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ABSTRACT

Planning and Design for Intelligent and Secure Integration of Electric

Vehicles into the Smart Grid

Mohammad Ekramul Kabir, Ph.D.

Concordia University, 2021

The transition to electric vehicles (EVs) is gaining momentum around the world and

government initiatives to accelerate this transition range from major tax exemptions,

lower insurance payments to convenient parking incentives at shopping malls. The

major drivers for this acceleration are the rising awareness by the public for maintain-

ing a clean environment, reducing pollutant emissions, breaking dependencies on oil,

as well as tapping into cleaner sources of energies. EVs acceptance however is hin-

dered by several challenges; among them is their shorter driving range, slower charging

rates, and the ubiquitous availability of charging locations, collectively contributing to

higher anxieties for EVs drivers. Governments of developed countries as well as major

car manufacturers are taking solid steps to address these challenges and set ambitious

goals to make EVs the major transportation mode within few years. Consequently,

a significant number of EVs is going to connect to the existing smart grid and hence,

the load pattern is expecting a paradigm shift. This immense load will challenge the

generation, transmission and distribution sector of the grid along with being a poten-

tial cyber-physical attack platform. To attain a graceful EV penetration for curtailing

GHG emission, along with the socioeconomic initiatives, an extensive research is re-

quired, especially to mitigate the range anxiety and ameliorate the load congestion

on the grid. As a consequence, to reduce the range anxiety, we present a two-stage

solution to provision and dimension a DC fast charging station (CS) network for the

anticipated energy demand and that minimizes the deployment cost while ensuring a

certain quality of experience for charging e.g., acceptable waiting times and shorter

travel distances to charge. This solution also maintains the voltage stability by con-

sidering the distribution grid capacity, determining transformers’ rating to support

peak demand of EV charging and adding a minimum number of voltage regulators

based on the impact over the power distribution network. We propose, evaluate and
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compare two CS network expansion models to determine a cost-effective and adaptive

CSs provisioning solution that can efficiently expand the CS network to accommo-

date future EV charging and conventional load demands. Though an adequate fast

charging network may assist to reduce the range anxiety and propel the EV market,

catering this large number of EVs using fuel based conventional grid actually shifts

the carbon footprint from the transportation sector to the power generation sector.

As a consequence, green energy needs to be promoted for EV charging. However, the

intermittent behavior of renewable energy (RE) generation challenges to maintain a

RE based stand alone CS. In order to address this issue, we consider a photovoltaic

(PV) powered station equipped with an energy storage system (ESS), which is as-

sumed to be capable of assigning variable charging rates to different EVs to fulfill

their demands inside their declared deadlines at minimum price. To ensure fairness,

a charging rate dependent pricing mechanism is proposed to assure a higher price for

enjoying a higher charging rate. The PV generation profile and future load request

are forecasted at each time slot, to handle the respective uncertainties. Whatever, the

energy source is green or not of a CS, a static CS cannot offer the flexibility to charge

an EV at any place at any time especially for an emergency case. Fortunately, the

bidirectional energy transferring capability between vehicles (i.e., vehicle to vehicle

(V2V)) might be a solution to charge an EV at any place and at any time without

leaning on a stationary CS. Hence, we assume a market where charging providers each

has a number of charging trucks equipped with a larger battery and a fast charger

to charge a number of EVs at some particular parking lots. We formulate an integer

linear program (ILP) to maximize the number of served EVs by determining the op-

timal trajectory and schedule of each truck. Owing to its complexity, we implement

Dantzig-Wolfe decomposition approach to solve this. However, to build a prolific EV

charging ecosystem, all its entities (e.g., EVs, CSs and grid) have to be connected

through a communication link and that unveils a new cyberphysical attack surface.

As a consequence, we exploit the abundance of Electric Vehicles (EVs) to target the

stability of the power grid by presenting a realistic coordinated switching attack that

initiates inter-area oscillations between different areas of the power grid and assess the

dire consequences over the power system. Finally, a back propagation neural network

(BPNN) technique is used in a proposed framework to detect such switching attacks

before being executed.
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Chapter 1

Introduction

1.1 Overview and Objectives

The recent proliferation in the market of Electric Vehicles (EVs) has been a direct

response to recommendations by the Intergovernmental Panel on Climate Change

(IPCC) which suggested a reduction in carbon emission by 45% from 2010 immedi-

ately, and 100% by 2050 [83]. This is encouraging since the transportation sector

contributes 14% of the total global greenhouse gases (GHG) emissions [42] and its

electrification is an important and critical step in the right direction. Esteeming this

preeminence of smooth penetration of EVs, cities around the globe have set ambi-

tious goals along with a set of initiatives as offering rebate and tax exemptions in EV

purchasing, permitting EV drivers in using emergency lane, providing toll free facil-

ity, spreading public charging stations etc. to propel the EV market at a remarkable

pace. According to the International Energy Agency (IEA) Global EV Outlook 2019

report[150], the number of electric vehicles worldwide surpassed 5 millions, represent-

ing an increase of more than double from the year before. Analyzing the current

trend of EV adoption, two different studies (“New Policies Scenario” and “EV30@30

Scenario”) anticipated that by 2030 the number of EVs on the road would reach

1



more than 30 million globally. To achieve such ambitious target, many countries have

already put plans to ban fossil fueled vehicles, including Norway by 2025, Ireland,

Netherlands and Slovenia by 2030, France and UK by 2040[150]. Following the global

trend, Canadian EV market is also burgeoning. The second quarter report of Electric

Vehicle News monitors a 214% yearly growth [123].

Following the preset high ambitious goal, the EV market is expanding in every

day. Now the question is that “does the current EV adoption rate stipulate to attain

such targets”? Right now, this is not possible to provide a conclusive answer of such

a question, especially when Oslo, the EV capital has already ensured one third of

its newly registered cars are EVs [84] and this percentage is only 1.2% in USA [83].

On the other hand, China expected the EV share to be 12%–15% by 2020, while

the IEA projected it to be only 11.0% by 2030 [172], when in Netherlands, EV took

30.4% of total market share [114]. This uneven acceleration is also found in auto

mobile industry. It was reported by CNN on March, 2018 that Tesla had thousands

of customers lined up ready to buy a Model 3, but kept missing its production targets.

Tesla set a weekly target for its production of 2,500 for the end of the third quarter

of 2018 [57]. Conversely, in the same year Chevy Bolt could sold only 41% of the

target in USA [87]. Hence, it can be deduced that the EV market is not going in a

linear fashion and an extensive research is required to understand the market growth

to make it even for attaining the global target.

1.1.1 Technological Challenges

Though the philosophy of penetrating a large number of EVs is to mitigate the carbon

and GHG emission to ameliorate the alarming global warming, a mass awareness

regarding this issue cannot be expected from the majority of our population. As

a ramification, the market has to rely on the incentive policies and attractive EV

2



features. But the existing EV technology and offered incentives seem still inadequate

for its smooth adoption. The higher purchasing price of battery-powered vehicles is

considered one of the major sticking points in markets where EVs aren’t subsidized,

with electric cars significantly more expensive than their conventional counterparts.

In Australia, for example, the BMW i3 EV starts from almost $70,000, while the same

money would purchase much of the larger 3 Series range, including the 330e hybrid.

In Paris Motor Show, Klaus Frohlich, the head of research and development of BMW

identifies the battery sell price as the main barrier of inexpensive EV production [30].

As a ramification, the average battery capacity is incompetent to provide significant

mileage.

Consequently, this lower mileage of EVs increases the drivers’ range anxiety and

that incurs them to switch to EVs. As a revolutionary increment in battery capacity

might not be possible (especially in cheaper price), a wide spread charging infrastruc-

ture can be treated as a solution to ameliorate the range anxiety. An adequate and

strategical placement of public EV charging station (CS) can make opportunity to

charge EVs at any where, when at present more than 80% of EVs have to charge at

home [35]. But, spreading public CS network creates a chicken-egg dilemma due to

the higher initial investment cost in terms of money and time. Should we expand the

charging network to accelerate EV market or an expanded EV market encourages to

spread the network?

Moreover, the availability of charging opportunity may not be able to invigorate

the EV market due to the longer required time of EV charging. At present, three

types of chargers are available e.g. level 1 & level 2 AC chargers and level 3 DC fast

chargers (specification details will be discussed in section 2). Level 1 chargers require

8-16 hours to charge an EV battery when 4 to 8 hours is needed by level 2. Even,

the fast charger needs 20-30 minutes to reach 80% SoC (state of charge) of an EV
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battery. As a ramification, the charging time cannot be comparable with refuelling a

gasoline based car and public CS network cannot replicate the widely researched gas

station network. Hence, the average waiting time at a CS might be very long.

On the other hand, an enormous EV penetration asks for a mammoth energy

demand and over burdens the power distribution network. A study made in Lisbon

stated the concurrent attempt of 10% of current EVs at peak time may make a

significant degradation in voltage level of Portuguese power distribution network [100].

Beside this, feeding EVs by fuel based electricity plant actually shifts the carbon

foot print from the transportation sector to the power generation sector. Hence,

incorporating green energy along with a smart charging mechanism might be an

important key to accelerate the market.

The last but not the least major concern is that since, an interconnected EV

charging ecosystem is inevitable for sharing information among all associated entities

(e.g., EVs, CSs, central management system (CMS), grid etc.) for the smart and

efficient management of EV charging, this communication link is going to unveil

a new cyber-physical attack surface. By comprising the communication link, an

attacker may deploy different attack strategies which might have dire consequences

on EVs, CS providers or to the grid stability [16].

In order to address these issues, we overview the state of art and research chal-

lenges of introducing the avid, smart and secured mechanism of EV charging to reduce

range anxiety, minimize waiting time and charging price and curtailing the burden

over the power distribution network. An efficient and smart charging scheduling,

demand based energy allocation and dynamic energy pricing policy, strategical place-

ment of CSs, introducing renewable energy in EV charging, implementing bi-direction

energy transfer capability of EVs etc. can be implemented to overcome these closely

related barriers to ensure a graceful EV penetration.
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1.1.2 Thesis Objectives

This research work will investigate and address significant hurdles which hinder the

EV adoption rate and may impose a new cyber-physical threats to the smart grid.

Consequently, the technical, commercial, and residential community will benefit sig-

nificantly. In particular, this effort will:

• Study on the major obstacles which hinder people from adopting EV and de-

termine the range anxiety as one of the major reasons.

• Design an adequate CS network to mitigate the range anxiety and propose its

efficient expansion method.

• Investigate other auxiliary sources for EV charging to reduce the burden of the

grid from catering a large number of EVs and curtail the GHG emission.

• Investigate the IoT enabled EV charging ecosystem as a possible cyber-physical

attack surface mainly to create inter area oscillation in transmission link.

• Devise the vulnerability of widely used charging protocol, open charge point

protocol (OCPP) and propose neural network based detection mechanisms to

detect switching attack initiated from EV charging ecosystem.

This thesis work mainly starts to determine solutions for reducing the range anxi-

ety while identifying this anxiety as the major hindrance of the smooth penetration of

EVs. As a consequence, provisioning of a DC fast charging network for an urban area

like Montreal is addressed to mitigate the range anxiety and an efficient expansion

method is also proposed for this network to meet the future extended demand.

Though expanding the charging network might be a preliminary solution to attract

user to switch to EVs, this will impose a huge load to the grid and actually shifts

the carbon footprint from the transportation sector to the power generation sector.

5



As a consequence, auxiliary and green sources need to be integrated for charging

EVs. Hence, a photovoltaic (PV) based stand alone charging station (CS) is assumed

and a smart management system is proposed to handle the intermittent behavior of

PV generation and EV arrival uncertainty, while an EV can enjoy quicker charge by

paying more without violating others’ deadlines.

Since, the bidirectional energy transfer capability of EV makes this attractive to

compensate energy demand of grid (i.e., vehicle to grid (V2G)) or charge an EV at any

place and in any time (vehicle to vehicle (V2V)), by exploiting the V2V capability,

an EV can be charged at any time any place without depending on the static CS and

that could be a solution for emergency charging requirement. Hence, a scheduling

and routing problem is addressed for an assumed company which has a set of trucks

equipped with larger battery and vehicle to vehicle (V2V) enabled fast charger to

charge an EV.

However, the success of smart charging relies on the real time data sharing among

the entities of the charging ecosystem (e.g., EVs, CSs, grid etc.). As a ramification,

inter connected charging ecosystem could be a new attack surface to the grid, espe-

cially while the widely used charging protocol open charge point protocol (OCPP) is

still not matured enough [16]. Hence, the EV charging ecosystem is investigated as

a potential surface of switching attack to the transmission link and neural network

based detection algorithm is proposed to detect such attack attempts even before the

attack being executed.

