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Abstract

Hidden Markov Models and their Extensions for Proportional Sequential Data

Samr Ali, Ph.D.

Concordia University, 2021

We are facing an all-time high in the worldwide generation of data. Machine learning techniques

have proven successful in unveiling patterns within data to further human knowledge. This includes

building systems with overall better prediction and accuracy levels. Nonetheless, many areas have

yet to be studied which warrants further exploitation of these techniques. Hence, data modeling is

one of the topics at the forefront of scientific research. A particularly interesting field of research is

the appropriate choice of distribution that corresponds to the nature of the data.

In this thesis, we focus on tackling challenges in the approximation of proportional Hidden

Markov Models (HMM). We review the main concepts behind HMM; one of the cornerstone prob-

abilistic graphical models for time series or sequential data. We also discuss various modern chal-

lenges that exist when training or using HMMs. Nonetheless, we primarily focus on the notorious

model estimation process of HMMs as well as the appropriate choice of emission distribution based

on the nature of the data. We have tackled these problems using variational inference and Max-

imum A Posteriori (MAP) approximation with the Dirichlet, the Generalized Dirichlet, and the

Beta-Liouville (BL) distributions-based HMMs for proportional data. In this thesis, we develop

frameworks for learning these proportional HMMs that have been proposed recently as an efficient

way for modeling sequential proportional data. In contrast to the conventional Baum Welch algo-

rithm, commonly used for learning HMMs, the proposed algorithms place priors for the learning

of the desired parameters; hence, regularizing the estimation process. We also extend these models

into infinity for a data-driven dynamically chosen structure of HMMs. Such a setup enables flexibil-

ity in the model structure with a lower computational cost for model selection. We also investigate
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the fusion of the trained classifiers and witness a consequent improved performance. Moreover, we

incorporate a simultaneous feature selection paradigm as well as investigate online deployment. We

present our recently proposed methodologies that address the aforementioned problems and discuss

the achieved results across a variety of computer vision applications. We also present how a simple

novel experimental setup can drastically improve the performance of HMMs in occupancy detec-

tion, and estimation by extension, in smart building for an applied research contribution. Finally,

we conclude and recommend potential future work.
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Chapter 1

Introduction

”Begin at the beginning,” the King said, gravely, ” and go on till you come to the end;

then stop.”
Lewis Carroll, Alice in Wonderland

Hidden Markov models (HMM) have drawn research interest in the past decade. This is due

to its now perceived capability in a variety of applications that extend beyond the originally inves-

tigated speech-related tasks [3]. Indeed, examples include recognition of handwritten characters,

musicology, stock market forecasting, predicting earthquakes, video classification, surveillance sys-

tems, and network analysis.

HMMs are probabilistic models that fall under the generative machine learning algorithms cat-

egory. Generally, data modeling techniques in machine learning classically fall under two main

categories: discriminative or generative. Generally, discriminative models are trained to infer a

mapping between data inputs x to class labels y, while generative models first learn the distribution

of the classes before predictions are made [4]. Mathematically, the former represents the posterior

probability p(y | x) with the latter denoting the joint probability p(x, y) that is used to calculate

the posterior accordingly for the classification. Each of the models have their own properties and

advantages which we summarize some of shortly.

Discriminative models usually achieve superior classification accuracy results due to their pri-

mary learning objective of the boundary between classes [5]. These include the famous Support

Vector Machines (SVM) and decision tree classifiers. On the other hand, generative models require
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less training data, can be used for outlier detection, and provide the ability to generate more training

data with the same input distribution upon completion of the training of the model. Mixture models

are another example of generative data models. An interested reader is referred to [4, 6] for fur-

ther discussions. Hybrid models with HMMs are also possible such as in [7, 8]; however, this falls

outside of our discussion.

In a manner of speaking, HMMs may be considered as an extension of mixture models along

the temporal axis. That is they are capable of spatio-temporal modeling whereby both the space

and time features may be taken into consideration. As expected, this leads to better performances

as well as an explainable machine learning pipeline in applicable fields.

A HMM is a powerful machine learning model due to its inherent ability to capture spatio-

temporal patterns in data. In contrast to time series models, such as the famous Autoregressive

Integrated Moving Average (ARIMA) [9], both spatial and temporal dimensions are simultaneously

taken into account in the modeling process. This enforces its wide applicability and motivates

further research into its various properties and fields.

In this thesis, we concentrate on the following sub-areas of research for the HMM:

(1) Efficient learning of the parameters of the model. Traditionally, this is carried out by the

Baum Welch algorithm. Instead, we employ the variational inference and the Maximum A

Posteriori (MAP) approximation techniques.

(2) Compactly supported data modeling through the utilization of statistically compatible dis-

tributions. In particular, we address the problem of proportional sequential data modeling.

That is data which is positive and sums to one across its total dimensions. Hence, we use the

Diricihlet, the Beta-Liouville, and the Generalized Dirichlet distributions.

(3) Whereas the underneath patterns in data may be consistent, the length might not. Modeling

of such a phenomenon may be performed through constructing a generative model represen-

tation for a uniform length data formulation to be input to a discriminative model. This is the

generative/discriminative HMM/Support Vector Machine (SVM) technique that we apply for

the proposed models in this thesis.

(4) Infinite models are an incarnation of the solution to the setting a unique number of states
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as a variable parameter for the structure of the model. We base the proposed flexible struc-

ture on the Hierachical Dirichlet Process (HDP) though effectively it is a truncation of an

appropriately chosen long chain of states.

(5) Feature selection refers to the process of filtering representative features for the most efficient

modeling of the data without the additional noise of redundant or uninformative ones.

(6) Modeling an oncoming stream of data may be performed with an online version of the pro-

posed model. Maintaining the initial setting of the parameters is also incorporated in our

proposed contribution that we refer to as incremental learning. It is noteworthy to mention

that given the required computational time complexity, this is not a real-time system. It is

however capable of handling dynamic data.

These connect to each other through the development of the various parameters that define the

HMM. Moreover, its abilities to flexibly model the addressed dynamic data and features also are

addressed. Finally, and more broadly, all of the aforementioned themes address these challenges

for the proportional data modeling, whereas we also briefly show an improvement in the setup for

the experimental employment of traditional based HMMs in the area of occupancy detection as will

be discussed shortly. It is also noteworthy to mention that the identifiability problem of HMMs (in

regards to the uniqueness of the states) constraints our assumption of an exact experimental setup

across the classes.

In the following sections, we focus on presenting a brief description of HMMs before detailing

the contributions that we add to the literature of this interesting topic. Finally, we overview the

organization of the remainder of the thesis.

1.1 Hidden Markov models

In this section, we introduce the HMM and present its various aspects. We begin with an

overview of the model in Section 1.1.1 and discuss its origin and assumptions. We then evolve

our description to divulge the topologies of HMMs in Section 1.1.2. Next, we examine the Gaus-

sian mixture model (GMM) and its famous Expectation Maximization (EM) algorithm in Section
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1.1.3 as a building block for the upcoming analysis of HMMs. In Section 1.1.4, we disclose the

mathematical formulations for the learning of its parameters. Then, in Section 1.1.5, we finalize our

mathematical discussions of HMMs with the final solution (the Viterbi algorithm) to the infamous

three problems that are well-posed for HMMs (introduced in Section 1.1.1). Finally, we also briefly

explore applications of HMMs in Section 1.1.6. It is our aspiration that we present HMMs in an

easy, accessible, and intuitive manner for future generations of researchers and further motivate the

progression of this interesting area of probabilistic graphical modeling.

1.1.1 Overview

HMMs are one of the most popular statistical methods used in sequential and time series proba-

bilistic modeling [10, 11]. A HMM is a well-received double stochastic model that uses a compact

set of features to extract underlying statistics [3]. Its structure is formed primarily from a Markov

chain of latent variables with each corresponding to the conditioned observation. A Markov chain

is one of the least complicated ways to model sequential patterns in time series data. It was first in-

troduced by Andrey Markov in the early 20th century. Late 1960s and early 1970s then saw a boom

of papers by Leonard E. Baum and other researchers that introduced and addressed its statistical

techniques and modeling [10]. It allows us to maintain generality while relaxing the independent

identically distributed assumption [12].

Mathematically, a HMM is characterized by an underlying stochastic process with K hidden

states that form a Markov chain. A graphical representation can be seen in Fig. 1.1. It is also

noteworthy to mention that the aforementioned latent variable must be discrete in nature. This

demonstrates the distinction between the HMMs and another state space model known as the linear

dynamical system [13] whose description is out of the scope of this thesis. Each of the states is

governed by an initial probability π, and the transition between the states at time t can be visualized

with a transition matrix B = {bii′ = P (st = i′|st−1 = i)}. In each state st, an observation is

emitted corresponding to its distribution which may be discrete or continuous. This is the observable

stochastic process set.

The emission matrix of the discrete observations can be denoted by Ξ = {Ξit(m) = P (Xt =
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Figure 1.1: A typical hidden markov chain structure representation of a time series where z 1 de-
notes the first hidden state z1 and X 1 denotes the corresponding observed state X1. This is shown
accordingly for a time series of length T .

ξm | st = i)} where [m, t, i] ∈ [1,M ]× [1, T ]× [1,K], and the set of all possible discrete observa-

tions ξ = {ξ1, ..., ξm, ..., ξM}. On the other hand, the respective parameters of a probability distri-

bution define the observation emission for a continuous observed symbol sequence. The Gaussian

distribution is most commonly used which is defined by its mean and covariance matrix κ = (µ,Σ)

[10, 14, 15]. Consequently, a mixing matrix must be defined C = {cij = P (mt = j | st = i)} in

the case of continuous HMM emission probability distribution where j ∈ [1,M ] such that M is the

number of mixture components in set L = {m1, ...,mM}. Hence, a discrete or continuous HMM

may be defined with the following respective parameters Λ = {B,Ξ, π} or {B,C,κ, π}.

We next briefly recall the two conditional independence assumptions that allow for the tractabil-

ity of the HMM algorithms [16]:

Assumption 1:

Given the (t− 1)-st hidden variables, the t-th hidden variable is independent of all other previous

variables such that:

P (st | st−1, Xt−1, ..., s1, X1) = P (st | st−1) (1)

This is known as the Limited Horizon assumption such that state st−1 has a sufficient representative

summary of the past in order to predict the future.

Assumption 2:
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Figure 1.2: A HMM transition diagram with three states.

Given the t-th hidden variable, the t-th observation is independent of other variables such that:

P (Xt | sT , XT , sT−1, XT−1, ..., st+1, Xt+1, st, st−1, Xt−1, ..., s1, X1) = P (Xt | st) (2)

This is known as the Stationary Process assumption such that the conditional distribution of a state

does not change over time and is independent of other variables.

Now, we present the three classical problems of HMMs first introduced by Rabiner in [10]:

evaluation or likelihood, estimation or decoding, and training or learning. These are described as

follows:

(1) Evaluation problem: is mainly concerned with computing the probability that a particular

sequential or time series data was generated by the HMM model, given both the observation

sequence and the model. Mathematically, the primary objective is computing the probability

P (X | Λ) of the observation sequence X = X1, X2, ..., XT with length T given a HMM

model Λ.
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Figure 1.3: Lattice or trellis HMM structure which is a representation of the hidden states.

(2) Decoding problem: finds the optimum state sequence path I = i1, i2, ..., iT for an observa-

tion sequence X . This is mathematically �s∗ = argmax�s P (�s | X,Λ).

(3) Learning problem: refers to building a HMM model through finding or ”learning” the right

parameters to describe a particular set of observations. Formally, this is performed with max-

imizing the probability P (X | Λ) of the set of observation sequence X given the set of

parameters determined Λ. Mathematically, this is Λ∗ = argmaxΛ P (X | Λ).

For the thorough explanation of the HMM algorithms to follow, we also introduce another vi-

sualization that depicts the graphical directed HMM structure as shown in Fig. 1.2. Fig. 1.3 shows

transitions then when they become trellis or lattice.
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1.1.2 Topologies

Though the main principal of this chapter is to impart an introduction to HMMs in the simplest

manner, we would be remiss not to bring the attention of the reader to the main variants of HMMs.

These pertain to its structure as well as its functionality. Specifically, we may have a:

• Hidden Markov Model (HMM): introduced in Section 1.1.1, and the entire chapter is ded-

icated to discussing its details. This is the traditional model and is the one referred to if no

other distinctions are made to the name or referral to its structure.

• Hidden Semi Markov Model (HSMM): explicitly deals with state duration as its hidden

stochastic process is based on a semi-Markov chain, so that a hidden state is persistent for

time duration td. This allows for an explicit definition of the duration as an independent vari-

able, whereas the duration of HMMs is implicitly assumed to follow a geometric distribution

[17].

• Factorial Hidden Markov Model (FHMM): is a multilayer (each of which is a HMM that

works independently from other layers) state structure for modeling of multiple loosely cou-

pled random processes.

• Layered HMM (LHMM): is made up of several composed HMMs at each layer that run

parallel to each other, providing an output to the higher layer. Hence, each layer is connected

to the next by inferential results.

• Autoregressive HMM (ARHMM): can explicitly model the longer-range correlations of se-

quential data by adding direct stochastic dependence among observations.
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• Non-Stationary HMM (NSHMM): capture state duration behaviour by defining a set of dy-

namic transition probability parameters. It can model state duration probabilities explicitly as

a function of time.

• Hierarchical HMM (HHMM): has multi-levels states that describe a sequence of input at

various levels of details. In a way, this is likened to a HMM with internal states generated

from a sub-HMM in a tree-like structure.

Not only does a traditional HMM fall into the first category of the earlier discussed variants, but

also is of a first-order nature. First-order HMMs refer to the property that characterizes the model

in terms of the current state’s dependency on previous ones. When the Markovian conditional

independence is held then the model may be referred to as first-order. Indeed, this is omitted in

many cases as this is one of the main assumptions of HMMs. Nonetheless, other extensions exist

where connections between extra past states are made and the order would then be imperative in the

description of the model. Hence, an nth-order HMM is simply one with a Markov chain structure in

which each state depends on the prior n states.

There are various topologies of a traditional first-order HMM which would correspond to its

transition matrix construction. That is the connection between the states (i.e., edges in the graph

representation) can be omitted by setting the corresponding element in B to zero. The following are

well-known special cases:

(1) Ergodic HMM: where the transition probability between any two states is nonzero. This is

also known as a fully-connected HMM. This is the most flexible structure and is ubiquitous as

it represents the traditional full fledged HMM. This allows the model to update its transition

matrix with regards to the data for a data-based approach. We note a depiction of this in both

Fig. 1.2 and Fig. 1.3 where any of the states can be visited from any other state.

(2) Left-to-Right HMM: requires that transitions can only be made from the current state to
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Figure 1.4: A left-to-right HMM topology with three states.

its equivalent or a larger index resulting in an upper triangular state transition matrix. This

is done by simply initiating the lower triangle of the state transition matrix to zeros so that

any consequent updates leave it as such. In effect, we have imposed a temporal order to the

HMMs. These are typically used in speech and word recognition applications. A graphical

depiction is shown in Fig. 1.4.

The structure of the HMM may also vary in regards to its emission distribution. Even in the case

of assuming a continuous distribution, we may have a single distribution in each state or a mixture.

1.1.3 Gaussian Mixture Models and the Expectation Maximization Algorithm

The maximum likelihood is a general problem in the computational pattern recognition and

machine learning community. It pertains to estimating the parameters of density functions given a

set of data. The latter is assumed to be static for simplicity. Concluding remarks in Section 1.1.6

address non-static (dynamic) data.

Assuming independent and identically distributed (i.i.d.) data X , a density function of its dis-

tribution p or the likelihood of the parameters given the data L(Θ | X ); i.e., the incomplete data-

likelihood function may be denoted with the following:

p(X | Θ) =
N∏
i=1

p(xi | Θ) = L(Θ | X ) (3)

The goal then as is evident from the name of the problem is to maximize this function. Mostly

this maximization is performed with the log of the function for ease of analytical purposes. This
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in turn results in finding the optimum set of parameters, Θ∗, that best fits the distribution to X .

Mathematically, that is:

Θ∗ = argmaxΘ L(Θ | X ) (4)

Consequently, the derivative of the function is found and solved when set to zero. Indeed,

it is noteworthy to mention that when p(x | Θ) is a Gaussian distribution where Θ = (µ, σ2),

the solution forms the equations that are commonly used for the mean and variance of a data set.

However, in many cases, solving the derivative of the likelihood function is not analytically possible

and hence the employment of the Expectation Maximization (EM) algorithm becomes necessary.

A question might then be raised here as to why we need mixtures. The answer lies in its better

ability to capture the underlying pattern of the data. For instance, assume that the mean data point

lies in between two subgroups (clusters) of the data. Using a single component for its modeling will

render sub-optimal results compared to a mixture where the optimum solution would be to use two

components.

The EM algorithm [18, 19, 20, 21, 22] is a general methodology for finding the maximum like-

lihood estimate of the parameters. Effectively, these learned parameters best model the underlying

pattern of the data (or a particular dataset) when the latter is incomplete. Indeed, assumption of such

hidden parameters and their values simplifies the process as we will discuss shortly.

We next introduce the general probabilistic formulation of mixture models of M components:

p(x | Θ) =
M∑
i=1

ζipi(x | θi) (5)

where Θ = (ζi, . . . , ζM , θi, . . . , θM ) such that
∑M

i=1 ζi = 1 which represents the weights of each

of the distributions’ density function pi(x | θi) with its respective set of characterizing parameters

θi. Note that pi(x | θi) will be considered to be a Gaussian distribution for the remainder of this

section, such that Θ = Θg.
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Then,

log(L(Θg | X )) = log
N∏
i=1

p(xi | Θg)

=
N∑
i=1

log

 M∑
j=1

ζjpj(xi | θj)

 (6)

This is difficult to solve as it contains the log of the sum. This may be simplified with the

assumption that this is incomplete data with mixture component labels Y = {yi}Ni=1. That is,

yi ∈ 1, . . . ,M for each data point i with yi = k to signify the mixture component k that the

sample was generated by. It is noteworthy to mention that another, and arguably better, scheme to

also achieve this is to denote this as a latent indicator variable that becomes 1 at the position of the

mixture component for a sample, and 0 otherwise. Nevertheless, the likelihood now may be denoted

by:

log(L(Θg | X ,Y)) = log(p(X ,Y | Θg))

=
N∑
i=1

log(p(xi | yi)p(yi))

=

N∑
i=1

log(ζyipyi(xi | θyi))

(7)

Y is assumed to be a random vector with the Gaussian distribution (or any desired distribution) to

be computationally feasible. Then, applying Bayes’s rule:

pyi(xi,Θ
g) =

ζgyipyi(xi | θ
g
yi)

pyi(xi | Θg)

=
ζgyipyi(xi | θ

g
yi)∑M

k=1 ζ
g
kpk(xi | θk)

(8)

and y = (y1, . . . , yN ) for an independent data sample in:

p(y | X ,Θg) =
N∏
i=1

p(yi | xi, θ) (9)

Consequently,
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we may now compute the first step in the EM algorithm which depends on computing the expected

value of the complete-data log-likelihood p(X ,Y | Θ) with respect to Y given X and the current

parameter estimates Θ(t−1). This is also referred to as the E-step. Generally, this is denoted as:

Q
(

Θ,Θ(t−1)
)

= E
[
log p(X ,Y | Θ) | X ,Θ(t−1)

]
(10)

Then,

Q (Θ,Θg) =
∑
y∈Υ

log(L(Θ | X ,y))p (y | X ,Θg)

=
∑
y∈Υ

N∑
i=1

log (ζyipyi (xi | θyi))
N∏
j=1

p (yj | xj ,Θg)

=
M∑
y1=1

M∑
yi=1

. . .
M∑

yN=1

N∑
i=1

log (ζyipyi (xi | θyi))
N∏
j=1

p (yj | xj ,Θg)

=
M∑
yi=1

M∑
`i

. . .
M∑
``

M∑
i=1

M∑
`=1

δ`,yi log (ζ`p` (xi | θ`))
N∏
j=1

p (yj | xj ,Θg)

=

M∑
`=1

N∑
i=1

log (ζ`p` (xi | θ`))
M∑
y1=1

M∑
y2=1

. . .

M∑
yN=1

δ`,yi

N∏
j=1

p (yj | xj ,Θg)

(11)

This may be simplified further. First, for ` ∈ 1, . . . ,M :

∑M
y1=1

∑M
y2=1 . . .

∑M
yN=1 δ`,yi

∏N
j=1 p (yj | xj ,Θg)

=
(∑M

y1=1 . . .
∑M

yi−1=1

∑M
yi+1=1 . . .

∑M
yN=1

∏N
j=1,j 6=i p (yj | xj ,Θg)

)
p (` | xi,Θg)

=
∏N
j=1,j 6=i

(∑M
yj=1 p (yj | xj ,Θg)

)
p (` | xi,Θg) = p (` | xi,Θg)

(12)

as
∑M

i=1 p (i | xj ,Θg) = 1. Then, replacing Eq. (12) into Eq. (11), we get:

Q (Θ,Θg) =

M∑
`=1

N∑
i=1

log (ζ`p` (xi | θ`)) p (` | xi,Θg)

=

M∑
`=1

N∑
i=1

log (ζ`) p (` | xi,Θg) +

M∑
`=1

N∑
i=1

log (p` (xi | θ`)) p (` | xi,Θg)

(13)
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This allows us to move into the next major stage that is part of the EM algorithm, which is the

maximization step (M-step).

In the M-step, the goal is to maximize the expectation computed through:

Θ(t) = argmaxΘ Q(Θ,Θ(t−1)) (14)

This is repeated together with the E-step with a guarantee to converge to a local maximum as the

log-likelihood is increased.

ζ` and θ` may be maximized independently due to the non-existence of a relationship between

them. We begin with the ζ` and use the Lagrange multiplier λ with the constraint
∑

` ζ` = 1. This

is due to the role that ζ` undertakes as the weight of each of the mixture components. Then, we need

to solve the following:

∂

∂ζ`

[
M∑
`=1

N∑
i=1

log(ζ`)p(` | xi,Θg) + λ

(∑
`

ζ` − 1

)]
= 0 (15)

or
N∑
i=1

1

ζ`
p(` | xi,Θg) + λ = 0 (16)

When both sides are summed, we end up with ` λ = −N , so that:

ζ` =
1

N

N∑
i=1

p(` | xi,Θg) (17)

This is a general result that holds for all mixture models, regardless of the distribution at hand.

As to the θ`, that is entirely dependent on the distribution assumed. For us, that is θ = (µ,Σ) denot-

ing the mean and the covariance matrix of a D-dimensional Gaussian distribution (or component in

this instance) respectively. This is formulated by:

p`(x | µ`,Σ`) =
1

(2π)D/2|Σ`|1/2
exp−

1
2

(x−µ`)T |Σ`|−1(x−µ`) (18)

Next, we compute the log of Eq. (18) and ignore any constants as they are zeroed out when we will
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compute the derivatives. Then, substitute into Eq. (13):

M∑
`=1

N∑
i=1

log(p`(xi | µ`,Σ`))p(` | xi,Θg)

=
M∑
`=1

N∑
i=1

(
−1

2
log(|Σ|)− 1

2
(x− µ`)T |Σ`|−1(x− µ`)

)
p(` | xi,Θg)

(19)

We now derive Eq. (19) with respect to µ and solve for zero:

N∑
i=1

|Σ`|−1(x− µ`)p(` | xi,Θg) = 0 (20)

The result is:

µ` =

∑N
i=1 xip(` | xi,Θg)∑N
i=1 p(` | xi,Θg)

(21)

For Σ, first we rewrite Eq. (19) as:

∑M
`=1

[
1
2 log

(∣∣Σ−1
`

∣∣)∑N
i=1 p (` | xi,Θg)− 1

2

∑N
i=1 p (` | xi,Θg) tr

(
Σ−1
` (xi − µ`)

(xi − µ`)T
)]

=
∑M

`=1

[
1
2 log

(∣∣Σ−1
`

∣∣)∑N
i=1 p (` | xi,Θg)− 1

2

∑N
i=1 p (` | xi,Θg) tr

(
Σ−1
` N`,i

)] (22)

where N = (xi − µ`) (xi − µ`)T .

Now, we can compute the derivative with respect to Σ`:

1

2

N∑
i=1

p(` | xi,Θg)(2Σ` − diag(Σ`))−
1

2

N∑
i=1

p(` | xi,Θg)(2N`,i − diag(N`,i))

=
1

2

N∑
i=1

p(` | xi,Θg)(2J`,i − diag(J`,i))

= 2R− diag(R)

(23)

where J`,i = Σ` − N`,i and R = 1
2

∑N
i=1 p(` | xi,Θg)J`,i. Setting derivative to zero through

2R− diag(R) = 0 or R = 0, then:

N∑
i=1

p(` | xi,Θg)(Σ` −N`,i) = 0 (24)
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or

Σ` =

∑N
i=1 p(` | xi,Θg)N`,i∑N
i=1 p(` | xi,Θg)

=

∑N
i=1 p(` | xi,Θg) (xi − µ`) (xi − µ`)T∑N

i=1 p(` | xi,Θg)

(25)

Consequently, these are the final update equations for the parameters of GMM with the EM

algorithm:

ζnew` =
1

N

N∑
i=1

p(` | xi,Θg) (26)

µnew` =

∑N
i=1 xip(` | xi,Θg)∑N
i=1 p(` | xi,Θg)

(27)

Σnew
` =

∑N
i=1 p(` | xi,Θg) (xi − µnew` ) (xi − µnew` )T∑N

i=1 p(` | xi,Θg)
(28)

1.1.4 Baum Welch Algorithm

The Baum Welch algorithm is a special case of the EM algorithm whereby we can efficiently

calculate the parameters of the HMM [23, 24]. In the context of HMMs, this algorithm is of extreme

importance [10]. The Baum Welch algorithm is traditionally used to solve the estimation problem

of HMMs. As a matter of fact, this remains an active area of research with interesting recent results

such as in [25].

This may be applied to the discrete as well as the continuous case. In this chapter, we focus

on the latter and further develop Section 1.1.3 for the computation of such continuous emission

distributions. The discrete case is a simplification of the continuous due to its limited parameters

and hence can be induced in a straightforward manner from our discussions.

The Baum Welch algorithm is also known as the forward-backward algorithm. This is due to

its composition of two approaches that when repeated recursively form the complete algorithm. As

you might have concluded, these algorithms are named the forward algorithm and the backward

algorithm. This iterative algorithm requires an initial random clustering of the data, is guaranteed to

converge to more compact clusters at every step, and stops when the log-likelihood ratios no longer

show significant changes [26].
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Figure 1.5: Graphical representation of the evaluation of the ρ variable of the forward algorithm in
a HMM lattice fragment.

The forward algorithm solves the first problem that is posed for HMM as discussed in Section

1.1.1; i.e., the evaluation problem. The forward algorithm calculates the probability of being in state

state si at time t after the corresponding partial observation sequence given the HMM model Λ. This

defines the forward variable ρt(i) = P (X1, X2, ..., Xt, it = si | Λ) which is solved recursively as

follows:

(1) Initiate the forward probabilities with the joint probability of state si and the initial observa-

tion X1:

ρ1(i) = πiΞi(X1), 1 6 i 6 K (29)

(2) Calculate how state qi′ is reached at time t + 1 from the K possible states si, i = 1, 2, ...,K

at time t and sum the product over all the K possible states:

ρt+1(j) =

[
K∑
i=1

ρt(i)bij

]
Ξj(Xt+1), t = 1, 2, ..., T − 1; 1 6 j 6 K (30)

(3) Finally, compute:

P (X | Λ) =
K∑
i=1

ρT (i) (31)
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The forward algorithm has a computational complexity of K2T which is considerably less than a

naive direct calculation approach. A graphical depiction of the forward algorithm can be observed

in Fig. 1.5.

Fig. 1.6 depicts the computation process of the backward algorithm in a HMM lattice structure.

It is similar to the forward algorithm, but now computing the tail probability of the partial observa-

tion from t+ 1 to the end, given that we are starting at state si at time t and model Λ. This has the

variable βt(i) = P (Xt+1, Xt+2, ..., XT , it = si | Λ) and is solved as follows:

(1) Compute an arbitrary initialization:

βT (i) = 1, 1 6 i 6 K (32)

(2) Compute the remainder of the variable with the update:

βt(i) =
K∑
i′=1

bii′Ξi′(Xt+1)βt+1(i′), t = T − 1, T − 2, ..., 1; 1 6 i 6 K (33)

Figure 1.6: Graphical representation of the evaluation of the β variable of the backward algorithm
in a HMM lattice fragment.
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In order to apply the Baum Welch algorithm, we must also define:

γt(i) = P (it = si | X,Λ)

=
P (X, it = si | Λ)

P (X | Λ)

=
P (X, it = si | Λ)∑K
i=1 P (X, it = si | Λ)

(34)

where γt(i) is the probability of being is state si at time t, given Λ and X . Also, because of the

Markovian conditional assumption, we can denote the following:

ρt(i)βt(i) = P (X1, X2, ..., Xt, it = si | Λ)P (Xt+1, Xt+2, ..., XT , it = si | Λ)

= P (X, it = si | Λ)

(35)

Then, we may also formulate the following:

γt(i) =
ρt(i)βt(i)∑K

i′=1 ρt(i
′)βt(i′)

(36)

Further, another important variable needs to be defined. That is the probability of path being in state

si at time t and then transitioning at time t+ 1 with bii′ to state s′i, given Λ and X . We denote this

by ϕt(i, i′) and formulate it as:

ϕt(i, i
′) = P (it = si, it+1 = s′i | X,Λ)

=
P (it = si, it+1 = s′i, X | Λ)

p(X | Λ)

=
ρt(i)bii′Ξi′(Xt+1)βt+1(i′)∑K

i=1

∑K
i′=1 ρt(i)bii′Ξi′(Xt+1)βt+1(i′)

=
γt(i)bii′Ξi′(Xt+1)βt+1(i′)

βt(i)

(37)

ρt(i) then considers the first observations ending at state si at time t, βt+1(i′) the rest of the

observation sequence, and bii′Ξi′(Xt+1) the transition to state si′ with observation Xt+1 at time
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t+ 1. Hence, γt(i) may also be expressed as:

γt(i) =

K∑
i′=1

ϕt(i, i
′) (38)

whereby
∑T−1

t=1 ϕt(i, i
′) is the expected number of transitions made from si to si′ and

∑T
t=1 γt(i)

is the expected number of transitions made from si.

The general re-estimation formulas for the HMM parameters π and B are then:

π̄i = γ1(i), 1 6 i 6 K (39)

which is the relative frequency spent in state si at time T = 1 and

b̄ii′ =

∑T−1
t=1 ϕt(i, i

′)∑T−1
t=1 γt(i)

(40)

which is the expected number of transitions from state si to si′ relative to the expected total number

of transitions away from state i.

For Ξ, it is hereby defined as a GMM. Then, the definition of another probability for the gener-

ation of Xt from the the `th component of the ith GMM is required and may be expressed as:

γt(i`) = P (it = si, Yit = ` | X,Λ)

= γt(i)
ci`Ξi`(Xt)

Ξi(Xt)

(41)

where Yit is an indicator random variable for the mixture component at t for si. Our earlier treatment

of GMMs in Section 1.1.3 enables us to easily derive the update equations needed. These are:

ci` =

∑T
t=1 γt(i`)∑T
t=1 γt(i)

(42)

µi` =

∑T
t=1 γt(i`)Xt∑T
t=1 γt(i`)

(43)

Σi` =

∑T
t=1 γt(i`)(Xt − µi`)(Xt − µi`)T∑T

t=1 γt(i`)
(44)
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In case we have O sequences with each oth sequence of length To, then the update equations are

the summation across all sequences. This may be denoted by the following:

πi =

∑O
o=1 γ

o
1(i)

O
(45)

bii′ =

∑O
o=1

∑To
t=1 ϕ

o
t (i, i

′)∑O
o=1

∑To
t=1 γ

o
t (i)

(46)

ci` =

∑O
o=1

∑To
t=1 γ

o
t (i`)∑O

o=1

∑To
t=1 γ

o
t (i)

(47)

µi` =

∑O
o=1

∑To
t=1 γ

o
t (i`)Xo

t∑O
o=1

∑To
t=1 γ

o
t (i`)

(48)

Σi` =

∑O
o=1

∑To
t=1 γ

o
t (i`)(Xo

t − µi`)(Xo
t − µi`)T∑O

o=1

∑To
t=1 γ

o
t (i`)

(49)

1.1.5 Viterbi Algorithm

Next, the Viterbi algorithm aims to find the most likely progression of states that generated a

given observation sequence in a certain HMM. Hence, it offers the solution to the decoding problem.

This involves choosing the most likely states at each time t individually. Hence, the expected

number of correct separate states is maximized. This is illustrated in Fig. 1.7.

Figure 1.7: Graphical representation of two probable pathways in a HMM lattice fragment. The
objective of the Viterbi algorithm is to find the most likely one.
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The main steps of the Viterbi algorithm can then be summarized as:

(1) Initialization

δ1(i) = πiΞi(X1), 1 6 i 6 K (50)

ψ1(i) = 0 (51)

(2) Recursion

For 2 6 t 6 T, 1 6 i′ 6 K

δt(i
′) = max16i6K [δt−1(i)bii′ ] Ξi′(Xt) (52)

ψt(i
′) = argmax16i6K [δt−1(i)bii′ ] (53)

(3) Termination

P ∗ = max16i6K [δT (i)] i∗T = argmax16i6K [δT (i)] (54)

(4) State sequence path backtracking

i∗t = ψt+1(i∗t+1), for t = T − 1, T − 2, ..., 1 (55)

This finalizes our mathematical discussions of the background of the famous HMMs.

1.1.6 Applications

Early applications of this powerful model were in speech-related tasks and this has remained

predominantly true. Indeed, it is an integral model in the musicology field. However, to motivate

the reader to further explore the horizons in applying the acquired knowledge, we briefly touch upon

a diversity of applications where HMMs are used in this section.

