = 16). Boxplots illustrate the distribution of the number of zero coverage

positions across the Nextera XT (blue) and DNA Prep (red) samples. The DNA Prep samples

had a lower number of zero coverage positions when aligned to the Escherichia coli K12 refer-

ence genome, however this was not statistically significant (data not shown).

(PDF)
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