1.2 Problem Statement and Motivation

To curtail the carbon emission from the transportation sector, a prompt transporta-

tion electrification has no alternative. Hence, to attain a large scale EV adoption,

a DC fast charger network is provisioned to mitigate the EV drivers’ range anxiety,
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while to lessen the dependency on the conventional fuel based power grid for EV

charging, auxiliary charging facilities are encouraged. As a consequence, a smart

charging mechanism is proposed for a PV based stand alone CS, while to dispense

a charging facility at any place at any time, an efficient routing and scheduling al-

gorithm is developed for a set of V2V enabled charging trucks. Since, the success of

a smart charging mechanism relies on an interconnected system, the cyber-physical

vulnerability is assessed in term of switching attack and a detection methodology is

proposed accordingly. The motivation and problem statements are as follows.

1.2.1 Demand-Aware Provisioning of Electric Vehicles Fast

Charging Infrastructure

The concept of smart city strives for greener technology to reduce carbon emission to

ameliorate the global warming. Following this footprint, the transportation sector is

experiencing a paradigm shift and the transition to EVs has prodigious plausibility

in reducing carbon emission. However, the anticipated EV penetration is hindered

by several challenges, among them are their shorter driving range, slower charging

rate and the lack of ubiquitous availability of charging locations, which collectively

contribute to range anxieties for EVs drivers. Meanwhile, the expected immense

EV load onto the power distribution network may degrade the voltage stability. To

reduce the range anxiety, we present a two-stage solution to provision and dimension

a DC fast charging station (CS) network for the anticipated energy demand and

that minimizes the deployment cost while ensuring a certain quality of experience

for charging e.g., acceptable waiting times and shorter travel distances to charge.

This solution also maintains the voltage stability by considering the distribution grid

capacity, determining transformers’ rating to support peak demand of EV charging

and adding a minimum number of voltage regulators based on the impact over the
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power distribution network. We propose, evaluate and compare two CS network

expansion models to determine a cost-effective and adaptive CSs provisioning solution

that can efficiently expand the CS network to accommodate future EV charging and

conventional load demands. We also propose two heuristic methods for this expansion

method and compare our solution with them.

1.2.2 Optimal Scheduling of EV Charging at a Solar Power

Based Charging Station

Though the transition to EVs has a prodigious plausibility in reducing GHG, EVs

acceptance is however hindered by several challenges, among them is their avidity

for quicker charging at lower price. Moreover, to attain the goal of curtailing GHG

emission, renewable energy (RE) needs to be promoted in EV charging. As a con-

sequence, we consider a photovoltaic (PV) powered station equipped with an energy

storage system (ESS), which is assumed to be capable of assigning variable charg-

ing rates to different EVs to fulfill their demands inside their declared deadlines at

minimum price. To ensure fairness, a charging rate dependent pricing mechanism

is proposed to assure a higher price for enjoying a higher charging rate. The PV

generation profile and future load request are forecasted at each time slot, to handle

the respective uncertainty. An integer linear programming (ILP) based centralized

system is first proposed to minimize the charging price per EV. Due to the larger com-

putational time, we subsequently present two game theoretic algorithms, i.e., game 1

and game 2. In game 1, players are oblivious of upcoming charging requests, whereas

in game 2, players consider the future anticipated load to select their charging strate-

gies. The games are shown to converge to a Nash equilibrium and game 2 is capable

of providing optimal solution.
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1.2.3 Joint Routing and Scheduling of Mobile Charging In-

frastructure for V2V Energy Transfer

Though an adequate charging infrastructure advocates to ameliorate the range anxi-

ety to propel the disparaged EV market, the high initial installation cost, requirement

of suitable places and the anticipated immense load on the grid during peak times

hinder to elongate the CS network, especially in urban areas. Fortunately, the bidi-

rectional energy transferring capability between vehicles (i.e., V2V) may act as an

auxiliary solution to charge an EV at any place and at any time without leaning

on a stationary charging infrastructure. Hence, we assume a market where charg-

ing providers each has a number of charging trucks equipped with a larger battery

and a fast charger to charge a number of EVs at some particular parking lots. A

provider intends to maximize the served number of EVs using its limited number

of charging trucks, when an EV should be considered as served only if it would be

fully charged during its declared charging window. All charging requests are assumed

to be received by an agent which provisions a route and schedule for each charging

truck and all trucks should return to the depot after serving EVs. We formulate this

combinatorially hard problem as an integer linear program (ILP) to maximize the

number of served EVs by determining the optimal trajectory of each truck. Owing

to its complexity, we present a solution methodology by decomposing the problem

using Dantzig-Wolfe decomposition approach; we divide the problem into one master

problem and a set of pricing problems (one for each EV) and achieve the solution

iteratively. Though the solution achieved from the decomposition might not be opti-

mal, it is faster to be applicable in practice. We also compare the performance with

two heuristic algorithms and report on the collected results.
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1.2.4 Attack Model and Detection Methodology for a Coor-

dinated Switching Attack Initiated from EV Charging

Ecosystem

Since the inter connected EV charging ecosystem could act as a new cyber-physical

attack platform, we exploit the abundance of EVs to target the stability of the power

grid. Through a cyber attack that compromises a lot of available EVs and their charg-

ing infrastructure, we present a realistic coordinated switching attack that initiates

inter-area oscillations between different areas of the power grid. The threat model as

well as linearized state-space representation of the grid are formulated to illustrate

possible consequences of the attack. Two variations of switching attack are consid-

ered, namely, switching of EV charging and discharging power into grid. Moreover,

two possible attack strategies are also considered (i) using an insider to reveal the

accurate system parameters and (ii) using reconnaissance activities in the absence of

the grid parameters. In the former strategy, the system equations are used to compute

the required knowledge to launch the attack. However, a stealthy system identifica-

tion technique, which is tailored based on Eigenvalue Realization Algorithm (ERA),

is proposed in latter strategy to calculate the required data for attack execution. The

two-area Kundur, 39-Bus New England and the Australian 5-area power grids are

used to demonstrate the attack strategies and their consequences. The collected re-

sults demonstrate that by manipulation of EV charging ecosystem and launching a

coordinated switching attack to those portions of load, inter-area oscillations can be

initiated. Finally, neural network based technique is used in a proposed framework

to detect such switching attacks before being executed.
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1.3 Thesis Contributions

The main contributions of the thesis are summarized as follows:

• To reduce the range anxiety, we design a DC fast charger network for an urban

area at minimum installation cost (detail discussion in chapter 3). Our designed

network ensures a minimum quality of service to EV users in terms of tolerable

waiting time and shorter detour distance and this design is also capable in

maintaining the voltage level of the distribution grid. Moreover, we also propose

two different expansion models for this CS network to meet the upcoming EV

growth and compare their efficiencies to determine the better one.

• To accelerate the pace of attaining the goal of zero emission transportation

system, we design a smart management system for a PV based standalone CS

(detail discussion in chapter 4). We propose a quadratic cost function, which

ensures that an EV user can enjoy a faster charging only by paying more with-

out violating the other EVs’ deadline. A time slotted system is assumed and

to minimize the aberration in PV generation and load prediction, the system

predicts these two before every time slot. An ILP is formed and solved the

problem centrally to minimize the charging cost. Due to the longer computa-

tional time of the centralized system, two types of non-cooperative game theory

based algorithms are applied. This helps to attain a quicker and even optimal

solution.

• To attain the flexibility in EV charging, we formulate an ILP to maximize the

served number of EVs for an assumed company which has a number of charging

trucks equipped with larger battery and V2V enabled fast charger to charge

EVs at any time any place (detail discussion in chapter 5). The ILP decides

the route and schedule of each trucks to maximize the served number of EVs.
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However, this problem seems to be a multiple travelling salesmen problem and

not computationally efficient for a large number of trucks. Hence, we implement

Dantzig-Wolfe decomposition method to attain a quicker solution.

• Since, the success of smart charging relies on the inter connectivity among the

entities of EV charging ecosystem, this becomes a new cyber physical attack

surface to the grid. Hence, we investigate the competency of compromised

EV charging ecosystem to mimic switching attack for generating inter area

oscillation between two weakly tied power generation area (detail discussion

in chapter 6). Two different types of attack strategies are studied on three

different power system benchmarks to depict the competency of this ecosystem

as a switching attack source.

• To detect the switching attack initiated from compromised EV charging net-

work, we develop a neural network based algorithm in chapter 6. This algorithm

would be hosted by a central management system (CMS) to observe the incom-

ing charging/discharging requests’ behavior and identify the malicious one. By

implementing back propagation neural network (BPNN), a filter is designed

to classify these incoming messages and identify coordinated switching attack

attempts before being executed.

1.4 Thesis Outline

The remainder of the thesis is organized as following. Chapter 2 presents the related

works. The design of a DC fast charger network for EV charging and its expansion

procedures for being compatible with the upcoming increased EV load is described

in Chapter 3. A smart management system is developed for a PV powered stand

alone CS to minimize the charging price for EVs in Chapter 4, while a joint routing
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and scheduling problem is addressed for a set of V2V enabled charging trucks to

maximize the number of served EVs in Chapter 5. In Chapter 6, the competency of

compromised EV charging infrastructures in mimicking switching attack to initiate

an inter area oscillation on the transmission link along with a neural network based

detection mechanism are presented. Chapter 7 concludes the thesis and depicts the

future research directions.
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Chapter 2

Literature Review and

Preliminaries

In this chapter, we first highlight the preliminary ideas and technologies related with

EV industry and then a detailed literature review is presented to depict the signifi-

cance and novelties of the thesis objectives as mentioned in Chapter 1.

2.1 Preliminaries

2.1.1 History and Evolution of EV
1

Gasoline based internal combustion engine (ICE) car has dominated the transporta-

tion sector for last one century. As a consequence, the concept of electric car seems

a new idea; surprisingly this is not. Man intended to apply electrical energy to drive

vehicles is pretty older than conventional gasoline based vehicles and it has started

the journey since 1828. During this long journey, EV experienced a significant adapt-

ability to get the modern form. In this subsection, we highlight the evolution process

1This subsection is based on [2].
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of EV.

Figure 2.1: Thomas-Parker Commer-
cial EV in 1895 [2].

Figure 2.2: Tesla Model 3 in 2020 [2].

• Early rise of EV (1828-1883): Since 1820, human started to introduce elec-

trical energy to drive vehicles and at that very early age, most of the attempts

were in too small scale. In 1828, Anyos Jedlik first invented an electric motor to

drive a small car and Professor Sibrandus Stratingh designed a non rechargeable

battery car in 1834. In 1837, Robert Davidson exhibited his galvanic cell pow-

ered car named Galvanic in the Royal Schotish Art Exhibition. Due to the non

rechargeable battery, early stage cars needed battery replacement frequently

and hence, failed to be popular. The invention of rechargeable battery cell in

1859 changed the scenario and finally people could think about the commer-

cialization of battery driven vehicles.

• First era of commercialization (1882-1920):

After a pile of unsuccessful attempts, finally in 1884, Thomas Parker successfully

designed a practical electricity powered vehicle. He established his own company

in 1882 at London and that Elwell-Parker company had launched its commercial

product in 1888. Almost at the same time, France and Germany were also

designing and modifying their own electric cars, but the intention of Thomas

15



Parker made him the pioneer. His intention was to find an energy efficient car

accompanied with reducing environment pollution. After that, EV market got

an enormous pace especially at Europe and USA. In 1990, London added her

first electric taxi service named “Humming Bird” and by 1912, 32% of total

cars in USA were electrified. Even, the world renowned scientist, Thomas Alva

Edison designed a new car. This era was sustained till 1920 and after that the

innovation of internal combustion engine (ICE) and the avidity of fossil fuel

replaced electric car by gasoline based car.

• Dark age of EV (1920-1960):

The innovation of internal combustion engine (ICE) opened a new door to

design heavy and more powerful vehicles. And the same time oil was discovered

in different parts of the world. Consequently, transportation sector experienced

a paradigm shift and the rising of electric car faced a sudden declination. During

this period, gasoline based vehicles became mammoth not only as the sense of

market domination but also for environmental pollution. But the awareness to

the environment and fossil fuel scarcity brought back the electric vehicle concept

within few decades.

• Revival of Interest (1960-2000):

The gasoline powered vehicles rapidly replaced EVs and expanded very quickly.

Specially, after the second world war, the gasoline car market leaped incredibly

and consequently raised the fuel scarcity. The political conflict for oil through

the world also ignited the market. Hence, researchers began interested to curtail

the oil dependency and in 1960, a hybrid car was modeled; that could recharge

the battery from its own motion. By the same time, the plausibility of renewable

sources were investigated and that created the concept of green transportation.
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Even, Nasa sent a solar powered car at moon in 1973. These initiatives actually

lead us to the modern era of EVs.