Bioinformatics is a field where HMMs are ubiquitous. For instance, it is increasingly used in

genomics, gene sequencing, and protein classification. An interested reader is referred to [27] for a

study of HMMs in a variety of biological applications. Forecasting weather may also be performed
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utilizing HMMs such as in [28].

Security applications are another field where the application of HMMs is imperative. For in-

stance, they may be deployed in video surveillance systems for automatic detection of security

threats as well as anomaly detection [29, 30] or even to detect fraud in bank transactions [31].

HMMs are also applicable in gesture recognition. An example is artificially intelligent cockpit con-

trol in [32]. You may then infer that HMMs would also shine whenever spatio-temporal analysis is

carried out due to the nature of its composition.

HMMs are also highly influential in the area of occupancy estimation. The latter is also de-

pendent on Internet of Things (IoT) technologies. A closely related area is activity recognition in

which HMMs may be used to classify such activities within a smart building environment [33]. A

method for efficient power usage is also proposed in [34] and another for power signature anomaly

detection in [35].

Similar to speech recognition, HMMs are highly preferred in natural language processing and

its subfields. Examples include recognition of handwritten characters [36], writer identification and

verification systems [37, 38], and speech synthesis for the English language [39] and recently for

Tamil [40]. We also refer an interested reader to [41] for a systematic survey of the applications of

HMMs.

1.2 Contributions of the Thesis

We contribute to a recent research direction that has focused on proposing new HMMs for a

data-driven approach. In particular, emission distributions of the model are traditionally chosen to

be a GMM. However, this is an assumption that does not hold for all cases. That is when the nature

of the data can be inferred to be nonsymmetric and its range does not expand across (−∞,∞).

Indeed, other distributions have proven to be performing better in terms of fitted models in these

instances [42, 43, 44, 45].

It naturally follows that that would be the circumstance in time-based probabilistic modeling

using HMMs. In this thesis, we focus on proposing and investigating proportional-based HMMs;
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in particular, Dirichlet, Generalized Dirichlet, and Beta Liouville-based HMMs. Another impor-

tant aspect of this interesting work is the investigation of other learning techniques that improve on

the traditional Baum Welch algorithm. This is because the latter suffers from a risk to over-fit or

under-fit as well as vulnerability to initialization conditions. Namely, we derive variational infer-

ence and Maximum A Posteriori frameworks for proportional-based HMMs. One of the drawbacks

of discriminative models is its inability to handle data of different sizes. We present a hybrid gener-

ative/discriminative approach based on the proposed models for a best-of-both-worlds framework.

Another research venue that we also tackle in this thesis is online deployment.

The overall contributions of the thesis are then as follows:

• This chapter that is considered as a roadmap to HMMs for beginners and practitioners alike.

◦ This has been accepted as a part of the book chapter in the upcoming volume entitled

Hidden Markov Models and Applications to be published in the book series Unsuper-

vised and Semi-Supervised Learning, Springer, under the title ”A Roadmap to Hidden

Markov Models and A Review in its Application in Occupancy Estimation” by Samr

Ali and Nizar Bouguila.

• An experimental advance in the deployment of HMMs in the sector of Energy and Sustain-

ability with a study case in occupancy detection.

◦ This work is under review in the Energy and Buildings journal under the title ”Towards

Scalable Deployment of Hidden Markov Models in Occupancy Estimation: A Novel

Methodology Applied to the Study Case of Occupancy Detection” by Samr Ali and

Nizar Bouguila.

• Propose a novel variational inference approach for Beta-Liouville (BL) HMM that is capa-

ble of modeling proportional sequential data. Variational inference mitigates hindrances in

the parameter estimation whereas the traditional method is prone to sensitivity in initializa-

tion as a point estimate, and computationally expensive sampling-based techniques are not

guaranteed to converge.
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◦ This work was published and presented as: S. Ali and N. Bouguila, “Variational learn-

ing of beta-liouville hidden markov models for infrared action recognition,” in 2019

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,

June 2019 [46].

◦ We also evaluate the proposed model approach for action recognition in both the infrared

and the visible spectra and implement a fusion scheme to improve accuracy results. This

work is published as in S. Ali and N. Bouguila, ”Multimodal Action Recognition Using

Variational-based Beta-Liouville Hidden Markov Models” in IET Image Processing,

2020, 14, (17), p. 4785-4794 [47].

• Investigations of hybrid generative discriminative approaches for proportional HMMs and

their validation on the categorization of dynamic textures task. Our research has been pub-

lished as:

◦ Dirichlet and Beta-Liouville HMM-based hybrid approach: S. Ali and N. Bouguila,

“Dynamic texture recognition using a hybrid generative discriminative approach with

hidden markov models and support vector machines,” in 2019 IEEE Global Conference

on Signal and Information Processing (GlobalSIP). IEEE, 2019, pp. 1–5 [48].

◦ Generalized-Dirichlet HMM-based approach: S. Ali and N. Bouguila, “Hybrid generative-

discriminative generalized dirichlet-based hidden markov models with support vector

machines,” in 2019 IEEE International Symposium on Multimedia (ISM). IEEE, 2019,

pp. 231–2311 [49].

• MAP estimation of proportional HMMs. This is because while both the latter and variational

inference are approximation approaches, the MAP method has a lower computational cost

than variational inference. Moreover, they both share the same fundamental principle of

placing appropriate priors over the parameters to be estimated for improving the performance

of the evaluation. The priors that are chosen over the parameters in the MAP technique

smooth the likelihood function; hence, reducing its multimodal nature. In turn, this improves

the approximation of the desired global maximum. The investigation carried out in [50]
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also motivates further exploration of the MAP methodology in the estimation of the HMM

parameters.

◦ The MAP approximation of the Dirichlet and the BL HMMs was accepted and presented

as:

S. Ali and N. Bouguila, “Maximum A Posteriori Approximation of Dirichlet and Beta-

Liouville Hidden Markov Models for Proportional Sequential Data Modeling,” Pro-

ceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics

(SMC 2020), Toronto, October 2020 [2].

◦ The MAP approximation of the Generalized Dirichlet (GD) HMMs was accepted and

presented as:

S. Ali and N. Bouguila, “On Maximum A Posteriori Approximation of Hidden Markov

Models for Proportional Data,” Proceedings of the IEEE 22nd International Workshop

on Multimedia Signal Processing (MMSP 2020), Tampere, October 2020 [51].

• Incorporation of a simultaneous feature selection paradigm in proportional HMMs.

◦ This work is accepted in the IEEE Transactions of Neural Networks and Learning Sys-

tems (TNNLS) under the title ”Maximum A Posteriori Approximation of Hidden Markov

Models for Proportional Sequential Data Modeling with Simultaneous Feature Selec-

tion” by Samr Ali and Nizar Bouguila.

• Infinite extension of Dirichlet and Beta-Liouville HMMs. The inference is based on varia-

tional learning. The validation is carried out on video anomaly detection.

◦ This work is to be submitted to a journal with the title ”Towards An Efficient Anomaly

Detection in Videos: An Infinite Hidden Markov Model Approach” by Samr Ali and

Nizar Bouguila.

• Infinite extension of the Generalized Dirichlet HMM as well as the incorporation of simulta-

neous feature selection. The validation is carried out on video anomaly detection.
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◦ This work is under review in the IEEE Transactions on Multimedia with the title ”To-

wards Efficient Anomaly Detection in Videos: An Infinite Hidden Markov Model with

Simultaneous Feature Selection” by Samr Ali and Nizar Bouguila.

• Online learning for variational inferred Beta-Liouville HMMs with the online Dirichlet HMMs

utilized for benchmarking. Thus far all the HMMs discussed have assumed an offline deploy-

ment. That is the model does not adapt to new data as it becomes available since the training

is performed once for a static model. Online models incorporate such new data. Furthermore,

incremental ones (a subcategory of them) do not forget the original parameters as dynamic

training is performed. This work has been published and presented as:

◦ S. Ali and N. Bouguila, “Online learning for beta-liouville hidden markov models: In-

cremental variational learning for video surveillance and action recognition,” in 27th

IEEE International Conference on Image Processing (ICIP 2020), 2020 [52].

1.3 Thesis Overview

The thesis mainly follows a manuscript-based organization. In terms of the contributions, the

sole other author in all the manuscripts is my supervisor. The remainder of the thesis is organized

as follows:

• Experimental innovation in HMM deployment in occupancy detection is presented in Chapter

2.

• Chapter 3 presents the variational inference of the Beta Liouville-based HMMs and multi-

modal fusion in action recogntion.

• Chapter 4 discusses the hybrid generative discriminative approach based on proportional

HMMs.

• Chapter 5 details MAP approximation of proportional HMMs.

• Chapter 6 introduces simultaneous feature selection for proportional HMMs.
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• Chapter 7 extends proportional HMMs to infinity.

• Chapter 8 incorporates simultaneous feature selection for infinite proportional HMMs.

• Chapter 9 presents the setting of online deployment and incremental learning.

• The conclusion and future works are discussed in Chapter 10.
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Chapter 2

Towards Scalable Deployment of Hidden

Markov Models in Occupancy

Estimation: A Novel Methodology

Applied to the Study Case of Occupancy

Detection

Information is the oil of the 21st century, and analytics is the combustion engine

Peter Sondergaard, Gartner Research

To start off, we present an innovation in the experimental deployment of hidden Markov models

(HMMs). This pertains to the occupancy estimation and detection applications and impacts the

energy and sustainability sector. On the other hand, one of the modern world’s major issues is the

conservation of energy and sustainable development.

Buildings are a major component of society and are integral in such efforts. A report released

on building energy efficiency by the World Business Council for Sustainable Development states

that buildings are responsible for at least 40% of energy use in many countries, mainly from fossil

fuels [53, 54].
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HVACL (Heating, Ventilation, Air Conditioning and Lighting) systems utilize about half of this

amount in industrialized countries [55, 56]. Improving energy efficiency through better control

strategies is a highly researched area. Such HVACL strategies already in place rely heavily on

predetermined occupancy times as well the number of occupants [57]. Due to such presumptions, a

large amount of energy consumed is actually wasted. This can be overcome by relying on the actual

occupancy of the building [58].

For highest control efficiency, a real time input of occupancy information to the systems is

required [59]. Real-time occupancy estimation is essential in evacuation of buildings and other

emergencies [60]. Furthermore, on the long run, these monitored buildings may be used for the

prediction of future usage of the occupied space with such occupancy estimation information [61,

62]. This chapter presents a thorough experimentation and analysis of the proposed setup.

2.1 Introduction

Internet of Things (IoT) represents an integral block in the future of data science and artificial

intelligence. This is due to its ability to formally connect automation systems at all levels and pool

data to the cloud. This data may be used for analysis of results as well as investigating the various

underlying patterns to better assist users.

Smart cities may be categorized under this umbrella of which our topic of interest is occupancy

detection and estimation. Occupancy detection refers to identifying whether the space that is usually

monitored with IoT sensors has people at any given time. On the other hand, occupancy estimation

refers to the process of finding an approximation of the exact number of people that are occupying

a monitored space at a time. Naturally, the latter case also considers zero number of occupants.

The objective behind identifying whether there are occupants or not is for profiling energy in

smart buildings [1]. Indeed, it has been established that energy consumption in smart buildings can

be reduced by 40% by only performing occupancy detection [63], [64], [65]. These are significant

findings and motivate further analysis into methods for superior modeling in this domain.

Machine learning has recently revolutionized various fields. Indeed, its application in occupancy

detection is ubiquitous. For instance, the use of random forests was investigated in [66] and [1] as
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well as support vector machines (SVMs) and K-nearest neighbour (KNN) in [67]. Models such as

random forests, SVMs, and KNN fall under the category of discriminative machine learning models.

Such models are efficient in learning the boundary between the differently labelled data as they

deduce the conditional probability of a class given the data [8]. This allows them to usually render

higher accuracy levels than generative models; i.e., the other category. However, generative models

deduce the joint probability and hence uncover the underlying distribution and pattern of the data.

This also renders these models to be less susceptible to over-fitting.

In this chapter, we focus on the application of HMMs and their efficient deployment in the

occupancy detection problem. HMMs fall under the generative machine learning models. They

are known as one of the most prominent sequential modeling techniques in machine learning [10].

Indeed, their impact in speech recognition and its applications is well-known [3]. Moreover, it

has been recently successfully applied in other fields such as infrared action recognition [46] and

dynamic texture classification [52].

HMMs are also commonly supported models by researchers in the area of occupancy detection

due to its structural suitability with the data and its nature [68],[69],[70]. Nonetheless, the influence

of the mathematical behavior of HMMs as well as their understanding remain inconspicuous in the

majority of smart buildings’ studies. Indeed, some of its parameters; i.e., the transition matrix, are

usually set with manual probability computation which may compromise the integrity of the model.

In contrast, in this paper, the transition matrix values are determined with the update equations of

the Baum Welch algorithm; i.e., the parameter learning algorithm of HMMs [3, 10].

Further, this chapter aims to explain the behavior of HMMs as well as present a consequent

novel setup to this field. The proposed approach constitutes of the independent training of a HMM

for each of the classes. To assign a label for a testing observation, the likelihoods are computed

then the label is assigned according to the maximum. Furthermore, we also present a summary of

multiple future work venues. This is in order to address the advancement of the understanding and

integration of machine learning models, especially HMMs, in the field of occupancy detection and

potential better results in occupancy estimation in smart buildings.

Hence, the contributions of this chapter can be listed as follows:

• Novel scalable methodology for occupany detection using HMMs. The approach may also
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be generalized easily for occupancy estimation of any number.

• First comprehensive study with an in-depth understanding of the influence of the behavior of

continuous Gaussian-based HMMs on the results of occupancy detection in smart buildings.

• An investigation of the optimal number of states as well as a study of the best independence

criteria for the representation of the data and how that finally influences the accuracy.

• Discussion of multiple areas of future study for the application of HMMs in smart buildings.

This aims to open up this topic for better understanding of the implementation of machine

learning models in IoT applications; especially in the case of smart buildings.

2.2 Materials and Methods

2.2.1 Hidden Markov models

The latent variables forming the Markov chain are often referred to as the hidden states of

the HMM. A graphical representation of the HMM can be seen in Figure 1.1. We note that such

a diagram depicts a first-order HMM since each state in the Markov chain depends only on the

previous one. Hence, an nth-order HMM is simply one with a Markov chain structure in which each

state depends on the prior n states.

Mathematically, a HMM is characterized by an underlying stochastic process with K hidden

states that form a Markov chain. Each of the states is governed by an initial probability π, and

the transition between the states at time t can be visualized with a transition matrix B = {bii′ =

P (st = i′|st−1 = i)}. In each state st, an observation is emitted corresponding to its distribution

which may be discrete or continuous. This is the observable stochastic process set.

The emission matrix of the discrete observations can be denoted by Ξ = {Ξit(m) = P (Xt =

ξm|st = i)}where [m, t, i] ∈ [1,M ]×[1, T ]×[1,K], and the set of all possible discrete observations

ξ = {ξ1, ..., ξm, ..., ξM}. On the other hand, the respective parameters of a probability distribution

define the observation emission for a continuous observed symbol sequence. The Gaussian distri-

bution is most commonly used which is defined by its mean and covariance matrix κ = (µ,Σ)

[10, 14, 15]. Consequently, a mixing matrix must be defined C = {cij = P (mt = j|st = i)} in
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the case of continuous HMM emission probability distribution where j ∈ [1,M ] such that M is the

number of mixture components in set L = {m1, ...,mM}. Hence, a discrete or continuous HMM

may be defined with the following respective parameters λ = {B,Ξ, π} or {B,C,κ, π}. In this

chapter, our approach is based on a continuous HMM with a single Gaussian distribution in each of

its states. The parameters are approximated using the well-known Baum Welch algorithm.

Figure 1.3 shows transitions then when they become trellis or lattice. We note in both figures

that any of the states can be visited from any other state. This type of HMMs is known as ergodic

or fully connected whereby the transition probability between any two states is nonzero [10] and is

the structure that we use throughout this chapter.

2.2.2 Estimation of the Parameters

There are three famous problems for HMMs; namely, the decoding, the evaluation, and the

learning. In this chapter, we require the solution of two latter problems in order to address the task

at hand. Particularly, we use the Baum Welch algorithm to address the learning problem and the

Forward algorithm to solve the evaluation problem. Though they are both prevalent in the literature

and well-defined, we aim to provide the reader with a summary of each in this section.

The Baum Welch algorithm is the traditional method to compute the parameters of HMMs. It

may be viewed as the expectation maximization algorithm for HMMs. It is also referred to as the

Forward-Backward algorithm. This is due to its dependency on the two algorithms; the Forward and

the Backward algorithms. Accordingly, we first begin by the definition of the Forward algorithm

and draw relationships between the various dependencies of the algorithms and their parameters.

The Forward algorithm is responsible for the calculation of the probability of being in state

st = i in a given HMM λ after a partial observation sequence. The intermediate forward variable

ρt(i) = P (X1, X2, . . . , Xt, st = i|λ) can then be computed recursively. The process starts with

initiating ρ1(i) = πiκiG(X1) where κiG(.) refers to the Gaussian distribution that models the emis-

sion probability for the observation in state st = i. This is carried out for all states 1 ≤ i ≤ K given

K states.

Next, computation of reaching the next state st+1 = j from all possible K states is carried out

with a sum over their product. This may be mathematically denoted by ρt+1(j) =
∑K

i=1 ρt(i)bijκ
j
G(Xt+1)
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where t = 1, 2, . . . , T − 1 and 1 ≤ j ≤ K. This finally allows us to compute the likelihood that is

the result of the Forward algorithm P (X|λ) =
∑K

i=1 ρT (i).

On the other hand, the Backward algorithm computes the tail probability of partial observation

from t + 1 to the end or T . This is performed in a similar fashion to the forward algorithm with

the intermediate backward variable θt(i) initialized to 1. Together, they are used to compute the

Baum Welch algorithm with a guarantee to converge into more compact clusters with a requirement

of an initial clustering. Two important intermediate variables are defined for the execution of the

Baum Welch algorithm. The first is ωt(i, j) = P (st = i, st+1 = j|X,λ). This is the probability of

starting at st = i and transitioning at t+ 1 to state j with bij given λ and X . The other intermediate

variable is $t(i) which is the expected number of transitions from i to j. This is mathematically

denoted by
∑K

j=1 ωt(i, j).

It is also noteworthy to recall the two conditional independence assumptions that allow for the

tractability of these algorithms [3]. The first is that given the previous hidden state, the current

hidden state is independent of all other variables such that:

P (st|st−1, Xt−1, . . . , s1, X1) = P (st|st−1) (56)

The second assumption is that given the current hidden state, the current observation is independent

of all other variables such that:

P (Xt|sT , XT , sT−1, XT−1, . . . , st+1, Xt+1, st, st−1, Xt−1, . . . , s1, X1) = P (Xt|st) (57)

2.2.3 Proposed approach

We adopt a train by class model for HMMs in this chapter. This proposed approach has not

been investigated in the smart buildings domain to the best of our knowledge. However, it has been

proven to be efficient in computer vision applications such as in [46, 48, 52]. These results have

motivated us to propose and investigate such a setup in this chapter.

The proposed approach can be observed in Fig. 2.1. As shown, a model is trained for each of the

classes corresponding to no occupants and occupants detected. Then, the likelihoods of the testing
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Figure 2.1: Proposed approach setup.

observations are computed using both trained models. This is executed using the forward algorithm

[3]. The final label is then assigned based on the maximum likelihood. This aims to improve the

modeling of the occupancy detection problem as well as provide a scalable and stable approach for

its efficient deployment. In Section 2.3, we investigate the implications of employing the proposed

approach in comparison to the traditionally utilized HMM approach in occupancy detection.

Furthermore, the significance of this chapter may also be highlighted through the fact that oc-

cupancy detection may be viewed as a special case of occupancy estimation. That is because occu-

pancy estimation would then require a trained HMM for each number of occupants to be considered

whereas occupancy detection only requires two. As such, this chapter represents a preliminary

and promising result for a scalable HMM-based framework for occupancy estimation that is stable

regardless of the range of occupants that is assumed.

2.3 Experiments

In this section, we present the details carried out for investigating the proposed approach and

discuss the results. In particular, we introduce the dataset that we used in Section 2.3.1 and the

HMM benchmark methodology in Section 2.3.2. Next, we define the evaluation metrics that we

report in Section 2.3.3. Finally, we study the model selection problem in Section 2.3.4 and the

complexity of the model parameters as well as dependency in Section 2.3.5.
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2.3.1 Dataset

We evaluate our approach on a set of training and testing sets whose sizes and class distributions

are summarized as shown in Fig. 2.2. It has been first published in [1] and is utilized in other promi-

nent occupancy detection papers [71, 70]. Hence, this dataset may be considered as a benchmark

for the occupancy detection task. This motivated our choice of the dataset and allows researchers to

easily explore the performance of various other techniques. The collection of the data is performed

with an IoT platform and an interested reader is referred to the original paper for the data collection

process. It is noteworthy to mention that the data is time-series as its collection occurs with the

passage of time. That is the readings of the sensors are collected in time which as a whole forms a

time series data such that there are temporal relations.

Figure 2.2: Class distribution and size of training and testing datasets used [1].

For the experimental setup, we maintain the same training and testing data splits as used in

the literature. This is performed to facilitate mass comparison with methods in the literature and

potential future ones. Consequently, the training of the proposed model is performed on data that

is collected with the door mostly closed during detection of occupancy duration, which matches

the environmental conditions for testing set 1. In contrast, testing set 2 contains data that has been

with the door mostly open. It is noteworthy to mention that this also plays part in the interpretation

of the results that we detail in Section 2.3.4 and 2.3.5. It is noteworthy to mention that we chose

to maintain the same split of the data as the original paper rather than use K-fold cross validation

for the interpretability of the results in relation to the variability conditions of the collected data.

Moreover, this allows the chance for the results to be benchmarked with others in the literature as

well as future ones that maintain the same split. Finally, this setup maintains the integrity of the

data, while a K-fold cross validation evaluation may be performed as a future investigation.

The datasets constitute of averaged recordings that have been collected at 14 second or 3 to

36



4 times per minute intervals. The number of observations and the data class distributions can be

observed in Fig. 2.2. An interested reader is referred to [1] for extensive details and analysis of the

features including the correlation matrix.

2.3.2 Benchmark Setup

We benchmark against the traditional methodology of applying HMMs in occupancy detection

and estimation. The pipeline constitutes of assuming that each state in the model represents a class

of occupancy. Hence, in the case of occupancy detection that would be two: no occupancy and oc-

cupancy detected. However, this approach relies on the assumption that the underlying relationship

between the various features is best represented correspondingly to the number of labels available.

In the case of estimation, the number of states would have to increase according to the number of

occupants to be detected. This renders the traditional approach to be less scalable than the proposed

approach. This is due to the requirement of training a single model for the entirety of the available

labels at any given time. We also study the state and parameter complexity further in Section 2.3.5.

Imbalanced data where the number of observations in each class is not the same is a significant

problem to address. This is due to the fact that datasets in occupancy detection and estimation are

usually characterized by a large percentage of data under the no occupants label in non-residential

buildings. This logically follows the fact that such areas only contain occupants during work hours

and do not have facilities for slumbering. Moreover, this phenomenon is nowadays more prevalent

than ever due to the circumstances that we are facing because of COVID19. This may also be

observed in the dataset that we are experimenting on in this chapter.

It is imperative to mention that the proposed approach mitigates the problem of imbalanced data

in comparison to the benchmark. This is due to the process of independent training of the models

for each of the data classes. Consequently, the parameters of each of the models is inferred given

the data available and given that the HMM is a generative machine learning model, the underlying

distribution of the data is then deduced. Furthermore, overfitting is also less of a concern in genera-

tive models which is an overall advantage for using HMMs for occupancy detection and estimation

tasks.
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2.3.3 Evaluation Metrics

Accuracy may be defined as the percentage of correctly classified observations. This can be

computed with the following mathematical formula:

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(58)

where TP denotes the number of true positives which represents the number of instances where

occupancy detected labels are also predicted as such. On the other hand, FP denotes the number

of false positives which represents the number of instances where occupancy is not detected but are

predicted to have been. TN and FN follow a similar analogy whereby they denote the number of

true negatives and false negatives, respectively.

We also report the following performance criteria for the chosen number of states:

Precision =
TP

(TP + FP )
(59)

Recall =
TP

(TP + FN)
(60)

F1− Score =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(61)

The recall allows us to measure the missed positive predictions and hence the coverage of the

minority class in an imbalanced data. This translates to the positive label or the detection of oc-

cupancy in this chapter. On the other hand, precision quantifies how many of the positive class

predictions actually belonged or fall under the positive class. The F1-Score or the F-measure is the

harmonic mean between the two latter measures and represents a weighed measure of both.

2.3.4 Model Selection

Model selection refers to the process of identifying the appropriate size of the model; i.e., se-

lecting the best representative model structure. In HMMs, this then translates to determining the
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Table 2.1: Accuracy of the HMM for both the benchmark and novel approaches across different
number of states.

Accuracy (%)
K (No. of States) 2 3 4 5 6

Benchmark Approach
Test set 1 91.52 91.52 65.14 83.79 55.80
Test set 2 57.56 55.18 47.39 44.49 43.35

Novel Approach
Test set 1 92.50 97.75 95.72 91.52 90.43
Test set 2 92.83 97.01 73.72 67.16 64.21

optimum number of states to represent the occupancy observations. We carry out an experimental

investigation in this chapter to meet this end.

On the other hand, another choice that we may have taken into account is applying model

selection techniques that are based on information criteria such as the famous Akaike information

criterion (AIC) or Bayesian information criterion (BIC). Though these are usually utilized when

a maximum likelihood approach is presented, a recent investigation [72] found that they are not

suitable for HMMs in some cases dependent on the nature of the problem and the corresponding

state solution.

This presents an interesting venue for future work in this application, albeit infinite HMMs are

capable of presenting a dynamically flexible structure of the model without the need for an extra

measure or experiments to determine the optimum number of states. Hence, the latter represents

a better solution. Nonetheless, in this chapter, we have considered the complexity of the model in

terms of the number of states versus the resultant accuracy for both the proposed approach as well

as the benchmark method.

The results of our model selection experiments are shown in Table 2.1. Each pair of rows

represents the results for an approach with each row reporting the results for a particular testing

set. It can be observed that the highest accuracy is achieved for the two states-based model in

the benchmark approach, while 3 states-based structure is most suitable for the proposed novel

approach.

An interesting interpretation then follows for the benchmark approach whereby the HMM was

indeed able to discern the labels and catalogue them into corresponding states. This best represen-

tation is formed when the number of states is assumed to be the same as the number of classes. On
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the other hand, the superiority of the proposed method can be clearly shown in terms of the increase

in the accuracy.

Indeed, we notice a difference of 6.23% and 39.45% increase for testing sets 1 and 2, respec-

tively. The relatively lower increase in accuracy in testing set 1 can be explained by the match

between the environmental conditions of its observations and of the training set. The boost in the

accuracy of the second testing set clearly shows the generalization ability of the novel approach as

well as its superiority in a better representation of the data.

This is also intuitively shown by the structure of the approaches themselves whereby an entire

HMM is used to infer the distribution and process of the observations of each class in the proposed

approach. In contrast, in the benchmark approach, all of the data is represented by one model with

an assumption that may not always be fulfilled. That is the number of states of the optimum model

is directly proportional to the number of labels and its different parameters can be inferred correctly

accordingly.

Figure 2.3: Investigation of the accuracy versus the number of states for model selection of the
HMM for both the benchmark and novel approaches.

We also visualize the trend of the accuracies across the different models as shown in Fig. 2.3.

Both the benchmark and proposed HMM approaches show degradation in the results after reaching

40



Table 2.2: Accuracy of the HMM for both the benchmark and novel approaches across different
number of states with the independence assumption.

Accuracy (%)
K (No. of States) 2 3 4 5 6

Benchmark Approach
Test set 1 79.88 62.48 53.73 45.52 65.95
Test set 2 53.65 44.09 41.48 33.08 37.85

Novel Approach
Test set 1 95.20 96.96 92.46 79.06 85.33
Test set 2 95.27 82.47 95.80 82.55 83.51

the optimum number of states. Nonetheless, instability of the model representation can be discerned

in the trend of testing set 1 (shown in blue) whereby a fitted line would show degradation but the

data has a jump at K = 5.

2.3.5 State Complexity and Parameter Dependency

It is also noteworthy to discuss the number of parameters for the model. This is mainly depen-

dent on the number of states. As such, a tradeoff relationship exists between the increase in accuracy

and the number of states with the objective of achieving optimum accuracy. The performance of

the HMM then degrades as more states become unreflective of the intrinsic behavior of the modeled

problem; i.e., occupancy detection in this chapter.

In order to then study the complexity of the model in terms of the parameters, we differentiate

between the state-based parameters and the HMM-based one. In particular, we note that state-based

parameters are dependent on the nature of the emission probability function that we choose which

is a Gaussian as discussed. The latter, on the other hand, pertains to the HMM structure itself which

we detailed in Section 2.2. This is computed dependent on the number of states as K ∗K for the

transition matrix parameters and K initial parameters.

As to the state-based parameters, we also include dependency on the assumption of indepen-

dence in our investigation. This translates to a full covariance matrix in the case of the investigations

that we carried out in Section 2.3.4 which translates to D ∗D in each of the states where D is the

number of features in the dataset; i.e., 5 andD means for each of the states. If assuming that each of

the dimensions of the distribution is independent then we have a diagonal covariance matrix (D ∗D

is reduced to D for each state) whereby each of the dataset features is assumed to be independent.
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Table 2.3: Accuracy fluctuation of the benchmark method across 10 runs when independence of
features is assumed.

Accuracy (%)
Number of States (K) 2 3 4 5 6

Test Set 1
Average 79.88 62.48 53.73 45.52 65.95
Minimum 12.65 13.25 13.06 2.74 12.83
Maximum 87.35 81.05 86.42 74.71 79.06

Test Set 2
Average 53.65 44.09 41.48 33.08 37.85
Minimum 45.44 35.75 33.31 5.05 25.87
Maximum 54.56 48.54 53.74 57.03 42.82

Table 2.4: Precision fluctuation of the benchmark method across 10 runs when independence of
features is assumed.

Precision (%)
Number of States (K) 2 3 4 5 6

Test Set 1
Average 83.18 77.24 79.43 79.83 93.55
Minimum 16.35 19.12 16.88 5.57 63.53
Maximum 90.61 100.00 100.00 100.00 100.00

Test Set 2
Average 82.45 79.56 84.72 81.83 96.71
Minimum 54.02 55.39 53.64 20.66 79.01
Maximum 85.61 86.69 99.98 99.78 100.00

Table 2.5: Recall fluctuation of the benchmark method across 10 runs when independence of fea-
tures is assumed.

Recall (%)
Number of States (K) 2 3 4 5 6

Test Set 1
Average 79.88 62.48 53.73 45.52 65.95
Minimum 12.65 13.25 13.06 2.74 12.83
Maximum 87.35 81.05 86.42 74.71 79.06

Test Set 2
Average 53.65 44.09 41.48 33.08 37.85
Minimum 45.43 35.75 33.31 5.05 25.87
Maximum 54.56 48.54 53.74 57.03 42.82
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Table 2.6: F1-Score fluctuation of the benchmark method across 10 runs when independence of
features is assumed.

F1-Score (%)
Number of States (K) 2 3 4 5 6

Test Set 1
Average 80.26 66.74 57.17 54.76 73.87
Minimum 14.26 15.65 14.72 3.67 20.29
Maximum 87.59 84.02 86.91 84.20 87.27

Test Set 2
Average 56.41 52.83 50.20 45.08 52.00
Minimum 49.36 43.45 46.85 8.11 38.83
Maximum 57.20 55.75 56.99 71.62 57.60

This assumption may be followed for simplicity or to meet a lower computational cost requirement.

It is prevalent in the literature when the dimensions or the features of a dataset is large in size.

As expected, we found out that the accuracy decreases in the latter case for both approaches as

shown in Table 2.2. It is noteworthy to mention that the accuracy has not degraded significantly

even with an independence assumption using the novel model. We also notice the flexibility of the

model whereby more states were found to be optimum for testing set 2 in order to maintain the

performance level.

Note that for the benchmark approach, we reported average accuracy results. This shows another

interesting result that supports the stability and robustness of the proposed model in comparison to

the benchmark. As shown in Table 2.3, the benchmark results vary greatly across ten runs whereas

the novel approach was the same. The minimum, average, and maximum results of precision,

recall, and F1-score evaluation metrics for both testing sets can be observed in Table 2.4, 2.5, and

2.6, respectively. The fluctuations are also visualized as boxplots for the accuracy, precision, recall,

and F1-score evaluation metrics for testing sets 1 and 2 as shown in Fig. 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,

2.10, and 2.11 respectively. In contrast, the confusion matrices for the optimum number of states,

under the independence assumption, of the novel approach are shown in Fig. 2.12 and 2.13.

We can observe in Fig. 2.4 that most of the runs yield the maximum accuracy in state 2. Indeed,

this occurred in nine of the ten runs. Hence, the classification of the minimum accuracy as an outlier.

The fluctuations of the results for the other number of states is more dispersed. This also supports

the model selection conclusions that we reached in Section 2.3.4. Similar observations can be made
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Figure 2.4: Visualization of the accuracy fluctuation of the benchmark HMM approach when inde-
pendence of features is assumed for test dataset 1.

Figure 2.5: Visualization of the accuracy fluctuation of the benchmark HMM approach when inde-
pendence of features is assumed for test dataset 2.
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from Fig. 2.5 for the accuracy of testing set 2 with the benchmark approach under the independence

assumption.

Figure 2.6: Visualization of the precision fluctuation of the benchmark HMM approach when inde-
pendence of features is assumed for test dataset 1.

The precision pattern in Fig. 2.6 shows an interesting phenomenon though whereby a precision

of 100% is reached for 3 states and above, albeit only at a maximum and as an outlier occasionally.

This is closely the case in Fig. 2.7 for testing set 2. It is important here to notice that this comes at

the cost of affecting the recall as expected and can also be supported by Fig. 2.8 and 2.9.