• Modern age of EV (2000-): In the new century, EV starts a new jour-

ney. The increasing interest in tapping green sources of energy to reduce GHG

emission triggered the EV research and auto mobile companies grab the oppor-

tunity. Hence, again a paradigm shift is expected in the transportation sector.

The modern EV started its journey with a hybrid concept where the primary

energy source is gasoline, but it can use self generated electricity as a backup.

The revolutionary improvement of battery technology by last few decades shifts

the interest to pure EV. Fig.2.3 depicts the significant growth of EV market and

full electric EV or battery EV (BEV) is increasing its share in the market in

every day. Before discussing about the battery technology and related mileage

of EVs, a brief description of major three classifications of EVs are presented

below.

Figure 2.3: Global EV Market [101].

1. Hybrid Electric Vehicle (HEV): A total and sudden transition from fuel

dependency to electricity was not expected and possible at the very beginning.
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Hence, the first generation of EVs were mainly hybrid in nature. HEV consists

of two types of engines. The primary engine is energized by gasoline and the

backup one is driven by electricity. The main draw back of this sort of vehicle is

not to charge the battery by any external source. The battery takes the charge

from car’s movement specially during the accelerating and breaking. Though

this sort of EV is loosing its market share in every day, still it is significant in

amount due to its good mileage. As an example, using one gallon of gasoline,

Honda Accord HEV runs 47 mile, while it is just 30 mile for a pure gasoline

Honda Accord.

2. Plug-in Hybrid Electric Vehicle (PHEV): For the first time, electric engine

has become the primary engine in PHEV. The external charging capability of

PHEV reduces the oil dependency. The gasoline engine kicks in only after the

draining out the battery. A Chevy Bolt can run 38 miles before kicking in

its gasoline engine. Moreover, the wide spread network of gas stations helps

PHEV to overcome the range anxiety. But, obviously it does not serve the

green transportation concept. As a consequence, full electric i.e. battery electric

vehicle (BEV) should be the future of EVs.

3. Battery Electric Vehicle (BEV): BEV is the latest and the ultimate version

of EVs. In many literature, the term EV actually stands for BEV. BEVs run ex-

clusively on electricity via on-board batteries and those are charged by plugging

into an outlet or charging station. Hence, BEV requires a comparatively large

battery pack enabling of charging from external sources (power grid, renewable

sources, other EVs etc.). The BEVs on the market today generally go around

60 to 80 miles per charge, though a Tesla can travel over 200 miles on a single

charge. A recent UCS survey found that a BEV range of 60 miles would fit the

weekday driving needs of 69 percent of U.S. drivers. As charging time is long

18



and charging facility through the locality is still in under progress, the main

challenges of BEV is the driver’s range anxiety along with a longer charging

time. Moreover, the only dependency on electricity of a large number of EVs is

going to challenge the power generation and distribution sector.

2.1.2 On-board EV Battery & Mileage

EV is struggling for the optimal choice of on-board battery since the very early age.

Before inventing rechargeable lead-acid battery in 1859 [2], the early pilot projects

required rapid replacement of batteries and that was not practical. Though lead-acid

battery alleviated the rapid replacement problem, it was unable to provide a better

mileage and higher speed. For a better mileage and higher speed, a larger battery

pack needs to be installed and that causes to be the car over weighted and very

expensive. These drawbacks mainly guided the ICE cars to grab the transportation

market. And these challenges are still exist in the real.

The battery technology has experienced a revolutionary leap from the last two

decades, especially when US Department of Energy invested 2.4 billion dollar in

manufacturing and developing of batteries for EVs [28]. European Commission and

governmental organizations in Europe and Japanese Ministry of Economy, Trade and

Industry (METI) have also been continuously supporting the R&D activities in ad-

vanced batteries. BYD, Lishen, and Chunlan have obtained strong subsidy supports

from the Chinese government for its research and manufacturing of advanced bat-

teries and electric vehicles [167]. Currently, Li-ion and NiMH (Nikel metal hybrid)

battery technology dominates the EV on board technology. The continuous devel-

opment of battery industry shows her direct impact on EV evolution i.e. battery

size is increased, price is decreased and hence EV becomes capable in providing more

mileage.
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• Battery Capacity, Life Time and Price: The rapid improvement of battery

technology increases the battery capacity from few kWh to almost 100 kWh.

Tesla provides a battery pack having 85 kWh capacity while Nisan Leaf provides

up to 60 kWh . It is obvious that a larger battery pack can provide higher

mileage. But as we mentioned earlier battery size is constrained by weight and

expense. Tony Posawatz, the chief executive of Fisker Automotive indicated this

fact and insisted to maximize the overall trade off instead of only emphasizing on

the battery size [17]. Hence, regarding the updated technology, still the average

on-board battery capacity lies between 16 kWh to 36 kWh. The regular charging

and discharging causes a regular degradation of the performance and usually

the manufacturers offer an average life span of 8 years having with a 100,000

mileage. The battery price depends on the capacity. According to the current

market, Tesla battery requires $190 for each kWh while for Chevy Bolt, it is

$205. The life span of a battery directly depends upon the charging mechanism

and hence, chargers using in EV charging attracts the researchers’ attention not

only for charging time but also for battery performance.

• Mileage of EVs:

From the very beginning of the journey, EVs are struggling to meet the pre-

ferred mileage. Obviously, there are few exceptions e.g. Tesla model s provides

265 mileage while it is 499 mile for model 3. This tremendous mileage is one

of the major reasons of its higher price. Mass adoption of EVs by investing

such large amount of money cannot be expected. Hence, to make EVs afford-

able, automobile companies cannot expand the battery capacity in a dramatic

manner.

According to a US research [86], an average trip length is not more than 65

miles and hence, 95% of users can complete their trip without recharging their
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battery. But in reality, the potential consumers of EVs intend to compare the

mileage with gasoline based cars. And most of the EVs are still far beyond the

average mileage of an ICE car.

2.1.3 EV Battery Chargers

The utmost challenge of smooth EV penetration is the small EV battery size and

shorter mileage. As a ramification, an EV needs a frequent charging and this charging

procedure is a time consuming one. Here, we are going to elaborate the different types

of chargers along with the charging behaviours of EV users and their consequences.

• Type of EV Chargers

Figure 2.4: Different types of EV chargers [115].

Three types of chargers are now available for EV charging and a brief specifi-

cation is depicted in Fig.2.4.

1. Level 1 charger: Usually auto mobile companies provide a level 1 charger

as an on-board charger with the EV. This operates in a 120 V AC line.

This sort of chargers takes average 12-16 hr to charge a battery. Hence,

level 1 charger is popular as residential load. Most of the users plug in
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their EVs with the installed level 1 charger after coming back at home

with an intention of charging for the whole night.

2. Level 2 charger: To ameliorate the too long charging time taken by level

1 charger, a higher rating AC-DC charger is introduced known level 2.

Level 2 can operate from 208 V to 240 V to ensure a full charge by 3-4 hr.

This class is widely used in commercial places (e.g. parking lot, shopping

mall, office house etc.), but due to the recent decreased cost, installing a

level 2 charger at home is becoming popular.

3. Level 3 charger: This charger is operated with high voltage DC power.

Using DC source eliminates the conversion step here and the higher power

rating makes the charging very fast. That is why level 3 charger is also

known as DC fast charger. Usually within 20 min a level 3 charger can

charge 80% of the battery (after 80% the charging process gets slower).

• Charging Behavior In practice, most of the EV users charge their EVs at

home. INSIDEEVs made an survey[1] among 3,247 EVs regarding their charg-

ing behavior and 81% of them usually do their charge at home. This finding is

fairly close with the assumption of another research [35], where they claim more

than 80% EVs charge at home. Their finding is that most of the EV users do

not prefer charging at public CS for a higher uncertainty of outlets availability

and higher waiting time even they prefer to charge at a quicker fashion.

According to Fig.2.5, most of the EVs prefer to use level 2 charger. Still this

level 2 charger is mainly used at public places. The lack of public charging

infrastructure and the anticipated larger waiting time prevent them in using

this facility in regular manner. Hence, strategical placement of adequate public

charging infrastructure catches the attention to spread out the charging facility.

On the other hand, the declining price of level 2 chargers insists to install this at
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Figure 2.5: Charger preference [124].

home. As a ramification residential energy demand is supposed to be increased

significantly to challenge the existing distribution network.

2.1.4 Bidirectional Energy Transfer Capability

On the other hand, the large penetration of EVs is supposed to be a burden for

the power distribution network, especially when a study at Portugal stated that the

concurrent attempt of charging by only 10% of total EVs at peak time may collapse

the distribution network [100]. However, EV itself has the ability to mitigate this

impact due to the bidirectional energy transfer capability. The concept is very straight

forward; an EV can charge its battery at off peak time at lower energy price and sell

it at peak hour to make some revenue. The concept of EV allows it to sell energy

to any load that is called V2X. Here, we are going to introduce the vehicle to grid

(V2G) and vehicle to vehicle (V2V) energy transfer.

• V2G: V2G allows an EV to sell energy directly to the distribution grid. The

unprecedented load by EVs may create new peak demand too high to be attain-

able. Along with dynamic energy pricing, demand response resource allocation,
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Figure 2.6: Communication Network for EV Charging.

day ahead energy management, V2G is becoming a popular solution for the

peak shaving. Germany government has already permitted Nisan Leaf to sell

energy in V2G environment commercially [141].

• V2V: The concept of V2V is the direct transfer of energy from one EV to other.

Beside peak shaving, it may also help to ameliorate the range anxiety. An US

company, AAA has already launched few trucks to recharge EVs on the road

for emergency demand [26]. The major challenge of V2V is the V2V enabled

charger and using the CHAdeMO standard, Anrdomeda has already invented a

fast V2V charger [122].

2.1.5 An Adequate Communication Network

This is evident that a large scale penetration of EVs opens a free market of energy

sharing which enlarges the energy generation and storage capacity. Consequently, the

electricity market becomes more competitive and complex. However, for such users to

participate in this market, an integrated reliable infrastructure (e.g., for communica-

tions, scheduling, payment, etc.) needs to be realized. Hence, beside the EV charging

infrastructure, the energy network has also a demand of real time data sharing and
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processing.

For sharing bulk data, all entities (EVs, charging stations, any sort of server, energy

providers etc.) are expected to be connected through a reliable communication net-

work for ensuring their participation either as consumer or as source. Fig 2.6 depicts

a possible integrated networking system for the EV charging, encompassing LTE,

WiFi, and IEEE 802.11p based RSU technologies which all can participate to achieve

the required service. Though existing communication infrastructure is competent to

handle the current entities, in near future, an enormous number of IoT devices will

activate and may challenge this LTE based technology. We are fortunate enough that

5G is knocking our doors. The upcoming 5G network may connect any device from

any place at any time and promotes inter vehicular communication [173]. 5G promises

a very low end to end latency as well as 10 to 100 times higher data rates than LTE.

5G is expected to connect a massive number of devices, including vehicles, charging

stations, and 100s of thousands of residential ones. 5G promises as well to virtualize

wireless/radio resources and offer them in form of network slices to clients and other

operators. Vehicles can access the information pertaining to charging place, charging

time or price, while the charging station can broadcast their price, tentative waiting

time, available space.

2.2 Related Works

A detailed literature review is presented here to highlight the motivations and novel-

ties of the objectives, we set in this thesis.
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2.2.1 Demand-Aware Provisioning of Electric Vehicles Fast

Charging Infrastructure:

Following the EV adoption trend, researchers around the globe are investigating for a

prolific CS network to assist the range anxiety reduction to propel the EV market. As

an example, a profit maximization model was proposed in [171] to convert a parking

lot into a solar powered CS. Two recent works [154] and [155] also encouraged to utilize

parking stations as CSs. These sort of initiatives highlighted the immense necessity

of the adequate charging facilities in public places and also reveal the challenges

to adapt with the existing infrastructures. A remarkable amount of research works

investigated the plausibility of the utilization of public places as CSs to support the

burgeoning EV market.

The importance of introducing public CSs was analyzed in [131], where the in-

tention of purchasing EVs was studied based on a proposed function, that takes the

charging cost in consideration. The increasing EV adoption rate insists to replace con-

ventional gas stations by CSs [144], but the EV charging pattern is different enough

from conventional vehicles refuelling to prevent such solutions. Hence, a charging net-

work needs to be provisioned in a different approach, especially when the anticipated

cost is very high and ensuring a quality of service (QoS) to inspire people to shift

into EV is inevitable. Ucer et al. [138] analyzed the EV user’s experience in DC fast

charging station using real life data of Columbus, OH. Though this work [138] did

not deal with the locations of CSs, this analyze the impact of size (e.g., number of

poles and power capacity) over queuing delay of EVs in urban, sub-urban and rural

areas.

To reduce the range anxiety, considering existing road network and driving be-

havior for CS deployment problem are noteworthy. In [108], an ILP was proposed

to place a number of CSs to cover route between any two consecutive nodes of the
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road network. To achieve the same goal, Michigan university did an extensive work

[45], where they considered the variation in charging behavior from season to season

for Michigan and a meta-heuristic algorithm was introduced to solve this. Similarly,

in [50], for road networks for Boston and Dublin, a minimum number of CSs were

determined to confirm a reachable CS for each EV. Tao et al. [133] selected a set

of locations for CSs to minimize the time of over discharging of EVs’ batteries using

genetic algorithm. In [85], a CS citing problem was proposed for an urban area to

minimize the installation cost, where the authors analyzed the complexity of such

problem and compared different solution algorithms. To minimize the cost, [107]

optimized the suitable locations for CSs based upon the traveling behavior.

A sustainable charging facility also has to maintain socio-economic values and

consequently energy stabilization [53]. To mitigate the impact of EV charging on

power grid, relying on battery swapping or V2G [7] or incorporation with community

microgrid [8] backed by a smart energy management system to minimize the charging

cost might be an auxiliary solution, especially when EV charging demand is rising on

a daily basis. Mahnoosh et al. [11] analyzed the impact of large scale EV penetra-

tion on both road and power network, while in [103], the distribution of traffic flow

was represented by a semi-dynamic traffic assignment model to assess the impact of

charging behavior over power network. Considering the inter dependency between

power and road network, a holistic framework of power systems and electrified trans-

portation network were introduced to enhance the operational performance of these

systems as a network-of-networks, and explain the required information exchange via

coupling agents (e.g., EVs and CSs) [14]. Though these works ([11] - [14]) highlighted

the consequences of EV charging over power network, strategical placement of CSs

were not proposed to minimize such consequences. To mitigate such consequences,
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Lam et al. [85] considered the total capacity of the power grid instead of the varia-

tion from one bus to other while the waiting time at CS was not taken into account.

Using swarm optimization, [99] searched for the optimal positions of CSs where the

authors assumed that the grid capacity could be increased as required, where [158]

proposed to add more transformers. Maintaining voltage stability was also taken in

to consideration in [39],[59] and [171] to find out the optimal positions for the CSs

without taking the waiting time or the comfortable detour distance to CS in consid-

eration. Cui et al. [34] proposed to minimize the installation cost for an urban area,

where they also considered the required protective device cost to maintain the power

quality. As the mass integration of fast chargers may add a remarkable degradation

in power quality [71] and hence, in [72], authors proposed strategical placement of

fast chargers backed by alternative energy sources (e.g., renewable energy, V2G) to

reduce the harmonic distortion. However, they did not propose any solution to cope

with the upcoming increased demand, while the growth rate of EV penetration en-

courages to take physical actions (e.g., expansion of power network, deploying more

voltage regulators) along with strategical one to maintain the voltage stability.

In [23], maintaining voltage level was considered before a strategic deployment;

that might force EVs to travel too long to reach the CSs. Almost a similar approach

was shown in [27], where the real travel data of Beijing city was used to find the

optimal locations, however, energy limitation was ignored. Minimization of power

loss was presented in [143], where traffic pattern was considered to maximize the

charging service. However, they do not consider the waiting time and no adaptation

process was given to handle the increased demand of upcoming years. In [160], though

both transportation and power network constraints were taken into account before

deploying CSs, they also did not consider any further increment of EV load.

However, most of these research did not consider the users’ preferred QoS (quality
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of service), maintaining power quality and adaptability with the upcoming EV load

all together and hence, considering the importance of the integration of all these

features in CS network provisioning, dimensioning and expanding, we propose our

own solution in Chapter 3.

2.2.2 Optimal Scheduling of EV Charging at a Solar Power

Based Charging Station:

For user’s convenience, today, the concept of a micro grid has inspired many organiza-

tions to equip their parking lots with charging facilities by installing renewable energy

(RE) system along with energy storage system (ESS), especially when the commercial

roof top photovoltaic (PV) energy has already reached several MW. Permacity has

already installed a 16.4 MW roof top solar system in a single roof at Los Angeles, the

largest roof top solar energy production system at present [3]. Meanwhile, at Oman,

a 6.4 MW system is installed for supporting EV parking lot by Solar Car Park to

support EV charging [3]. In Canada, a 1.14 MW roof top system is installed at Leduc

Recreation Center, Alberta [5]. As another example, the Swedish home furnishings

giant IKEA is going to establish free electric car-charging stations at all 12 of its

stores in Canada [4]. Solar panels in Ontario and Quebec are installed, while wind

turbine is in Alberta [4]. Such stand alone CSs have been examined as feasible as

well [91], [163].

Whatever the energy source is, ensuring the user satisfaction should be one of the

major concerns of EV charging algorithms. Usually an EV user expects to recharge

the battery quickly at minimum price. For example, in [136], a Stackleberg game

was introduced to maximize the profit of a grid, while EVs played another game to

choose their charging time slot to avoid excessive price, but here the charging rate

was either maximum or zero, as no intermediate value was in their consideration. In
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decentralization systems [161] and [145], temporal coordination was used for making

the decision of charging by the EV owners themselves on the basis of declared price.

Mixed integer linear program (MILP) was used in [149] to minimize the charging cost

for EV owners and a moving horizon methodology [104] was used not only for the

cost minimization of EVs, but also to balance the load for CSs. To balance the load,

a web based day-ahead scheduling mechanism was proposed in [116] to minimize the

charging price. Along with the day-ahead market, dynamic pricing is also becoming

popular for peak shaping. Foster et al. [48] proposed a scheduling mechanism, where

each EV received the real-time charging price after each 5 min and based upon that,

decided their charging profile to minimize the price. A Fuzzy logic based algorithm

was proposed in [9] to schedule a set of EVs in a parking lot based CS to maximize

the EV owner’s satisfaction. A similar approach was shown in [44] to maximize the

quality of service. And in both the works of [9] and [44], no RE source was considered

for EV charging.

In [29], [102], [157], [162] and [174] the penetration of RE and their integration

with conventional grid was considered for charging EVs. Renewable sources were

used as the primary source and CSs can purchase energy from the grid as it was

required. In some works ([102], [145], [146], [157]), ESS was considered in CS. The

main challenge of RE penetration is its production uncertainty and hence, considering

the grid connection as a secondary source, these works mitigate the consequences of

production uncertainty. Further, although the production cost of RE is zero, however

these energy sources come with a sizable installation cost. In [162], renewable energy

could be purchased by a service provider from neighboring infrastructures, but they

assumed this energy was cost free. In [162] and [174], the overall pricing of production

and purchasing of renewable energy was not considered at all.

As a consequence, in chapter 4, we present a smart management system for a PV

30



based standalone CS to handle the uncertainty of both PV generation and upcom-

ing EV load and propose a charging rate dependent pricing mechanism to offer the

opportunity of enjoying fast charging by paying more.

2.2.3 Joint Routing and Scheduling of Mobile Charging In-

frastructure for V2V Energy Transfer:

EV’s bidirectional energy transfer capability makes them a mobile energy server which

can store energy at off peak and release at peak hours. Thus far, in most cases, only

V2G (vehicle to grid) is considered as the operational mode of energy seller EVs for

peak shaping of the load demand over distribution grids [122], [153]. Germany has

already given the commercial permission of energy exchange via V2G to Nisan Leaf

[141]. Comparing with the trend of V2G, V2V is still a new concept. Nevertheless,

the feasibility and opportunity of V2V technology are widely tested and V2V is a

potential candidate for mitigating range anxiety and energy scarcity [95], [105], [111].

Researchers in [132], [147], [165] considered V2V to reduce the burden of distribution

grids, while others ([26], [166], [170]) examined V2V charging use to mitigate range

anxiety. Kim et al. designed a model, where an EV could charge either from a CS

or from another EV [75]. They concluded that EVs and CS cooperation is the better

approach rather than just relying on CSs or V2V.

Whatever the purpose of V2V, two major problems need to be addressed. One is

to determine the efficient energy transferring process and the other is to match the

seller-buyer EV pair or schedule of charging/discharging in the best way. Nasr et al.

has achieved the energy transfer efficiency up to 98% in an aggregator based V2V

system [111], while Sousa et al. suggested to rely on direct V2V energy transfer to

attain more efficiency [129]. V2V-enable on board charger was considered in [117] and

a DC-DC converter was designed for V2V energy sharing in [137], which was faster
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than level 2 charger. Such quicker charging rate along with an achievable higher

efficiency could assist V2V of being a potential solution of the range anxiety.

On the other hand, few works proposed different methods to attain the buyer-

seller pair or charging/discharging schedule. Li et al. first determined a parking

spot and then found the optimal pair to maximize the satisfaction level [92] and

Zhang et al. proposed a bipartite graph method to find out the optimal pair [170].

Daily travelling pattern was analyzed to determine the energy exchange place and

EV pairing in [13], [26]. On the other hand, the authors in [80] designed a Markov

chain model to charge a set of EVs in a parking lot using a mobile robot like charger,

where energy was directly transferred from the mobile charger to EVs through V2V.

On the other hand, Wang et al. [152] assumed a power lane on the road, where a set

of EVs were allowed to exchange their energy through wireless technology, while a

game theoretic approach was used to determine the buyer-seller pair. However, most

of the literature aims at maximizing the revenue of EV sellers to encourage them to

participate in V2V. As an example, real time energy pricing was used as the decision

maker of starting V2V [81], [148], [166].

However, due to the mobility of both the load and source in V2V technology, find-

ing an appropriate communication network to connect them is another preliminary

interest for researchers. Wang et al. proposed a heterogeneous network to exchange

information for V2V operation [147], while a VANET network may be considered

for the same purpose [92], [121]. Beside establishing an appropriate communication

network, energy transfer protocols were also investigated to identify the buyer and

seller along with a smooth energy transmission [117], [132]. All these very recent re-

search works underlined the feasibility and potential of V2V charging. This gives rise

to the need to develop algorithms to schedule and route mobile V2V charging while

capitalizing on mobile energy supplier goals and satisfying EV charging requests.
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As a consequence, we design an algorithm to select the route and schedule of a

set of charging trucks to charge a maximum number of EVs inside their declared

deadline. Though for EV charging, as per as our best knowledge, no prior work deals

such problem, this problem can be compared with a well known NP-hard problem,

i.e., multiple travelling salesmen problem having service window. Aircraft routing and

scheduling or school bus routing problem are such type of popular problem having

service time window [37], [127]. Beside different heuristic approaches, decomposition

methods were also implemented to attain the solutions of such routing and scheduling

problems. As an example, Desrosiers et al. [38] applied Lagrangian relaxation method

to determine minimum fleet size to reach a set of destination within a predefined

time window, while in [36] modeled an aircraft routing and scheduling problem in

two models; a column generation technique was applied to solve the linear relaxation

of the first model and a Dantzig-Wolfe decomposition approach was used to solve the

linear relaxation of the second model. However, as per as our best knowledge, no prior

work addressed such problem for EV charging. Moreover, most of these works mainly

focused to minimize the fleet size to serve a particular amount of demand, while we

intend to maximize the served number of EVs using a limited number of trucks and

along with time window constraints. Our model considers the energy constraints for

each truck and forces them to return back to the depot before fully depleted. We

solve the problem using Dantzig-Wolfe decomposition method and compare this with

two proposed heuristic algorithms. The detailed justification of applying this method

will be mentioned in chapter 5.

33



2.2.4 Attack Model and Detection Methodology for a Coor-

dinated Switching Attack Initiated from EV Charging

Ecosystem:

On the other hand, the EV charging ecosystem and IoT-connected high wattage de-

vices have recently received much attention from the research community. Indeed,

[10], [16], [49] and [52] investigated plausible cyber attacks and threats in an IoT-

enabled EV charging infrastructure especially when the widely used message protocol

open charge point protocol (OCPP) is still not secured and matured enough [16].