Hence, even when taking into account all of the metrics in terms of the F1-score, or the harmonic

mean between the precision and the recall, as well as the accuracy, the model selection criteria

would still venture towards the selection of 2 states as the best choice for the model structure of the

benchmark approach. Furthermore, the lowest dispersion of results of F1-score can be reported for

the 2 states model, as shown in Fig. 2.10 and 2.11, which further supports this conclusion.

Overall, we reach two important conclusions from the independence assumption experiments.

First, that the novel approach is capable of performing comparably well which shows its scalability.

This is important in large dimensional datasets where this assumption is usually made. Second, that

the novel approach is stable and robust, i.e. consistently reaching the same convergence across ten
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Figure 2.7: Visualization of the precision fluctuation of the benchmark HMM approach when inde-
pendence of features is assumed for test dataset 2.

Figure 2.8: Visualization of the recall fluctuation of the benchmark HMM approach when indepen-
dence of features is assumed for test dataset 1.
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Figure 2.9: Visualization of the recall fluctuation of the benchmark HMM approach when indepen-
dence of features is assumed for test dataset 2.

Figure 2.10: Visualization of the F1-score fluctuation of the benchmark HMM approach when in-
dependence of features is assumed for test dataset 1.
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Figure 2.11: Visualization of the F1-score fluctuation of the benchmark HMM approach when in-
dependence of features is assumed for test dataset 2.

Table 2.7: Evaluation of the optimum HMM for both the benchmark and novel approaches.

Accuracy Precision Recall F1-Score

Benchmark Approach
Test set 1 91.52 93.12 91.52 91.66
Test set 2 57.56 85.92 57.56 60.43

Novel Approach Test set 1 97.75 94.71 99.38 96.99
Test set 2 97.01 96.46 89.02 92.59

runs.

Finally, the confusion matrices for the presented novel approach with the optimum number of

states can be observed in Fig. 2.14 and Fig. 2.15 for testing datasets 1 and 2, respectively. These

represent the final chosen model for the novel approach with ((5 ∗ 5 + 5) ∗ 3 + 3 ∗ 3 + 3) = 102

parameters. We present the confusion matrices in order to show the class accuracy as well as the

overall performance of the novel approach. The computed accuracy, precision, recall, and F1-score

of the optimized novel approach for testing sets 1 and 2 are shown in Table 2.7 versus the best

achieving benchmark results.
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Figure 2.12: Confusion matrix for results achieved on test set 1 for the proposed approach when
independence is assumed (K = 3).

Figure 2.13: Confusion matrix for results achieved on test set 2 for the proposed approach when
independence is assumed (K = 4).
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Figure 2.14: Confusion matrix for results achieved on test set 1 for the final chosen model of the
proposed approach (Full covariance matrix and K = 3).

Figure 2.15: Confusion matrix for results achieved on test set 2 for the final chosen model of the
proposed approach (Full covariance matrix and K = 3).
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2.4 Conclusion

In this chapter, we have presented a novel approach for the application of HMMs in occupancy

detection. The framework promises a scalable stable deployment of HMMs, especially in relation

to the status quo. Future work includes a further study of the approach in occupancy estimation.

An infinite HMM approach may also be studied for the dynamic update of the number of states

of HMMs without the need to set them experimentally. Furthermore, an online estimation frame-

work of HMMs may also be developed as a framework for the occupancy detection and estimation

with incremental learning that adapts the model dynamically in real-time to adjust its parameters

for incorporation of new data as it becomes available. Feature selection and feature engineering

techniques may also be incorporated for further improvements of the results.
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Chapter 3

Variational Inference of Beta-Liouville

Hidden Markov Models and Multimodal

Action Recognition

In God we trust. All others must bring data.

W. Edwards Deming

We now turn our attention into deriving novel learning techniques for the estimation of the

model in relation to proportional data in particular. In this chapter, this is incarnated by variational

inference. This chapter also incorporates an investigation of fusion techniques for multimodal action

recognition with the proposed model.

3.1 Introduction

Automatic action recognition (AR) is a fundamental task for many applications such as video

retrieval [73], video labeling [74], and video surveillance [74]. Consequently, research attention in

AR has recently increased. The typical objective of automatic AR is the assignment of a given video

or image sequence; i.e., classification, to a set of predefined classes [75]. Hence, it is dependent on

tracking and segmentation as well as other lower level processing stages [76].
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Though various approaches for AR has been researched for a number of years, the past decades

have witnessed most of the major advances in the field [77]. This is especially true in the case of

the visible spectrum where an abundance of data has been made available [78, 79]. These include

UCF101 [80], KTH [81], and Weizmann [82] datasets.

However, this does not alleviate the burden of various challenges that still exist in the field. For

instance, an individual may still carry out the same action differently than another; i.e., the famous

intrinsic within-class variability [75]. Others are specific to the visible spectrum such as its high

sensitivity to shadow, background clutter, occlusion, and changes in illumination [83].

On the other hand, utilizing thermal infrared (IR) cameras provides robustness to the aforemen-

tioned factors. Specifically, this is due to the relative lower temperatures of shadow, background

clutter, and occlusion obstacles. Indeed, capturing humans in poor illumination conditions; i.e., in

dim light or at night, is one of its characterizing advantages. Consequently, utilizing IR in AR is a

research field with promise in exceeding the performance versus the visible light spectrum [79, 84].

Machine learning techniques that may be used for data modeling in IR AR classically fall under

two main categories: discriminative or generative [85]. Generally, discriminative models are trained

to infer a mapping between data inputs x to class labels y, while generative models first learn the

distribution of the classes before predictions are made [4]. Mathematically, the former represents

the posterior probability p(y|x) with the latter denoting the joint probability p(x, y) that is used to

calculate the posterior probability accordingly for the classification. Each of the models have their

own properties and advantages which we summarize some of them shortly.

Discriminative models usually achieve superior classification accuracy results due to their pri-

mary learning objective of the boundary between classes [5]. These include the famous Support

Vector Machines (SVM) and decision tree classifiers. On the other hand, generative models require

less training data, can be used for outlier detection, and provide the ability to generate more training

data with the same input distribution upon completion of the training of the model [86, 87]. Mixture

models and Hidden Markov Models (HMM) are examples of generative models.

A HMM [3] is one of the machine learning approaches that may be used for IR AR. A HMM

is a principled double stochastic model that uses a compact set of features to extract underlying

statistics [3]. Its structure is formed primarily from a Markov chain of latent variables with each
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corresponding to the conditioned observation. A Markov chain is one of the least complicated ways

to model sequential patterns in time series data. It allows us to maintain generality while relaxing

the independent identically distributed assumption [12].

Traditional works in the literature focus on discrete and Gaussian based HMMs [10]. Nonethe-

less, better modeling of state emission probabilities dependent on the nature of the data is an impor-

tant parameter that has been recently tackled [46]. Indeed, strictly positive data that sum up to one;

i.e., proportional data, are one such significant category. These time series data naturally occur from

various multiple preprocessing procedures, including the famous histograms, across the spectrum

of pattern recognition applications. In this paper, we employ the Beta-Liouville (BL) distribution

for proportional sequential data modeling [88].

While it is common to employ a Gaussian-based HMM in all instances, it is not the best practice

to do so with proportional data [75]. In particular, the characters of the Gaussian distribution lead to

a sub-optimal modeling. The latter include its unbounded infinite support and symmetry properties.

As such, utilizing emission probability distributions fit to the data has shown better performance in

recent research. These include HMMs for proportional data [29, 89, 30, 90] and Student’s t data

[91].

We also tackle the learning problem of HMMs in terms of utilizing a variational learning ap-

proach for the training process [92]. Usually, a variation of the Expectation Maximization method

is used which is known as the Baum-Welch algorithm. This technique suffers from many disadvan-

tages that the variational approach is capable of alleviating. These include inconsideration of prior

knowledge into the training process and under-fitting as well as over-fitting.

All in all, this chapter expands on our recent findings in [46] where we proposed the first math-

ematical model for the variational learning of BL HMM. In particular, we apply the BL HMM to

another IR AR dataset to examine its generalization capabilities. We also perform the first evalua-

tion of the BL HMM in visible AR and in multimodal fusion for AR to the best of our knowledge

as well as detail the algorithm execution steps.

The rest of this chapter is organized as follows. Section 3.2 details the proposed model. Section

3.3 discusses the experimental setup and results.
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3.2 Variational Learning of the Beta-Liouville Hidden Markov Model

In this section, we examine the mathematical derivations of the HMM proposed for better mod-

eling of proportional data. A HMM is generally characterized by an underlying stochastic process

with K hidden states. These form a Markov chain. An initial probability π governs each of the

states with a transition matrix B = {bii′ = P (st = i′|st−1 = i)} between the states at time t. An

observation is emitted corresponding to its distribution in each state st. This distribution may be

discrete or continuous. It is also known as the observable stochastic process set.

Ξ = {Ξi(m) = P (Ot = ξm|st = i)} denotes the emission matrix of the discrete observations

where [m, t, i] ∈ [1,M ] × [1, T ] × [1,K], and the set of all possible discrete observations Ξ =

{ξ1, ..., ξm, ..., ξM}. On the other hand, the respective parameters of a probability distribution define

the observation emission for a continuous observed symbol sequence. This is usually modelled by

the Gaussian distribution that is defined by its mean and covariance matrix κ = (µ,Σ) [10, 14, 15].

Hence, a mixing matrix must be defined C = {cij = P (mt = j|st = i)} in the case of continuous

HMM emission probability distribution where j ∈ [1,M ] such that M is the number of mixture

components in set L = {m1, ...,mM}. Consequently, a discrete is defined by λ = {B,Ξ, π}.

On the other hand, a continuous HMM may be defined with the following respective parameters

{B,C,κ, π}. In this paper, we consider the latter case which is defined as a proportional mixture

model of BL distribution.

In D dimensions, a BL distribution is defined as:

BL(~x|~α, α, β) =
Γ(
∑D

d=1 αd)Γ(α+ β)

Γ(α)Γ(β)

D∏
d=1

xαd−1
d

Γ(αd)
×

(
D∑
d=1

xd

)α−∑D
d=1 αd

(
1−

D∑
d=1

xd

)β−1
(62)

where ~α = (α1, ..., αD), α, and β are the real and strictly positive parameters of the BL distribution,

Γ(t) =
∫∞

0 xt−1e−xdx is the Gamma function, and ~x is a D dimensional vector whereby ~x ∈ IRD
+

and
∑D

d=1 xd < 1. For simplification, we also denote Λ = [~α, α, β]; i.e., the parameters of the

BL distribution. These parameters once trained given the desired data result in a custom-fitted BL

distribution that has a greater capability to represent the underlying distribution of the proportional
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Figure 3.1: Graphical model representation of the Beta-Liouville based hidden Markov model.
Symbols in unshaded circles denote the observed variables, symbols in shaded circles indicate the
hidden states, and edges represent conditional dependencies between the states or the variables.

data at hand.

The likelihood of X , a time-series or sequence of observations of length T , given the model is

expressed as:

p(X|B,C, π,κ) =
∑
S

∑
L

πs1

[
T∏
t=2

bst−1,st

]
×

[
T∏
t=1

cst,mtp(xt|κst,mt)

]
(63)

where κij = (κ1ij , ...,κDij) with i ∈ [1,K] where K is the number of states in S; the set of

hidden states, and j ∈ [1,M ] where M is the number of mixture components in L; the set of the

components of the mixture. M is assumed to be uniform for all the states. Hence, the model is

derived for a unique observation sequence for simplification purposes. To consider further observa-

tion sequences, an addition of a summation of these sequences would be logically required in the

corresponding observation data equations. Furthermore, when A > 1, the parameter T is then de-

pendent on each of the available time series observation sequences {Xa}a=1,...,A such that it would

be denoted as Ta. It is also noteworthy to mention that such a setup is highly recommended since it

prevents overfitting. A graphical depiction of the proposed HMM is shown in Fig. 3.1.
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The exact computation of Equation (63) is intractable due to the need of summation over all

possible combinations of mixture components and states. Consequently, the typical methodology

for its solution constitutes of the maximization of the data likelihood with respect to the parameters

of the model using the Baum-Welch algorithm [10]. Nonetheless, this approach suffers from several

drawbacks. These include overfitting and absence of a convergence guarantee due to the general

multimodal nature of the data likelihood function.

On the other hand, an estimation of the model may be derived using the variational Bayesian

approach. This uses the posterior probabilities through the assignment of parameter priors for in-

tegrating out the marginal likelihood of the data. Hence, all the model parameters are regarded as

random variables. The complete data likelihood is then denoted as:

p(X) =

∫
dπdBdCdΛ

∑
S,L

p(B,C, π,Λ)p(X,S,L|B,C, π,Λ) (64)

Equation (64) is still computationally intractable. This is due to the exponential growth of

the number of possible sequences to be summed as the length of the time series increases [93].

However, an introduction of the approximate distribution q(B,C, π,Λ, S, L) of the true posterior

p(B,C, π,Λ, S, L|X) enables us to derive a lower bound.

On the other hand, Jensen’s inequality states that E[F(x)] ≥ F(E[x]) where F(.) is a non-

concave function and E[.] denotes the expectation. Thus, using Jensen’s inequality and Equation

(64), the lower bound can be expressed as:

ln(p(X)) = ln


∫
dπdBdCdΛ

∑
S,L

p(B,C, π,Λ)p(X,S,L|B,C, π,Λ)


≥
∫
dπdBdCdΛ

∑
S,L

q(B,C, π,Λ, S, L)ln
{
p(B,C, π,Λ)p(X,S,L|B,C, π,Λ)

q(B,C, π,Λ, S, L)

} (65)

When q is equal the true posterior, the inequality is tight. Hence,

ln(p(X)) = L(q)−KL(q(B,C, π,Λ, S, L)||p(B,C, π,Λ, S, L|X)) (66)

where L(q) is the lower bound and KL is the Kullback-Leibler distance between the true posterior
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and the approximate distribution [92, 94].

The computation of the exact posterior distribution is intractable, so we only account for a

certain family of distributions. As per the studied assumptions in [92, 94, 95, 93, 96], q may be fac-

torized with the mean-field approximation; i.e., q(B,C, π,Λ, S, L) = q(B)q(C)q(π)q(Λ)q(S,L)

where q(Λ) = q(~α)q(α)q(β), with a similar factorization applying to p. L(q) can then be expressed

as:

ln(p(X)) ≥
∑
S,L

∫
dBdCdπd~αdαdβq(B)q(C)q(π)q(~α)q(α)q(β)q(S,L)

{ln(p(π)) + ln(p(B)) + ln(p(C)) + ln(p(~α)) + ln(p(α)) + ln(p(β))+

ln(p(πs1)) +

T∑
t=2

ln(bst−1,st) +

T∑
t=1

ln(cst,mt) +

T∑
t=1

ln(p(xt|~αst,mt , αst,mt , βst,mt))

−ln(q(S,L))− ln(q(π))− ln(q(B))− ln(q(C))− ln(q(~α))− ln(q(α))

−ln(q(β))} = F (q(π)) + F (q(B)) + F (q(C)) + F (q(~α)) + F (q(α)) + F (q(β))

+F (q(S,L))

(67)

In general, there are multiple maxima to the above lower bound; i.e., it is not convex. This

suggests that the solution is dependent on the initialization. The priors of the parameters must then

be defined to evaluate Equation (67). Since the coefficients of the parameters π, B, and C are all

less than one, strictly positive, and with a sum result equal to one for each row summation, their

priors are chosen as Dirichlet distributions as follows:

p(π) = D(π|φπ) = D(π1, ..., πK |φπ1 , ..., φπK),

p(B) =

K∏
i=1

D(bi1 , ..., biK |φ
B
i1 , ..., φ

B
iK

),

p(C) =
M∏
i=1

D(ci1 , ..., ciM |φ
C
i1 , ..., φ

C
iM

) (68)

This intuitively follows from their property to represent probabilities of the respective parameters

that each of the symbols models.

Similarly, a conjugate prior must also be defined over the BL parameters ~α, α, and β. We
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adopt the Gamma distribution G(.) for conjugate prior approximations of the latter parameters as

previously proposed in [92]. This follows due to the strictly non-negative nature that defines these

parameters. Consequently, we define the prior distributions as:

p({~α}K,M,D
i,j,l=1 ) =

K∏
i=1

M∏
j=1

D∏
l=1

G(αijl|uijl, vijl), (69)

p({α}K,Mi,j=1) =
K∏
i=1

M∏
j=1

G(αij |gij , hij), (70)

p({β}K,Mi,j=1) =
K∏
i=1

M∏
j=1

G(βij |eij , rij) (71)

where the hyperparameters u, g, h, e, r, and v are also strictly positive.

The iterative variational Bayesian inference process consists of two alternating steps; the E-step

and the M-step. All of the parameters of the model are then learned through a sequential repetition

of a M-step followed by an E-step until convergence. Hidden states and mixture components are

updated in the M-step, so all (S,L) terms in Equation (67) are not considered. On the other hand,

q(S,L) is subsequently updated in the E-step; now keeping all other parameters fixed.

The following optimizations of q(B), q(C), and q(π) are applicable to other continuous HMMs

as they are independent of the emission distribution used. Therefore, these have already been studied

in [95, 90]. As such, only the main equations are given and the reader is referred to the aforemen-

tioned references for further details. Indeed, these derivations are shared across all continuous based

HMMs and intuitively connected to the model structure itself. Consequently, the derivation of the

equations with terms pertaining only to the B parameter from Equation (67) gives:

F (q(B)) =

∫
q(B)ln

∏K
i=1

∏K
j=1 b

ωB
ij−1

ij

q(B)

 dB (72)

with

ωBij =
T∑
t=2

γBijt + φBij (73)
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and

γBijt , q(st−1 = i, st = j) (74)

where γBijt is a local probability typically computed with a forward-backward algorithm in a HMM

framework [10]. To maximize F (q(B)), we apply the Gibbs inequality which results in:

q(B) =
K∏
i=1

D(ai1, ..., aiK |ωBi1, ..., ωBiK) (75)

Similarly for the π parameter:

q(π) = D(π1, ..., πK |ωπ1 , ..., ωπK) (76)

with

ωπi = γπi + φπi (77)

and

γπi , q(s1 = i) (78)

Finally, for the C parameter:

q(C) =
K∏
i=1

D(ci1, ..., ciM |ωCi1, ..., ωCiM ) (79)

with

ωCij =
T∑
t=1

γCijt + φCij (80)
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and

γCijt , q(st = i,mt = j) (81)

Next, we tackle the optimization of F (q(Λ)). From Equation (67), we obtain:

F (q(Λ)) =

∫
q(Λ)ln

{∏K
i=1

∏M
j=1 p(Λij)

∏T
t=1 p(xtΛij)

γCijt

q(Λ)

}
dΛ (82)

In order to achieve tractability, we apply the previously discussed factorial approximation of

q(Λ) as in [12]. We note that the solution thus far is presented corresponding to that of a finite BL

mixture model as investigated in [88]. This leads to the following evaluations:

q(~α) =
D∏
l=1

K∏
i=1

M∏
j=1

G(αijl|u∗ijl, v∗ijl) (83)

q(α) =
K∏
i=1

M∏
j=1

G(αij |g∗ij , h∗ij) (84)

q(β) =

K∏
i=1

M∏
j=1

G(βij |e∗ij , r∗ij) (85)

where

u∗ijl = uijl +
P∑
p=1

〈Zpij〉ᾱijl

[
Ψ

(
D∑
d=1

ᾱijd

)
−Ψ(ᾱijl)+

D∑
d=1,d6=l

Ψ′

(
D∑
d=1

ᾱijd

)
ᾱijd(〈ln(αijd)〉 − ln(ᾱijd))

 (86)

v∗ijl = vijl −
P∑
p=1

〈Zpij〉

[
ln(Xpl)− ln

(
D∑
d=1

Xpd

)]
(87)
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g∗ij = gij +

P∑
p=1

〈Zpij〉[Ψ(ᾱij + β̄ij)−Ψ(ᾱij)

+β̄ijΨ
′(ᾱij + β̄ij)(〈ln(βij)〉 − ln(β̄ij))]ᾱij

(88)

h∗ij = hij −
P∑
p=1

〈Zpij〉ln

(
D∑
d=1

Xpd

)
(89)

e∗ij = eij +
P∑
p=1

〈Zpij〉[Ψ(ᾱij + β̄ij)−Ψ(β̄ij) + ᾱijΨ
′(ᾱij

+β̄ij)(〈ln(αij)〉 − ln(ᾱij))]β̄ij

(90)

r∗ij = rij −
P∑
p=1

〈Zpij〉ln

(
1−

D∑
d=1

Xpd

)
(91)

with i and j fixed for P observation vectors where l ∈ [1, D], i ∈ [1,K], and j ∈ [1,M ]. Ψ(.) is the

digamma function, and Ψ′(.) is the trigamma function; the logarithmic first and second derivatives

of the Gamma function respectively. The ∗ superscript implies the optimization of each of the

corresponding parameters that the symbol is presented upon and 〈.〉 denotes the expectation with

respect to the optimized parameter, accordingly. Moreover, Zpij = 1 if Xpt belongs to state i

and mixture component j and Zpij = 0 otherwise; i.e., it is an indicator function. Then, the

weights of the data samples with respect to each mixture component are defined within the HMM

framework. These are also known as the responsibilities. Consequently, 〈Zpij〉 =
∑T

t=1 γ
C
pijt =

p(s = i,m = j|X) and the responsibilities are computed via the forward-backward algorithm [10].

The definitions of the expected values of the parameters in the aforementioned equations are as
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follows:

ᾱijl =
u∗ijl
v∗ijl

, ᾱij =
g∗ij
h∗ij

, β̄ij =
e∗ij
r∗ij

(92)

〈ln(αijl)〉 = Ψ(u∗ijl)− ln(v∗ijl) (93)

〈ln(αij)〉 = Ψ(g∗ij)− ln(h∗ij) (94)

〈ln(βij)〉 = Ψ(e∗ij)− ln(r∗ij) (95)

This concludes the M-step of the algorithm. q(S,L) is then estimated in the E-step with the

previously evaluated parameters now fixed. Equation (67) can be rearranged as studied in [90] to:

L(q) = F (q(S,L))−KL(q(B,C, π,Λ)||p(B,C, π,Λ)) (96)

where

F (q(S,L)) =
∑
S

q(S)

∫
q(π)ln(πs1)dπ +

∑
S

q(S)

∫
q(B)

T∑
t=2

ln(bst−1,st)dB

+
∑
S,L

q(S,L)

∫
q(C)

T∑
t=1

ln(cst,mt)dC +
∑
S,L

q(S,L)

∫
q(Λ)

T∑
t=1

ln(p(xt|~αst,mt , αst,mt , βst,mt))dΛ−
∑
S,L

q(S,L)ln(q(S,L))

(97)
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and we naturally define:

π∗i , exp
[
〈ln(πi)〉q(π)

]
,

π∗i = exp

[
Ψ(ωπi )−Ψ(

∑
i

ωπi )

]
,

b∗jj′ , exp
[
〈ln(bjj′)〉q(B)

]
,

b∗jj′ = exp

Ψ(ωBjj′)−Ψ(
∑
j′

ωBjj′)

 ,

c∗ij , exp
[
〈ln(cij)〉q(C)

]
,

c∗ij = exp

Ψ(ωCij)−Ψ(
∑
j

ωCij)



(98)

The final optimization that needs to be performed is:

ln(p∗(Xt|~αst,mt , αst,mt , βst,mt)) =

∫
q(Λ)ln(p(Xt|~αst,mt , αst,mt , βst,mt))dΛ, (99)

where

p(Xt|~αst,mt , αst,mt , βst,mt) =

[
Γ(
∑D

d=1 αijd)Γ(αij + βij)

Γ(αij)Γ(βij)

D∏
d=1

X
αijd−1
td

Γ(αijd)

×

(
D∑
d=1

Xtd

)αij−
∑D

d=1 αijd
(

1−
D∑
d=1

Xtd

)βij−1

γCijt (100)

We then substitute Equation (100) in Equation (99) and breakdown the distribution BL(~x|~α, α, β)

to a product decomposition corresponding to the prior factorization assumption made to q(Λ). This
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yields the following evaluation:

ln(p∗(Xt|~αst,mt , αst,mt , βst,mt)) = γCijt

∫
q(~α)q(α, β)

ln(ν(Xt|~αst,mt)η(Xt|αst,mt , βst,mt))d~αdαdβ

= γCijt
(
〈ln(ν(Xt|~α))〉q(~α) + 〈ln(η(Xt|α, β))〉q(α,β)

)
(101)

where

〈ln(ν(Xt|~α))〉q(~α) =

〈
ln
(Γ(

∑D
d=1 αijd)∏D

d=1 Γ(αijd)

)〉
q(~α)

+

D∑
d=1

ln(Xtd)〈αijd − 1〉q(~α) − ln

(
D∑
d=1

Xtd

)
D∑
d=1

〈αijd〉q(~α)

= J(αijl) +
D∑
d=1

ln(Xtd)

uijd
vijd
− 1


−ln

(
D∑
d=1

Xtd

)
D∑
d=1

uijd
vijd



(102)

and

〈ln(η(Xt|αij , βij))〉q(αij ,βij) =

〈
ln
( Γ(αij + βij)

Γ(αij)Γ(βij)

)〉
q(α,β)

+ln

(
D∑
d=1

Xtd

)
〈αij〉q(α,β) + ln

(
1−

D∑
d=1

Xtd

)

×〈βij − 1〉q(α,β) = J(αij , βij) + ln

(
D∑
d=1

Xtd

) gij

hij


+ln

(
1−

D∑
d=1

Xtd

)eij
rij
− 1



(103)

J(αijl) and J(αij , βij) are analytically intractable. Consequently, they are approximated by
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their lower bounds as derived in [92]. Using the second order Taylor approximation method, J(αijl)

and J(αij , βij) are then denoted as follows:

J(αijl) ≥ ln

Γ(
∑D

d=1 ᾱijd)∏D
d=1 Γ(ᾱijd)

+
D∑
d=1

ᾱijd

[
Ψ

(
D∑
l=1

ᾱijl

)
−

Ψ(ᾱijd)] [〈ln(αijd)〉 − ln(ᾱijd)] +
1

2

D∑
d=1

ᾱ2
ijd

[
Ψ′

(
D∑
l=1

ᾱijl

)

−Ψ′(ᾱijd)
]
〈(ln(αijd)− ln(ᾱijd))

2〉+
1

2

D∑
d=1

D∑
l=1,l 6=d

ᾱijdᾱijl×

Ψ′

 D∑
y=1

ᾱijy

 (〈ln(αijd)〉 − ln(ᾱijd))(〈ln(αijl)〉 − ln(ᾱijl)) (104)

J(αij , βij) ≥ ln

 Γ(ᾱij + β̄ij)

Γ(ᾱij)Γ(β̄ij)

+ ᾱij(Ψ(ᾱij + β̄ij)

−Ψ(ᾱij))(〈ln(αij)〉 − ln(ᾱij)) + β̄ij(Ψ(ᾱij + β̄ij)−Ψ(β̄ij))

(〈ln(βij)〉 − ln(β̄ij)) +
1

2
ᾱ2
ij(Ψ

′(ᾱij + β̄ij)−Ψ′(ᾱij))

〈(ln(αij)− ln(ᾱij))
2〉+

1

2
β̄2
ij(Ψ

′(ᾱij + β̄ij)−Ψ′(β̄ij))

〈(ln(βij)− ln(β̄ij))
2〉+ ᾱij β̄ijΨ

′(ᾱij

+ β̄ij)(〈ln(αij)〉 − ln(ᾱij))(〈ln(βij)〉 − ln(β̄ij)) (105)

where 〈(ln(αijd) − ln(ᾱijd))
2〉 = (Ψ(uijd) − ln(uijd))

2 + Ψ′(uijd), 〈(ln(αij) − ln(ᾱij))
2〉 =

(Ψ(gij)− ln(gij))
2 +Ψ′(gij), and 〈(ln(βij)− ln(β̄ij))

2〉 = (Ψ(eij)− ln(eij))
2 +Ψ′(eij) as derived

in [97].

Finally, by substituting Equation (104) into Equation (242), Equation (105) into Equation (103),
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and Equation (98) into Equation (97), we yield:

F (q(S,L)) =
∑
S,L

q(S,L)ln (p∗(Xt|~αst,mt , αst,mt , βst,mt)(
π∗s1
∏T
t=2 b

∗
st−1,st

∏T
t=1 c

∗
st,mt

q(S,L)

)) (106)

whereby the optimized q(S,L) can then be denoted as:

q(S,L) =
1

W
π∗s1

T∏
t=2

b∗st−1,st×

T∏
t=1

c∗st,mt
p∗(Xt|~αst,mt , αst,mt , βst,mt)

(107)

where W is a normalizing constant and represents the likelihood of the optimized HMM which can

be computed with a forward-backward algorithm [10]. This is defined as:

W =
∑
S,L

π∗s1

T∏
t=2

b∗st−1,st

T∏
t=1

c∗st,mt
×

p∗(Xt|~αst,mt , αst,mt , βst,mt)

(108)

Considering that Θ represents the approximated initialization of the BL parameters using the

method of moments approach as previously studied by Epaillard and Bouguila in [90], the proposed

algorithm may be summarized as follows:

• input: X,Θ,M,K, tol,maxIter

(1) Initialize hyperparameters:

◦ φπ = [1/K, ..., 1/K], where len(φπ) = K

◦ φB = [1/K, ..., 1/K], where len(φB) = K

◦ φC = [1/M, ..., 1/M ], where len(φC) = M

◦ vijl = 1,∀i, j, l

◦ uijl = ζinit,∀i, j, l

◦ hij = 1, ∀i, j
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◦ gij = κinit,∀i, j

◦ rij = 1,∀i, j

◦ eij = θinit,∀i, j

(2) Initialize HMM parameters:

◦ Draw initial responsibilities γπ, γB, and γC from prior distributions with Equation

(68)

◦ Compute ωπ, ωB , and ωC with Equations (77), (73), and (80)

◦ Initialize π, B, and C with the computed quantities from Equation (98)

(3) Initialize iteration count and HMM likelihood:

◦ iter = 0; likold = 106; liknew = 105

(4) While |likold − liknew| ≥ tol & iter ≤ maxIter

◦ E-Step

∗ Compute the data likelihood likdata with X,u, v, g, h, e, r, and Θ with Equa-

tions 62 and 107

∗ Compute responsibilities γπ, γB, and γC using the forward-backward algo-

rithm with likdata, π,B and C where the latter three quantities are computed

with Equations 78, 74, and 81 respectively

∗ Update u, v, g, h, e, and r with Equations 86, 87, 88, 89, 90, and 91

◦ M-Step

∗ Update ωπ, ωB , and ωC with the corresponding responsibilities γπ, γB, and

γC using Equations 77, 73, and 80

∗ Update B,C, and π using the computed ωπ, ωB , and ωC in Equation (98)

◦ Update conditions to check convergence

∗ likold ← liknew

∗ Compute liknew with Equation (108) and the forward-backward algorithm

∗ iter += 1
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Figure 3.2: InfAR dataset’s sample frames.

3.3 Experimental Results

In this section, we evaluate the proposed model on two challenging AR datasets: IR InfAR [98]

and multispectral IOSB [99]. These datasets were chosen for their unique position to enable the

evaluation of the proposed model with others in the field as well as investigate the multi spectral

fusion aspect of the paper. In particular, the InfAR dataset is the most used dataset for the evaluation

of machine learning models in the literature as will be shown by the many comparisons made in our

results. The IOSB dataset, on the other hand, is made up of videos that were taken simultaneously

in both spectra. We report our result in terms of confusion matrices, average precision (AP), and

accuracy measures. AP is defined as AP = 1/ς
∑ς

%=1(TP%/(TP% + FP%)) where ς refers to the

total number of classes, while the accuracy measure may be calculated using (TP + TN)/(TP +

TN + FP + FN) where TP, FP, TN, FN denote the number of true positives, false positives,

true negatives, and false negatives respectively.
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Spectrum

Visible 
Spectrum

Film Point Throw
Figure 3.3: IOSB dataset’s sample frames.

3.3.1 Datasets and Setup

InfAR IR Action Dataset

We choose 10 sample videos from each of the single class action classes in this dataset. In total,

it contains twelve classes and six hundred videos. The resolution of the each of the videos is 293 ×

256 with a frame rate of 25 for a four second duration. All in all, the training and testing pool used

from this dataset is then seven classes and example frames from these classes can be observed in

Fig. 3.2.

IOSB Multispectral Action Dataset

This dataset consists of visible and IR action videos that have been recorded at a sunny summer

day of ten people; eight males and two females in the age range of 31.2±5.7 [99]. We test our

proposed algorithm on three classes of the dataset; namely, film, point, and throw. Each of the

classes has ten videos with sample frames shown in Fig. 3.3. Two Q1922 cameras with a spectral

range of eight to fourteen µm; i.e., longwave IR, are used for generating IR data with a resolution

of 640×480 pixels with a frame rate of 25 frames per second. A similar frame rate of the captured
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Figure 3.4: Infrared action recognition InfAR dataset classification experimental setup with the
proposed trained hidden Markov models (HMM). The likelihoods of each of the trained HMMs are
denoted by p1, p2, p3, p4, p5, p6, and p7, respectively.

actions in visible spectrum is generated by AXIS Q5534 and AXIS Q1755 cameras with a resolution

of 800×600 pixels.

Experimental Setup

We choose histogram of optical flow (HOF) and motion boundary histogram (MBH) descriptors

for representation of the AR videos. That is we extract a time series of these histograms for our

experiments as features. This may be performed with an interest point detector [100]. For the latter,

we choose extraction along the motion trajectory [101].

For evaluation, we utilize a leave-one-out cross validation scheme and train an HMM for each

class independently. The likelihood of each of the testing video sequences is then calculated by each

the respective seven trained HMMs to assign the class label appropriately. This corresponds to the

maximum resultant likelihood. Fig. 3.4 shows the experimental setup with the number of states and

BL mixture components set experimentally to 2; i.e., K = 2 and M = 2 respectively.

In order to ensure robustness of the pipeline and the results, each set of features is used nine

times for the training of the utilized BL HMM for a total of 630 trained HMMs on the InfAR
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Table 3.1: Comparison of the Average Precision (AP) of the proposed models.