These works demonstrated that the manipulation of the EV ecosystem is possible

through compromising the communication protocols and technologies, and eventu-

ally creating sizeable consequences on the grid performance. OCPP has been found

vulnerable to a wide range of MitM attacks [10] and that might provide the oppor-

tunity to an attacker to initiate the switching attack. In the work, Alcaraz et al.[10]

depicted a detailed theoretical and simulated vulnerabilities of OCPP, while they de-

picted three types of vulnerabilities: 1) disclosure, which corresponds to illicit reading

and/or copying of information; 2) distortion, any (fake) data insertion, spoofing or

modification action (data, processes or configurations); and 3) disruption that com-

prises the deleting or dropping of messages, processes or actions. As a ramification,

by manipulating OCPP messages, an attacker can initiate denial of service (DoS),

energy theft or man in the middle (MitM) attack.

Moreover, Wang et al. [151] reported that two types of attacks, i.e., load altering

attack or rate alternation, can be initiated from load side to make the grid vulnerable

in terms of voltage or frequency degradation, or even load congestion. A load alter-

ing attack is an attempt to control a set of unsecured controllable load within a very

short period of time in order to damage the grid through circuit overflow or other

adverse effects [15], while in rate alternation attack is mainly initiated by fabricating
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the pricing messages for inspiring load shifting to make load congestion [109]. Fur-

thermore, the authors in [128] introduced an IoT Botnet that exploited vulnerabilities

in high wattage IoT devices to cause disturbances to the grid in terms of frequency

instability, cascading failures, and increasing the operational costs, while [6] identi-

fied EV charging infrastructure as a potential surface for same kind of attacks using

publicly available data. More recently, Khan et al. [70] demonstrated how a botnet

of compromised EVs and EV charging infrastructures can be used to launch cyber

attacks on the power grid.

On the other hand, the impact of the switching attack in introducing inter-area

oscillation and its consequences over power system was first formulated by Kundur

et al. [78] who examined a two-area system to analyze the inter-area oscillations.

Furthermore, a coordinated switching attack was modeled in [96] to demonstrate

how an attacker can compute and apply a coordinated switching sequence through a

successful cyber intrusion and local knowledge of the grid. To increase the stealthiness

of a switching attack, in [55], this attack was modeled just by comprising a 2% of

total load, where the switching frequency was determined through measurement-

based analysis of the frequency deviation at a selected bus. The loads in [55] were

assumed to be fixed and the variation of system operation point was achieved by

connecting/disconnecting a fixed percentage of load. They assumed that due to low

frequency of disconnecting, the attack was stealthy. However, such an attack was

performed by imposing a three-phase fault to the system which may result in operation

of protection devices, such as relays, and changes the system topology. They examine

the consequences to the four-machine two-area power system and the Northeast Power

Coordinating Council 68-bus system for both a single attack and a coordinated attack.

On the other hand, a state dependent switching rule was implemented in [97] to model

a coordinated switching attack to create a massive disturbance in the power system.
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Farraz et al. [47] utilized the knowledge of local generators rotor speed to initiate a

switching attack, while Liu et al. [98] implemented Luenberger-based state estimation

technique when they assumed that the knowledge about rotor angle and frequency

was not accurate. After analyzing the impact of switching attack, [47] proposed a

game theoretic approach to mitigate the consequences, while a proposed parametric

game theoretic controller was also applicable during the attack. An automatic inter

area oscillation detection method based on phase angle measurement was presented

in [159]. However, none of these works considered EVs or their charging ecosystem

as a potential attack surface for switching attacks and hence, they only could make

change in load, while vehicle to grid energy transfer capability of EV provides an

opportunity to create an increase in generation in the form of discharging energy.

Since switching attack initiated from EV charging network is a new concept, works

aiding the mitigation for OCPP vulnerabilities do not provide any kind of direction

to detect switching attack attempt. As an example, Morosan et al. proposed a back

propagation neural network only to detect the distributed denial of service (DDoS)

attack [110], while in [119], authors suggested to add an encapsulation for the future

versions of OCPP to avoid the man in the middle (MitM) attack. For a secure charging

environment, Vadiya et al. [139] proposed private keys for authentication while to

ensure the integrity, Khodari et al. [73] designed a decentralized firmware attestation

scheme for each EV. However, none of these works focused on detecting switching

attack attempt and for the sake of secured charging, all of these work except [110]

mainly proposed additional features or suggestions for upcoming versions of charging

protocol. In [110], using a back propagation neural network, authors analyzed the

time span between two successive incoming requests from the same CS and compare

this with a threshold and previous three requests to make a validation. A deep

learning algorithm was designed in [169], to detect malicious attempts over controller
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area network (CAN). Since, OCPP is a message protocol like CAN, we intend to

do feature extraction of requested messages using neural network to design a cyber

detection layer hosted by the CMS after proposing a coordinated switching attack

from a set of compromised CSs in Chapter 6.
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Chapter 3

Demand-Aware Provisioning of

Electric Vehicles Fast Charging

Infrastructure1

In this chapter, we provision a DC fast chargers network (i.e., determine the maximum

number of CSs, their best locations and capacities) along with an efficient expansion

methodology for an urban area, while the objective is to minimize the installation

cost. The design considers the demand of EV charging and predicts the future growth

of the demand in the expansion plan and ensures a minimum quality of service (QoS)

in terms of a tolerable waiting time or tolerable detour distance to a CS. Moreover, to

maintain the voltage stability, an optimal number of tap changing voltage regulators

are placed at optimal position of the distribution grid, while the grid capacity is taken

in consideration.

1This chapter is published in IEEE Transactions on Vehicular Technology [63] and partially
presented in IEEE SmartGridComm’2019 [62]
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3.1 Motivation

To propel the EV market, an adequate charging facilities is essential to reduce the EV

drivers’ range anxiety. Due to the relatively small EV battery size, there is a frequent

need for charging. This need, combined with the relatively slow charging process,

necessitates a smart and adequate distribution of charging facilities at strategic loca-

tions in order to ensure the convenience for drivers to reach a CS within comfortable

distance along with a tolerable waiting time there. Since deploying CSs is an expen-

sive project, the strategical placement and capacity provisioning of such a CS network

should be compatible with the increasing demand of the upcoming years.

Furthermore, prior to any mass deployment, a significant factor to consider is

the consequence of the large penetration of EVs and their asynchronous connection

on the power grid, which may destabilize the grid especially at peak times. As a

consequence, an effective deployment of CSs has to maintain the voltage stability of

the distribution network as well.

As discussed in section 2.2.1, though a number of works investigated the design of

a prolific CS network to reduce the range anxiety, no one of them considered users’

preferred QoS (e.g., tolerable waiting time and detour distance), power quality main-

tenance and grid capacity all together. Moreover, since, deploying a CS network is an

expensive project, an efficient expansion methodology also needs to be in considera-

tion to support the upcoming increased EV load even during the present installation.

Considering these issues, we propose a DC fast charger provisioning and expanding

method in this chapter.
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3.2 Problem Definition and Contributions

In order to address the above challenges, we present our Charging Station Dimension-

ing and Placement (CSDP) framework for provisioning fast charging infrastructure at

minimum cost to accommodate the charging demand of the incremental integration

of EVs. Namely, our framework concurrently considers making decision on the place-

ment (and capacity) of CSs and the allocation of the EV charging workload and that

ensures a maximum tolerable waiting time at CSs (i.e., quality of experience) as well

as a maximum driving distance to reach a CS. Our workload allocation is also sensi-

tive to the voltage level at the power distribution network and hence at design time,

we have to decide whether a minimum number of voltage regulators (to minimize the

overall cost) opt to be provisioned to maintain the voltage at acceptable level. We

also determine the transformer size to support the maximum capacity of a CS and

we consider the maximum capacity of each power distribution network. Finally, two

different types of expansion models are proposed and analyzed to meet the future

increased energy demand and the results are compared with two proposed heuristic

algorithms.

The main contributions of this work are:

• A fast charging stations deployment and sizing problem is addressed, where an

EV has not to wait more than a predefined time before the charging session and

has not to drive more than a predefined distance to reach a CS.

• The strategical placement of these CSs considering both the required number

of voltage regulators and the transformer capacity help to keep the voltage level

stable through the distribution grid.

• We formally show that the solution of the CSDP problem that accounts for only
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Figure 3.1: An example of potential locations of CSs in an urban area.

the current demands may lead to a high expansion cost of the existing infras-

tructure in the future. Hence, we examine two planning methods to determine a

cost-effective solution of the CSDP problem with increased demands: 1) CSDP

forward design which assumes the current load to solve the CSDP problem

and updates the infrastructure as the load increases; 2) CSDP backward design

which accounts for the future demands in order to decide the present deployment

strategy.

3.3 CSDP Model

We consider a metropolitan city powered by a single power grid having a determined

number of radial distribution networks. We aim at studying the CSDP problem to

determine an optimal deployment of CSs to reduce the range anxiety and simultane-

ously ensure the voltage stability at each bus of the distribution network. The optimal

number and positions for voltage regulators are determined and we also determine the

transformer rating for each CS to support its peak demand considering the distribu-

tion grid capacity. Fig.3.1 depicts the demand zone and potential locations, whereas
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Figure 3.2: An example of power distribution network.

Fig.3.2 depicts an example of a power distribution network.

3.3.1 Charging Request Model

We assume |E| types of EVs which are available in the city and the EV type is

determined based upon the battery size [58] (as an example, e = 1 represents a small

size EV, e = 2 means mid size and large EV is presented by e = 3). Now the city is

supposed to be divided into a set of demand zones, Z (each square in Fig.3.1 indicates

a zone z ∈ Z). We consider that each zone z ∈ Z has an average EV charging request

rate σz every hour, which follows a Poisson distribution [19]. And this σz is actually

the summation of a number of independent Poisson distribution such that σz =
∑

e σ
e
z

[19]. σez is the charging request rate of e type EVs from zone z. The energy demand

of each class of EV is supposed to follow a truncated Gaussian distribution [74] with

a mean of ωe kWh. Moreover, due to residential buildings and industries, each zone

z has a conventional energy demand and that can be predicted based on historical

data [43].
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3.3.2 Charging Station Model

A set of locations, L has been assumed to be primarily selected by the municipality as

the potential locations for CSs deployment (both red and white colored CSs depicted

in Fig.3.1). If a location is selected for deploying a CS (red colored CSs shown in

Fig.3.1), we need to determine the number of charging poles pl to be deployed at

location l ∈ L. Each pole is considered as a level 3 fast charger and the charging

rate is assumed as α. In order to minimize the EV driver’s range anxiety, we set

a predefined comfortable distance ∆, that an EV should not be forced to exceed to

charge its battery. In addition, we set a maximum allowed waiting time τ as queuing

delay before starting the charging at the CS. This waiting time is dependent on the

EV arrival rate (λl) at CS l and on the service rate (the number of EVs which are

served by unit time) µl of the CS deployed at l. µl = f(pl, µ
p
l ) is dependent on the

number of charging poles pl and their respective service rate of each of the pole µpl .

Each CS is abstracted as a queuing system with multiple servers to determine the

waiting time (each server models one charging pole). Hence, we assume an M/M/pl

queue for each CS l and we calculate the average queuing delay Wlq as depicted in

Eq. (3.1) [134] where Nlq indicates the number of EVs at the queue of a CS, deployed

at l and λl represents the EVs arrival rate (arrived from different zones z) to the

mentioned CS.

Wlq =
Nlq

λl
;∀l ∈ L (3.1)

where Nlq can be calculated by the following equation [134]:

Nlq =
Plo(

∑
z∈Z λzl
µl

)plΓl

pl(1− Γl)2
;∀l ∈ L (3.2)
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Figure 3.3: One M/M/3 system is approximated as 3 M/M/1 system.

where λzl is the fraction of EVs in zone z that are assigned to the CS deployed at l. Γl

is the probability of having that CS busy (i.e., cannot serve an EV immediately) and

Plo is the probability of this CS having no EV to serve. Both Γl and Plo depend on

the EV arrival rate λl, service rate µl and the number of charging poles pl as defined

in Eqs. (3.3) and (3.4):

Γl =

∑
z∈Z λzl

plµl
;∀l ∈ L (3.3)

Plo = 1/[

pl−1∑
m=0

(plΓl)
m

m!
+

(plΓl)
pl

pl! (1− Γl)
];∀l ∈ L (3.4)

The load distribution λzl should conform to the comfortable distance ∆ used to

minimize the drivers’ range anxiety. Hence, we represent the distance from zone z to

the location l of the CS by δzl and we use the Euclidean distance from the center of

z to the center of l to calculate it.

Note that, considering the M/M/pl model to determine the optimal location and

size for each CS will include a set of non-linear, non-convex constraints (Eqs. (3.1)-

(3.4)) to maintain a minimum waiting time and hence, the solution of the problem

may become computationally intractable to achieve the optimal solution. Hence, for

the sake of simplicity, we approximate a M/M/pl queuing model as a pl number of

M/M/1 queuing system as shown in Fig. 3.3 to determine the location first and
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then return back to M/M/pl queuing system to figureout the required number of

poles for each system. Hence, we solve the model in two stages- i) CSDP Workload

Assignment (CSDP-WA) model, ii) CSDP-sizing model. These CSDP-WA and CSDP

sizing models will be discussed in the next Section.