Method AP
Two stream 3D CNN [102] 75.42%
Optical flow field 3D CNN [102] 77.50%
Deep-convolutional descriptors [103] 79.25%
HOF [98] 68.58%
Dense trajectories [104] 68.66%
Improved dense trajectories [105] 71.83%
BL HMM (HOF) - InfAR 78.41%
BL HMM (Horizontal MBH) - InfAR 89.57%
BL HMM (Vertical MBH) - InfAR 92.29%
BL HMM (HOF) - IOSB 58.05%
BL HMM (Horizontal MBH) - IOSB 81.53%
BL HMM (Vertical MBH) - IOSB 73.95%

dataset. The average results are then reported across the various trained HMMs. For benchmarking

the results, we perform experiments with a Gaussian-based HMM applying the same setup.

3.3.2 Unimodal Results

We achieve an accuracy of 77.94% when training with the HOF features extracted from the

InfAR dataset compared with 42.86% with the Gaussian HMM. Moreover, the average accuracy

of proposed model is 89.05% and 92.06% with the horizontal and vertical MBH features respec-

tively versus 85.7% using the benchmark. As such, the proposed HMM clearly outperforms the

benchmark and shows promising results. The confusion matrices of the different features with the

proposed BL HMM with the InfAR dataset can be observed in Fig. 3.6, Fig. 3.7, and Fig. 3.8. Also,

a compact representation of the comparison of the accuracy results can be observed in Fig. 3.5.

Moreover, generalization of the performance of the model is demonstrated by the results of the

proposed model on the IOSB IR frames as shown in Fig. 3.9, Fig. 3.10, and Fig. 3.11. We carry

out a similar setup for the IOSB dataset with the training setup limited to only two iterations. This

results in a total of 60 trained HMMs for testing. Overall, our results are comparable to several

other methods reported in the literature. A comparison of the achieved results with the AP of the

proposed model can be observed in Table 3.1.

We also train our proposed HMM model on the IOSB visible spectrum frames. These results
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Figure 3.5: Comparison of the accuracy of the proposed HMM using the different extracted features
against the benchmark in the literature; i.e., the Gaussian HMM.

Figure 3.6: Confusion matrix for BL HMM trained with HOF features extracted from the InfAR
dataset.
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Figure 3.7: Confusion matrix for BL HMM trained with horizontal MBH features extracted from
the InfAR dataset.

Figure 3.8: Confusion matrix for BL HMM trained with vertical MBH features extracted from the
InfAR dataset.

Figure 3.9: Confusion matrix for BL HMM trained with HOF features extracted from the IOSB IR
frames.
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Figure 3.10: Confusion matrix for BL HMM trained with horizontal MBH features extracted from
the IOSB IR frames.

Figure 3.11: Confusion matrix for BL HMM trained with vertical MBH features extracted from the
IOSB IR frames.

may be observed in Fig. 3.13 for the HOF features, Fig. 3.14 for the horizontal MBH features,

and Fig. 3.15 for the vertical MBH features. Due to the characteristics of the visible spectrum

that includes high sensitivity to shadow, background clutter, occlusion, and changes in illumination,

the results of the proposed model is not as satisfactory as in the IR spectrum. Nonetheless, these

investigations back up the importance of using the IR spectrum in AR as well as act as motivation

for the multimodal fusion approach that we propose in Section 3.3.3. Also, a compact representation

of the comparison of the accuracy and AP results can be observed in Fig. 3.12.

3.3.3 Multimodal Fusion

There are many classifier fusion methods such as fusing single class labels and the class ranking

based techniques [106]. We choose a soft-output classifier fusion approach. Specifically, Bayesian

fusion approaches that are based on retaining the posterior probabilities of each of the classifiers to

fuse. For our paper, this translates to the likelihoods of each of the HMM classifiers for the different

modalities with a prior that is set to be a uniform distribution. Hence, this has the effect of fusing
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Figure 3.12: Comparison of the accuracy and AP of the proposed HMM on the different extracted
features using the different the fusion methods against the IR unimodal results where average de-
notes the Average Bayes method and belief defines the Bayes Belief Integration method respec-
tively.

Figure 3.13: Confusion matrix for BL HMM trained with HOF features extracted from the IOSB
visible spectrum frames.

Figure 3.14: Confusion matrix for BL HMM trained with horizontal MBH features extracted from
the IOSB visible spectrum frames.
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Figure 3.15: Confusion matrix for BL HMM trained with vertical MBH features extracted from the
IOSB visible spectrum frames.

Figure 3.16: Confusion matrix for BL HMM trained with HOF features extracted from the IOSB
visible spectrum and IR frames fused with the Average Bayes method.

the modalities using the IR and the visible likelihoods as appropriate. We investigate two methods

of Bayesian approaches: the simple Average Bayes and the Bayes Belief Integration [106].

The Average Bayes method consists of finding the average of the posterior probabilities pro-

portional to the likelihood results of the HMMs which we denote by pι of the different classifiers

ι = 1, . . . , υ following the notation used in Fig. 3.4. This Average Bayes classifier is then denoted

by:

pavg =
1

υ

υ∑
ι=1

pι (109)

where υ is the total number of classifiers to be fused; i.e., υ = 2 for the two modalities in our case.

The outcome of using this method may be observed in Fig. 3.16, Fig. 3.17, and Fig. 3.18 for

the HOF, the horizontal MBH, and the vertical MBH features respectively. These correspond to AP

values of 37.41%, 37.27%, and 45.34%. These poor performance results can be attributed to giving

the same weight or importance to each of the multimodal classifiers which in effect disregards the

better outturn of using the IR spectrum and leads to the degraded repercussion observed.
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Figure 3.17: Confusion matrix for BL HMM trained with horizontal MBH features extracted from
the IOSB visible spectrum and IR frames fused with the Average Bayes method.

Figure 3.18: Confusion matrix for BL HMM trained with vertical MBH features extracted from the
IOSB visible spectrum and IR frames fused with the Average Bayes method.

On the other hand, the Bayes Belief Integration method operates by the incorporation of the

results of the confusion matrix of each of the classifiers. The final fusion result is then based on

choosing the label output by the classifier with the higher belief measure. In effect, this belief

measure is set by comparing the corresponding confusion matrix entries and selecting the classifier

of the highest correct classification for each of the classes.

This fusion method yields the results shown in Fig. 3.19 and Fig. 3.20 for the HOF and the

horizontal MBH features, while the confusion matrix for the vertical MBH features is the same as

the IR spectrum which may be observed in Fig. 3.11. The latter is due to the superior performance

of the IR HMM classifier. In other words, this methods settles on the best HMM for each of the

classes for each of the modalities. Hence, the AP values for this final fusion are 63.33%, 85.24%,

and 73.95% for the HOF, horizontal MBH, and vertical MBH features respectively. These results

are the best achieved for the proposed model and proves the advantage of using multimodal fusion

in AR.
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Figure 3.19: Confusion matrix for BL HMM trained with HOF features extracted from the IOSB
visible spectrum and IR frames fused with the Bayes Belief Integration method.

Figure 3.20: Confusion matrix for BL HMM trained with horizontal MBH features extracted from
the IOSB visible spectrum and IR frames fused with the Bayes Belief Integration method.

3.3.4 Further Discussions

In this section, we discuss miscellaneous aspects of the results and their consequent implica-

tions. In particular, we address two facets of additional experimentation: time complexity and

comparison with deep learning technique.

Time complexity refers to the time that is needed for the HMM to process a video sequence.

We found this to be 9.85 seconds for the proposed model. The experiments were carried out on a

machine with 32 GB RAM and 3.6 GHz processor and the code was written using the MATLAB

software. We also note the time taken for the benchmark Gaussian-based HMM that follows an

independence assumption. That is the diagonal of the co-variance matrix is the used as the modeling

parameter along with the means. The testing time yielded was 0.08 seconds.

This difference in performance may be explained by the simplicity of the benchmark’s param-

eters versus the proposed model. Moreover, the lower computational cost of the pre-optimized

functions that are used for the computation of these parameters also contributes to this variation.
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Nonetheless, the superior performance of the proposed model in comparison to the benchmark

frames this as a trade-off relationship. Furthermore, this computational time needed may be reduced

using a more powerful machine as well as by potentially implementing this code in C. However, this

falls outside the scope of this paper and the time complexity details are only included for a thorough

inspection of the results.

On the other hand, we also implement a convolutional neural network model which is a deep

learning approach for action recognition. The network consists of 4 convolutional layers, 2 fully

connected linear layers, and finally a max pooling layer. This setup is trained for 75 epochs for each

of the datasets with learning rate of 0.001 and batch size of 32. This rendered a training accuracies

of 88.83%, 98.6%, and 99.3% and validation accuracies of 97.22%, 100.0%, and 100.0% for the

InfAR, visible IOSB, and IR IOSB datasets respectively. This shows overfitting phenomenon due to

the high complexity of the model. On the other hand, the testing results achieved were suboptimal

at best. Given a leave one out scheme the testing sequences had 66.7% for the IOSB datasets

and 57.1% for the InfAR dataset. This demonstrates the flaw of deep learning techniques; i.e.,

discrimintative based machine learning, particularly in comparison to generative ones. The latter

in this case represents HMMs; the branch under which the proposed method lies and which is less

prone to suffer from overfitting whose case is clearly shown in this case. Moreover, this technique

has features that are covert and hence renders in-explainable results. Moreover, the computational

complexity of deep learning is much higher at 272,295 parameters for a relatively simple structure.
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Chapter 4

Hybrid Generative Discriminative

Approach with Hidden Markov Models

and Support Vector Machines

Make your life a masterpiece; imagine no limitations on what you can be, have, or do.

Brian Tracy

Our investigations thus far have been purely generative in nature. Whereas variational inference

has shown an undeniable improvement of the performance of proportional-based hidden Markov

models, an interesting problem arises for discriminative models where the lengths of the sequen-

tial data of interest is not the same. Ergo, in this chapter, we delve into generative discriminative

approaches and propose novel models as appropriate for the topic and the application of dynamic

texture categorization.

4.1 Introduction

Dynamic textures (DT) are videos that constitute of complex dynamical objects such as sea

waves and grass waving in the wind [107]. The DT generative model is of a particularly attractive

research interest for its proven effectiveness in many domains such as video classification [108, 109,
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110], video segmentation [111, 112, 113, 114], human action recognition [115], video synthesis

[116, 114], and abnormal motion detection [117].

These objects may be modeled due to their stationary behavior in time [116]. As such, DT

recognition falls under the broad theme of spatiotemporal modeling. This is intuitively inferred

as the modeling of objects that involve dependencies between spatial and time dimensions. For

instance, facial expression classification is another task where space and time are omnipresent and

where DT has been impactful [118, 119]. Hidden Markov models (HMM) are key models for

capturing this space time dependency [120].

A HMM is a double stochastic model that extracts underlying statistic through the employment

of a compact set of features [3]. Generative models, such as HMMs, require less training data [87]

than discrimintaive models. This defines the main two categories of machine learning algorithms.

Generally, training discriminative models corresponds to inferring a mapping between data inputs to

class labels, while generative models first learn the distribution of the classes before predictions are

made [4]. As such, discriminative models usually achieve superior classification accuracy results

[5]. These include the famous Support Vector Machines (SVM) [121, 122, 123].

SVMs are one of the most popular data modeling techniques due to its capability to construct

a linear boundary in a projected space of the original data via a kernel which translates to a non-

linear boundary in the original space. Motivation behind using SVMs is well-researched and an

interested reader is referred to [124]. One of the main challenges of applying SVMs is determining

the right kernel. Popular choices include the linear, polynomial, and radial basis function kernels

[125]. However, these kernels may only be applied to features or data of the same length. This may

not always be the case for extracted features from DTs.

In order to overcome this hindrance, we propose the use of Fisher Kernels (FK) generated with

HMMs [126, 127] of Dirichlet [128, 94], Beta-Liouville (BL) [129, 46], and Generalized Dirichlet

(GD) [30, 94] emission distributions. The Fisher kernel captures the intrinsic properties of the data

resulting in data-driven kernels [130]. We then derive a more powerful model by combining both

generative models with the SVM approach [131, 132].

In particular, the contributions of this chapter are fivefold: (i) we apply the BL HMM for DT

recognition with variational learning; (ii) we perform the first evaluation of the variational-based
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Dirichlet HMM on the same application; (iii) we derive a hybrid generative-discriminative approach

for both Dirichlet and BL HMM with FK for SVM-based proportional data modeling and apply the

model for DT recognition; (iv) we derive a hybrid generative-discriminative approach for the GD

HMM with FK for SVM-based proportional data modelling; (v) we apply the proposed model for

DT recognition.

4.2 Hybrid Generative-Discriminative Approach with Fisher Kernels

In this section, we discuss the main components of the proposed approach. Section 4.2.1 ex-

amines the HMM structure with the Dirichlet, BL, and GD parameters; Section 4.2.2 overviews the

forward-backward algorithm; and Section 4.2.3 presents the FK derivations.

4.2.1 Hidden Markov Models for Proportional Data

A HMM is characterized by an underlying stochastic process with K hidden states, each gov-

erned by an initial probability π, and the transition between the statesB = {bii′ = P (st = i′|st−1 =

i)} at time t. In each state st, an observation is emitted corresponding to its respective parameters of

a probability distribution κ with a mixing matrix C = {cij = P (mt = j|st = i)} where j ∈ [1,M ]

such that M is the number of mixture components in set L = {m1, ...,mM}. Hence, a continuous

HMM may be defined as λ = {B,C,κ, π}.

Formally, a D-dimensional Dirichlet distribution is denoted by:

DR(X|~ε) =
Γ(
∑D

d=1 εd)∏D
d=1 Γ(εd)

D∏
d=1

xεd−1
d (110)

where ~ε = (ε1, ..., εD) is the real and strictly positive parameter of the distribution and X ∈ IRD
+ ,∑D

d=1 xd = 1 corresponding to the D-dimension proportional vector that adds up to one.

A better model of proportional time series data is also proposed with the BL distribution [46].

This distribution is closely related to the Dirichlet, but it relaxes the constraint of negative covari-

ance. This comes at the cost of two additional parameters. The BL distribution is denoted by:
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BL(X|~δ, α, β) =
Γ(
∑D

d=1 δd)Γ(α+ β)

Γ(α)Γ(β)

D∏
d=1

xδd−1
d

Γ(δd)(
D∑
d=1

xd

)α−∑D
d=1 αd

(
1−

D∑
d=1

xd

)β−1
(111)

where ~δ = (δ1, ..., δD), α, and β are real and strictly positive parameters of the BL distribution,

Γ(t) =
∫∞

0 Xt−1e−XdX is the Gamma function, and X is a D + 1 dimensional vector whereby

X ∈ IRD
+ and

∑D
d=1 xd < 1. It is noteworthy to mention that the Dirichlet distribution is a special

case of the BL distribution. Interested readers are referred to [94, 46] respectively for the detailed

derivations of the Dirichlet and the BL HMMs with variational learning.

κ may also be defined according to the GD distribution for proportional data denoted by:

GD(X|~ι, ~ϑ) =
D∏
d=1

Γ(ιd + ϑd)

Γ(ιd)Γ(ϑd)
xιd−1
d

(
1−

d∑
r=1

xr

)ζd
(112)

where ~ι = (ι1, ..., ιD), ~ϑ = (ϑ1, ..., ϑD) are the real and strictly positive parameters of the GD

distribution andX ∈ IRD
+ and

∑D
d=1 xd < 1 corresponding to the (D+1)-dimensional proportional

vector that adds up to one. Finally, ζd is computed using the parameters of the distribution as

ϑd − ιd+1 − ϑd+1, when d 6= D. Otherwise, ζd = ϑD − 1.

4.2.2 Forward-Backward Algorithm

The forward algorithm calculates the probability of being in state si at time t after the corre-

sponding partial observation sequence given the HMM model λ. This defines the forward variable

ρt(i) = P (X1, X2, ..., Xt, it = si|λ) which is solved recursively as follows:

(1) initiate the forward probabilities with the joint probability of state si and the initial observa-

tion X1: ρ1(i) = πiκi(X1), 1 6 i 6 K;

(2) calculate how state qi′ is reached at time t+ 1 from the K possible states si, i = 1, 2, ...,K at

time t and sum the product over all theK possible states: ρt+1(i′) =
[∑K

i=1 ρt(i)bii′
]
κi′(Xt+1)
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for t = 1, 2, ..., T − 1, 1 6 i′ 6 K

(3) Finally, compute P (X|λ) =
∑K

i=1 ρT (i).

The forward algorithm has a computational complexity of K2T which is considerably less than

a naive direct calculation approach. Similar to the forward algorithm, but for computing the tail

probability of the partial observation from t + 1 to the end of an observation sequence, given that

we are starting at state si at time t and model λ, is the backward algorithm. This has the variable

θt(i) = P (Xt+1, Xt+2, ..., XT , it = si|λ) and is solved as follows:

(1) Compute an arbitrary initialization θT (i) = 1, 1 6 i 6 K;

(2) θt(i) =
∑K

i′=1 bii′κi′(Xt+1)θt+1(i′) for t = T − 1, T − 2, ..., 1, 1 6 i 6 K

Together with the forward algorithm, this forms the forward-backward algorithm through conse-

quent iteration that is used for the calculation of the probability of a DT sequence X given λ:

P (X|λ) =
K∑
i=1

K∑
i′=1

ρt(i)bii′κi′(Xt+1)θt+1(i′) (113)

4.2.3 Fisher Kernels

Kernels project features into higher dimensional space with a function κ(yς , yϕ) = 〈φ(yς), φ(yϕ)〉

where yς and yϕ are observations not necessarily of the same length, φ is a projection function cho-

sen as FK in this paper, and 〈., .〉 implies the inner product. FK is generally used for building hybrid

generative-discriminative models for classification and is denoted by:

FK(Xς , Xϕ) = 〈FS(Xς , λ), FS(Xϕ, λ)〉 (114)

where FS(Xς , λ) is the Fisher Score (FS), given two observations Xς and Xϕ, that is character-

ized by the log-likelihood of the generative model with respect to all the parameters and we have

restricted the FK to the practical case where the Fisher Information Matrix (FIM) Fλ defined by

Fλ = E[FS(Xς , λ)FS(Xς , λ)T ] (115)
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is assumed to be I with E denoting the expectation. On the other hand, FS is defined as:

FS(X,λ) = ∇λln P (X|λ) (116)

The FS reduces quantization error in comparison to other well-known methods such as the Bag

of Features or the Bag of Visual words due to its primary and secondary statistics components.

Effectively, the FK compares objects in higher spaces formed by the generative model as points in

the Riemannian manifold. This enables the measurement of geodesic distances between the points

along the manifold [127].

Given λ of a particular trained HMM, the log likelihood may be calculated using:

L(X|λ) = ln P (X|λ) (117)

= ln
K∑
i=1

ρT (i) (118)

= ln
K∑
i=1

πiκi(X1)θ1(i) (119)

The derivatives of the Dirichlet-based HMM may then be defined as:

∇λL(X|λ) =

[
∂L(X|λ)

∂πi
,
∂L(X|λ)

∂bii′
,
∂L(X|λ)

∂εid

]
(120)

On the other hand, the derivatives of the BL-based HMM are denoted by:

∇λL(X|λ) =

[
∂L(X|λ)

∂πi
,
∂L(X|λ)

∂bii′
,
∂L(X|λ)

∂δid
,

∂L(X|λ)

∂αi
,
∂L(X|λ)

∂βi

] (121)

Finally, the derivatives of the Generalized Dirichlet-based HMM may then be expressed as:

∇λL(X|λ) =

[
∂L(X|λ)

∂πi
,
∂L(X|λ)

∂bii′
,
∂L(X|λ)

∂ιij
,
∂L(X|λ)

∂ϑij

]
(122)

Calculating each of these derivatives with respect to their respective parameters using Eq. (118) and
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Eq. (119) results in:
∂L(X|λ)

∂πi
=

κi(X1)θ1(i)∑K
i=1 πiκi(X1)θ1(i)

(123)

∂L(X|λ)

∂bii′
=

1

P (X|λ)

K∑
k=1

∂ρT (k)

∂bii′

=
1

P (X|λ)

K∑
k=1

(
∂

∂bii′

K∑
l=1

ρT−1(l)blkκk(XT )

)

=
1

P (X|λ)

K∑
k=1

K∑
l=1

∂ρT−1(l)

∂bii′
blkκk(XT )

+ ∂ρT−1(i)κi′(XT )

(124)

∂L(X|λ)

∂εid
=

1

P (X|λ)

(
K∑
i′=1

K∑
k=1

∂ρT−1(k)

∂εid
bki′κi′(XT )

+

K∑
k=1

∂ρT−1(k)bki
∂κi(XT )

∂εid

) (125)

∂L(X|λ)

∂δid
=

1

P (X|λ)

(
K∑
i′=1

K∑
k=1

∂ρT−1(k)

∂δid
bki′κi′(XT )

+

K∑
k=1

∂ρT−1(k)bki
∂κi(XT )

∂δid

) (126)

∂L(X|λ)

∂αi
=

1

P (X|λ)

(
K∑
i′=1

K∑
k=1

∂ρT−1(k)

∂αi
bki′κi′(XT )

+
K∑
k=1

∂ρT−1(k)bki
∂κi(XT )

∂αi

) (127)
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∂L(X|λ)

∂βi
=

1

P (X|λ)

(
K∑
i′=1

K∑
k=1

∂ρT−1(k)

∂βi
bki′κi′(XT )

+
K∑
k=1

∂ρT−1(k)bki
∂κi(XT )

∂βi

) (128)

∂κi(Xt)

∂εid
= Ψ

(
D∑
d=1

εid

)
−Ψ(εid) + ln xd (129)

∂κi(Xt)

∂δid
= Ψ

(
D∑
d=1

δid

)
−Ψ(δid) + ln xd − ln

D∑
d=1

xd (130)

∂κi(Xt)

∂αi
= Ψ(αi + βi)−Ψ(αi) + ln

D∑
d=1

xd (131)

∂κi(Xt)

∂βi
= Ψ(αi + βi)−Ψ(βi) + ln

D∑
d=1

(1− xd) (132)

∂κi(Xt)

∂ιid
= Ψ(ιid + ϑid)−Ψ(ιid) + ln

D∑
d=1

Yd (133)

∂κi(Xt)

∂ϑid
= Ψ(ιid + ϑid)−Ψ(ϑid) + ln

D∑
d=1

(1− Yd) (134)

with Ψ(.) and Ψ′(.) denoting the logarithmic first and second derivatives of the Gamma function,

or the digamma and trigamma functions respectively.
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4.3 Experimental Results for Dirichlet and Beta-Liouville

We evaluate our proposed models on the Alpha DynTex DT recognition benchmark dataset

[133]. The dataset consists of three texture classes: grass, sea, and trees; with a total of 60 DTs.

Samples of the dataset may be observed in Fig. 4.1

Figure 4.1: Samples from the Alpha DynTex dataset.

We first train the Dirichlet-based and BL-based HMM generative models on the dataset where

we represent each of the DT video sequences with a series of extracted Local Binary Pattern (LBP)

features. LBP are one of the most efficient features in texture recognition applications which was

originally proposed in [134]. This set of extracted features represent the training and testing data

with a leave-one-out cross validation scheme. A HMM is then trained for each class using the afore-

mentioned data. For the testing stage, the likelihood of each testing video sequence is calculated

by the respective three trained HMMs and the class label is assigned according to the maximum

resulting likelihood.

Our experimental setup can be observed in Fig. 4.2. It is noteworthy to mention that the number

of states are set to two and with the respective number of mixture components to be equal two for the

Dirichlet HMM as well as the BL HMM as experimentally tested. A similar setup is carried out for

the hybrid generative-descriminative model with a HMM trained for every single of the sequences

each with a mixture of a single component. Then the FK is computed to train the SVM accordingly.

Our results for the generative approach can be observed for the Dirichlet and the BL HMMs
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Figure 4.2: Experimental setup for testing for the proportional based hidden Markov models (HMM)
for dynamic texture recognition Alpha DynTex dataset. p1, p2, and p3 are the respective likelihoods
of each of the trained HMMs.

(a) Dirichlet-based HMM.

(b) BL-based HMM.

Figure 4.3: Resultant confusion matrices from the trained generative models.
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in Fig. 4.3a and Fig. 4.3b respectively. As expected, the BL HMM achieves better results than

the Dirichlet HMM given its improved capability to model proportional data. On the other hand,

experimental results of the hybrid generative-discriminative approach can be seen in Table 4.1.

From the results, it can be straightforwardly deduced that the generative-discriminative approach

improves the modeling accuracy compared to the generative HMMs for both the Dirichlet-based

and the BL-based HMMs respectively.

Table 4.1: Results of the proposed hybrid generative-discriminative approach.

HMM SVM Dirichlet-based BL-based
Accuracy 90.0% 94.7%

4.4 Experimental Results for Generalized Dirichlet

We evaluate the proposed model on the Alpha DynTex DT recognition benchmark dataset [133].

Three texture classes make up the dataset: grass, sea, and trees; for a total of sixty DTs. We compare

our results with the generative Gaussian, Dirichlet, and GD HMMs. The Gaussian distribution

represents the most popular choice that exists in the literature, but it might not always be the most

appropriate choice [135, 136].

 : Extracted features

Symbolization by GD 
hidden Markov model

Generative approach Discriminative approach

Support vector machine
Fisher vector

Dynamic!
texture !

category

Fisher !
kernel

Figure 4.4: Experimental setup for the proposed model.

In our setup, we first train the benchmarking HMM generative models on each of the DT video

sequences with a series of extracted Local Binary Pattern (LBP) features in a leave-one-out cross
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validation scheme. The experimental setup for our proposed approach is shown in Fig. 4.4.

We then compute the accuracy of the models in order to evaluate the efficiency of our approach.

As expected, the GD HMM achieves better results of 58.33% than the Dirichlet HMM at 53.33%

given its improved capability to model proportional data. Both generative HMMs perform better

than the Gaussian based HMM (50.00%) due to their finer modelling capabilities. Finally, our

proposed hybrid generative-discriminative approach achieves superior accuracy of 73.33%.
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Chapter 5

Maximum A Posteriori Approximation

of Proportional Hidden Markov Models

Believe you can and you’re halfway there.

Theodore Roosevelt

The MAP estimation is utilized in this chapter due to its parallel treatment of the parameter

estimation to variational inference in terms of adding priors for a better result. However, it remains

a point estimate; hence, its computational complexity is lower. On the other hand, it may reach

comparable results to variational inference as is shown in this thesis and starting this chapter.

5.1 Maximum A Posteriori Approximation of the Dirichlet and Beta-

Liouville Hidden Markov Models

In this section, we detail the formulation of the MAP approximation for proportional sequential

data and focus on the Dirichlet and the BL-based HMMs.
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5.1.1 Proposed Method

Proportional hidden Markov models

A HMM is characterized by an underlying stochastic process with K hidden states, each gov-

erned by an initial probability π, and the transition between the states B = {bii′ = P (st = i′|st−1 =

i)} at time t. In each state st, an observation is emitted corresponding to its respective parameters of

a probability distribution κ with a mixing matrix C = {cij = P (mt = j|st = i)} where j ∈ [1,M ]

such that M is the number of mixture components in set L = {m1, ...,mM}. Hence, a continuous

HMM may be defined as λ = {B,C,κ, π}. A graphical model of the latter HMM is depicted in

Fig. 5.1. The likelihood of a sequence may then be denoted by:

p(X|B,C,κ, π) =
∑
S

∑
L

πs1

[
T∏
t=2

bst−1,st

][
T∏
t=1

cst,mtp(Xt|Λst,mt)

]
(135)

where Λij = (Λ1ij , ...,ΛDij) with κ defined according to the Dirichlet, GD, or BL distributions

for proportional data. For simplification purposes, we derive the model for a unique sequence. A

summation over sequences may then be added for inclusion of more sequences; a usual case to

prevent overfitting.

Figure 5.1: Graphical model representation of a continuous hidden Markov model. Symbols in
unshaded circles denote the observed variables, symbols in shaded circles indicate the hidden states,
and edges represent conditional dependencies between the states or the variables.
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Maximum A Posteriori approximation

We use the EM algorithm in order to implement the proposed MAP approximation for Dirich-

let and BL HMMs. First, we denote the estimates of the state and mixture component γtst,mt

, p(st,mt|X0, . . . , XT ) and ηtst,st+1|X0,...,XT
, p(st, st+1|X0, . . . , XT ) for the estimate of the

local states sequence given the entire observation sequence. These are obtained for all t in the E-

step with the traditional HMM forward-backward algorithm that is not detailed here. An interested

reader is referred to [10]. That is we maximize the data log-likelihood via its lower bound:

L(λ|X) = p(X|λ) = E(X,λ)−R(Z)

=
∑
Z

p(Z|X)ln(p(X,Z))−
∑
Z

p(Z|X)ln(p(Z|X))

=
∑
Z

p(Z|X)ln(p(X))

= ln(p(X))
∑
Z

p(Z|X) = ln(p(X))

(136)

where Z represents the hidden variables, E(X,λ) is the complete-data log-likelihood with the true

or the maximized parameters λ, and R(Z) is the log-likelihood of the hidden states given the ob-

servations or the sequences. The latter also representing the amount of information brought by the

hidden data in the form of an entropy. The expected complete-data log-likelihood may then be

expressed as:

E(X,λ, λold) =
∑
Z

p(Z|X,λold)ln(p(X,Z|λ)) (137)

where the non-optimized parameters complete data log-likelihoodE(X,λ, λold) ≤ E(X,λ); hence,

the lower bound of the data likelihood is E(X,λ, λold)−R(Z). This is equivalent to Eq. (64) when

expanded where p(Xt|κst,mt) is a Dirichlet or BL mixture in this work.

Formally, aD-dimensional Dirichlet distribution is denoted by Eq. (183) where ~ε = (ε1, ..., εD)

is the real and strictly positive parameter of the distribution and X ∈ IRD
+ ,
∑D

d=1 xd = 1 corre-

sponding to the D-dimension proportional vector that adds up to one. Consequently, the complete

data log-likelihood with the Dirichlet mixture may be split with the logarithm sum-product property
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as follows:

ln(p(X,Z|λ)) =
T∑
t=2

ln(bst−1,st) +
T∑
t=1

ln(cst,mt) + ln(πs1) +
T∑
t=1

[
D∑
d=1

[ln(xd)+

Ψ(

D∑
d=1

εd)−Ψ(εd)− ln(

D∑
d=1

xd)

]] (138)

A better model of proportional time series data has been proposed with the BL distribution in [46].

This distribution is closely related to the Dirichlet, but it relaxes the constraint of negative covariance

at the cost of two additional parameters. As a matter of fact, the Dirichlet distribution is a special

case of the BL distribution. The latter is expressed by:

BL(X|~δ, α, β) =
Γ(
∑D

d=1 δd)Γ(α+ β)

Γ(α)Γ(β)

D∏
d=1

xδd−1
d

Γ(δd)

(
D∑
d=1

xd

)α−∑D
d=1 αd

(
1−

D∑
d=1

xd

)β−1

(139)

where ~δ = (δ1, ..., δD), α, and β are real and strictly positive parameters of the BL distribution,

Γ(t) =
∫∞

0 Xt−1e−XdX is the Gamma function, and X is a D + 1 dimensional vector whereby

X ∈ IRD
+ and

∑D
d=1 xd < 1. In this case, the complete data log-likelihood is expanded as:

ln(p(X,Z|λ)) =

T∑
t=2

ln(bst−1,st) +

T∑
t=1

ln(cst,mt) + ln(πs1) +

T∑
t=1

[
Ψ(

D∑
d=1

δd) + Ψ(α+ β)−

Ψ(α)−Ψ(β) + (α−
D∑
d=1

δd)ln(
D∑
d=1

xd))+ (β − 1)ln(1−
D∑
d=1

xd)) +
D∑
d=1

[(δd − 1)

×ln(xd))−Ψ(δd)]]

(140)

We then denote the complete data log-likelihood ln(p(X,Z|λ)) with:

Q(λt, λt−1) = E[ln(p(X,Z|λt)|Z, λt−1] (141)

where λt is the set of the HMM parameters for the current iteration while λt−1 represents the
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parameters from the previous iteration. We then incorporate additional terms to Q(λt, λt−1) to

integrate priors A(λt) for the HMM parameters which characterize the MAP estimation. This is

in contrast to the Baum Welch; i.e., the maximum likelihood algorithm for finding the optimum

parameters for HMMs, where Eq. (141) would suffice. The modified expression is then formulated

as:

S = Q(λt, λt−1) + ln(A(λt)) (142)

Next, we determine appropriate priors for the HMM parameters for the proposed MAP estima-

tion. Since the coefficients of the parameters π, B, and C are all strictly positive, with values less

than one, and sum to one for each row summation, we choose Dirichlet distributions for their priors

as follows:

p(π) = D(π|φπ) = D(π1, ..., πK |φπ1 , ..., φπK),

p(B) =
K∏
i=1

D(bi1 , ..., biK |φ
B
i1 , ..., φ

B
iK

),

p(C) =

M∏
i=1

D(ci1 , ..., ciM |φ
C
i1 , ..., φ

C
iM

) (143)

Hence, the update equations to be computed in the M-step of the MAP estimation are the fol-

lowing:

πi =
γ0
i + φπi − 1∑K

i=1(γ0
i + φπi − 1)

(144)

Bii′ =

∑T
t=1 η

t
i,i′ + φBi′i

− 1∑K
i=1(

∑T
t=1 η

t
i,i′ + φB

i′i
− 1)

(145)

Cij =

∑T
t=1 γ

t
i,j + φCij − 1∑M

j=1(
∑T

t=1 γ
t
i,j + φCij − 1)

(146)

Similarly, conjugate priors must be defined over the Dirichlet and the BL parameters ~ε, ~δ, α,

and β. The Gamma distribution G(.) is a suitable fit for positive conjugate prior approximations of
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these parameters [92]. As such, the priors over the distribution specific parameters are:

p({~ε}K,M,D
i,j,d=1 ) =

K∏
i=1

M∏
j=1

D∏
d=1

G(εijd|ρijd, ζijd), (147)

p({~δ}K,M,D
i,j,d=1 ) =

K∏
i=1

M∏
j=1

D∏
d=1

G(δijd|uijd, vijd), (148)

p({α}K,Mi,j=1) =

K∏
i=1

M∏
j=1

G(αij |gij , hij), (149)

p({β}K,Mi,j=1) =
K∏
i=1

M∏
j=1

G(βij |eij , rij) (150)

where the hyperparameters ρ, ζ, u, g, h, e, r, and v are strictly positive.