3.3.3 Power Distribution Network Model

We also assume a set F of radial distribution Power Network (i.e., medium voltage

feeders) that covers the city. Each network f ∈ F has a set Nf of buses and these

buses can support the EV load along with the conventional load as depicted in Fig.

3.2. The CSs will be supported by the existing distribution networks. As L is deter-

mined by the municipality, we can assume that the possible allocation of CS l to bus

n of the distribution network f is known. Now, to support the load, a set of actions

need to be taken for a smooth distribution of power.

• First to operate a fast charging station, line voltage needs to be stepped down

to a range of 200 V to 600 V [118]. Fig. 3.2 shows a step down transformer is

connected with bus 10 for the deployed CS. The power rating of this transformer

should be dependent on the peak demand of the connected CS. No transformer

is shown in Fig. 3.2 to support conventional load, as we assume that the required

infrastructure for conventional load is already present.

• Establishing a CS at l which is supported by bus n ∈ Nf of the radial network

should decrease the bus voltage level and that also affects the subsequent buses

downstream in the network. Each EV at a CS is regarded as an active load

as the reactive load of battery charging is small enough to be ignored. Hence,

using the flow branch equation [21], we can determine the voltage of any bus

n of any distribution network f . The voltage level of each bus n of the distri-

bution network should be maintained in a tolerable range. Additional voltage
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regulators need to be installed at some buses to maintain the voltage level [120].

The red solid circle at bus 8 and bus 17 in Fig. 3.2 represents installed voltage

regulators to maintain the voltage level.

• Each of the distribution grid transformer has a maximum capacity to serve

the assigned load. As a ramification, only a limited number of CSs should

be permitted to draw power from a particular distribution grid to obey its

maximum capacity.

3.4 CSDP-WA and CSDP sizing model

To avoid the computational complexity, instead of M/M/pl, the CSs are considered

as a total of pl number of M/M/1 systems before designing an ILP of CSDP-WA

model to determine the locations for CSs. After determining the locations of CSs

and their assigned load, a heuristic algorithm is applied in each location to figure out

the required number of charging poles in CSDP sizing model. The overall process is

illustrated in Fig. 3.4 and both CSDP-WA and CSDP sizing model are described in

following subsections in detail.

3.4.1 CSDP-WA Model

To overcome the intractability of M/M/pl, mainly for location selection and EV

assignment to that location, we model each pole of a CS as an M/M/1 queue (i.e.

M/M/pl is approximated as pl number of M/M/1 as shown in Fig. 3.3) to be able

to get a more tractable expression for the acceptable average queuing delay. This

method also provides an upper bound of the required number of poles to maintain

the predefined waiting time at each CS (shown in Fig. 3.5) and the charging request

rate from different zones, σz should be distributed among the installed poles of the
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Figure 3.4: The proposed two stage solution method of CSDP model.

Figure 3.5: Average waiting time comparison between k number of M/M/1 with a
M/M/k.
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Table 3.1: List of input parameters

Input symbols Description & (Unit)
L set of potential locations l to deploy CS
Z set of zones z, from where EV load would be

assigned to different poles
F set of distribution network f
Nf set of buses n of distribution network f
P set of charging poles p
plmax ∈ Z+ maximum number of poles at CS l
σez ∈ R+ Charging request rate of type e EV at zone z ∈ Z (rqst/hour)
σz ∈ R+ EV charging request rate at zone z ∈ Z as σz =

∑
e σ

e
z (rqst/hour)

δzl ∈ R+ distance from zone z to location l (km)
∆ ∈ R+ the maximum distance an EV travels for charging (km)
ζzl is a binary constant as, if δzl ≤ ∆, ζzl = 1, otherwise 0

qfnl is a binary constant as, if location l is powered by bus n

of network f , qfnl = 1, otherwise 0
P c
fn ∈ R+ conventional active power supported by node n ∈ Nf (kW)
Qfn ∈ R+ conventional reactive power supported by node n ∈ Nf (kV A)
τ ∈ R+ tolerable waiting time for an EV in a queue at a CS (min)
ωe ∈ R+ average energy demand by an e type EV (kWh)
α ∈ R+ charging rate of the pole (kW)
αe ∈ R+ maximum charging rate of an e type EV (kW)
al ∈ R+ land cost of location l ($)
b ∈ R+ cost of a charging pole ($)
ck ∈ R+ cost of a transformer having rating of Tk ($)
β ∈ R+ cost of a voltage regulator ($)

deployed CSs.

The input parameters for the model are listed in Table 3.1.

Objective:

Minimize the total deployment cost.

min(
∑
l∈L

Cl +
∑
f∈F

∑
n∈Nf

C
′

fn) (3.5)
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where Cl stands for the CS deployment cost at location l and C
′

fn is the cost of the

additional voltage regulators that need to be installed at bus n of distribution network

f . We discuss this cost function in details after describing the constraints.

CSs and poles deployment constraints:

To determine the location of CSs, a binary decision variable γl is defined as γl = 1 if

location l is chosen for deploying a CS, and 0 otherwise.

If a location l ∈ L is selected for deploying a CS, a number of charging poles need

to be provisioned. We assume that a set of poles P are available and we define a

decision binary variable ρlp to decide whether pole p ∈ P will be installed (ρlp = 1) at

CS l or not (ρlp = 0).

Another decision variable λezp is defined to indicate the arrival rate of type e EVs

from zone z to pole p. Eq. (3.6) ensures that a pole is installed at location l, only if

that l is chosen for deploying a CS.

γl ≥ ρlp;∀p ∈ P , ∀l ∈ L (3.6)

The following constraint prevents a charging pole from being installed at multiple

locations. ∑
l∈L

ρlp ≤ 1;∀p ∈ P (3.7)

Each location l has a space capacity to deploy and Eq. (3.8) ensures that the total

number of charging poles at location l should not exceed its maximum capacity.

∑
p∈P

ρlp ≤ plmax;∀l ∈ L (3.8)
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Service rate constraint:

Recall, each pole pl is abstracted as an M/M/1 queue and to measure the service rate

of a charging pole, the weighted average demand, ωp and charging rate of assigned

EVs, αp are considered. These weighted values depend upon the ratio of each class

of EVs.

ωp =

∑
e(ωe

∑
z λ

e
zp)∑

e

∑
z λ

e
zp

;∀p ∈ P (3.9)

αp =

∑
e(αe

∑
z λ

e
zp)∑

e

∑
z λ

e
zp

;∀p ∈ P (3.10)

where ωe is the average energy demand of e type of EV and αe is the average charging

rate of type e EV. And λezp indicates type e EV arrival rate from zone z to pole p.

µp ≤
αp
∑

l∈L ρ
l
p

ωp
;∀p ∈ P (3.11)

where µp is the service rate of charging pole p.

EV load assignment constraints:

We should provision sufficient charging infrastructure to support all EV loads of all

zones. ∑
p∈P

λezp ≥ σez;∀z ∈ Z,∀e ∈ E (3.12)

We assume the distance from zone z to any pole p of CS deployed at a location l

is uniform and denoted by δzl. Hence, a fraction of EV load in zone z can only be

assigned to pole p of CS at l when the distance δzl does not exceed ∆. The following
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constraint avoids long driving distance by EV owners only to charge their EVs.

λezp ≤
∑
l∈L

(ρlpζzl)σ
e
z; ∀p ∈ P ,∀z ∈ Z,∀e ∈ E (3.13)

where ζzl is input binary coefficient where ζzl = 1 for δzl ≤ ∆ and 0 otherwise. δzl

indicates the distance from z to l.

Delay constraints:

We consider the allowable waiting time τ for any EV at any pole p; hence, each pole is

modelled as a M/M/1 queue. Our model ensures that at every pole p, the maximum

waiting time for EVs should not exceed the value τ .

1

µp −
∑

z∈Z
∑

e λ
e
zp

≤ τ ;∀p ∈ P (3.14)

To maintain a stable queue, we consider that the service rate must be greater than

the EV arrival rate.

µp −
∑
z∈Z

∑
e

λezp ≥ 0;∀p ∈ P (3.15)

Voltage regulator placement and tap positioning constraint:

The voltage at each bus n of any radial distribution network f should be maintained

in a tolerable range as Eq. (3.16) .

Vmin ≤ Vfn ≤ Vmax; ∀f ∈ F , n ∈ Nf (3.16)
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The voltage Vfn of any bus n of network f can be calculated based on Eq. (3.17)[21]:

V 2
f(n+1) = V 2

fn − 2(rfnPfn + xfnQfn)+

(r2fn + x2fn)(P 2
fn +Q2

fn)

V 2
fn

; ∀n ∈ Nf ,∀f ∈ F
(3.17)

where rfn+jxfn is the line impedance from bus n to n+1 of network f , Qfn represents

the reactive power flow and Pfn accounts for the active one. Due to the deployed

CSs, the active power Pfn at bus n of radial network f might increase and can be

calculated by Eq. (3.18).

Pfn = P c
fn +

∑
l∈L

qfnl (
∑
p∈P

ρlp)α; ∀f ∈ F , n ∈ Nf (3.18)

Since Eq. (3.17) is non-convex, the solution of the model becomes intractable. We

are inspired by [164] to make an approximation to estimate the bus voltage of the

radial distribution network. This approximation is based upon two conditions [164]:

1) the power loss is small enough in compare with active and reactive power flow,

i.e.,
(r2fn+x

2
fn)(P

2
fn+Q

2
fn)

V 2
fn

= 0.

2) the voltage deviation is very small as 1−ε ≤ Vfn ≤ 1+ε to assume (Vfn−V0)2 = 0.

Hence, the following linear form can be achieved from Eq. (3.17).

Vf(n+1) = Vfn −
(rfnPfn + xfnQfn)

Vf0
; ∀n ∈ Nf ,∀f ∈ F (3.19)

where Vf0 is the source voltage of network f and it is assumed to be known. This linear

form of flow equation was first introduced in [20]. Now, as we assume a metropolitan

city, the line loss is expected to be very smaller in compare with the CS load [69]

and the model maintains a voltage level lies between an acceptable range ([Vmin =

0.95 p.u., Vmax = 1.05 p.u.]), hence, we can adopt this approximation.
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Now, once a CS is provisioned at node n of network f , the load will increase

and the voltage level will drop. Hence, a voltage regulator needs to be installed

whenever the additional load of the installed CSs drops the voltage level of a bus n

or subsequent buses of a network f below a minimum tolerable level Vmin. For this

purpose, a binary variable yfn determines the decision of installing a voltage regulator

i.e., yfn = 1 when a voltage regulator is required to install at bus n of network f and

0 otherwise.

A voltage regulator is actually a tap changer transformer and usually each of the

tap makes a certain amount of changes in voltage level (e.g., in a regular voltage

regulator there are 32 taps; 16 positive and 16 negative [79]. Hence, for each of the

tap makes a change of 5% to 8% in voltage level [79]). To determine the tap position

of the installed voltage regulator, a discrete variable tr ∈ [−tmax, tmax] is declared.

Now for maintaining the voltage level, the model follows the following constraint.

Vmin ≤ Vfn + yfn(
tr
tmax

)Vf(n−1) ≤ Vmax; ∀f ∈ F , n ∈ Nf (3.20)

CS transformer rating constraint:

To support, a new deployed CS at location l, a step down transformer needs to be

deployed to match the required voltage level. The power rating of this transformer is

dependent on the peak demand of the CS at l. Hence, the power rating of an installed

step down transformer:

α
∑
p∈P

ρlp ≤
∑
k

ηlktk;∀l (3.21)

where ηlk is a decision binary variable such that ηlk = 1 when the power rating of

the step down transformer is tk ∈ Tk = {3kV A, 6kV A, 9kV A, 15kV A}[118] for CS at

l and otherwise 0, where k ∈ {0, 1, ..., |Tk|}. Now, to prevent multiple ratings of a
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certain transformer, the model obeys the following constraint.

∑
k

ηlk = 1;∀l ∈ L (3.22)

Distribution grid transformer constraint:

Each of the distribution grid transformer has a maximum capacity to serve CS demand

along with conventional power demand and for simplicity, we assume this quantity is

identical as Dmax . As a ramification, the total demand (conventional load and CS

load) is not allowed to exceed the value of Dmax.