The update equations for the distribution specific parameters require the use of the Newton-

Raphson estimation method for maximizing the lower bound of the respective mixtures. This esti-

mation has the following generic formula:

θnew = θold −H(θold)−1∂L(X|θold)
∂θold

(151)

whereH() is the Hessian matrix that is formed of the second order derivatives of the data likelihood

corresponding to θ in the former equation. The computation of this equation and its sub-parts is not

detailed here, but an interested reader is referred to the full derivations in [29]. We also note that the

derivations for both of the distributions are highly related since the Dirichlet distribution is merely

a special case of the BL as mentioned beforehand.

5.1.2 Experimental Results

Dynamic texture classification

In this section, we validate our model on dynamic texture classification [48, 7]. We employ

our proposed models on the Alpha DynTex dynamic texture recognition benchmark dataset [133].

The dataset consists of three texture classes: grass, sea, and trees; with a total of sixty sequences.

Samples of the dataset may be observed in Fig. 4.1. We chose this dataset for its balanced classes.
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This enables us to seamlessly train each of the classes model with a correspondingly equivalent

leave-one-out cross-validation schema with a series of extracted Local Binary Pattern (LBP) features

[134].

(a) Baum Welch trained
Dirichlet HMMs.

(b) MAP trained Dirichlet
HMMs.

(c) Baum Welch trained
BL HMMs.

(d) MAP trained BL
HMMs.

(e) Baum Welch trained
Gaussian HMMs.

(f) Variational inference
trained BL HMMs.

Figure 5.2: Resultant confusion matrices from the trained hidden Markov models (HMM) for dy-
namic texture classification.

For the testing stage, the likelihood of each testing video sequence is calculated by the respective

three trained HMMs and the class label is assigned according to the maximum resulting likelihood.

The experimental setup can be observed in Fig. 4.2. It is noteworthy to mention that the num-

ber of states are set to two with the respective number of mixture components to be equal two as

experimentally tested.

Table 5.1: Accuracy of the trained Dirichlet and BL HMMs for dynamic texture classification.

HMM Accuracy (%)
Gaussian (Baum Welch) 50.00
Dirichlet (Baum Welch) 85.00

BL (Baum Welch) 90.00
Dirichlet (MAP) 90.00

BL (MAP) 90.83
BL (Variational Inference) 91.76

The results of the Baum Welch and MAP based Dirichlet and BL HMMs are shown in the form

of confusion matrices in Fig. 5.2a, Fig. 5.2b, Fig. 5.2c, and Fig. 5.2d respectively. Fig. 5.2e
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and Fig. 5.2f depict the confusion matrices of the benchmarking Gaussian HMMs and variational

inference trained BL HMMs. The former represents the traditional choice that is usually made in

the literature, while the latter is the latest proposed approach for proportional HMMs.

We then compute the accuracy of the models in order to evaluate the efficiency of our approach.

Accuracy refers to the number of correctly identified dynamic texture sequences and is commonly

calculated with TP/(TP+TN) where TP represents the number of true positives correctly identified

by the approach, and TN denotes the number of true negatives. The accuracy for each of the models

can be observed in Table 5.1. As expected, the MAP HMMs achieve better results than the Baum

Welch trained and comparably to the variational inference method. However, MAP achieves such

results at lower computational cost as well as utilizing less complex derivations which backs up its

wide applicability. Moreover, using Dirichlet and BL HMMs improve results in comparison to using

the Gaussian distribution for the emissions given their improved capabilities to model proportional

data.

Infrared action recognition

In this section, we validate our proposed model on infrared (IR) action recognition (AR). We

present our experimental results on the challenging AR IR dataset, InfAR [98]. The training and

testing sets consist of single person action with 10 video samples for seven classes in a leave-one-out

cross validation scheme. Sample images for each of the classes are depicted in Fig. 3.2. We extract

interest point detectors along the motion trajectory as in [101] to represent each of the sequences

with a series of extracted histogram of optical flow (HOF) and motion boundary histogram (MBH)

[100].

We utilize the same experimental setup as the one used for the dynamic texture classification

application. The confusion matrices of the different features with the proposed Baum Welch and

MAP trained HMMs can be observed in Fig. 5.5 with the respective accuracy computed shown in

the top center of each of the subfigures.

It is evident that the horizontal and vertical MBH features are better suited for the trained models

across the various setups given the accuracy results. Using feature selection may improve the results

of the HOF based models given that it has a higher dimension than the MBH features. Furthermore,
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as expected, the MAP approximated HMMs show better performance than the ones trained with

the Baum Welch approach. The employment of the more flexible BL distribution also improves

the results due to its better capability to model the proportional data sequence. This is due to the

additional number of parameters that enable the shaping of an emission distribution that is better

fit for the data. Furthermore, it also overcomes the negative covariance limitation that the Dirichlet

distribution enforces on the data. These results may be observed in Fig. 5.3.

Figure 5.3: Comparison of trained proposed HMMs for infrared action recognition task on the
InfAR dataset with state of the art HMM methods cited in the manuscript. Labels across the x-axis
depict the names of the models while AP percentages are shown across the y-axis.

Furthermore, our results are also comparable to several others in the literature as can be observed

in Fig. 5.4 with the average precision (AP). This includes various handcrafted features extracted for

the InfAR dataset such as HOF [98], dense trajectories [104], and improved dense trajectories [105].

We also compare to deep learning models such as the two-stream 3D convolutional neural network

(CNN) [102], the optical flow field 3D CNN [102], and the three-stream trajectory-pooled deep-

convolutional descriptors methodology in [103].

5.2 Maximum A Posteriori Approximation of the Generalized Dirich-

let Hidden Markov Models

Recently, [46] have also successfully presented variational inference as a way to mitigate hin-

drances in the estimation of the parameters of proportional HMMs. Nevertheless, in this chapter,

we propose the use of the Maximum A Posteriori (MAP) approximation for the GD HMMs. This
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Figure 5.4: Comparison of trained proposed HMMs (in red) for infrared action recognition task on
the InfAR dataset with state of the art methods cited in the manuscript (in blue). Labels across the
x-axis depict the names of the models while AP percentages are shown across the y-axis.
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(a) Dirichlet HMM with HOF. (b) Dirichlet HMM with horizontal
MBH.

(c) Dirichlet HMM with vertical
MBH.

(d) BL HMM with HOF. (e) BL HMM with horizontal MBH. (f) BL HMM with vertical MBH.

(g) Dirichlet HMM with HOF. (h) Dirichlet HMM with horizontal
MBH.

(i) Dirichlet HMM with vertical
MBH.

(j) BL HMM with HOF. (k) BL HMM with horizontal MBH. (l) BL HMM with vertical MBH.

Figure 5.5: Resultant confusion matrices from the trained hidden Markov models (HMM) for in-
frared action recognition. (a)-(f) are trained using the Baum Welch approach, while (g)-(l) are
approximated with the Maximum A Posteriori method proposed.
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is because while both are approximation approaches, the MAP method has a lower computational

cost than variational inference. This is due to the reduced number of mathematical computations

that is required by the prior approach.

Indeed, a naive view of the MAP-based learning of HMMs would reduce it into the famous

Baum Welch approach with the addition of priors over the parameters of the model. Moreover, both

the variational and the MAP approaches share the same fundamental principle of placing appropriate

priors over the parameters to be estimated for improving the performance of the evaluation.

5.2.1 Proposed Method

We propose a MAP approach for proportional time series data with GD-based HMM in this

chapter. The procedure is similar as the one detailed in Chapter 5.1. Hence, we only discuss the

differences in the equations as well as the resultant experimental results. This starts in Eq. (64)

when expanded where p(Xt|κst,mt) is now a GD mixture in this work.

Formally, a GD is denoted by:

GD(X|~ι, ~ϑ) =
D∏
d=1

Γ(ιd + ϑd)

Γ(ιd)Γ(ϑd)
xιd−1
d

(
1−

d∑
r=1

xr

)ζd
(152)

where ~ι = (ι1, ..., ιD), ~ϑ = (ϑ1, ..., ϑD) are the real and strictly positive parameters of the GD

distribution andX ∈ IRD
+ and

∑D
d=1 xd < 1 corresponding to the (D+1)-dimensional proportional

vector that adds up to one. Finally, ζd is computed using the parameters of the distribution as

ϑd − ιd+1 − ϑd+1, when d 6= D. Otherwise, ζd = ϑD − 1.

Next, the update equations to be computed in the M-step of the MAP estimation. AS such,

conjugate priors must be defined over the GD parameters. The Gamma distribution G(.) is a suitable

fit for positive conjugate prior approximations of these parameters [92]. As such, the priors over the
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distribution specific parameters are:

p({~ι}K,M,D
i,j,d=1 ) =

K∏
i=1

M∏
j=1

D∏
d=1

G(ιijd|ρijd, ζijd), (153)

p({~ϑ}K,M,D
i,j,d=1 ) =

K∏
i=1

M∏
j=1

D∏
d=1

G(ϑijd|uijd, vijd), (154)

(155)

where the hyperparameters ρ, ζ, u, and v are strictly positive. The update equations for the distribu-

tion specific parameters require the use of the Newton-Raphson estimation method for maximizing

the lower bound of the respective mixtures.

5.2.2 Experimental Results

(a) Baum Welch GD. (b) MAP GD.

Figure 5.6: Resultant confusion matrices from the trained hidden Markov models for dynamic tex-
ture recognition. GD denotes the Generalized Dirichlet.

In this section, we validate our model on dynamic texture classification. Dynamic textures have

proven to be of diverse benefits across various domains that include but are not limited to video

synthesis [116], abnormal motion detection [117], human action recognition [115], video segmen-

tation [111, 137], and video classification [108]. They constitute of dynamic complex objects such

as grass moving in the wind [107]. As such, they are characterized by a stationary behaviour in time

[116, 138].

We validate our proposed HMM on the Alpha DynTex dynamic texture recognition benchmark
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dataset [133]. To train the GD HMM models on the dataset, we represent each of the dynamic

texture video sequences with a series of extracted Local Binary Pattern (LBP) features. Indeed, we

follow a similar training and testing experimental setup as in Section 5.1.2.

For benchmarking purposes, we also compare with Baum Welch training of GD HMM and the

Gaussian HMM as well as the latest proposed learning approach for proportional HMMs. The latter

refers to the variational learning of BL-based HMMs [46]. These have reported superior results for

proportional time series data modeling to many other methods in the literature, and an interested

reader is referred to the paper for further details.

Table 5.2: Accuracy of the trained GD HMMs for dynamic texture classification.

HMM Accuracy (%)
Gaussian (Baum Welch) 50.00

GD (Baum Welch) 86.67
GD (MAP) 90.00

BL (Variational Inference) 91.76

We then compute the accuracy of the models in order to evaluate the efficiency of our approach.

Accuracy refers to the number of correctly identified dynamic texture sequences. In other words,

accuracy represents the overall correctness of the system, and is given by

ACC =
TP + TN

P +N
(156)

where ACC stands for accuracy, TP is the number of true positives, TN is the number of true

negatives, P are all the positive or correct occurrences, while N are all the negative or wrong

occurrences. The accuracy for each of the models can be observed in Table 5.2.

We also evaluate the model in terms of two other measures; namely, the precision and the recall.

Precision (or positive predictive) value is the measure of accuracy when a certain class is predicted.

Precision is defined as

PPV =
TP

TP + FP
(157)

where PPV stands for precision, or positive predictive value. Finally, we use recall (or sensitivity)

as a measure of the model’s capability to select occurrences of a particular class from a given data
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set. Recall is associated with a true positive rate and is given by

TPR =
TP

P
=

TP

TP + FN
(158)

where TPR stands for recall, or true positive rate. These are shown in Fig. 5.7.

As expected, the MAP HMM achieves better results than the Baum Welch and comparably to

the variational inference method. However, the MAP trained HMM achieves such results at lower

computational cost due to utilizing less complex derivations which backs up its wide applicability.

Moreover, using GD and BL HMMs improve results in comparison to using the Gaussian distribu-

tion for the emissions given their improved capabilities to model proportional data. It is important

also to mention that the slight improvement of the recall in case of the BL-HMMs that are trained

with variational inference is due to the superiority of the learning approach. Nonetheless, the MAP

is significantly less mathematically complex as can be observed from the mathematical derivations

of both approaches. In particular, we do not seek to present the best accuracy but rather present a

model that is capable of performing comparably to the best proposed HMMs for proposed model at

a conservatively less requirement for mathematical computations.

Figure 5.7: Precision and recall measures of the trained HMMs for dynamic texture classification.
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Chapter 6

Simultaneous Feature Selection

Paradigm for Proportional HMMs

Nothing is IMPOSSIBLE. The word itself says ”I’m Possible!”

Audrey Hepburn

In this chapter, we now focus on incorporating a simultaneous feature selection paradigm in

the MAP approximation of the GD-based HMM framework. This results in a holistic treatment of

proportional sequential data without the need for a preprocessing feature selection algorithm. The

remainder of the chapter introduces, derives, and analyses the results of the proposed.

6.1 Introduction

Recently, data modeling and analysis have shown unprecedented advances. This is majorly

in debt to the amelioration of computational resources and the steady growth of the daily rate of

generated data. A persistent increase in media content is a particular highlight [139, 49]. Ergo,

video-based algorithms continue to be actively researched. This is a subcategory of spatiotemporal

modeling; a research theme where space and time dimensions are interconnected.

One of the main modeling methods to capture such dual dependency is the hidden Markov

model (HMM) [120]. HMMs employ a compact set of features to extract underlying statistics in a
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double stochastic model [140, 3]. Since HMMs fall under the generative model category of machine

learning, they require less training data [87, 48] than discrimintaive models. HMMs are thoroughly

recognized for speech recognition [141], speech processing [10], genomics [142], handwritten word

recognition [143], and financial prediction [144] applications. It is also currently used in various

areas including object classification [145] and detection of unusual events [146, 147].

Computation of a sequence probability given a model that we have trained is required for the

utilization of HMMs in classification. The parameters of each of the HMMs are appraised to model

classes correspondingly.The training procedure optimizes the probability of the training observation

set for a class, traditionally with the Baum Welch approach by deploying the Expectation Maximiza-

tion (EM) framework [10]. However, there is no guarantee for the convergence of the Baum Welch.

Indeed, the large multimodal nature of the likelihood function renders it vulnerable to either underfit

or overfit the estimation of the parameters [148].

On the other hand, a significant part of the encompassing performance of the model lies on

choosing a proper emission distribution for the HMM that has the best capability to model the un-

derlying nature of the data. A typical assumption is to utilize the Gaussian distribution. Nonetheless,

this impacts the final performance of the model as various applications employ proportional input

features whereby the unbounded support character of the Gaussian distribution is not necessary.

Indeed, the Gaussian distribution is not the most suitable option in such cases. Such a choice is best

taken by inspecting the characteristics of the data as supported by [149, 150].

Recent research has also presented a variational approximation method for proportional HMMs

to alleviate such obstacles in the estimation of the parameters [46]. In contrast, we alternatively

propose the employment of the Maximum A Posteriori (MAP) approach for Generalized Dirichlet

(GD)-based HMMs. Though the latter is also an approximation technique where the improvement of

the performance of the evaluation depends on the placement of suitable priors over the parameters to

be estimated, the MAP methodology has a lower computational overhead. The process also results

in smoothing the likelihood function which consequently lessens its multimodality; improving the

estimation of the objective global maximum. This was also proven in other proportional HMMs

that we investigated in [2], particularly for the Dirichlet and the Beta-Liouville HMMs, and we also

draw inspiration from [50] to further inspect the MAP technique as well as [51].
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We also propose the incorporation of a feature selection paradigm [151, 152]. Intuitively, a

larger set of features has better capability of modeling a dataset and consequently a finer efficiency

of the resultant model.

Nonetheless, noise, practical informativeness, or redundancy of select features can hamper the

performance [153]. Such irrelevancy can lead to uncertain measures of homogeneity through that

introduced bias. Reducing such a set of extracted features according to its relevancy is performed via

feature selection. In addition to increasing the models’ performance, this also aids in enhancing the

interpretation of the model and reducing the chances of overfitting [154]. We validate the proposed

model with two challenging real applications. It is noteworthy to mention that this study is novel in

its treatment of the feature selection paradigm in terms of the mathematical derivations required for

the deployment of proportional HMMs in contrast to the traditional Gaussian-based [155, 50, 156,

157].

Thus, our contributions are fourfold:

• We provide the derivations of a novel approach for proportional data modeling using MAP

approximation for HMMs with a simultaneous feature selection algorithm. We focus on the

GD distribution given its established effectiveness in modeling proportional sequential data.

• For validation, we apply our approach in categorization of dynamic textures and recognition

of infrared actions. Each of the applications may be applied to form the basis for various

critical tasks such as security threat detection in videos.

• We perform the first evaluation of the MAP trained GD HMMs for infrared action classifica-

tion in addition to the proposed model evaluation. This aims to clearly advocate the proposed

simultaneous feature selection framework.

• For benchmarking, we compare our proposed framework with multiple relevant approaches

in the literature including the Gaussian and the Dirichlet benchmarks.

The rest of the chapter is organized as follows: Section 6.2 describes the proposed model and

algorithms and Section 6.3 presents the experimental setup and analyzes the results for each of the

applications.
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6.2 Proposed proportional hidden Markov models with simultaneous

feature selection

We begin by detailing the principal elements of our approach. Section 6.2.1 inspects the HMM

for proportional sequential data with the GD distribution and the traditional forward-backward ap-

proach, Section 6.2.2 discuses the feature saliency model, Section 6.2.3 details the MAP approxima-

tion with simultaneous feature selection framework, and Section 6.2.4 discusses the complete pro-

posed algorithm. For ease of mathematical reference, a list of the symbols utilized in this manuscript

with their corresponding definitions can be observed in Table 6.1.

6.2.1 Proportional hidden Markov models

K hidden states incarnate the underlying stochastic process that characterize a HMM. Each of

these states has an initial probability π with the matrix B = {bii′ = P (st = i′|st−1 = i)} that

defines the transition between them at time t. The emission of an observation in st has parameters

that follow the modeling probability density κ with mixing weightsC = {cij = P (mt = j|st = i)}

where j ∈ [1,M ], M represents the mixture’s number of components in L = {m1, ...,mM} [2].

Ergo, Λ = {B,C,κ, π}may define a continuous HMM which is shown in Fig. 6.1. Mathematically,

this is denoted by Eq. (64) where S and L are the sets of states and mixture components in the

HMM, respectively. κij = (κ1ij , ...,κDij) with κ defined by the GD. We deduce the model for

a particular observation for clarity. However, a mere summation over sequences can incorporate

more as needed. Indeed, that is the approach that is undertaken in our experiments. This aids in

mitigating overfitting.

When HMMs are utilized for classification, the probability that a sequence was produced by

Λ may be computed by the forward-backward algorithm [51]. Λ corresponds to a class whose

parameters are computed or approximated as appropriate. For each class, this training procedure

then involves the maximization of the probability of the training data using MAP.

The probability of the occurrence of state si at time t is computed by the forward algorithm using

the relevant partial observation and Λ. The forward variable is defined by ρt(i) = P (X1, X2, ..., Xt, st =

i|Λ) that is computed by [48]:
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Table 6.1: Definitions of symbols utilized in the article.

Symbol Definition
t time index
K number of states
D number of feature dimensions
B transition matrix
i, i′ state index
d dimension index

bii′ transition matrix index
κ probability distribution for HMM emission
π initial probability
C mixing matrix
M number of mixture components
j mixture component index
L set of mixtures
S set of states

mM each component of a mixture in a state
cij mixing index

p(X|B,C,κ, π) likelihood of a sequence
λij = (λ1ij , ..., λDij) parameters of the GD

cst,mt HMM mixing weight of a mixture component in a state
bst−1,st a transition weight between states of a HMM

X time series data, Y is also used in the manuscript for sequential data
ρt(i) forward variable
θt(i) backward variable

γtst,mt
, η forward-backward algorithm resultant variables
Z hidden variables

ι, ϑ GD distribution parameters
ζd GD distribution parameters

%, ζ, u, and v GD hyperparameters
Λ A HMM model

Beta (Xdt|εd, τd) the distribution of irrelevant feature(s)
ϕ feature saliency
zd feature assignment
L sequence likelihood
H Hessian matrix
E expectation of a variable

Dirichlet Dirichlet distribution prior
G Gamma distribution prior

E(Y,Λ) complete data log-likelihood with set of true parameters
R(Z) log-likelihood of the hidden variables given the observations

S complete data log-likelihood
Q(Λt,Λt−1) complete data log-likelihood without MAP priors

A(Λt) MAP estimation priors for the model parameters
TP true positives
TN true negatives
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Figure 6.1: Depiction of Λ. Symbols in uncoloured circles represent observed variables whereas
states are in coloured ones and conditional dependencies are denoted by edges [2].

(1) Initialize forward probabilities with the joint probability of st and the first observation X1:

ρ1(i) = πiκi(X1), 1 � i � K;

(2) At t + 1, compute the path to qi′ from the K possibilities (st = i; i = 1, 2, ...,K) at t

with a summation over the product of all: ρt+1(i
′) =

[∑K
i=1 ρt(i)bii′

]
κi′(Xt+1) for t =

1, 2, ..., T − 1, 1 � i′ � K

(3) Lastly, calculate P (X|Λ) =
∑K

i=1 ρT (i).

The computational complexity of the forward algorithm is K2T ; substantially lower than a

direct calculation approach [48]. Likewise, the backward algorithm computes the probability of

the partial sequence from t + 1 to T . We begin by i of Λ at t [48]. This may be denoted with

θt(i) = P (Xt+1, Xt+2, ..., XT , st = i|Λ) and computed by:

(1) Calculate a random initialization θT (i) = 1, 1 � i � K;

(2) θt(i) =
∑K

i′=1 bii′κi′(Xt+1)θt+1(i
′) for t = T − 1, T − 2, ..., 1, 1 � i � K

Jointly, through consequent iteration, the resultant forward-backward algorithm is employed for the

computation of the probability of an observation X given Λ:

P (X|Λ) =
K∑
i=1

K∑
i′=1

ρt(i)bii′κi′(Xt+1)θt+1(i
′) (159)
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6.2.2 Feature selection

We define whether a feature is relevant or not using a feature saliency technique. Feature

saliency formulates the feature selection process as parameter estimation [155]. We incorporate

feature saliencies; i.e., parameters, to the hidden variable model and to find clusters embedded

in the feature subspace [158]. Mathematically, given a certain state, assume that each of the di-

mensions of the features is independent with latent indicator variable zd, z = (z1, . . . , zD) of the

component that the dth sequence belongs to, zd = (zd1, . . . , zdM ) and each element zdj is assigned

value 1 when Xi is associated with component j; else, 0. Then:

p (Xt|z, st = i,Λ)

=
D∏
d=1

p (Xdt|λid)zd Beta (Xdt|εd, τd)1−zd
(160)

where Beta is the conditional Beta distribution that is used to model irrelevant features and

defined as:

Beta(Xdt|εd, τd) =
D∏
d=1

Γ(εd + τd)

Γ(ε)Γ(τd)
Xεd−1
d (1−Xd)

τd−1 (161)

The joint distribution of Xt and z given s is:

p (Xt, z|st = i,Λ)

=
∏D
d=1 [ϕdp (Xdt|λid)]zd [(1− ϕd) Beta(Xdt|εd, τd)]1−zd

(162)

where the marginal probability of z and Xt given s are given by:

P (z|Λ) =
D∏
d=1

ϕzdd (1− ϕd)1−zd (163)

p(Xt|λst,mt) =

D∏
d=1

[ϕdp (Xdt|λid)] [(1− ϕd)

× Beta(Xdt|εd, τd)]

(164)

respectively. This may then be used for the calculation of the complete data likelihood in Eq. (1)

accordingly.
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6.2.3 MAP approximation

We employ the EM technique to deploy the MAP GD HMMs with feature selection. Initially,

γtst,mt
, p(st,mt|Y0, . . . , YT ) represents the estimate of the state and mixture component and

ηtst,st+1|Y0,...,YT , p(st, st+1|Y0, . . . , YT ) the estimate of the local states sequence given the com-

plete sequence [2], where Y = X . The E-step of the forward-backward algorithm computes these

for all time steps t. In other words, the lower bound of the data log-likelihood is used for its maxi-

mization [2]:

L(Λ|Y ) = p(Y |Λ) = E(Y,Λ)−R(Z)

=
∑
Z

p(Z|Y )ln(p(Y,Z))−
∑
Z

p(Z|Y )ln(p(Z|Y ))

=
∑
Z

p(Z|Y )ln(p(Y ))

= ln(p(Y ))
∑
Z

p(Z|Y ) = ln(p(Y ))

(165)

where hidden variables are denoted by Z, complete-data log-likelihood by E(Y,Λ) with the maxi-

mized parameters, Λ, and log-likelihood of the hidden states given the sequence of observations by

R(Z). R(Z) also quantifies the amount of information appended by the hidden data in the form of

an entropy [2]. Hence, the expected complete-data log-likelihood is denoted by:

E(Y,Λ,Λold) =
∑
Z

p(Z|Y,Λold)ln(p(Y,Z|Λ)) (166)

where the non-optimized parameters complete data log-likelihood E(Y,Λ,Λold) ≤ E(Y,Λ); ergo,

E(Y,Λ,Λold) − R(Z) represents the lower bound of the likelihood. That is analogous to Eq. (64)

when expanded in which p(Yt|κst,mt) is a GD mixture in this work. This ifs mathematically for-

mulated as:

GD(Y |~ι, ~ϑ) =

D∏
d=1

Γ(ιd + ϑd)

Γ(ιd)Γ(ϑd)
Y ιd−1
d

(
1−

d∑
r=1

Yr

)ζd
(167)
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where ~ι = (ι1, ..., ιD)and~ϑ = (ϑ1, ..., ϑD) are real and strictly positive parameters of the GD

distribution and Y ∈ IRD
+ where

∑D
d=1 Yd < 1 for the (D+1)-dimensional proportional vector with

a unit sum [51]. Finally, ζd is computed using the parameters of the distribution as ϑd−ιd+1−ϑd+1,

when d 6= D. Otherwise, ζd = ϑD − 1. The complete data log-likelihood ln(p(Y,Z|Λ)) can be

formulated as:

Q(Λt,Λt−1) = E[ln(p(Y,Z|Λt))|Z,Λt−1] (168)

where Λt represents the HMM parameters for the current iteration while Λt−1 is the set of param-

eters from the previous one. Extra terms are added to Q(Λt,Λt−1) to integrate priors A(Λt) for

the HMM parameters that distinguish the MAP approximation. The maximum likelihood technique

is different; though it is the most widely used one for finding the optimal HMM parameters. It

is known as the Baum Welch algorithm where Eq. (168) would be sufficient. Consequently, the

updated formula is expressed as:

S = Q(Λt,Λt−1) + ln(A(Λt)) (169)

It is noteworthy to mention that the forward and backward probabilities are also required for the

incorporation of the simultaneous selection of features. The saliencies of the features are computed

in the E-step:

eidt = p
(
Ydt, zd = 1|st = i,Λt−1

)
= ϕd p (Ydt|λid)

(170)

hidt = p
(
Ydt, zd = 0|st = i,Λt−1

)
= (1− ϕd) Beta (Ydt|εd, τd)

(171)

gidt = p
(
Ydt|st = i,Λt−1

)
= eidt + hidt

(172)
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αidt = p
(
zd = 1, st = i|Y,Λt−1

)
=
γtieidt
gidt

(173)

βidt = p
(
zd = 0, st = i|Y,Λt−1

)
=
γtihilt
gilt

= γti − αilt

(174)

where γti , η
t
i,i′ , αidt, and βidt are essential in the computations of the M-step.

We employ the Dirichlet distribution as the determined suitable priors for the parameters of the

HMM. This corresponds to the strict positive nature of the coefficients of π, B, and C, with values

< 1 that sum to one for each row:

p(π) = Dirichlet(π|φπ)

= Dirichlet(π1, ..., πK |φπ1 , ..., φπK),

p(B) =

K∏
i=1

Dirichlet(bi1 , ..., biK |φ
B
i1 , ..., φ

B
iK

),

p(C) =
M∏
i=1

Dirichlet(ci1 , ..., ciM |φ
C
i1 , ..., φ

C
iM

) (175)

Ergo, MAP estimated variables are updated in the M-step as follows:

πi =
γ0
i + φπi − 1∑K

i=1(γ0
i + φπi − 1)

(176)

Bii′ =

∑T
t=1 η

t
i,i′ + φBi′i

− 1∑K
i=1(

∑T
t=1 η

t
i,i′ + φB

i′i
− 1)

(177)

Cij =

∑T
t=1 γ

t
i,j + φCij − 1∑M

j=1(
∑T

t=1 γ
t
i,j + φCij − 1)

(178)

Similarly, conjugate priors must be defined across the GD parameters. The Gamma distribution

G(.) is an appropriate choice as a prior [92]. Consequently, the assigned priors over the parameters
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of the distribution are:

p({~ι}K,M,D
i,j,d=1 ) =

K∏
i=1

M∏
j=1

D∏
d=1

G(ιijd|%ijd, ζijd), (179)

p({~ϑ}K,M,D
i,j,d=1 ) =

K∏
i=1

M∏
j=1

D∏
d=1

G(ϑijd|uijd, vijd) (180)

where the hyperparameters %, ζ, u, and v are strictly positive.

The update equations for these parameters employ the Newton-Raphson estimation approach

for the lower bound approximation. This methodology obeys:

θnew = θold −H(θold)−1∂L(Y |θold)
∂θold

(181)

where H(.) is the Hessian matrix which constitutes of the second order derivatives of the likelihood

function; corresponding to θ in the earlier equation. We do not detail the calculation of this formula

and its sub-parts in this paper; however, we refer the reader to [149]. The complete graphical model

of the proposed framework is shown in Fig. 6.2.

6.2.4 Complete Algorithm

In this article, the convergence is traced systematically through monitoring the update difference

in the estimated parameters of Λ. This is set with an adaptive threshold which we have set at

10−3 between the iterations or reaching a maximum number of iterations set at 300. The complete

algorithm is detailed in Algorithm 1.

6.3 Experimental Results

6.3.1 Categorization of dynamic textures

We validate the proposed MAP with simultaneous feature selection model on the benchmarking

Alpha DynTex dataset for dynamic texture classification [159, 160, 133]. The dataset contains sixty

sequences, split equally across three classes: trees, grass, and sea. Samples of the classes are shown

118



Figure 6.2: Graphical model of the proposed MAP GD HMM with simultaneous feature selection.
Circles represent model parameters and filled ones are observed variables. Squares represent hidden
variables.

Algorithm 1: Proposed algorithm.
Result: MAP trained HMM model for a particular class
Initialize priors A(Λt), K, M , π, B, C, κ;
while convergence NOT reached do

Execute forward backward algorithm;
if current dimension d ≤ D then

Execute emission parameter update for feature d;
Compute feature d saliency;
d = d+ 1;

else
return Λ;

end
end
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in Fig. 4.1. We train the GD HMMs on the dataset with Local Binary Pattern (LBP) features as the

input series. These are popular and effective in texture recognition applications [134].

We deploy a leave-one-out cross validation scheme on these features for training and testing.

Each class has an independent HMM trained. In the testing stage, for each of the HMMs, the likeli-

hood of each video is computed. The final label is appointed according to the highest likelihood. We

experimentally set the number of states and components of the mixture to two. We benchmark with

Baum Welch trained Gaussian HMM and the latest proposed approach for proportional HMMs. We

also compare with Baum Welch and MAP learning of a traditional proportional HMM that uses the

Dirichlet distribution.

Table 6.2: Models’ accuracy for dynamic texture categorization. The proposed framework is high-
lighted in bold.

HMM Accuracy (%)
Baum Welch trained - Gaussian 50.00
Baum Welch trained - Dirichlet 85.00

Baum Welch trained - GD 86.67
Hybrid generative descriminative - GD 73.33

MAP trained - Dirichlet 90.00
MAP trained - GD 90.00

Variational inference trained - BL 91.76
MAP trained with feature selection - GD 93.33

DFS [150] 83.60
2D+T [161] 85.00
OTDL [162] 86.60

LBP-TOP [119] 86.67
MBSIF-TOP [138] 90.00

ASF-TOP [163] 91.67
MPCAF-TOP [164] 96.67

To evaluate the proposed approach, we calculate the accuracy of the models. Accuracy may be

computed in correspondence to the number of correctly recognized dynamic textures. Mathemati-

cally, that is TP/(TP + TN) where TP represents the number of true positives and TN denotes the

number of true negatives correctly identified by the approach. The results of the metric are shown
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in Table 6.2. As expected, the MAP HMM outperforms the Baum Welch [2]. It also performs better

than the hybrid model that combine proportional HMMs with support vector machines (SVM) in a

generative-discriminative approach.

The MAP trained HMM achieves such results at a relatively low computational cost in terms of

addition of a prior and utilizing less complex derivations than other widely applied approximation

methods such as variational inference. This supports its broad applicability. Additionally, utilizing

the GD distribution improves the results in comparison to the employment of the Gaussian distri-

bution for the emission probability of the HMMs. This is because of its improved ability to capture

the underlying pattern of the data. Finally, the best performing model is the proposed MAP GD

with a simultaneous feature selection framework given its incorporated ability to model relevant

features. A breakdown of the exact accuracy results for each of the classes is presented for each of

the methods in a confusion matrix form. These may be observed in Fig. 6.3.

One of the latest sophisticated proposed HMM methods for proportional data modeling is the

variational inference based Beta Liouville (BL) HMM [46]. The BL HMM has reported higher

accuracy results than the proposed MAP HMM. This is due to two reasons. The first is due to the

variational inference procedure that is used for the training of the BL HMM. Such a method ap-

proximates the lower bound of the marginal likelihood; hence, allowing for a better approximation

of the data. However, this comes at the expense of extra computational power that is needed, which

is justified by the extra mathematical operations that are required for the construction of the model.

These details are fully described in [46]. The second advantage that the variational based BL HMM

has is the use of the BL distribution which has better modeling capabilities than the GD distribution.

In particular, it requires a lower number of parameters for a similar representation potential of the

data. That is, it also surmounts the Dirichlet’s restriction for modeling of proportional data; i.e.,

negative data covariance. Nonetheless, the proposed method with the simultaneous feature selec-

tion paradigm still outperforms the variational inference trained BL HMM. It is then important to

mention that this proposed simultaneous feature selection may only be included with the GD distri-

bution given its factorization characteristics. This also further motivates our choice of distribution

for the proposed approach.

We also compare to several other methods in the literature, particularly ones where the feature
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(a) Baum Welch - Gaussian HMM. (b) Baum Welch - Dirichlet HMM. (c) MAP - Dirichlet HMM.

(d) Baum Welch - GD HMM. (e) Hybrid GD HMM/SVM. (f) MAP - GD HMM.

(g) MAP - GD HMM with feature
selection.

Figure 6.3: Dynamic texture classification confusion matrices.
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extraction process is dependent on three orthogonal planes [160]. These are evaluated with the near-

est class center (NCC) classifier with the Chi-square distance or the nearest neighbor (NN) classi-

fier. The methods comprise of DFS [150], 2D+T [161], OTDL [162], LBP-TOP [119], MBSIF-TOP

[138], ASF-TOP [163], and MPCAF-TOP [164]; with an interested reader referred to the original

papers for their respective descriptions as such discussions are outside the scope of the presented

article. Overall, the proposed HMM achieves comparable accuracy results to the other methods. It

is also noteworthy to reiterate that the main aim of our method is to propose a model that best fits

the statistical properties of the input data, especially with regards to dynamic ones. Nonetheless, the

latter methods are presented for a more inclusive comparative experimental evaluation as well as to

offer another potential aspect for future investigation for further improvement of the HMM method.

6.3.2 Recognition of infrared actions

Here, we present our experimental results on the InfAR [98] action recognition (AR) infrared

(IR) dataset to validate our proposed model [165, 166]. This constitutes of single person action

training and testing sets. This is actuated by 7 classes of ten videos each that we deploy with leave-

one-out cross validation. Sample depictions for each of the classes are shown in Fig. 3.2. A series of

histogram of optical flow (HOF) and motion boundary histogram (MBH) are extracted to represent

each of the sequences.

For the HOF, the orientations are quantized into 9 bins and normalized with the L2 norm.

Derivatives of the optical flow are evaluated separately along the horizontal (MBHx) and vertical

(MBHy) components to compute the MBH. The latter effectively captures relative motion between

pixels and suppresses constant motion information to mute noise from background motion. The

HOF and MBH descriptors may be extracted using any interest point detector [100]. We extract the

points along the motion trajectory for both the training and the testing video sequences [101].

We deploy a similar experimental setup as in the application, as well as for the Baum Welch and

the MAP trained Dirichlet HMMs for comparison. Our comparative results of the features with the

Baum Welch and MAP trained HMMs can be seen in Fig. 6.5 with the computed accuracy placed

on the top center of each of the subfigures. The results can be seen in Fig. 6.6. A graph of the

average precision (AP) results is also shown in Fig. 6.4.
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Figure 6.4: A contrast of HMMs for the recognition of infrared actions. The approaches are trained
with the same features used in the proposed algorithms. The models names are displayed over the
horizontal axis while AP (in %) are depicted across the vertical axis.

It is apparent that the MBH features along both axes are more suitable for the proposed HMMs

over the different setups given the accuracy results. Utilizing feature selection improves perfor-

mance across the various features. Moreover, the MAP approximated HMMs expectedly have a

better performance in comparison to Baum Welch trained. Moreover, the results are influenced by

utilizing the more flexible GD distribution becuase of its improved ability to capture the underly-

ing patterns of proportional data than the Dirichlet distribution. The increase in the accuracy also

reflects that the restrictions that the Dirichlet requires is not an inherent property of the data at hand.

In the state-of-the-art, these results are comparable to multiple methods. These include differ-

ent handcrafted features extracted for the InfAR dataset; for instance, HOF [98], dense trajecto-

ries [104], and improved dense trajectories [105], the two-stream 3D convolutional neural network

(CNN) [102], the optical flow field 3D CNN [102], and the three-stream trajectory-pooled deep-

convolutional descriptors technique in [103]. A comparison of the achieved results with the pro-

posed models is shown in Fig. 6.8. Furthermore, we also compare to the variational inference based

BL HMM whose results are shown in Fig. 6.7. Though the latter outperforms the proposed method

in this task; it is important to mention that our main aim is to propose a model with the finest fit
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to the data characteristics. As with any machine learning method, data rules whether a particular

approach outperforms another and this is again proven in regards to this particular dataset and task.

However, the proposed approach still represents a novel method for the modeling of proportional

data with HMMs.

6.4 Conclusion

A cornerstone in time series and sequential data modeling is the HMM. Its effective estima-

tion of parameters and emission distribution choice are significant challenges to be tackled in the

research and employment of HMMs. We focus on proposing a method based on MAP with si-

multaneous feature selection for efficient estimation of proportional HMMs; specifically, GD-based

HMMs. Applying the MAP technique is superior over the commonly-used Baum Welch approach

in terms of better performance sans the computational cost. In contrast, the concurrent feature selec-

tion algorithm allows us to seamlessly assign weights to the various input features to better model

the data with the best representation and a reduced overhead in terms of the number of features

utilized. For validation of the developed models, we apply the proposed approach in classifica-

tion of dynamic textures and recognition of infrared actions. We achieve comparable results with

several relevant approaches and state-of-the-art methods. Performance enhancement distinctly un-

derscores the importance of deriving and applying the MAP approximation with feature selection

and the choice of the distribution corresponding to the data support. Future works may include the

consideration of Hierarchical Dirichlet processes as well as considering a feature selection tech-

nique with variational inference of the proposed model. Furthermore, we plan to investigate the

ubiquitous deep learning approaches as an incorporation into the framework of HMMs for further

improvements of the performance.

The proposed approach can improve performance of HMMs across different fields. For instance,

it may be applied to HMMs utilized to forecast weather [28] or to detect fraud in bank transactions

[31]. It can also be applied for the training of HMMs on gesture recognition for artificially intelligent

cockpit control [32]. It may also be incorporated into smart city applications which are highly

dependent on Internet of Things (IoT) technologies. For example, a methodology is developed in
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(a) Dirichlet HMM - HOF. (b) Dirichlet HMM - horizontal
MBH.

(c) Dirichlet HMM - vertical MBH.

(d) GD HMM - HOF. (e) GD HMM - horizontal MBH. (f) GD HMM - vertical MBH.

(g) Dirichlet HMM - HOF. (h) Dirichlet HMM - horizontal
MBH.

(i) Dirichlet HMM - vertical MBH.

(j) GD HMM - HOF. (k) GD HMM - horizontal MBH. (l) GD HMM - vertical MBH.

Figure 6.5: IR AR confusion matrices of the trained HMMs. (a)-(f) are approximated with the
Baum Welch method, while (g)-(l) are trained by the MAP technique presented.
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(a) GD HMM - HOF. (b) GD HMM - horizontal MBH. (c) GD HMM - vertical MBH.

Figure 6.6: IR AR confusion matrices of the Generalized Dirichlet (GD) HMMs estimated by the
proposed MAP framework with simultaneous feature selection.

(a) BL HMM - HOF. (b) BL HMM - horizontal MBH.

(c) BL HMM - vertical MBH.

Figure 6.7: IR AR confusion matrices of the Beta Liouville (BL) HMMs approximated with varia-
tional inference.
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Figure 6.8: A contrast of proposed HMMs (red) for IR AR application on the InfAR dataset with
other state-of-the-art methodologies (blue) referenced in the article. Model names are displayed
over the horizontal axis and AP (in %) are depicted across the vertical axis.
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[34] for efficient power usage of IoT devices with HMMs, while the latter is used for addressing

the detection of IoT power signature anomalies in [35]. Improvement for text to speech language

models also serves as another application which the proposed model can further improve [40].
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Chapter 7

Infinite Dirichlet and Beta Liouville

Hidden Markov Model

If you can DREAM it, you can do it.

Walt Disney

In this chapter, we investigate the infinite extension of the Dirichlet and Beta-Liouville hidden

Markov models (HMM) for proportional data. This work now addresses another computer vision

based problem; i.e., anomaly detection for surveillance.

7.1 Introduction

Nowadays, the overwhelming need for data modeling is at an all time high. This is mainly driven

by the vast amount of data, around 2.5 quintilian bytes, that is generated daily [167]. Modeling such

data has several advantages. These include the potential removal of noise from the original signals,

studying the data source or the generating process without the need of its explicit availability, and

efficiently building powerful recognition and prediction systems [3]. Moreover, a consequent impli-

cation of successfully formulating a model for a data source is the ability to simulate as much data

as needed to further study such a phenomenon without the need to carry out costly experiments.

Meanwhile, the prevalence of cameras and video surveillance has led to a significant increase in

research interest in the field of automatic real time monitoring systems [146, 168, 147, 169]. Such
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systems aim to assist human operators in the detection of potential threats; especially due to the

need to oversee multiple feeds simultaneously for long periods of time. Hence, efficient automatic

video monitoring plays an impertinent role in the detection of malicious threats and the avoidance

of consequent incidents. While testing and development of these systems have been facilitated by

the recent release of real-world data sets [170, 171], an anomaly, i.e. a threat, by its nature is a

rare occurrence that is therefore seldom recorded and hence sufficient data for automatic detection

training is unavailable [29].

A typical methodology to overcome this hindrance in the development of video anomaly de-

tection systems is training on video sequences; i.e., data that is considered normal. This enables

the system to report anomalies as outliers [146, 172, 147]. Indeed, this is especially important for

the design and training of appropriate machine learning techniques. Indeed, this forms the basis

of multiple approaches that are paving the way for new advancements in anomaly video detection

[173].

In this paper, we propose to use variational learning of infinite HMM for the modeling of anoma-

lies. A HMM is a probabilistic model that is appropriate for dynamic data [174, 175]. It is usually

trained with the Baum-Welch method; a variation of the Expectation Maximization (EM) algorithm

specially designed for HMM. However, employing a variational inference technique is advantageous

due to the various drawbacks of the Baum-Welch method [176, 177]. The latter include over-fitting

or sub-optimal generalization performance [46].

Furthermore, a primary area of HMM research lies in modeling emission probabilities of propor-

tional data. They naturally result from numerous preprocessing procedures; such as the commonly

used histograms. Applying a Gaussian-based HMM in such a case is not ideal. Indeed, recent stud-

ies have proven success utilizing distributions that correspond to the proportional nature of the data

such as the Dirichlet [94, 48] and the Beta-Liouville (BL) [46] distributions.

Also, choosing the correct number of states to model the data with HMMs is another area

that warrants further investigations. The number of states is usually determined as a result of an

exhaustive search for the appropriate count. Nonetheless, we are inspired by works in the literature

that extend the structure of HMMs to infinity [178]. Implementation of infinite HMMs can be

achieved through the means of non-parametric Bayesian methods [179].

131



The novel contributions of this work can be summarized as:

• We propose a mathematical formulation for construction of infinite HMMs for continuous

proportional data. We particularly focus on the use of Dirichlet and BL distributions given

their proven effectiveness in modeling proportional sequential data. In comparison to deep

learning techniques, this is an explainable approach that requires less training data and less

computationally expensive.

• We present a variational inference learning approach for the proposed infinite HMMs. The

technique guarantees convergence within a reasonable time frame and provides an accurate

approximation of the posterior.

• We propose an end-to-end framework for realtime robust anomaly detection in videos. The

framework performs competitively with state-of-the-art relevant methods and may be applied

to any video data.

7.2 Infinite Hidden Markov Models

A HMM is characterized by an underlying stochastic process with K hidden states, each gov-

erned by an initial probability π, and the transition between the statesB = {bii′ = P (st = i′|st−1 =

i)} at time t. In each state st, an observation is emitted corresponding to its respective parameters of

a probability distribution κ with a mixing matrix C = {cij = P (mt = j|st = i)} where j ∈ [1,M ]

such that M is the number of mixture components in set L = {m1, ...,mM}. Hence, a continuous

HMM may be defined as λ = {B,C,κ, π}. A graphical model of the latter HMM is depicted in

Fig. 7.1.

The likelihood of a sequence with HMMs may be denoted by:

p(X|B,C,κ, π) =
∑
S

∑
L

πs1

[
T∏
t=2

bst−1,st

][
T∏
t=1

cst,mtp(Xt|Λst,mt)

]
(182)

where Λij = (Λ1ij , ...,ΛDij) with κ defined according to the Dirichlet and BL distributions for

proportional data in this work. For simplification purposes, we derive the model for a unique se-

quence. A summation over sequences may then be added for inclusion of more sequences. Indeed,
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Figure 7.1: Graphical model representation of a continuous hidden Markov model. Symbols in
unshaded circles denote the observed variables, symbols in shaded circles indicate the hidden states,
and edges represent conditional dependencies between the states or the variables.

this is usually the case to prevent overfitting.

Formally, a D-dimensional Dirichlet distribution is denoted by:

DR(X|�ε) =
Γ(

∑D
d=1 εd)∏D

d=1 Γ(εd)

D∏
d=1

xεd−1
d (183)

where �ε = (ε1, ..., εD) is the real and strictly positive parameter of the distribution and X ∈ IRD
+ ,

∑D
d=1 xd = 1 corresponding to the D-dimension proportional vector that adds up to one. Conse-

quently, the complete data log-likelihood with the Dirichlet mixture may be split with the logarithm

sum-product property as follows:

ln(p(X,Z|λ)) =
T∑
t=2

ln(bst−1,st) +
T∑
t=1

ln(cst,mt) + ln(πs1) +
T∑
t=1

[
D∑

d=1

[ln(xd)+

Ψ(

D∑
d=1

εd)−Ψ(εd)− ln(
D∑

d=1

xd)

]] (184)

A better model of proportional time series data has been proposed with the BL distribution in [46].

This distribution is closely related to the Dirichlet, but it relaxes the constraint of negative covariance
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at the cost of two additional parameters. As a matter of fact, the Dirichlet distribution is a special

case of the BL distribution. The latter is expressed by:

BL(X|~κ, α, β) =
Γ(
∑D

d=1 κd)Γ(α+ β)

Γ(α)Γ(β)

D∏
d=1

xκd−1
d

Γ(κd)

(
D∑
d=1

xd

)α−∑D
d=1 αd

×

(
1−

D∑
d=1

xd

)β−1
(185)

where ~κ = (κ1, ..., κD), α, and β are real and strictly positive parameters of the BL distribution,

Γ(t) =
∫∞

0 Xt−1e−XdX is the Gamma function, and X is a D + 1 dimensional vector whereby

X ∈ IRD
+ and

∑D
d=1 xd < 1. In this case, the complete data log-likelihood is expanded as:

ln(p(X,Z|λ)) =
T∑
t=2

ln(bst−1,st) +
T∑
t=1

ln(cst,mt)

+ ln(πs1) +

T∑
t=1

[
Ψ(

D∑
d=1

κd) + Ψ(α+ β)−

Ψ(α)−Ψ(β) + (α−
D∑
d=1

κd)ln(
D∑
d=1

xd))+

(β − 1)ln(1−
D∑
d=1

xd)) +

D∑
d=1

[(κd − 1)×

ln(xd))−Ψ(κd)]]

(186)

7.2.1 The Dirichlet and stick-breaking processes

The DP is a parameterized stochastic process with a positive scalar precision ε and base distri-

bution G0 [180]. The DP forms a distribution over discrete distributions that place its mass on a

countably infinite collection of atoms. The base distribution places location of atoms and the con-

centration variable controls the range of the mass spreading around atoms. This may be expressed

for disjoint sets of A = {A1, ..., AD} in measurable space Θ, where ∪iAi = Θ, as:

(G (A1) , . . . , G (AD)) ∼ DR (εG0 (A1) , . . . , εG0 (AD)) (187)
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The DP has infinite dimensions, D → ∞, as G0 is a continuous distribution. G represents a draw

from the DP that is denoted by G ∼ DP (εG0) and may be written as:

G =

∞∑
i=1

piδθi (188)

where θi is a location drawn from G0 and is associated with measure pi. θi may then be interpreted

as the emission distribution of an HMM at state i. A draw from the DP is then defined with a

stick-breaking process as [181]:

G =
∑∞

i=1 piδθi , pi = Vi
∏i−1
i′=1 (1− Vi′)

Vi ∼ Beta(1, ε), θi ∼ G0

(189)

where the influence of ε on a draw from DP is clearly impertinent. As ε→ 0, a random component

with location drawn from G0 depicts a degenerate measure due to the breaking of the entire stick

and consequent allocation to a single component. On the other hand, infinitely small breaks and

convergence ofG to the distribution of the draws occur when ε→∞ so thatG0 itself is reproduced.

This may be conversely expressed as a DP mixture model with the following generative process

when the interest is shifted to the parameters of a distribution rather than the data itself:

xi |θi ∼ p (x|θi) , θi|G ∼ G, G|εG0 ∼ DP (εG0) (190)

HMMs are a special case of the mixture models which are state-dependent. That is each mixture

has different weights but the same support. Consequently, we can define θi ≡ (Λij , ...,ΛiM ) and

express the state-dependent mixture model of a continuous proportional HMM as:

xt |θst ∼ Dist (θst) , θst | st−1 ∼ Gst−1 , Gi =

D∑
i′=1

bii′δθi′ (191)

where Dist is defined according to the appropriate distribution to be applied. In this paper, this is

either the Dirichlet or the BL distributions and the initial state has been assumed to be chosen from

π. For an infinite HMM, it may then be inferred that each transition should be modeled as a DP.

Nonetheless, an issue arises with this approach. Particularly, assume that each row i is drawn for
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the infinite state transition matrix with:

Gi =
∑∞

i′=1 bii′δθii′ , bii′ = Vii′
∏i′−1
f=1 (1− Vif )

Vii′ ∼ Beta(1, ε), θii′ ∼ G0

(192)

where bii′ is the i′th component of the infinite vector bi. Note then that for each state indexing

θii′ , the probability of a transition to a previously visited state is zero when G0 is continuous. This

is because p(θς = θ%) = 0 for ς 6= %. This indicates the impracticality of such an approach for

formulating an infinite HMM.

An extension of the DP is the hierarchical DP (HDP) which has been proposed to resolve such

a problem. Indeed, the HDP is a two level approach whereby the base distribution is itself drawn

from a DP resulting in an almost decidedly discrete G0 [182]:

G$ ∼ DP (ΥG0) , G0 ∼ DP (εH) (193)

Hence, substantial weight on the same set of states is impacted by multiple draws. If we truncate

at K and write the top level DP in a stick-breaking form, we may then explicitly denote the second

level DP as:

G0 =

K∑
i=1

piδθi
, pi = Vi

i−1∏
i′=1

(1− Vi′) (194)

Vi ∼ Beta(1, ε), θi ∼ H (195)

(G$ (θ1) , G$ (θ2) , . . . , G$ (θK)) ∼

DR (Υp1,Υp2, . . . ,ΥpK)

(196)

where G(θi) is a probability at location θi. However, the lack of conjugacy between the two levels

(number of states and their emission parameters at the top level and the mixing weights as priors to

draw the transition probabilities at the second level) means that a true variational solution does not

exist [179]. Consequently, we utilize the priors of the form:

pi = Vi
∏i−1
i′=1 (1− Vi′), Vi ∼ Beta (vi, ωi) (197)
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This formulation has a more flexible parametrization where the weights and locations are effectively

detached. Though this stick-breaking process is infinite, v and ω terminate at a finite numberK with

pK+1 ≡ 1−
∑K

i=1 pi, so that the result is a draw from the Generalized Dirichlet (GD) distribution.

This is necessary for the variational learning approach as discussed earlier. Hence, we must utilize

a GD prior for the state transitions. Formally, for V = (V1, ..., VK):

F (V ) =
K∏
i=1

F (Vi) =
K∏
i=1

Γ (vi + ωi)

Γ (vi) Γ (ωi)
V vi−1
i (1− Vi)ωi−1 (198)

The density of p may then be derived with a change of variables from V :

F (p) =
∏K
i=1

(
Γ(vi+ωi)

Γ(vi)Γ(ωi)
pvi−1
i

)
pωK−1
K+1 × · · ·

(1− p1)ω1−(v2+ω2) × · · ·

× (1− pK−1)ωK−1−1−(vK−1+ωK−1)

(199)

with each element pi of mean and variance:

E [pi] =
vi′

∏i′−1
`=1 ω`∏i′

`=1(v`+ω`)

V [pi] =
vi′ (vi′+1)

∏i′−1
`=1 ω`(ω`+1)∏i′

`=1(v`+ω`)(v`+ω`+1)

(200)

We note here that the GD is a special case of the Dirichlet distribution if ωi =
∑K

i′=i+1 vi′ for i < K

with ωK = ωK .

7.2.2 Infinite formulation of the hidden Markov model

Each row in the infinite state transition matrix is then modeled with a stick breaking prior and

the state dependent parameters are drawn independently and with an identical distribution (iid) from

G0:

Gi =
∑∞

i′=1 aii′δθi′ , bi
iid∼ iHMM(v,ω), θi′

iid∼ G0 (201)

Note that the state transitions are no longer required across the levels as in the DP and consequently

required HDP. That is Vii′ ∼ Beta (vii′ , ωii′) corresponds to the portion broken from the remainder

of the unit length stick belonging to state i (defines the transition probability from state i to state i′).
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This is because each state-dependent parameters θi are drawn separately detaching the construction

of the emission distributions from the construction of B. The construction of the initial states prob-

abilities π is also performed similarly. The generative process below simplifies the required infinite

parameterization [183]:

Gi =
∞∑
i′=1

aii′δθi′ , aii′ = Vii′
i′−1∏
f=1

(1− Vif )

Vii′ ∼ Beta (1, εii′) , θi′
iid∼ G0, εii′

iid∼ Gamma(cc, dd)

(202)

where we have fixed vi = 1∀i and ω = ε to highlight the similarity between the variable in this

capacity and the Dirichlet distribution. This allows us to exploit the resultant conjugacy with the

Gamma distribution for higher flexibility where hyperparameter setting plays a significant role in

the model. For instance, the posterior of an εii′ is:

p (εii′ |Vii′ , cc, dd) = Gamma (cc+ 1, dd− ln (1− Vii′)) (203)

7.2.3 Variational inference learning

The exponential growth of the number of possible sequences to be summed as the length of the

time series increases renders Eq. (182) computationally intractable [93]. However, an introduc-

tion of the approximate distribution q(B,C, π,Λ, S, L) of the true posterior p(B,C, π,Λ, S, L|X)

enables us to derive a lower bound. When q is equal the true posterior, the inequality is tight. Hence,

ln(p(X)) = L(q) − KL(q(B,C, π,Λ, S, L)||p(B,C, π,Λ, S, L|X)) (204)

where L(q) is the lower bound and KL is the Kullback-Leibler distance between the true posterior

and the approximate distribution [92, 94] where q may be factorized; i.e., q(B,C, π,Λ, S, L) =

q(B)q(C)q(π)q(Λ)q(S,L) where q(Λ) = q(~ε) for the Dirichlet and q(Λ) = q(~κ)q(α)q(β) for the

BL distribution. This variational approximation is performed iteratively with expectation (E-step)

and maximization (M-step). Let 〈xi〉 be the expected number of observations from a component in
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an iteration with a K-dimensional truncation, the variational equations can then be expressed as:

〈lnVi〉 = Ψ (1 + 〈xi〉)−Ψ

(
1 + εi +

K∑
i′=i

〈xi′〉

)

〈ln (1− Vi)〉 = Ψ

(
εi +

K∑
i′=i+1

〈xi′〉

)

−Ψ

(
1 + εi +

K∑
i′=i

〈xi′〉

)

〈ln p1〉 = 〈lnVi〉

〈ln pk〉 = 〈lnVk〉+
k−1∑
i′=1

〈ln (1− Vi′)〉 2 ≤ k < K

〈ln pK〉 =
K−1∑
i′=1

〈ln (1− Vi′)〉

(205)

We also note that 〈εii′〉 = ccii′/ddii′ via the posterior parameters ccii′ and ddii′ . We breakdown the

distribution BL(~x|~κ, α, β) corresponding to the prior factorization assumption made to q(Λ). Note

that a similar procedure may be derived for the Dirichlet distribution with the exclusion of the α and

β approximations. This yields the following evaluation:

ln(p∗(Xt|~κst,mt , αst,mt , βst,mt)) = γCijt

∫
q(~κ)q(α, β) ln(ν(Xt|~κst,mt)

× η(Xt|αst,mt , βst,mt))d~κdαdβ = γCijt
(
〈ln(ν(Xt|~κ))〉q(~κ) + 〈ln(η(Xt|α, β))〉q(α,β)

)
(206)

where γCijt , q(st = i,mt = j), ∗ superscript denotes an optimized parameter,

〈ln(ν(Xt|~κ))〉q(~κ) =

〈
ln
(Γ(

∑D
d=1 αijd)∏D

d=1 Γ(αijd)

)〉
q(~κ)

+

D∑
d=1

ln(Xtd)〈αijd − 1〉q(~κ) − ln

(
D∑
d=1

Xtd

)
D∑
d=1

〈αijd〉q(~κ)

= J(αijl) +

D∑
d=1

ln(Xtd)

uijd
vijd
− 1

− ln

(
D∑
d=1

Xtd

)
D∑
d=1

uijd
vijd


(207)
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and

〈ln(η(Xt|αij , βij))〉q(αij ,βij) =

〈
ln
( Γ(αij + βij)

Γ(αij)Γ(βij)

)〉
q(α,β)

+ ln

(
D∑
d=1

Xtd

)
〈αij〉q(α,β) + ln

(
1−

D∑
d=1

Xtd

)
〈βij − 1〉q(α,β)

= J(αij , βij) + ln

(
D∑
d=1

Xtd

) gij

hij

+ ln

(
1−

D∑
d=1

Xtd

)eij
rij
− 1

 (208)

J(αijl) and J(αij , βij) are analytically intractable. Consequently, they are approximated by their

lower bounds as derived in [46].

We then compute the sufficient statistics for determination of the posterior in the M-step:

q(B) =

K∏
i=1

GD
(
v′i, ω

′
i

)
q(~κ) =

D∏
d=1

K∏
i=1

M∏
j=1

Gamma(αijd|u∗ijd, v∗ijd)

q(α) =

K∏
i=1

M∏
j=1

Gamma(αij |g∗ij , h∗ij)

q(β) =
K∏
i=1

M∏
j=1

Gamma(βij |e∗ij , r∗ij)

q(π) =

K∏
i=1

DR
(
v′π, ω

′
π

)
q(ε) =

K∏
i=1

K−1∏
i′=1

Gamma (c+ 1, d− 〈ln (1− Vii′)〉)

q (επ) =
K−1∏
i=1

Gamma (τπ1 + 1, τπ2 − 〈ln (1− Vπi)〉)

(209)
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where

u∗ijl = uijl +
P∑
p=1

〈Zpij〉ᾱijl

[
Ψ

(
D∑
d=1

ᾱijd

)
−Ψ(ᾱijl)

+
D∑

d=1,d6=l
Ψ′

(
D∑
d=1

ᾱijd

)
ᾱijd(〈ln(αijd)〉 − ln(ᾱijd))

 (210)

v∗ijl = vijl −
P∑
p=1

〈Zpij〉

[
ln(Xpl)− ln

(
D∑
d=1

Xpd

)]
(211)

g∗ij = gij +
P∑
p=1

〈Zpij〉[Ψ(ᾱij + β̄ij)−Ψ(ᾱij) (212)

+β̄ijΨ
′(ᾱij + β̄ij)(〈ln(βij)〉 − ln(β̄ij))]ᾱij

h∗ij = hij −
P∑
p=1

〈Zpij〉ln

(
D∑
d=1

Xpd

)
(213)

e∗ij = eij +

P∑
p=1

〈Zpij〉[Ψ(ᾱij + β̄ij)−Ψ(β̄ij) (214)

+ᾱijΨ
′(ᾱij + β̄ij)(〈ln(αij)〉 − ln(ᾱij))]β̄ij

r∗ij = rij −
P∑
p=1

〈Zpij〉ln

(
1−

D∑
d=1

Xpd

)
(215)

where Ψ′(.) is the trigamma function and Zpij is an indicator function for Xpt belonging to state i

and mixture component j. Hence, 〈Zpij〉 =
∑T

t=1 γ
C
pijt = p(s = i,m = j|X) and the responsibil-

ities are computed using the forward-backward algorithm [10]. The entire procedure repeats until

convergence is reached.
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Figure 7.2: An overview of the proposed realtime robust anomaly detection framework. This applies
to both the infinite Dirichlet and BL based HMMs.

7.3 Proposed Anomaly Detection Framework

We represent each of the video sequences with a series of extracted histogram of optical flow

(HOF) and motion boundary histogram (MBH) descriptors [101]. For the HOF, the orientations

are quantized into 9 bins and normalized with the L2 norm. Derivatives of the optical flow are

evaluated separately along the horizontal (MBHx) and vertical (MBHy) components to compute

the MBH. The latter effectively captures relative motion between pixels and suppresses constant

motion information to mute noise from background motion. The HOF and MBH descriptors may

be extricated using any interest point detector [100]. In this paper, we extract the points along the
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motion trajectory for both the training and the testing video sequences [101].

In order to use HMMs for anomaly detection, the probability of a sequence given a model λ

is computed with the forward algorithm and then compared to the predetermined threshold. Each

set of feature histograms extracted for each of the datasets has a model λ whose parameters must

be estimated. This training procedure is performed by maximizing the probability of a given set

of training non-anomalous observations using the proposed variational inference learning approach

for infinite proportional HMMs.

Once the likelihoods of the testing video sequences are computed with the corresponding trained

HMMs, they must be compared to a threshold to determine the presence of an anomaly in a frame.

We statistically choose such a threshold in order to enable our scheme to be adaptive to any features

extracted and from any video data; i.e., the same framework can be directly applied for a different

feature set as well as datasets via the proposed threshold setting process. In this work, we apply the

Chebyshev’s theorem that dictates that at least 1 − (1/χ2) of the data must lie within 〈X〉 ± χstd

where 〈X〉 represents the mean of the data and std its standard deviation. In our framework, we

choose χ = 125 in order to reduce the false alarm rate that many anomaly detection systems suffer

from. Hence, this addresses the robustness requirements of our proposed framework. This yields in

the detection of anomalies that are not within 99.9936% of the data distribution.

Although we have predetermined the value of χ, it is a variable that may be adjusted according

to the system requirements for a higher level of anomaly detection as per the application of the

framework. That is if applied in security video surveillance systems, for instance, the authorities

concerned may choose to enforce a tighter threshold as required. Moreover, this setup also allows

the threshold to adapt to variability in the perspective distortion as well as other intricacies according

to the nature of the features extracted.

We also investigate a fusion scheme of the three final predictions made for each of the video

frames by each of the infinite HMMs. The final anomaly detection decision in this case is made

through the highest number of votes. This is carried out for the two different proposed models:

the Dirichlet and BL-based infinite HMMs. The proposed anomaly detection framework can be

observed in Fig. 7.2.
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Figure 7.3: Samples of the UCSD ped1 normal sequences (top row), ped2 normal sequences (sec-
ond row), and anomalous sequences from ped1 (third row - left to right - biker, cart, skater, and
wheelchair).

7.4 Experimental Setup and Results

7.4.1 Datasets

The proposed framework is tested on the public real-world UCSD ped1 and ped2 datasets with

different people densities and some extent of perspective distortion [184]. Each of the datasets is

made up of a training video set (normal sequences with no anomalies) and a testing video set (normal

and anomalous sequences) and represent different scenes. Normal sequences have only pedestrians,

while abnormal sequences may contain people walking across a walkway, skaters, bikers, and small

carts among others. Samples of the datasets are shown in Fig. 7.3.

Abnormalities were not staged and hence are naturally occurring. This allows us to test the

proposed framework on real world data. The data also includes ground-truth of the anomalies.

Nonetheless, we exclude ped1 training sequences 2, 23, and 25 where unexpected anomalies have

been located in them [94].
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7.4.2 Quantitative evaluation criteria

We compute the equal error rate (EER) for quantitative evaluation of our proposed model and

comparison with various state-of-the-art methodologies on the UCSD datasets. The smaller the

EER, the better the performance of the system. EER represents a compromise between the true posi-

tive rate (TPR) and false positive rate (FPR). TPR represents the rate of correctly detected frames

to all abnormal frames in ground truth. This is mathematically denoted by TPR = TP/(TP+FN)

where TP is the number of true positive frames, and FN is the number of false negative frames.

On the other hand, the rate of incorrectly detected frames to all normal frames in ground truth is

the FPR. That is FPR = FP/(FP + TN) where FP is the number of false positive frames,

and TN is the number of true negative frames. We also measure the computational time required

for testing sequences using the proposed framework. This evaluates the realtime capabilities of the

system.

7.4.3 Results and comparison with state-of-the-art

We experimentally set the truncation level for both the infinite Dirichlet and BL HMMs at K =

10 with v = 10e − 6 and ω = 0.1. In Table 7.1, we compare quantitatively the proposed method

and its computational time with various relevant state-of-the-art anomaly detection methodologies.

We report the EER, the system configuration, the frame processing time, and the implementation

language used. Our proposed framework performs competitively with near real-time processing.

Note that the processing times of the proposed method are dependent on the programming methods

employed such as the use of parallel computing and optimization techniques at large, and hence

may be further improved for production.