∑
n

(Pfn +Qfn) ≤ Dmax;∀f ∈ F (3.23)

Cost function:

According to Eq. (5), the objective is to minimize the total cost. Cl represents the

installation price of a CS at l. This depends on the location price al, the number

of charging poles
∑

p∈P ρ
l
p and the cost of each charger, b. This Cl also depends on

the price of the installed step down transformer and this price depends on the power

rating tk. Eq. (3.24) expresses the value of Cl.

Cl = γlal +
∑
p∈P

ρlpb+
∑
k

(ηlkck);∀l ∈ L (3.24)

where ck is the cost of installing a step down transformer having a power rating of

tk. On the other hand, the voltage regulator installation cost can be expressed as:

C
′

fn = yfnβ;∀n ∈ Nf ,∀f ∈ F (3.25)

where β presents the cost of a voltage regulator.
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Some of the constraints are non-linear and we have to make them linear. As

Eqs. (3.9), (3.10) and (3.11) are non-linear due to the product of two continuous

variables, we apply McCormick envelopes approximation [106] to make them linear.

On the other hand, Eq. (3.20) is non-linear due to the product of a binary and a

continuous variable and hence, can be linearized as [32].

3.4.2 CSDP-sizing Model

As discussed earlier, in order to overcome the complexity of the delay constraint

expression, we approximated the M/M/pl model of the CS by pl number of M/M/1

systems where eachM/M/1 models the single pole per CS. This allows us to model the

charging latency by Eq. (3.14) which is simpler to work with. In practice, however,

the CS is expected to have a single queue. Hence, a M/M/pl is a more realistic

model. We should note here that our design based on pl number of M/M/1 queues

yields a CS design with over provisioned resources (poles) since, the latency of pl

number of M/M/1 is an upper bound for M/M/pl as shown in Fig. 3.5. To mitigate

this, we develop a method that provisions at each CS sufficient (just enough) poles

to accommodate the assigned workload. In other words, we take the solution of

assigning load and selected locations for the CSs from CSDP-WA model, and we

start incrementally adding poles at each CS to meet the demand of the workload,

while satisfying the charging latency, τ . The details are presented in algorithm 3.1.

3.5 Expansion Model

As the EV load demand is expected to increase in the upcoming years, the provi-

sioning of public CSs should accommodate this anticipated increment. Indeed, we

can predict the future EV load (e.g., over 10-20 years), however installing all CSs
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Algorithm 3.1 CSDP-sizing model

1: Set pmaxl = pl,∀l ∈ L (pl got from CSDP-WA model)
2: Set l = 1
3: If γl = 1,go to Step 5; else l + +
4: If l ≤ |L|, go to Step 3; else go to Step 10
5: Set pl = 1
6: Calculate the new delay time τ

′
using M/M/pl queuing system

7: If τ
′ ≤ τ , take pl as the required number of poles and go to Step 9; else pl + +

8: If pl ≤ pmaxl , go to Step 6
9: l + + and go to Step 4

10: Exit

based on future demand may not be cost effective as many of those would remain idle

when handling the current demand. Hence, it would be wise to expand the charging

facilities gradually. Thus we propose two different designs: CSDP forward design and

CSDP backward design to handle the expansion of CSs.

3.5.1 CSDP Forward Design

Assume that a gradual CS deployment is taken from year i to year j and the resolution

set as k year (i.e. new deployment would be done after each k year). Now, in CSDP

forward design, we select a set of locations Li ⊂ L to install the CSs based on the

current demand of year i without accounting for the future growth using our proposed

model. Then, in year i+k, the EV load demand would be too large to serve with this

infrastructure. Hence, we use the CSDP-WA and CSDP-sizing model to decide on

the additional number of CSs to deploy at l ∈ {L−Li} and redetermine the capacity

of CSs deployed at l ∈ Li. This approach would be continued till year j. The design

is elaborated in algorithm 3.2. This approach is quite straight forward and though

the initial installation cost is expected to be lower here, it cannot guarantee a lower

cost in the long run.
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Algorithm 3.2 CSDP forward design

1: Initialize the year m=i
2: Determine the location and capacity for required number of CSs, Lm ⊂ L based

on the demand of year m
3: If k years elapsed, set m = m+ k
4: If m ≤ j, determine the new CSs set Lm ⊂ {L−Lm−k}, recalculate the capacity

of {Lm−k};∀k and go to Step 3; else go to Step 5
5: Exit

3.5.2 CSDP Backward Design

The future demand of upcoming years are taken into consideration in this design.

First, we select a set of locations L′
j ⊂ L based upon the predicted load of year j.

After that, demand prediction and locations selection are made for year j− k in such

a way that L′

j−k ⊂ L
′
j. This process is also made for j − 2k, where L′

j−2k ⊂ L
′

j−k

and is going as long as j − nk > i. Now, we select the location set L′
i ⊂ L

′

j−nk for

handling the present demand of year i. After k years, we can deploy new CSs on

l ∈ {L′

j−(n−1)k − L
′
i} and hence, it is expected to be more compatible with future

demand and cost effective for the long run. Algorithm 3.3 elaborates the design.

Algorithm 3.3 CSDP Backward Design

1: Initialize the year m = j
2: Predict the demand of year m
3: Determine the locations and capacity of a set of locations L′

m ⊂ L based on the
demand of year m

4: Set m = m− k and predict the demand of year m
5: If m ≥ i, determine CSs set L′

m ⊂ L
′

m+k and go to Step 4;else go to Step 6
6: Exit
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3.6 Empirical Evaluations and Discussions

3.6.1 Data Analysis

To evaluate the performance of CSDP method, we consider an EV equipped city

like Montreal. The total area of Montreal is 431 square km and the population is

1.78 million. Now to determine the EV charging demand, an extensive analysis is

required, especially when CS deployment problem is still not investigated for Mon-

treal. According to our model, the city is assumed to be divided into 19 different

zones (e.g., |Z|= 19) as similar as those 19 boroughs of Montreal [33]. Each of these

boroughs has different area size along with different population density. To determine

the number of EVs of each borough and their corresponding mobility, we replicate

a research work [22], which analyzed the EV penetration and its consequences over

power grid for an area of Montreal. To estimate the EV penetration, they considered

all 21 types of EVs available in Montreal and moreover, based upon the socioeco-

nomic status of the people of this area, they assumed that the penetration level of

each type of EVs. According to their finding, in Montreal, the overall EV penetration

is 10% and it will reach up to 86% if any drastic change will not occur in the city’s

economic sector. Hence, we can assume a total number of EVs in Montreal as 90900

(assume 10% penetration) and nearly 42% of them are BEV having different size of

batteries [22]. As we are planning to deploy a number of fast chargers, in this work

we should focus only on BEV (which is named as EV here) not on any PHEV. Now,

based upon the battery size, we classify these EVs into three major groups [138] as

EVs having a battery capacity more than 85 kWh are considered in large category,

while EVs having battery capacity from 24 kWh to 60 kWh are considered as small

EVs. In between these two categories, there are mid size EVs having the capacity

from 60 kWh to 85 kWh.
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Based on the population density, we can assume the number of each category

of EVs for all 19 zones and hence, in Montreal, the small EVs are approximately

14,500 where mid size EVs are 3,000 and the rest are big size EVs [22]. In addition

to determine the distribution of EVs through the whole city, travelling behavior and

charging habit are also to be investigated to estimate the charging demand of each

zone. Now, such type of behavioral analysis is done in [60], where Stockholm city

is taken to evaluate their proposed algorithm to deploy a number of fast chargers.

Though Stockholm (231 square km) is almost half of the size of Montreal and they

divide the city into 12 zones, the population density is almost same. Moreover,

there is a lot of similarity in climate and socioeconomic condition between these two

cities, hence, we adopt their approach to determine the charging demand in our work.

Almost 40% of EVs are expected to be charged at public charging infrastructure [60]

and the average departure and return time of EVs at home in Montreal are 8 am and

6 pm respectively [22]. Hence, we expect 4,560 EVs may attempt to charge from 8 am

to 6 pm in Montreal at public CSs and they are assumed to be uniformly distributed

through all 19 zones of the city.

We also assume that the energy demand by each EV follows a truncated Gaussian

distribution [74] having a mean of ωe kWh for e type of EVs (where e = 1 means

small size, e = 2 means mid size and e = 3 means large size EV). We consider that

the municipality has primarily selected 40 potential locations (|L|= 40) for deploying

CSs, a maximum of 200 charging poles (|P|= 200) are going to be installed and

maximum allowed waiting time at any CS should not be more than τ min.

A normalized value is used to express the installation cost. To normalize the value

of the prices, $ x is set as the price of a single voltage regulator and the other entities’

prices are demonstrated as proportionally to $ x. As an example, land cost varies

from one place to other and is assumed to follow a Gaussian distribution having a
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mean of $ 20x and a variance of $ 5x. For the conventional active and reactive power,

we consider the values from IEEE 33 bus system. Now based upon these assumptions,

we evaluate the impact of these parameters on the two stage CSDP solutions (CSDP-

WA and CSDP-sizing) and we assess two planning methods to determine a cost-

efficient solution of the CSDP problem with the increased demand. We also propose

two heuristic approaches; 1) Largest Location Select First (LLSF) and 2) Cheapest

Location Select First (CLSF) and compare them with the CSDP. The model is solved

with IBM Cplex optimizer using C++ platform on an Intel(R) Core(TM)i7-6700 CPU

having a speed of 3.40 GHz. Finally, a custom built PYTHON-based discrete event

simulator is built to evaluate the solutions.

3.6.2 Performance evaluation of CSDP-sizing model

To evaluate the performance of CSDP-sizing method in cost reduction, we determine

the optimal locations for CSs and their assigned EV load for τ = 9 min and ∆ = 3

km. Upon obtaining the solutions of EV workload assignment and location selection

from the CSDP-WA model, the CSDP-sizing method is applied at each selected lo-

cation. CSDP-sizing problem significantly reduces the required number of poles to

maintain this queuing delay. Fig. 3.6 illustrates that 9 locations are selected through

the CSDP-WA problem and the CSDP-sizing reduces the required number of poles

for all CSs. Upto 45% of charging poles can be reduced for a particular CS and con-

sequently, the total installation cost is reduced by 27%. To asses the competency of

our proposed model, a custom built PYTHON-based discrete event simulator is de-

veloped. Following the given solution, 1 million sample EVs were distributed among

those 9 CSs and the simulator provides the average waiting time for all. The results

shown in Table 3.2 shows that all CSs would be able to maintain that predefined

maximum waiting time (τ = 9 min ).
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Figure 3.6: CSs’ capacity comparison for CSDP-WA & CSDP-sizing method.

Table 3.2: Evaluate the performance of CSDP-sizing method

Selected No. of poles from No. of poles from Avg. queuing Avg. queuing
location CSDP-WA CSDP-sizing time (min) time (min)

for CSDP-WA for CSDP-sizing
0 6 4 4.05 1.53
12 11 6 4.25 3.61
13 8 5 4.22 1.67
15 9 5 4.21 3.79
17 10 6 4.23 1.8
23 11 6 4.23 3.7
27 9 6 6.07 2.96
32 7 4 4.16 4.09
36 8 5 4.24 1.81

3.6.3 Empirical evaluation of different parameters

As a charging facility provisioning model, maintaining a stricter waiting time requires

installing more CSs with higher capacity. Fig. 3.7 depicts that for ∆ = 3, the required

cost is $ 678x when the maximum allowed waiting time is 7 min and that becomes

$ 478x for 9 min. Alternatively, a slower service rate is enough to maintain the

same energy demand while a waiting time is increased to 9 min and consequently, a
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Figure 3.7: Cost variation with waiting time.

fewer number of CSs would be sufficient. Fig. 3.8 depicts that 11 locations need to

be selected for guaranteeing τ= 7 min while 9 locations are adequate for τ= 9 min

(for simplicity, only the selected locations are indicated in Fig. 3.8 without showing

their capacity). As a consequence, 29.8% of the installation cost can be reduced

by increasing the allowed waiting time just by 2 min. But this reduction rate does

not show a linear relation with the increased value of waiting time. As an example,

increasing the waiting time from 6 min to 7 min can save about 40% of the total cost.

This cost reduction becomes smaller with the further increment of waiting time and

such finding is significant to determine an acceptable maximum waiting time which

is cost effective and tolerable to the consumer as well. Fig. 3.7 also depicts that the

installation cost is supposed to be influenced by the detour distance (∆) needs to be

traveled by an EV to reach a CS.

According to Fig. 3.7, a shorter distance causes a higher installation cost for

maintaining a fixed waiting time. For instance, Fig. 3.9 depicts that for a waiting

time of 6 min, the total deployment cost decreased from $ 1010x to reach $ 990x with

an increasing maximum travelling distance from 3 km to 3.5 km. This is because 19

CSs are sufficient to serve all EVs instead of 20 while EVs travel a maximum distance

of 3.5 km instead of 3 km. The installation cost reduction rate is almost linear with
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Figure 3.8: No. of CSs variation with waiting time.