A simple classifier is built based on the distance of the nearest neighbor of the query feature

to the features extracted in the training set and then compared to a threshold in [172]. This is an

approach that does not require training and hence is non-parametric. This relates it to the non-

parametric formulation of the proposed HMMs to extend to infinity. A Gaussian-based HMM ap-

proach is taken in [186] along with texture map and 3-D Harris features. This is related to our

proposed model as they both utilize HMMs. However, our proposed HMMs are infinite and based
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Table 7.1: Comparison of the proposed framework with state-of-the-art methods for anomaly de-
tection.

Method EER-ped1 EER-ped2 Processing time (sec/frame) Configuration and language

[185] 31.0% 30.0% 0.1 CPU: 2.6GHz, RAM: 3GB

[186] 32.4% 28.5% 5.1 CPU: 2GHz (dual core), RAM: 4GB, MATLAB

[187] 19.9% N/A 1.3 CPU: 3.4GHz, RAM: 4GB, MATLAB

[188] 2.9% 9.9% N/A N/A

[189] 27.0% 26.9% 1.2 CPU: 3.5GHz, RAM: 16GB, C++

[190] 17.8% 18.5% 1.2 CPU: 3.5GHz, RAM: 16GB, C++

[191] 24.0% 24.4% 0.4 CPU: 2.8GHz, RAM: 128GB

[192] N/A 19.0% 0.04 CPU: 3.5GHz, RAM: 8GB, MATLAB

HMMD [29] 28.9% 18.5% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

HMMGD [29] 29.0% 22.0% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

HMMBL [29] 29.0% 16.6% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

VBHMMD [94] 31.4% 12.5% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

VBHMMGD [94] 29.0% 13.8% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

iHMMDR - HOF (proposed) 17.1% 50.9% 0.004 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMDR - MBHx (proposed) 17.1% 79.4% 0.004 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMDR - MBHy (proposed) 17.1% 79.4% 0.004 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMDR - Fused (proposed) 18.0% 28.9% 0.01 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMBL - HOF (proposed) 7.3% 22.3% 0.004 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMBL - MBHx (proposed) 7.2% 22.3% 0.004 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMBL - MBHy (proposed) 7.2% 22.2% 0.004 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMBL - Fused (proposed) 7.8% 9.5% 0.01 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB
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on the Dirichlet and BL distributions to better model proportional sequential data. Nonetheless, it

serves to depict the influence of the choice of emission probability on global performance.

[187] presents the Gaussian process regression for the modeling of frequent geometric patterns

between Spatial-Temporal Interest Points (STIP) and via 3-D-scale-invariant feature transforms.

[188] is closely related whereby histograms of gradients and optical flow are computed for appear-

ance and motion modeling via points of interest detected using 3-D Harris corner functions with a

support vector machine (SVM) for the classification. Histograms of oriented swarms for dynamics

modeling with HOG for appearance modeling are combined in [189] along with an SVM. A hier-

archical approach via mixtures of dynamic textures and several spatial scales to build a normalcy

model is proposed in [190]. Spatio-temporal convolutional neural networks are fed with raw data of

small spatiotemporal video volumes selected using optical flow in [191] to capture appearance and

motion information for anomaly detection.

On the other hand, a combination of two local, spatial and temporal, self-similarity descriptors

with a global descriptor learned using autoencoders is utilized in [192]. A typical Baum-Welch

algorithm trained HMM approach is proposed in [29]. However, the HMMs are proportional in na-

ture, based on the Dirichlet (HMMD), GD (HMMGD), and Beta-Liouville (HMMBL) distributions,

and build upon the features proposed in [185]. It is then intriguing to observe that the use of HMMs

can radically improve the results as shown.

Finally, [94] presents an extension to [29] through the application of variational learning for

the proportional Dirichlet and Generalized Dirichlet HMMs denoted by VBHMMD and VBHM-

MGD, respectively, in Table 7.1. The latter HMM methods are particularly relevant due to the use

of proportional HMMs, especially with variational learning. It is then interesting to observe the

improvement in time and EER by extending the model to infinity as well as the use of a different

set of features.

Overall, it can be clearly observed that the proposed framework is efficient, robust, and realtime.

While the proposed fusion is simple, it still significantly improves the results. This is especially

apparent for the infinite Dirichlet and BL HMM models of the UCSD ped2 dataset. This depicts the

complementary nature of the features chosen and reinforces the unity of the proposed framework.

The results also clearly illustrate how the use of the BL distribution can drastically enhance the
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Figure 7.4: Qualitative results of our proposed realtime robust anomaly detection framework. Sam-
ples are shown from test sequence 7 from UCSD ped2 dataset modeled by the proposed infinite BL
HMM trained on the extracted HOF features.
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performance of the variational inference based infinite proportional HMMs. This is due to the

more flexible covariance structure of the BL distribution in comparison to the enforced negative

covariance in the Dirichlet.

We also observe that the EER is lower for the ped1 dataset for our proposed framework due to

the higher number of training sequences available. This enables the framework to better capture

the variability in normal events and hence reduces the false alarm rate. We also report the states

which have been effectively removed in the proposed infinite HMMs. That is the optimum number

of states have been determined automatically which addresses an area of active research in HMMs.

For the HOF infinite HMMs, states 1, 5, 6, and 10 are inactive for ped1 and states 5, 9, and 10 are

inactive for ped2. Only state 10 is inactive for the MBHx and MBHy. Note that this flexibility in

the infinite HMM setup allows for seamless optimum model construction. We also depict a sample

of our qualitative results as shown in Fig. 7.4.
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Chapter 8

Infinite Generalized Dirichlet Hidden

Markov Models with Simultaneous

Feature Selection

The ones who are crazy enough to think that they can change the world are the ones

who do.
Steve Jobs

A closely related model is the infinite extension of the Generalized Dirichlet hidden Markov

models. An interesting characteristic of this distribution that has set it apart is its transformation to

Beta distributions; hence, enabling the incorporation of a simultaneous feature selection paradigm.

This is the topic of this chapter with a validation performed in frame-based video anomaly detection.

8.1 Introduction

Nowadays, the overwhelming need for data modeling is at an all time high. This is mainly driven

by the vast amount of data, around 2.5 quintilian bytes, that is generated daily [167]. Modeling such

data has several advantages. These include the potential removal of noise from the original signals,

studying the data source or the generating process without the need of its explicit availability, and
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efficiently building powerful recognition and prediction systems [3]. Moreover, a consequent impli-

cation of successfully formulating a model for a data source is the ability to simulate as much data

as needed to further study such a phenomenon without the need to carry out costly experiments.

Meanwhile, the prevalence of cameras and video surveillance has led to a significant increase in

research interest in the field of automatic real time monitoring systems [146, 172, 147, 169]. Such

systems aim to assist human operators in the detection of potential threats; especially due to the

need to oversee multiple feeds simultaneously for long periods of time. Hence, efficient automatic

video monitoring plays an important role in the detection of malicious threats and the avoidance of

consequent incidents. While the testing and development of these systems have been facilitated by

the recent release of real-world data sets [170, 171], an anomaly; i.e., a threat, by its nature is a rare

occurrence that is therefore seldom recorded. Hence, sufficient data for automatic detection training

is unavailable [193].

A typical methodology to overcome this hindrance in the development of video anomaly de-

tection systems is training on video sequences; i.e., data that is considered normal. This enables

the system to report anomalies as outliers [146, 172, 147]. This is especially important for the

design and training of appropriate machine learning techniques. This forms the basis of multiple

approaches that are paving the way for new advancements in anomaly video detection [173].

In this paper, we propose variational learning of infinite Hidden Markov Models (HMM) for

the modeling of anomalies. A HMM is a probabilistic model that is appropriate for dynamic data

[174, 194, 175]. It is usually trained with the Baum-Welch method; a variation of the Expectation

Maximization (EM) algorithm specially designed for HMMs. However, employing a variational in-

ference technique is advantageous as it alleviates the various drawbacks of the Baum Welch method

[176, 177]. The latter include over-fitting or sub-optimal generalization performance [46].

We also propose the incorporation of a simultaneous feature selection paradigm [151, 152].

Intuitively, the higher the number of features used to represent a given dataset, the higher the effi-

ciency of the model is expected. However, some features can be noisy, redundant, or uninformative

in practice [158]. Hence, these can hinder the modeling performance. In particular, the presence

of many irrelevant features introduces a bias resulting in unreliable homogeneity measures. Feature

selection is the process of reducing the number of collected features to a subset of relevant features.
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In addition to improving the performance of the models, it also aids in ameliorating model inter-

pretation and decreasing the risk of overfitting [154]. It is noteworthy to mention that this study

is novel in its treatment of the feature selection paradigm in terms of the mathematical derivations

required for the deployment of non-Gaussian HMMs in contrast to the traditional Gaussian based

[155, 195, 156, 157].

Furthermore, we also investigate another primary area of HMM research that lies in model-

ing emission probabilities of proportional data. They naturally result from numerous preprocess-

ing procedures; such as the commonly used histograms. Recent studies have proven successful

utilizing distributions that correspond to proportional data such as the Dirichlet [94, 48] and the

Beta-Liouville (BL) [46] distributions.

Also, choosing the correct number of states to model the data with HMMs is another area that

warrants further investigations. HMMs can be finite or infinite [178]. In finite HMMs, the number of

states is usually determined as a result of an exhaustive search for the appropriate count. This can be

achieved through the implementation of infinite HMM models through the means of non-parametric

Bayesian methods [179].

Hence, the novel contributions of this work can be summarized as:

• We propose a mathematical formulation for construction of infinite HMMs for continuous

proportional data. We particularly focus on the use of Generalized Dirichlet (GD) distribution

given its proven effectiveness in modeling proportional sequential data. This distribution is

closely related to the Dirichlet, but it relaxes the constraint of negative covariance at the cost

of additional parameters. In comparison to deep learning techniques, this is an explainable

approach that requires less training data and is less computationally expensive.

• We present a variational inference learning approach for the proposed infinite HMMs. The

technique guarantees convergence within a reasonable time frame and provides an accurate

approximation of the posterior.

• We incorporate a simultaneous feature selection paradigm into the proposed infinite HMMs

for improved performance and efficient deployment.

• We propose an end-to-end framework for realtime robust anomaly detection in videos. The
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framework performs competitively with state-of-the-art relevant methods and may be applied

to any video data.

8.2 Infinite Hidden Markov Models for Proportional Data

In this section, we discuss the main components of the adaptive algorithm for infinite GD-

based HMMs with simultaneous feature selection. Section 8.2.1 examines the Dirichlet and stick-

breaking processes, Section 8.2.2 discusses the infinite formulation of the HMM, Section 8.2.3

details the variational inference learning, and Section 8.2.4 presents the feature saliency model for

the incorporation of the simultaneous feature selection approach. Moreover, a summary of the

symbols utilized in this manuscript with their corresponding definitions can be observed in Table

8.1 for ease of mathematical reference.

A HMM is characterized by an underlying stochastic process with K hidden states whereby the

transition between the states B = {bii′ = P (st = i′|st−1 = i)} at time t. An initial probability π

governs each state st, in which an observation is emitted corresponding to its respective parameters

of a probability distribution κ with a mixing matrix C = {cij = P (mt = j|st = i)} where

j ∈ [1,M ] such that M is the number of mixture components in set L = {m1, ...,mM}. Hence,

a continuous HMM may be defined as λ = {B,C,κ, π}. A graphical model of the latter HMM is

depicted in Fig. 8.1.

The likelihood of a sequence with HMMs may be denoted by Eq. (64) where κij = (κ1ij , ...,κDij)

with κ defined according to the GD distribution for proportional data in this work.

Formally, a D-dimensional GD distribution is denoted by:

GD(X|~ι, ~ϑ) =
D∏
d=1

Γ(ιd + ϑd)

Γ(ιd)Γ(ϑd)
Xιd−1
d

(
1−

d∑
r=1

Xr

)ζd
(216)

where ~ι = (ι1, ..., ιD) and ~ϑ = (ϑ1, ..., ϑD) are the real and strictly positive parameters of the

distribution and X ∈ IRD
+ with

∑D
d=1Xd < 1 corresponding to the (D + 1)-dimensional propor-

tional vector that adds up to one. Finally, ζd is computed using the parameters of the distribution as

ϑd − ιd+1 − ϑd+1, when d 6= D. Otherwise, ζd = ϑD − 1.

153



Table 8.1: Definitions of symbols utilized in the manuscript.

Symbol Definition
t time index
K number of states
D number of feature dimensions
B transition matrix
i, i′ state index
d dimension index

bii′ transition matrix index
st state at time t
κ probability distribution for HMM emission
π initial probability
C mixing matrix
M number of mixture components
j mixture component index
L set of mixtures
S set of states

mM component of a mixture in a state
cij index of the mixing weight of the mixture in a state

p(X|B,C,κ, π) likelihood of a sequence
Λij = (Λ1ij , ...,ΛDij) parameters of the GD

cst,mt HMM mixing weight of a mixture component in a state
bst−1,st a transition weight between states of a HMM

X time series data
ρt(i) forward variable
θt(i) backward variable

γtst,mt
, η forward-backward algorithm resultant variables
Z hidden variables

ι, ϑ, ζd parameters of GD distribution
%, ζ, u, and v hyperparameters of the GD distribution

λ A HMM model
ε positive scalar precision of Dirichlet process

G0 base distribution of Dirichlet process
G ∼ DP (εG0) a draw from Dirichlet process

θi location drawn from G0 associated with measure pi
pi and Vi parameters for the stick breaking process
v and ω parameters of Vi that are drawn from a GD

Vii′ ∼ Beta (vii′ , ωii′) transition probability from state i to state i′

Beta (Xdt|εd, τd) the distribution of irrelevant feature(s)
ϕ feature saliency
zd feature assignment

p(B,C, π,Λ, S, L|X) true posterior
q(B,C, π,Λ, S, L) approximate distribution of the true posterior

L(q) the approximate lower bound of the posterior
KL the Kullback-Leibler distance between the true posterior and the approximate distribution
〈xi〉 the expected number of observations from a component in an iteration
Y projection of X into a transformed space
~α parameters of the DR distribution
E expectation of a variable

TP true positives
TN true negatives
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Figure 8.1: Graphical model representation of a continuous hidden Markov model. Symbols in
unshaded circles denote the observed variables, symbols in shaded circles indicate the hidden states,
and edges represent conditional dependencies between the states or the variables.

8.2.1 The Dirichlet and stick-breaking processes

The Dirichlet process (DP) is a parameterized stochastic process with a positive scalar precision

ε and base distribution G0 [180]. It forms a distribution over discrete distributions that place its

mass on a countably infinite collection of atoms. The base distribution places location of atoms

and the concentration variable controls the range of the mass spreading around atoms. This may be

expressed for disjoint sets of A = {A1, ..., AD} in measurable space Θ, where ∪iAi = Θ, as:

(G (A1) , . . . , G (AD)) ∼ DR(εG0 (A1) , . . . , εG0 (AD)) (217)

The DP has infinite dimensions, D → ∞, as G0 is a continuous distribution. G represents a draw

from the DP that is denoted by G ∼ DP (εG0) and may be written as:

G =

∞∑
i=1

piδθi (218)

where θi is a location drawn from G0 and is associated with measure pi. θi may then be interpreted

as the emission distribution of an HMM at state i. A draw from the DP is then defined with a
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stick-breaking process as [181]:

G =
∑∞

i=1 piδθi , pi = Vi
∏i−1
i′=1 (1− Vi′)

Vi ∼ Beta(1, ε), θi ∼ G0

(219)

where the influence of ε on a draw from DP is clearly impertinent. As ε→ 0, a random component

with location drawn from G0 depicts a degenerate measure due to the breaking of the entire stick

and consequent allocation to a single component. On the other hand, infinitely small breaks and

convergence ofG to the distribution of the draws occur when ε→∞ so thatG0 itself is reproduced.

This may be conversely expressed as a DP mixture model with the following generative process

when the interest is shifted to the parameters of a distribution rather than the data itself:

xi |θi ∼ p (x|θi) , θi|G ∼ G, G|εG0 ∼ DP (εG0) (220)

HMMs are a special case of the mixture models which are state-dependent. That is each mixture

has different weights but the same support. Consequently, we can define θi ≡ (Λij , ...,ΛiM ) and

express the state-dependent mixture model of a continuous proportional HMM as:

xt |θst ∼ Dist (θst) , θst | st−1 ∼ Gst−1 , Gi =
D∑
i′=1

bii′δθi′ (221)

where Dist is defined according to the appropriate distribution to be applied. In this paper, this

is the GD distribution and the initial state has been assumed to be chosen from π. For an infinite

HMM, it may then be inferred that each transition should be modeled as a DP. Nonetheless, an

issue arises with this approach. Particularly, assume that each row i is drawn for the infinite state

transition matrix with:

Gi =
∑∞

i′=1 bii′δθii′ , bii′ = Vii′
∏i′−1
f=1 (1− Vif )

Vii′ ∼ Beta(1, ε), θii′ ∼ G0

(222)

where bii′ is the i′th component of the infinite vector bi. Note then that for each state indexing

θii′ , the probability of a transition to a previously visited state is zero when G0 is continuous. This
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is because p(θς = θ%) = 0 for ς 6= %. This indicates the impracticality of such an approach for

formulating an infinite HMM.

An extension of the DP is the hierarchical DP (HDP) which has been proposed to resolve such

a problem. Indeed, the HDP is a two level approach whereby the base distribution is itself drawn

from a DP resulting in an almost decidedly discrete G0 [182]:

G$ ∼ DP (ΥG0) , G0 ∼ DP (εH) (223)

Hence, substantial weight on the same set of states is impacted by multiple draws. If we truncate

at K and write the top level DP in a stick-breaking form, we may then explicitly denote the second

level DP as:

G0 =

K∑
i=1

piδθi
, pi = Vi

i−1∏
i′=1

(1− Vi′) (224)

Vi ∼ Beta(1, ε), θi ∼ H (225)

(G$ (θ1) , G$ (θ2) , . . . , G$ (θK)) ∼

DR (Υp1,Υp2, . . . ,ΥpK)

(226)

where G(θi) is a probability at location θi. However, the lack of conjugacy between the two levels

(number of states and their emission parameters at the top level and the mixing weights as priors to

draw the transition probabilities at the second level) means that a true variational solution does not

exist [179]. Consequently, we utilize the priors of the form:

pi = Vi
∏i−1
i′=1 (1− Vi′), Vi ∼ Beta (vi, ωi) (227)

This formulation has a more flexible parametrization where the weights and locations are effectively

detached. Though this stick-breaking process is infinite, v and ω terminate at a finite numberK with

pK+1 ≡ 1−
∑K

i=1 pi, so that the result is a draw from the GD distribution. This is necessary for the

variational learning approach as discussed earlier. Hence, we must utilize a GD prior for the state

transitions. Formally, for V = (V1, ..., VK):
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F (V ) =

K∏
i=1

F (Vi) =

K∏
i=1

Γ (vi + ωi)

Γ (vi) Γ (ωi)
V vi−1
i (1− Vi)ωi−1 (228)

The density of p may then be derived with a change of variables from V :

F (p) =
∏K
i=1

(
Γ(vi+ωi)

Γ(vi)Γ(ωi)
pvi−1
i

)
pωK−1
K+1 × · · ·

(1− p1)ω1−(v2+ω2) × · · ·

× (1− pK−1)ωK−1−1−(vK−1+ωK−1)

(229)

with each element pi of mean and variance:

E [pi] =
vi′

∏i′−1
`=1 ω`∏i′

`=1(v`+ω`)

V [pi] =
vi′ (vi′+1)

∏i′−1
`=1 ω`(ω`+1)∏i′

`=1(v`+ω`)(v`+ω`+1)

(230)

8.2.2 Infinite formulation of the hidden Markov model

Each row in the infinite state transition matrix is then modeled with a stick breaking prior and

the state dependent parameters are drawn independently and with an identical distribution (iid) from

G0:

Gi =
∑∞

i′=1 aii′δθi′ , bi
iid∼ iHMM(v,ω), θi′

iid∼ G0 (231)

Note that the state transitions are no longer required across the levels as in the DP and consequently

required HDP. That is Vii′ ∼ Beta (vii′ , ωii′) corresponds to the portion broken from the remainder

of the unit length stick belonging to state i (defines the transition probability from state i to state i′).

This is because each state-dependent parameters θi are drawn separately detaching the construction

of the emission distributions from the construction of B. The construction of the initial states prob-

abilities π is also performed similarly. The generative process below simplifies the required infinite

parameterization [183]:

Gi =

∞∑
i′=1

aii′δθi′ , aii′ = Vii′
i′−1∏
f=1

(1− Vif )

Vii′ ∼ Beta (1, εii′) , θi′
iid∼ G0, εii′

iid∼ Gamma(cc, dd)

(232)
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where we have fixed vi = 1 ∀i and ω = ε to highlight the similarity between the variable in this

capacity and the Dirichlet distribution. This allows us to exploit the resultant conjugacy with the

Gamma distribution for higher flexibility where hyperparameter setting plays a significant role in

the model. For instance, the posterior of an εii′ is:

p (εii′ |Vii′ , cc, dd) = Gamma (cc+ 1, dd− ln (1− Vii′)) (233)

8.2.3 Variational inference learning

We derive a variational inference approach in order to find the parameters of the proposed

iHMM. The exponential growth of the number of possible sequences to be summed as the length of

the time series increases renders Eq. (64) computationally intractable [93]. However, an introduc-

tion of the approximate distribution q(B,C, π,Λ, S, L) of the true posterior p(B,C, π,Λ, S, L|X)

enables us to derive a lower bound. When q is equal the true posterior, the inequality is tight. Hence,

ln(p(X)) = L(q) − KL(q(B,C, π,Λ, S, L)||p(B,C, π,Λ, S, L|X)) (234)

where L(q) is the lower bound and KL is the Kullback-Leibler distance between the true posterior

and the approximate distribution [92, 94] where q may be factorized, i.e. q(B,C, π,Λ, S, L) =

q(B)q(C)q(π)q(Λ)q(S,L). This variational approximation is performed iteratively with expecta-

tion (E-step) and maximization (M-step). Let 〈xi〉 be the expected number of observations from a

component in an iteration with a K-dimensional truncation, the variational equations can then be
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expressed as:

〈lnVi〉 = Ψ (1 + 〈xi〉)−Ψ

(
1 + εi +

K∑
i′=i

〈xi′〉

)

〈ln (1− Vi)〉 = Ψ

(
εi +

K∑
i′=i+1

〈xi′〉

)

−Ψ

(
1 + εi +

K∑
i′=i

〈xi′〉

)

〈ln p1〉 = 〈lnVi〉

〈ln pk〉 = 〈lnVk〉+

k−1∑
i′=1

〈ln (1− Vi′)〉 2 ≤ k < K

〈ln pK〉 =

K−1∑
i′=1

〈ln (1− Vi′)〉

(235)

We also note that 〈εii′〉 = ccii′/ddii′ via the posterior parameters ccii′ and ddii′ .

The posterior probability or the responsibilities for the GD distribution may be expressed as

mixture of Beta distributions through first projecting the data into a transformed space [193]. This

allows for better precision since an error in one of the estimations does not propagate to the other

parameters. Moreover, with the reduced dimensionality, precision of the solution is naturally im-

proved. In particular, independence between the features is now no longer merely an assumption

but a fact. This more efficient methodology is defined as:

GD(X|~ι, ~ϑ) ∝
D∏
d=1

Beta(Yd|ιd, ϑd) (236)

where

Yd =


Xd, for d = 1

Xd/
(

1−
∑d−1

i=1 Xi

)
, for d ∈ [2, D].

(237)

and Beta(Yd|ιd, ϑd) is the Beta distribution that is denoted by:

Beta(Yd|ιd, ϑd) =
Γ(ιd + ϑd)

Γ(ιd)Γ(ϑd)
Y ιd−1
d (1− Yd)ϑd−1 (238)

One can mathematically show that ∀d, Yd ∼ Beta(ιd, ϑd) = DR(α1 = ιd, α2 = ϑd). Hence, the
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estimation problem of q(Λ) is abridged as D − 1 smallest estimation problems of unidimensional

Dirichlet distributions defined by:

DR(X|~α) =
Γ(
∑D

d=1 αd)∏D
d=1 Γ(αd)

D∏
d=1

Xαd−1
d (239)

where ~α = (α1, ..., αD) is the real and strictly positive parameter of the distribution.

This yields the following evaluation:

ln(p∗(Xt|~αst,mt)) = γCijt

∫
q(~α) ln(ν(Xt|~αst,mt))d~α (240)

= γCijt
(
〈ln(ν(Xt|~α))〉q(~α)

)
(241)

where γCijt , q(st = i,mt = j), ∗ superscript denotes an optimized parameter and

〈ln(ν(Xt|~α))〉q(~α) =

〈
ln
(Γ(

∑D
d=1 αijd)∏D

d=1 Γ(αijd)

)〉
q(~α)

+

D∑
d=1

ln(Xtd)〈αijd − 1〉q(~α) − ln

(
D∑
d=1

Xtd

)
D∑
d=1

〈αijd〉q(~α)

= J(αijl) +

D∑
d=1

ln(Xtd)

uijd
vijd
− 1

− ln

(
D∑
d=1

Xtd

)
×

D∑
d=1

uijd
vijd



(242)

J(αijl) is analytically intractable. Consequently, it is approximated by its lower bound as derived
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in [46]. We then compute the sufficient statistics for determination of the posterior in the M-step:

q(B) =
K∏
i=1

GD
(
v′i, ω

′
i

)
q(~α) =

D∏
d=1

K∏
i=1

M∏
j=1

Gamma(αijd|u∗ijd, v∗ijd)

q(π) =
K∏
i=1

DR
(
v′π, ω

′
π

)
q(ε) =

K∏
i=1

K−1∏
i′=1

Gamma (c+ 1, d− 〈ln (1− Vii′)〉)

q (επ) =

K−1∏
i=1

Gamma (τπ1 + 1, τπ2 − 〈ln (1− Vπi)〉)

(243)

where

u∗ijl = uijl +

P∑
p=1

〈Zpij〉ᾱijl

[
Ψ

(
D∑
d=1

ᾱijd

)
−Ψ(ᾱijl)

+

D∑
d=1,d6=l

Ψ′

(
D∑
d=1

ᾱijd

)
ᾱijd(〈ln(αijd)〉 − ln(ᾱijd))

 (244)

v∗ijl = vijl −
P∑
p=1

〈Zpij〉

[
ln(Xpl)− ln

(
D∑
d=1

Xpd

)]
(245)

and Ψ′(.) is the trigamma function and Zpij is an indicator function for Xpt belonging to state i and

mixture component j. Hence, 〈Zpij〉 =
∑T

t=1 γ
C
pijt = p(s = i,m = j|X) and the responsibilities

are computed using the forward-backward algorithm [10]. The entire procedure repeats until con-

vergence is reached. An important aspect when applying variational inference is the convergence

assessment. We trace the convergence systematically by monitoring the update difference in the es-

timated parameters of λ. This is set with an adaptive threshold which we have set at 10−3 between

the iterations or reaching a maximum number of iterations set at 300.

162



8.2.4 Feature selection

We define whether a feature is relevant or not using a feature saliency technique. Feature

saliency recasts feature selection as a parameter estimation problem [155]. New parameters, known

as feature saliencies, are added to the latent variable model and used to find clusters embedded in

the feature subspace. Mathematically, given a certain state, assume that each of the dimensions

of the features is independent with latent indicator variable zd, z = (z1, . . . , zD), indicates which

component the dth observation belongs to, zd = (zd1, . . . , zdM ) and each element zdj is assigned

value 1 when the observation Xi is associated with component j; otherwise, it is 0. Then:

p (Xt|z, st = i, λ)

=
D∏
d=1

p (Xdt|Λid)zd Beta (Xdt|εd, τd)1−zd
(246)

where Beta is the conditional Beta distribution that is used to model irrelevant features and

defined as:

Beta(Xdt|εd, τd) =
D∏
d=1

Γ(εd + τd)

Γ(ε)Γ(τd)
Xεd−1
d (1−Xd)

τd−1 (247)

The joint distribution of Xt and z given s is:

p (Xt, z|st = i, λ)

=
∏D
d=1 [ϕdp (Xdt|Λid)]zd [(1− ϕd) Beta(Xdt|εd, τd)]1−zd

(248)

where the marginal probability of z and Xt given s are given by:

P (z|λ) =
D∏
d=1

ϕzdd (1− ϕd)1−zd (249)

p(Xt|Λst,mt) =

D∏
d=1

[ϕdp (Xdt|Λid)] [(1− ϕd)

× Beta(Xdt|εd, τd)]

(250)

respectively. This may then be used for the computation of the complete data likelihood in Eq. (64)

accordingly. A graphical representation of the proposed iHMM can be observed in Fig. 8.2.
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Figure 8.2: Graphical model representation of the proposed infinite GD-based hidden Markov model
with simultaneous feature selection.

8.3 Proposed Anomaly Detection Framework

We represent each of the video sequences with a series of extracted histogram of optical flow

(HOF) and motion boundary histogram (MBH) descriptors [101]. For the HOF, the orientations

are quantized into 9 bins and normalized with the L2 norm. Derivatives of the optical flow are

evaluated separately along the horizontal (MBHx) and vertical (MBHy) components to compute

the MBH. The latter effectively captures relative motion between pixels and suppresses constant

motion information to mute noise from background motion. The HOF and MBH descriptors may

be extracted using any interest point detector [100]. In this paper, we extract the points along the

motion trajectory for both the training and the testing video sequences [101].

In order to use HMMs for anomaly detection, the probability of a sequence given a model λ

is computed with the forward algorithm and then compared to the predetermined threshold. Each

set of feature histograms extracted for each of the datasets has a model λ whose parameters must

be estimated. This training procedure is performed by maximizing the probability of a given set

of training non-anomalous observations using the proposed variational inference learning approach

for infinite proportional HMMs.

Once the likelihoods of the testing video sequences are computed with the corresponding trained

HMMs, they must be compared to a threshold to determine the presence of an anomaly in a frame.

We statistically choose such a threshold in order to enable our scheme to be adaptive to any features
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extracted and from any video data, i.e. the same framework can be directly applied for a different

feature set as well as datasets via the proposed threshold setting process. In this work, we apply the

Chebyshev’s theorem that dictates that at least 1 − (1/χ2) of the data must lie within 〈X〉 ± χstd

where 〈X〉 represents the mean of the data and std its standard deviation. In our framework, we

choose χ = 125 in order to reduce the false alarm rate that many anomaly detection systems suffer

from. Hence, this addresses the robustness requirements of our proposed framework. This yields in

the detection of anomalies that are not within 99.9936% of the data distribution.

Although we have predetermined the value of χ, it is a variable that may be adjusted according

to the system requirements for a higher level of anomaly detection as per the application of the

framework. That is if applied in security video surveillance systems, for instance, the authorities

concerned may choose to enforce a tighter threshold as required. Moreover, this setup also allows

the threshold to adapt to variability in the perspective distortion as well as other intricacies according

to the nature of the features extracted.

We also investigate a fusion scheme of the three final predictions made for each of the video

frames by each of the infinite HMMs. The final anomaly detection decision in this case is made

through the highest number of votes. The proposed anomaly detection framework1 can be observed

in Fig. 7.2.

8.4 Experimental Setup and Results

8.4.1 Datasets

The proposed framework is tested on the public real-world UCSD ped1 and ped2 datasets with

different people densities and some extent of perspective distortion [184]. Each of the datasets is

made up of a training video set (normal sequences with no anomalies) and a testing video set (normal

and anomalous sequences) and represent different scenes. Normal sequences have only pedestrians,

while abnormal sequences may contain people walking across a walkway, skaters, bikers, and small

carts among others. Samples of the datasets are shown in Fig. 7.3. These training video sequences

are 34 and 16 videos for each of the UCSD ped1 and ped2 datasets. Nonetheless, we exclude ped1
1The complete source code of this paper is available upon request.
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training sequences 2, 23, and 25 where unexpected anomalies have been located in them [94].

On the other hand, each of the UCSD ped1 and ped2 datasets also contain testing datasets which

are made up of 36 and 12 testing video samples respectively. Abnormalities were not staged and

hence are naturally occurring. This allows us to test the proposed framework on real world data.

The data also includes ground-truth of the anomalies.

8.4.2 Quantitative evaluation criteria

We compute the equal error rate (EER) on the frame-level for quantitative evaluation of our

proposed model and comparison with various state-of-the-art methodologies on the UCSD datasets.

The smaller the EER, the better the performance of the system. EER represents a compromise

between the true positive rate (TPR) and false positive rate (FPR). TPR represents the rate of

correctly detected frames to all abnormal frames in ground truth. This is mathematically denoted

by TPR = TP/(TP + FN) where TP is the number of true positive frames, and FN is the

number of false negative frames. On the other hand, the rate of incorrectly detected frames to all

normal frames in ground truth is the FPR. That is FPR = FP/(FP + TN) where FP is the

number of false positive frames, and TN is the number of true negative frames. We also measure

the computational time required for testing sequences using the proposed framework. This evaluates

the realtime capabilities of the system.

8.4.3 Results and comparison with state-of-the-art

We experimentally set the truncation level for both the infinite GD HMMs and the infinite GD

HMMs with simultaneous feature selection atK = 100 with v = 10e−6 and ω = 0.1. In Table 3.1,

we compare quantitatively the proposed method and its computational time with various relevant

state-of-the-art anomaly detection methodologies. We report the EER, the system configuration, the

frame processing time, and the implementation language used. Our proposed framework performs

competitively with near real-time processing. Note that the processing times of the proposed method

are dependent on the programming methods employed such as the use of parallel computing and

optimization techniques at large, and hence may be further improved for production.

A simple classifier is built based on the distance of the nearest neighbor of the query feature
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Table 8.2: Comparison of the proposed framework with state-of-the-art methods for anomaly de-
tection.

Method EER-ped1 EER-ped2 Processing time (sec/frame) Configuration and language

[185] 31.0% 30.0% 0.1 CPU: 2.6GHz, RAM: 3GB

[186] 32.4% 28.5% 5.1 CPU: 2GHz (dual core), RAM: 4GB, MATLAB

[187] 19.9% N/A 1.3 CPU: 3.4GHz, RAM: 4GB, MATLAB

[188] 2.9% 9.9% N/A N/A

[189] 27.0% 26.9% 1.2 CPU: 3.5GHz, RAM: 16GB, C++

[190] 17.8% 18.5% 1.2 CPU: 3.5GHz, RAM: 16GB, C++

[191] 24.0% 24.4% 0.4 CPU: 2.8GHz, RAM: 128GB

[192] N/A 19.0% 0.04 CPU: 3.5GHz, RAM: 8GB, MATLAB

HMMD [29] 28.9% 18.5% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

HMMGD [29] 29.0% 22.0% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

HMMBL [29] 29.0% 16.6% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

VBHMMD [94] 31.4% 12.5% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

VBHMMGD [94] 29.0% 13.8% 0.2 CPU: 3.4GHz, RAM: 5GB, MATLAB

iHMMGD - HOF (proposed) 17.1% 79.4% 0.004 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMGD - MBHx (proposed) 17.1% 79.4% 0.005 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMGD - MBHy (proposed) 17.1% 79.4% 0.005 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMGD - Fused (proposed) 18.0% 35.1% 0.006 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMGD (feature selection) - HOF (proposed) 17.7% 52.6% 0.004 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMGD (feature selection) - MBHx (proposed) 17.1% 72.2% 0.005 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMGD (feature selection) - MBHy (proposed) 17.1% 76.0% 0.005 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

iHMMGD (feature selection) - Fused (proposed) 28.4% 24.8% 0.006 CPU: 3.6GHz, RAM: 32GB, C++/MATLAB

to the features extracted in the training set and then compared to a threshold in [185]. This is an

approach that does not require training and hence is non-parametric. This relates it to the non-

parametric formulation of the proposed HMMs to extend to infinity. A Gaussian-based HMM ap-

proach is taken in [186] along with texture map and 3-D Harris features. This is related to our

proposed model as they both utilize HMMs. However, our proposed HMMs are infinite and based

on the GD distribution to better model proportional sequential data. Nonetheless, it serves to depict

the influence of the choice of emission probability on global performance.

[187] presents the Gaussian process regression for the modeling of frequent geometric patterns

between Spatial-Temporal Interest Points (STIP) and via 3-D-scale-invariant feature transforms.

[188] is closely related whereby graph features are computed for appearance and motion model-

ing via points of interest detected using 3-D Harris corner functions with a support vector machine

(SVM) for the classification. Nonetheless, the features are not exactly the same but this represents an

opportunity for potential future work whereby extracting graph features can be investigated for bet-

ter representation of the input video data and may hence improve the proposed model performance.
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Furthermore, the classification is performed with a discriminative model; i.e., support vector ma-

chines (SVM). This explains its low EER. On the other hand, no mention of the time taken of the

experiments was recorded. Histograms of oriented swarms for dynamic modeling with HOG for

appearance modeling are combined in [189] along with a SVM. A hierarchical approach via mix-

tures of dynamic textures and several spatial scales to build a model for normal event is proposed in

[190]. Spatio-temporal convolutional neural networks are fed with raw data of small spatiotemporal

video volumes selected using optical flow in [191] to capture appearance and motion information

for anomaly detection.

On the other hand, a combination of two local, spatial and temporal, self-similarity descriptors

with a global descriptor learned using autoencoders is utilized in [192]. A typical Baum-Welch

algorithm trained HMM approach is proposed in [29]. However, the HMMs are proportional in na-

ture, based on the Dirichlet (HMMD), GD (HMMGD), and Beta-Liouville (HMMBL) distributions,

and build upon the features proposed in [185]. It is then intriguing to observe that the use of HMMs

can radically improve the results as shown.

Finally, [94] presents an extension to [29] through the application of variational learning for the

proportional Dirichlet and GD HMMs denoted by VBHMMD and VBHMMGD, respectively, in

Table 8.2. The latter HMM methods are particularly relevant due to the use of proportional HMMs,

especially with variational learning. It is then interesting to contemplate the improvement in time

and EER by extending the model to infinity as well as the use of a different set of features.

Overall, it can be clearly observed that the proposed framework is efficient, robust, and nearly

realtime. While the proposed fusion is simple, it still significantly improves the results. This is

especially apparent for the infinite proposed GD HMM models of the UCSD ped2 dataset. This

depicts the complementary nature of the features chosen and reinforces the unity of the proposed

framework. The results also clearly illustrate how the use of the GD distribution can drastically

enhance the performance of the variational inference based infinite proportional HMMs. This is

due to the more flexible covariance structure of the GD distribution in comparison to the enforced

negative covariance in the Dirichlet.

The influence of the fusion algorithm is particularly desired in degraded circumstances whereby

the EER of each of the independent features is relatively high. However, when the results are
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acceptable as in the case of the ped1, use of the fusion technique is not advised given its lower

resultant EER. Nonetheless, the use of the infinite GD HMM approach improves the results.

We also observe that the EER is lower for the ped1 dataset for our proposed framework due

to the longer time recorded for each of the video samples and the total available sequences. This

enables the framework to better capture the variability in normal events and hence reduces the

false alarm rate. On the other hand, incorporation of the simultaneous feature selection approach

significantly ameliorates performance on the ped2 dataset. This is expected given the improvement

consequences of removing noisy and reduntant features from the data. However, this is surprisingly

not the case for the ped1 dataset. We find this might be due to the population sample of the features

themselves. Indeed, some features may have proven to be significant in the training set whereas not

so for the testing set.

We also report the states which have been effectively removed in the proposed infinite HMMs.

That is the optimum number of states have been determined automatically which addresses an area

of active research in HMMs. For the HOF infinite HMMs, five states (93, 94, 97, 98, and 100) were

required for the modeling of the data for both datasets with the rest are inactive. Moreover, only

two states (24 and 25) were needed for the MBHx and MBHy features. This is explained by the

high modeling capabilities of the proposed iHMMs given the transformation of the GD into Beta

distributions for actualization of feature independence which is merely an assumption for other

distributions. Note that this flexibility in the iHMM setup allows for seamless optimum model

construction.
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Chapter 9

Online Learning for Dirichlet and

Beta-Liouville Hidden Markov Models

The two most powerful warriors are patience and time.

Leo Tolstoy, War and Peace

In this chapter, we address the deployment of the proposed models. In particular, we investigate

the problem of online learning and present it for the Dirichlet and the Beta-Liouville hidden Markov

models. The validation is performed on the action recognition application.

9.1 Introduction

Many ubiquitous applications rely on automatic action recognition (AR). These include video

surveillance [74], video retrieval [73], and video labeling [74]. Consequently, research attention in

AR has increased in recent years. Typically, classification of a given video or image sequence or

its assignment to a set of predefined classes is the objective of automatic AR [75]. The task is then

based on lower level processing stages such as tracking and segmentation [76].

Different approaches for AR have been studied throughout the years with significant advances

made in the past decades [77]. Most of the developed AR approaches are tested and implemented

for the visible spectrum due to its popularity and availability [78]. Moreover, an abundant number

of visible spectrum AR datasets is available such as UCF101 [80], KTH [81], and Weizmann [82].
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Indeed, AR in general is fairly well-studied in the visible light spectrum with multiple successful

applications [79]. Nonetheless, many challenges persist that limit its accuracy due to the need for the

recognition of the exact action carried out. In surveillance systems particularly where both violent

as well as non-violent actions should be taken into account.

A hidden Markov model (HMM) [3] is one of the machine learning approaches that may be used

for AR. It is one of the most well-established mathematical formulations for time series modeling

[3]. Its structure is formed primarily from a Markov chain of latent variables with each corre-

sponding to the conditioned observation. A Markov chain is one of the least complicated ways to

model sequential patterns in time series data. It allows us to maintain generality while relaxing the

independent identically distributed assumption [12].

Early works mostly focused on the use of HMMs for discrete and Gaussian data [10]. A pri-

mary area of HMM research lies in modeling state emission probabilities of proportional data, i.e.

strictly positive data that sum up to one. Multivariate proportional time series data naturally re-

sult from numerous preprocessing procedures, such as the commonly used histograms, and occur

in various pattern recognition domains. Hence, in this paper, we utilize the Beta-Liouville (BL)

distribution which has been proven to consistently outperform the Dirichlet distribution; i.e., the

most commonly used distribution for the modelling of proportional data [48]. Furthermore, a HMM

is usually trained with the Baum-Welch method; a variation of the Expectation Maximization al-

gorithm. The proposed HMM is trained using a variational learning approach which incorporates

prior knowledge into the training process [92]. Employing a variational Bayesian inference tech-

nique is advantageous as it overcomes the drawbacks of the Baum Welch algorithm. These include

over-fitting or underfitting and sub-optimal generalization performance [46].

The main contributions of our work can be summarized as: (i) we propose the first variational

learning based online HMM framework, to the best of our knowledge, for proportional data model-

ing of video data for continuous adaptation of the model to better fit the data and take into account

all instances of a class; (ii) we implement the proposed online framework for the first time on video

data, in particular on action recognition data for video surveillance; (iii) we compare the proposed

method to the batch setup as well as the proportional data baseline; i.e., using the Dirichlet distribu-

tion with both the proposed online and the batch frameworks. This includes the first evaluation of
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the online Dirichlet-based HMMs on the IOSB dataset.

9.2 Methods

9.2.1 Hidden Markov Models

A HMM is characterized by an underlying stochastic process with K hidden states that form a

Markov chain. Each of the states is governed by an initial probability π, and the transition between

the states at time t can be visualized with a transition matrix B = {bii′ = P (st = i′|st−1 = i)}. In

each state st, an observation is emitted corresponding to its distribution which may be discrete or

continuous. This is the observable stochastic process set.

The emission matrix of the discrete observations can be denoted by Ξ = {Ξi(m) = P (Ot =

ξm|st = i)}where [m, t, i] ∈ [1,M ]×[1, T ]×[1,K], and the set of all possible discrete observations

Ξ = {ξ1, ..., ξm, ..., ξM}. On the other hand, the respective parameters of a probability distribution

define the observation emission for a continuous observed symbol sequence. The Gaussian distri-

bution is the most commonly used and is defined by its mean and covariance matrix κ = (µ,Σ)

[10, 14, 15]. Consequently, a mixing matrix must be defined C = {cij = P (mt = j|st = i)}

in the case of continuous HMM emission probability distribution where j ∈ [1,M ] such that M

is the number of mixture components in set L = {m1, ...,mM}. Hence, a discrete or continuous

HMM may be defined with the following respective parameters λ = {B,Ξ, π} or {B,C,κ, π}.

In this work, we consider the latter case which is defined as a proportional mixture model of BL

distribution.

In D dimensions, a BL distribution is defined as Eq. (185) where ~α = (α1, ..., αD), α, and

β are the real and strictly positive parameters of the BL distribution, Γ(t) =
∫∞

0 xt−1e−xdx is

the Gamma function, and ~x is a D dimensional vector whereby ~x ∈ IRD
+ and

∑D
d=1 xd < 1. For

simplification, we also denote Λ = [~α, α, β]; the parameters of the BL distribution.

9.2.2 Online Setup for Variational Learning of Hidden Markov Models

In order to establish a fully adaptable surveillance system for maximum performance, an online

framework has to be setup for HMM. This allows the system to retrain automatically as new data
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becomes available; hence, taking into account all the various variations of the class in time as well

as increasing the number of training instances for the HMM. This allows seamless employment of

the proposed model for highly adaptable security and surveillance system.

The proposed online framework constitutes of two stages. The first stage is referred to as batch

training whereby the HMM is trained with pre-existing training data. These parameters may be

computed with the equations in an offline manner. The next stage then revolves around incremental

training of the existing model to take into account new data that becomes available in time. In action

recognition application for surveillance, this involves realtime videos that are recorded then fed into

the system for classification of the action.

The online phase consists first of calculating the likelihood of a given length of incoming video

(for instance from a surveillance camera) to classify the sequence. Once a class has been determined,

the data is then used to train a separate BL HMM whose parameters are used to update the pretrained

BL HMM of the corresponding class with a weighted average. The weight of the newly trained

parameters is assigned according to the length, τ , of the newly available video sequence that is

classified and is now incorporated into the training set after classification. On the other hand, the

old parameters have a weight corresponding to the training data that has been used thus far. This

formulation has the advantage of continuously reducing the weight of incoming data to the original

training data. This effectively maintains the integrity of the model in case of a misclassified new

entry or an anomaly data. Finally, the architecture of our proposed online HMM framework can be

observed in Fig. 9.1.

The estimation of the HMM derived with the variational Bayesian approach uses the posterior

probabilities through the assignment of parameter priors for integrating out the marginal likelihood

of the data. This translates into regarding all the model parameters as random variables. The

complete data likelihood of the HMM is then mathematically expressed as:

p(X) =

∫
dπdBdCdκ

∑
S,L

p(B,C, π,κ)p(X,S,L|B,C, π,κ) (251)

However, this equation is intractable, so we introduce an approximate distribution q(B,C, π,κ, S, L)
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Figure 9.1: Proposed online framework for proportional hidden Markov modeling of action recog-
nition videos for surveillance applications.

of the true posterior p(B,C, π,κ, S, L|X) for a lower bound, L(q), of KL Kullback-Leibler dis-

tance between the true posterior and the approximate distribution [92, 46].

The computation of the exact posterior distribution is intractable, so we only account for a

certain family of distributions. As per the studied assumptions in [46, 95, 93, 96], q may be

factorized; i.e., q(B,C, π,κ, S, L) = q(B)q(C)q(π)q(κ)q(S,L) where q(κ) = q(�α)q(α)q(β),

with a similar factorization applying to p; i.e., the true distribution. Since the coefficients of

the parameters π, B, and C are all less than one, strictly positive, and with a sum result equal

to one for each row summation, their priors are chosen as Dirichlet distributions. For instance

p(π) = D(π|φπ) = D(π1, ..., πK |φπ
1 , ..., φ

π
K). Similarly, a conjugate prior must also be defined

over the emission distribution; the BL parameters �α, α, and β. We adopt the Gamma distribution

G(.) for positive conjugate prior approximations of the latter parameters, as we previously investi-

gated by [46]. In the online approach, the corresponding pair hyperparameters u, g, h, e, r, and v
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that are strictly positive are repeatedly evaluated in each incremental stage. These are denoted by:

u∗ijl =
L
τθL

uijl +
P∑
p=1

〈Zpij〉ᾱijl(Ψ

(
D∑
d=1

ᾱijd

)
−Ψ(ᾱijl)+

D∑
d=1,d6=l

Ψ′

(
D∑
d=1

ᾱijd

)
ᾱijd(〈ln(αijd)〉 − ln(ᾱijd)))


t

+
τθ

τθL
(
u∗ijl
)
t+1

(252)

v∗ijl =
L
τθL

vijl − P∑
p=1

〈Zpij〉

(
ln(Xpl)− ln

(
D∑
d=1

Xpd

))
t

+
τθ

τθL
(
v∗ijl
)
t+1

(253)

g∗ij =
L
τθL

gij +

P∑
p=1

〈Zpij〉(Ψ(ᾱij + β̄ij)−Ψ(ᾱij) + β̄ij

Ψ′(ᾱij + β̄ij)(〈ln(βij)〉 − ln(β̄ij)))ᾱij
)
t
+

τθ

τθL
(
g∗ij
)
t+1

(254)

h∗ij =
L
τθL

hij − P∑
p=1

〈Zpij〉ln

(
D∑
d=1

Xpd

)
t

+
τθ

τθL
(
h∗ij
)
t+1

(255)

e∗ij =
L
τθL

eij +

P∑
p=1

〈Zpij〉(Ψ(ᾱij + β̄ij)−Ψ(β̄ij) + ᾱij

Ψ′(ᾱij + β̄ij)(〈ln(αij)〉 − ln(ᾱij)))β̄ij
)
t
+

τθ

τθL
(
e∗ij
)
t+1

(256)
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r∗ij =
L
τθL

rij − P∑
p=1

〈Zpij〉ln

(
1−

D∑
d=1

Xpd

)
t

+
τθ

τθL
(
r∗ij
)
t+1

(257)

where θ denotes the position of the current feed of data in reference to the start time of the

realtime feed which we consider to be the median frame number, Zpij = 1 if Xpd belongs to state

i and mixture component j and Zpij = 0 otherwise; i.e., it is an indicator function. Then, the

weights of the data samples with respect to each mixture component are defined within the HMM

framework. Consequently, 〈Zpij〉 =
∑T

t=1 γ
C
pijt = p(s = i,m = j|X) and the responsibilities

are computed via the forward-backward algorithm [10]. i and j are fixed for P observation vectors

where l ∈ [1, D], i ∈ [1,K], and j ∈ [1,M ]. Ψ(.) is the digamma function, and Ψ′(.) is the

trigamma function; the logarithmic first and second derivatives of the Gamma function respectively.

L is the number of pre-existing frames used for the batch training. The ∗ superscript implies the

optimization of each of the corresponding parameters that the symbol is presented upon and 〈.〉

denotes the expectation with respect to the optimized parameter. It is also noteworthy to mention

that the online update of the parameters expressed by the second additive partition in each of the

equations is only executed for the update of the corresponding HMM of the selected label of the

current feed of data. The definitions of the expected values of the aforementioned parameters are as

follows:

ᾱijl =
u∗ijl
v∗ijl

, ᾱij =
g∗ij
h∗ij

, β̄ij =
e∗ij
r∗ij
, 〈ln(αijl)〉 = Ψ(u∗ijl)− ln(v∗ijl) (258)

〈ln(αij)〉 = Ψ(g∗ij)− ln(h∗ij), 〈ln(βij)〉 = Ψ(e∗ij)− ln(r∗ij) (259)

The optimizations of q(B), q(C), and q(π) are applicable to other continuous HMMs as they

are independent of the emission distribution used. Therefore, these have already been studied in

[46, 95, 90]. As such, the reader is referred to the aforementioned references for further details.

q(S,L) is then estimated in the E-step with the previously evaluated parameters now fixed and
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utilizing the following definitions:

π∗i , exp
[
〈ln(πi)〉q(π)

]
, π∗i = exp

[
Ψ(ωπi )−Ψ(

∑
i

ωπi )

]
,

b∗jj′ , exp
[
〈ln(bjj′)〉q(B)

]
, b∗jj′ = exp

Ψ(ωBjj′)−Ψ(
∑
j′

ωBjj′)

 ,
c∗ij , exp

[
〈ln(cij)〉q(C)

]
, c∗ij = exp

Ψ(ωCij)−Ψ(
∑
j

ωCij)


(260)

For brevity’s sake, we refer the reader to [46] for our previously studied derivations of the variational

approximation of the BL-based HMM.

9.3 Experimental Setup and Results

The visible IOSB dataset consists of action videos that have been recorded at a sunny summer

day of ten people; eight males and two female in the age range of 31.2±5.7 [99]. We test our

proposed algorithm on three classes of the dataset; namely, film, point, and throw. Each of the

classes has ten videos with sample frames shown in Fig. 3.3. A 25 frames per second frame rate

of the captured actions in visible spectrum is generated by AXIS Q5534 and AXIS Q1755 cameras

with a resolution of 800×600 pixels.

We represent each of the AR videos with a series of extracted histogram of optical flow (HOF)

and motion boundary histogram (MBH) descriptors which may be detected using any interest point

detector [100]. In our experiments, we extract the points along the motion trajectory as in [101].

This set of extracted features represent the training and testing data with a leave-one-out cross

validation scheme. A HMM is then trained for each class using the aforementioned data. For the

testing stage, the likelihood of each testing video sequence is calculated by the respective three

trained HMMs and the class label is assigned according to the maximum resulting likelihood.

We train each HMM with each set of training features for each of the classes nine times in order

to ensure robustness of the methodology on the IOSB dataset. We report our results as an average

across the training times for the offline BL-based trained HMMs for benchmarking purposes. It is

noteworthy to mention that the number of states and the respective number of mixture components
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Table 9.1: Comparison of the accuracy of the Dirichlet (Dir), Beta-Liouville (BL), and the proposed
online HMMs for the action recognition video data. Results of the proposed models are highlighted
in italics.

Method Accuracy
BL HMM (HOF) 33.33%
BL HMM (Horizontal MBH) 35.00%
BL HMM (Vertical MBH) 38.33%
Online Dir HMM (HOF) 77.03%
Online Dir HMM (Horizontal MBH) 33.40%
Online Dir HMM (Vertical MBH) 64.53%
Online BL HMM (HOF) 62.80%
Online BL HMM (Horizontal MBH) 36.04%
Online BL HMM (Vertical MBH) 71.57%

of the proposed BL HMM for this application have been set experimentally to K = 2 and M = 2

respectively. In the proposed online approach, we train the HMMs on 70% of the data in the batch

stage before launching the incremental phase.

The results of the trained offline BL HMM models on the IOSB visible spectrum frames may

be observed in Fig. 9.2 for the HOF, horizontal and vertical MBH features. Accuracy of the models

is not optimum due to the characteristics of the visible spectrum that include high sensitivity to

shadow, background clutter, occlusion, and changes in illumination. Nonetheless, these results are

improved dramatically in the online setup due to the gradual adjustment of the parameters that

allows for better fitting of the data by the proposed model. However, the BL-based HMM performs

slightly better than the Dirichlet due to its superior modelling capabilities that overcome the negative

covariance constraint that is enforced by the Dirichlet. Overall, the proposed system shows promise

for efficient deployment of explainable machine learning models for surveillance, especially given

the improvements that occur as more data is added.
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Figure 9.2: Confusion matrices of batch BL HMM trained with HOF (left), horizontal MBH (mid-
dle), and vertical MBH (right) features extracted from the IOSB visible spectrum frames.
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Chapter 10

Conclusion and Future Work

One never notices what has been done; one can only see what remains to be done.

Marie Curie

10.1 Summary

A HMM is a double stochastic generative model that is appropriate for sequence data or time

series modeling. It is characterized by a number of hidden states, the initial probabilities to start in

each, and the associated discrete or continuous distributions of the emitted observations. It is highly

suited for modeling dynamic data such as videos and for spatiotemporal object modeling.

Given the recent increased research interest in HMMs, we aimed to address five of the main

modern HMM research challenges and state-of-the-art techniques to address them: (i) methods

for accurate estimation of the model; (ii) choice of the appropriate emission distributions based

on the nature of the data, especially proportional; (iii) dynamic determination of the structure of

the HMM based in a data-driven manner for best fit; (iv) simultaneous feature selection paradigm

for finite and infinite proportional HMMs; (v) incremental learning of HMM parameters for online

deployment. In this thesis, we developed and implemented various novel proportional HMMs to

tackle these issues successfully. Validation of the proposed models was carried out on multiple

computer vision tasks. Namely, infrared action recognition, visible spectrum action recognition,

multimodal action recognition, and anomaly detection in videos. We also successfully impacted
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the occupancy estimation and detection research community through the introduction of a novel

experimental setup for HMMs.

10.2 Conclusions

The study in this research led to several interesting new research investigations and consequent

conclusions:

• We tackled the estimation and emission distribution choice problems through the derivation

and implementation of a variational Bayesian learning technique that utilized the BL distribu-

tion. The use of the BL distribution for proportional time series or sequential data modeling

with variational Bayesian-based HMMs was a promising expansion to the state-of-the-art.

Indeed, in addition to our proposed research, this has also been proven in [94] for the incor-

poration of other proportional distributions into HMMs with variational learning.

• Next, we focused on developing a Maximum A Posteriori (MAP)-based approach for effective

parameter estimation. The advantage of using MAP approximation instead of the traditional

Baum Welch algorithm lies in its improved performance sans the computational overhead that

other approaches, such as variational learning, impose. We validate the proposed models on

dynamic texture classification and infrared action recognition. We compare our results with

the Baum Welch approach as well as benchmark against state-of-the-art methods. Accuracy

improvements clearly highlight the significance of deriving and applying the MAP approx-

imation as well as the use of an appropriate distribution corresponding to the nature of the

data.

• We tackled the difficult challenge of choosing the number of states. HMMs can be finite or

infinite [178]. In finite HMMs, the number of states is usually determined as a result of an

exhaustive search for the appropriate count. This can be achieved through the implementation

of infinite HMMs through the means of non-parametric Bayesian methods [179].

• From experimental results, we have shown that applying proportional HMMs correspond-

ing to the nature of the input data leads to improved model performance. That is when the
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Gaussian distribution and its mixture model are no longer the ideal choice for the emission

distribution modeling of the sequential data at hand. Motivated by these facts, we investi-

gated the Dirichlet, the Beta-Liouville, and the Generalized Dirichlet distributions in infinite

HMMs. Furthermore, development and testing of the proposed real-time unusual event de-

tection also serve as interesting investigations particularly in the domains of public security

and safety.

• The majority of research in HMMs has been primarily concerned with the parameter learning

of the model. However, such approaches have several limitations whereby all the features are

apriori assumed to have the same weight across the various mixture components as well as the

HMM states. Intuitively, the higher the number of features used to represent a given dataset,

the higher the expected efficiency of the model. However, some features can be noisy, re-

dundant, or uninformative in practice and hence can hinder the clustering performance [153].

The presence of many irrelevant features introduces a bias resulting in unreliable homogene-

ity measures. Feature selection is the process of reducing the number of collected features to

a subset of relevant ones. In addition to increasing the performance of the models, it also aids

in improving model interpretation and decreasing the risk of overfitting [154]. Hence, we sug-

gest the incorporation of a feature selection paradigm [151, 152]. This is a doubly impactful

conclusion as we have incorporated it in both finite and infinite proportional HMMs.

• Most of the research on HMMs is reported in an offline setting. That is once the training

of the model is completed, any new testing data is only classified with the model but the

parameters do not update to benefit from the availability of new training data. On the other

hand, online learning takes into account such a scenario whereby the existing model is capable

of incorporating the newly classified data without having to completely retrain the model from

scratch.

10.3 Future Work

Various multiple directions can be carried out as future works building on this thesis. The

following is a list of possibilities:
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(1) Online deployment of Generalized Dirichlet based HMMs and the incorporation of feature

selection.

(2) Carrying out the framework investigations performed in this thesis for proportional data on

other data types. That would require the change of the emission distribution to fit the nature

and statistical properties of the data accordingly.

(3) Investigating the proposed approaches and models on other applications. For instance, apply-

ing it in some of the mentioned domains in Chapter 1.

(4) Utilizing deep learning techniques in order to enable the modelling of a large amount of

data. An interesting idea would be a combination of both the proposed approaches with these

techniques.

(5) Though computationally expensive, sampling methods such as the Markov Chain Monte

Carlo technique are a novel venue of investigation using the proposed models.
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[64] V. L. Erickson, M. A. Carreira-Perpiñán, and A. E. Cerpa, “Occupancy modeling and pre-

diction for building energy management,” ACM Trans. Sen. Netw., vol. 10, no. 3, May 2014.

[65] B. Dong and B. Andrews, “Sensor-based occupancy behavioral pattern recognition for energy

and comfort management in intelligent buildings,” 2009, pp. 1444–1451, 11th International

IBPSA Conference - Building Simulation 2009, BS 2009 ; Conference date: 27-07-2007

Through 30-07-2007.

[66] T. Vafeiadis, S. Zikos, G. Stavropoulos, D. Ioannidis, S. Krinidis, D. Tzovaras, and K. Mous-

takas, “Machine learning based occupancy detection via the use of smart meters,” in 2017

International Symposium on Computer Science and Intelligent Controls (ISCSIC), 2017, pp.

6–12.

[67] A. Khan, J. Nicholson, S. Mellor, D. Jackson, K. Ladha, C. Ladha, J. Hand, J. Clarke,

P. Olivier, and T. Ploetz, “Occupancy monitoring using environmental and context sensors

and a hierarchical analysis framework,” in BuildSys ’14, M. Srivastava, Ed., United States,

Nov. 2014, pp. 90–99, ACM.

[68] B. Qolomany, A. Al-Fuqaha, A. Gupta, D. Benhaddou, S. Alwajidi, J. Qadir, and A. C. Fong,

“Leveraging machine learning and big data for smart buildings: A comprehensive survey,”

IEEE Access, vol. 7, pp. 90316–90356, 2019.

191



[69] B. Dong, D. Yan, Z. Li, Y. Jin, X. Feng, and H. Fontenot, “Modeling occupancy and behavior

for better building design and operation—a critical review,” Building Simulation, vol. 11, no.

5, pp. 899–921, Oct 2018.

[70] L. M. Candanedo, V. Feldheim, and D. Deramaix, “A methodology based on hidden markov

models for occupancy detection and a case study in a low energy residential building,” Energy

and Buildings, vol. 148, pp. 327 – 341, 2017.

[71] L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven prediction models of energy

use of appliances in a low-energy house,” Energy and Buildings, vol. 140, pp. 81 – 97, 2017.

[72] J. Pohle, R. Langrock, F. M. van Beest, and N. M. Schmidt, “Selecting the number of states

in hidden markov models: Pragmatic solutions illustrated using animal movement,” Journal

of Agricultural, Biological and Environmental Statistics, vol. 22, no. 3, pp. 270–293, 2017.

[73] M. Ramezani and F. Yaghmaee, “A review on human action analysis in videos for retrieval

applications,” Artif. Intell. Rev., vol. 46, no. 4, pp. 485–514, Dec. 2016.

[74] C.-B. Jin, S. Li, T. D. Do, and H. Kim, “Real-time human action recognition using cnn

over temporal images for static video surveillance cameras,” in Advances in Multimedia

Information Processing – PCM 2015, Y.-S. Ho, J. Sang, Y. M. Ro, J. Kim, and F. Wu, Eds.,

Cham, 2015, pp. 330–339, Springer International Publishing.

[75] Z. Moghaddam and M. Piccardi, “Training initialization of hidden markov models in human

action recognition,” IEEE Transactions on Automation Science and Engineering, vol. 11, no.

2, pp. 394–408, April 2014.

[76] M. H. Kabir, M. R. Hoque, K. Thapa, and S.-H. Yang, “Two-layer hidden markov model

for human activity recognition in home environments,” International Journal of Distributed

Sensor Networks, vol. 12, no. 1, pp. 4560365, 2016.

[77] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition: A survey,”

Image and Vision Computing, vol. 60, pp. 4 – 21, 2017, Regularization Techniques for High-

Dimensional Data Analysis.

192



[78] M. Vrigkas, C. Nikou, and I. A. Kakadiaris, “A review of human activity recognition meth-

ods,” Frontiers in Robotics and AI, vol. 2, pp. 28, 2015.

[79] Y. Liu, Z. Lu, J. Li, C. Yao, and Y. Deng, “Transferable feature representation for visible-to-

infrared cross-dataset human action recognition,” Complexity, vol. 2018, 2018.

[80] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes

from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[81] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: A local svm approach,” in

Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04) Volume

3 - Volume 03, Washington, DC, USA, 2004, ICPR ’04, pp. 32–36, IEEE Computer Society.

[82] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as space-time shapes,”

Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 12, pp. 2247–2253,

December 2007.

[83] C. Gao, Y. Du, J. Liu, L. Yang, and D. Meng, “A new dataset and evaluation for infrared

action recognition,” in CCF Chinese Conference on Computer Vision. Springer, 2015, pp.

302–312.

[84] F. El Baf, T. Bouwmans, and B. Vachon, “Fuzzy statistical modeling of dynamic backgrounds

for moving object detection in infrared videos,” in 2009 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, June 2009, pp. 60–65.
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[86] N. Tomašev and M. Radovanović, “Clustering evaluation in high-dimensional data,” in

Unsupervised Learning Algorithms, pp. 71–107. Springer, 2016.

[87] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of efficient initialization

methods for the k-means clustering algorithm,” Expert Systems with Applications, vol. 40,

no. 1, pp. 200 – 210, 2013.

193



[88] W. Fan and N. Bouguila, “Learning finite beta-liouville mixture models via variational bayes

for proportional data clustering,” in Proceedings of the Twenty-Third International Joint

Conference on Artificial Intelligence. 2013, IJCAI ’13, pp. 1323–1329, AAAI Press.

[89] L. Chen, D. Barber, and J.-M. Odobez, “Dynamical dirichlet mixture model,” Idiap-RR

Idiap-RR-02-2007, IDIAP, 2007.

[90] E. Epaillard and N. Bouguila, “Variational bayesian learning of generalized dirichlet-based

hidden markov models applied to unusual events detection,” IEEE Transactions on Neural

Networks and Learning Systems, pp. 1–14, 2018.

[91] S. P. Chatzis, D. I. Kosmopoulos, and T. A. Varvarigou, “Robust sequential data modeling

using an outlier tolerant hidden markov model,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 31, no. 9, pp. 1657–1669, Sept 2009.

[92] W. Fan and N. Bouguila, “Online learning of a dirichlet process mixture of beta-liouville

distributions via variational inference,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 24, no. 11, pp. 1850–1862, Nov 2013.

[93] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to variational

methods for graphical models,” Mach. Learn., vol. 37, no. 2, pp. 183–233, Nov. 1999.

[94] E. Epaillard and N. Bouguila, “Variational bayesian learning of generalized dirichlet-based

hidden markov models applied to unusual events detection,” IEEE Transactions on Neural

Networks and Learning Systems, pp. 1–14, 2018.

[95] S. P. Chatzis and D. I. Kosmopoulos, “A variational bayesian methodology for hidden markov

models utilizing student’s-t mixtures,” Pattern Recognition, vol. 44, no. 2, pp. 295–306, 2011.

[96] D. J. C. MacKay, “Ensemble Learning for Hidden Markov Models,” Technical Report, , no.

1995, pp. 0–6, 1997.

[97] Z. Ma and A. Leijon, “Bayesian estimation of Beta mixture models with variational infer-

ence,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 33, no. 11, pp. 2160–2173, 2011.

194



[98] C. Gao, Y. Du, J. Liu, J. Lv, L. Yang, D. Meng, and A. G. Hauptmann, “Infar dataset: Infrared

action recognition at different times,” Neurocomputing, vol. 212, pp. 36 – 47, 2016, Chinese

Conference on Computer Vision 2015 (CCCV 2015).

[99] B. Hilsenbeck, D. Münch, A.-K. Grosselfinger, W. Hübner, and M. Arens, “Action recogni-
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