Figure 3.9: Cost variation with maximum detour distance.

the increased value of detour distance, but this variation is not so steeper as that

with waiting time.

Installation price is also influenced by the average energy demand by each EV.

The average energy demand is dependent on the ratio of different types of EVs and

on the mean demand of each type of EVs. As the average charging time increases

with the increase of the average energy demand, more CSs need to be deployed for

guaranteeing the predefined waiting time and hence, the installation cost increases

as well. For instance, Fig. 3.10 depicts that for a waiting time of 9 min, the total
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Figure 3.10: Cost variation with average energy demand.

Figure 3.11: Voltage variation due to EV load.

deployment cost increased from $ 404x to reach $ 439x with an increasing average

energy demand from 26.2 kWh to 29.5 kWh while the maximum detour distance to

reach a CS is 5 km.

Our model also considers the impact of CSs installation on the existing power

distribution network and determines the optimal number of voltage regulators at

optimal positions to minimize the overall cost. This also determines the corresponding

tap position of the voltage regulator. Now, the deployed CSs may degrade the voltage

level of the distribution network. A strategic placement of CSs may help to dwindle

the impact over bus voltage level and reduce the required number of additional voltage

regulators to curtail the deployment cost. Fig. 3.11 presents the voltage level of all 33
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Figure 3.12: Yearly cumulative cost comparison.

buses of radial network 0 (f = 0) for such a scenario that 2 CSs are connected with

bus 2 and another one is connected with bus 4 of this same radial network (considering

the maximum demand of each CS). As the network has to serve more load due to the

provisioning of these CSs, the voltage level of bus 7 and 22 drop to below 0.95 p.u.

(0.95 p.u. is the minimum required voltage and indicated by a green dotted line in

Fig. 3.11). Hence, for the voltage stability, we have to install voltage regulators at

these buses. The voltage regulator installed at bus 7 sets the tap position at 2 while

tap position is 1 for the other one.

3.6.4 Analyzing the charging infrastructure expansion meth-

ods

For a gradual expansion of CS network, we provide two different designs as CSDP

forward design and CSDP backward design. To compare these two designs, we assume

a 25% of increment in EV adoption from year 1 (current year) by year 2 and another

25% by year 3. We also assume a 5% increment in conventional load by year 2 and

this is assumed as 10% by year 3. For simplicity, we consider constant values of

∆ = 3 km and τ = 9 min. For handling the initial demand, the initial installation

cost in CSDP backward design is slightly higher (Fig. 3.12) due to the enforcement
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Figure 3.13: Year wise CS deployment.

of selecting 8 expensive locations instead of cheaper options (Fig. 3.13 depicts the

selected locations and their respective size). This CSDP backward design gradually

proves itself cost effective. In fact for the demand of year 2, it can reduce almost 14%

by deploying 11 CSs , while CSDP forward design suggests for 12 locations due to

consider all installed CSs of year 1. And for year 3, this cost reduction is almost 11%.

Hence, considering future load does not seem to be efficient initially, but in the long

run, it is more cost effective.

3.6.5 Comparative analysis

Finally, we compare the performance of our CSDP model with two heuristic methods;

largest location select first (LLSF) and cheapest location select first (CLSF). The

concept of LLSF is to select the larger locations (i.e., more poles can be installed) to

deploy sufficient number of CSs. As a consequence, the location l for which plmax is

maximum gets the highest priority for selecting to deploy a CS. On the other hand,

the CLSF selects the cheapest location first. That means the location l having the

minimum price al should be selected first. Fig. 3.14 illustrates the cost variation for

three different average waiting times. Our CSDP model shows better performance
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Figure 3.14: Comparing the deployment cost of CSDP with LLSF & CLSF

over both heuristic methods. As an example, for maintaining τ = 6 min, CSDP

selects 20 locations while LLSF also selects 20 different locations (but it selects two

costly locations 5 and 8 instead of a cheaper option of 4 and 32). On the other hand,

CLSF has to choose 24 locations.

3.7 Conclusion

In this chapter, a two stage model is proposed to tackle a charging infrastructure

design problem which is capable of determining the optimal locations and capacity

(number of poles) at minimum deployment cost. Considering the comfortable distance

to travel for charging and an acceptable maximum waiting time make the model

appealing for EV drivers. To determine the waiting time at a CS, we model each

charging pole as a server and we use queuing theory to estimate the waiting time

for charging EVs. CSDP-WA method applies M/M/1 queuing theory to estimate

the waiting time to figure out the optimal locations of CSs and after deciding the

locations, CSDP-sizing method implements M/M/c queuing over the allocated EVs

to determine the required number of charging poles. Given that the mass deployment

of CSs may degrade the voltage level at any bus of the power distribution network. To
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make it stable, we consider installing voltage regulators (if required). The strategical

CS deployment is capable of reducing the required number of voltage regulators to

minimize the cost and IEEE 33 bus system is tested here. We also examine two

different designs of expanding CSs facility to meet the increasing anticipated demand.

Though CSDP backward design costs higher initially, in the long run, it shows better

performance in cost minimization over CSDP forward design.
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Chapter 4

Optimal Scheduling of EV

Charging at a Solar Power Based

Charging Station1

In the previous chapter, a DC fast charger network was designed to mitigate the

range anxiety and an expansion procedure was depicted to manage the anticipated

upcoming EV load. Though maintaining voltage stability even after catering this

large number of EVs was ensured, this would provoke the power generation sector in

emitting more GHG. As a consequence, to curtail the GHG emission, green energy

needs to be incorporated for EV charging. Hence, in this chapter, we assume a PV

powered standalone CS, while by implementing a charging rate dependent pricing

mechanism a set of EVs are scheduled for charging inside their deadlines at minimum

price.

1This chapter is published in IEEE Systems Journal [64].

69



4.1 Motivation

Many governments around the world are providing subsidies to the EV market in

order to stimulate the awareness of the general public for the need of clean energy.

Such subsidy programs accelerate the EV penetration. Nonetheless, the predominant

hindrance in the development of EVs is their requirements to have to be charged

frequently and this is exacerbated by the fact that the charging time can be quite long

as opposed to gasoline based vehicles. Further, one should stress that the majority of

people may not switch to EVs just because they are environmentally sustainable and

safe. Therefore, to ameliorate the acceptability of EVs, there needs to be a quicker

and cheaper green charging facility.

Moreover, if electricity continues to be generated from non-renewable, to cater

for the added EVs demand, more energy needs to be supplied and hence shifting the

problem from one side of the spectrum to another, i.e., the carbon footprint shifts

from transportation sector to the power sector. Hence, alternative energy sources need

to be exploited together with intelligent demand response and scheduling schemes.

But intermittent energy sources, e.g., wind or solar, need to be accurately predicted.

Another challenge in load scheduling is the demand side uncertainty. Namely, given

the mobility of EVs, it is difficult for a charging station (CS) to know the energy

demand of upcoming time slots. Consequently, without considering future demand,

scheduling the present load at a CS may fail to provide optimal operation and hence

revenue for the operator. While it is not possible to know the future demand of EVs,

historical data may be used to predict that.

As a consequence, we present a smart management system for aPV based stan-

dalone CS to handle the uncertainty of both PV generation and upcoming EV load

and propose a charging rate dependent pricing mechanism to offer the opportunity

of enjoying faster charging by paying more.
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4.2 Problem Definition and Contributions

Figure 4.1: A PV powered CS.[112]

We consider a PV based CS (as shown in Fig.4.1) equipped by an ESS. As a self-

harvested CS, this standalone CS does not rely on the power distribution grid and

consequently, does not cause any load congestion to the grid and also, it contributes

in GHG reduction. Moreover, the usage of ESS helps to store the surplus energy to

manage the higher demand, while a conventional CS needs to consume more energy

from the grid at a higher price. We also consider a smart DC-DC charger, which is

assumed to be capable of providing variable charging rate to all EVs. Now, though

the production cost of RE is zero, these energy sources come with a sizable installation

cost. As a consequence, we propose a charging price and that is directly dependent

on the enjoyed charging rate. Hence, the charging rate per EV is determined such

that the declared deadlines must not be exceeded and would be able to minimize the

charging price for all EVs. PV is considered as the only source and a time slotted

system is assumed; to handle the intermittent behavior of PV, a short term prediction

[135] is used and this prediction is revised after each time slot. The future load is

also predicted and the EVs are scheduled for charging, based on the current charging

request and load forecast. According to our model, an EV having a strict deadline

has the option to enjoy faster charging rate. Hence, others have to consume at a
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slower rate due to the limited amount of energy. To ameliorate this differentiation, a

charging rate dependent price function is proposed. The price function adopted here

is quadratic and convex, which ensures higher price for higher charging rate and vice

versa. The installed ESS is used for storing any excess of energy, for future use. The

ESS maximum capacity and maximum charging and discharging rate are also taken

in account. The major contributions of the work are as follows:

• Though the designed ILP provides an optimal solution, due to its larger com-

putational time (especially for a large number of EVs), two game theoretic

decentralized models, i.e., game 1 and game 2 are proposed to make the de-

cision making process faster. The purpose of modeling two different types of

game is to verify the importance of load prediction.

• The PV generation is predicted at the beginning of each time slot to avoid the

aberration, rather than relying on a long term prediction at the onset of the

scheduling horizon. The importance of this continuous assessment in charging

price minimization is examined here.

• A charging rate based quadratic price function is proposed to ensure the fairness

among the EVs. Now, as a non-cooperative game (both game 1 and game 2), no

EV is interested to give opportunity to other for charging without any incentives

and consequently many EVs having stricter deadline might fail to achieve the

target even after willing to pay a higher price. To ameliorate this problem, our

proposed cost function makes the price very high when the demand is higher

than the supply. As a consequence, the EVs which have longer deadline abstain

themselves from charging to avoid the higher price. This not only helps to

accommodate the EVs, but also brings the price back to a normal range.
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4.3 A Centralized Model for EV Charging

4.3.1 System Model

We assume a PV energy based charging station as shown in Fig.4.1 and we assume the

CS has enough facilities to connect every assigned EVs instantaneously and provides

charge according to the determined schedule only. PV energy is considered as the

only source of energy and an ESS is maintained to store the excessive production for

future use.

The main challenge of using PV is its production uncertainty. Though the pro-

duction of solar energy is totally dependent on nature, i.e. random, it is possible to

predict it on the basis of historical data. For example, at the beginning of time slot

1, the PV generation for all upcoming slots can be predicted. The PV prediction

model applied in [135] is adopted here. As Markov models, based on solar radiation

(using historical data) have been successfully used in climatology, a Markov model

with the impact of cloud intensity on solar radiation [113] is considered in [135]. The

following Markov first order transition probability matrices were used to express the

solar radiation:

Ψ = {ψij; 0 ≤ i ≤ k & 0 ≤ j ≤ k}; (4.1)

ΨI =

[
λ0, ..., λi, ..., λk

]
(4.2)

where k represents the number of states of radiation e.g., i = 0 the sky is fully

clouded and i = k, solar radiation is maximum, λk. ψi,j of Ψ indicates the transition

probability from λi to λj in ΨI , where matrices Ψ and ΨI denote the transition

probability matrix among solar radiation states and intensity of the solar radiation
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(W/m2) , respectively.

Under the assumption that the cloud size is exponentially distributed with mean

ci, the solar radiation state is λi. Assuming that transitions among solar radiation

states are sequential and circular, the transition matrix for solar radiation is expressed

as a continuous time Markov chain to estimate the radiation variation [175].

Ψc =



−Sw
c0

Sw
c0

−Sw
c1

Sw
c1

... ...

Sw
ck

... ... −Sw
ck


(4.3)

Sw
ci

denotes the variation rate between solar radiations. Now, the power generation

Eh of any slot h is directly dependent on solar radiation λh. To calculate the power

generation, the size of PV panel (number of PV cell, ξ), efficiency (ec) and critical

radiation (Kc) beyond which an increase of radiation results in a smaller increase

inefficiency are considered. The relation is shown below:

Eh = ξ.


ec
Kc
λ2h; 0 ≤ λh ≤ Kc

ecλh;λh>Kc

(4.4)
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Figure 4.2: The prediction of PV generation and load demand.

This can again be predicted for upcoming slots (as shown in Fig. 4.2) before time

slot 2, and this process should be done for all upcoming slots before the starting of any

time slot till to the end of the horizon to ensure a proper handling of the intermittent

PV generation.

Now, at the beginning of any time slot, m, two sets of EVs, I(m) and I
′
(m) are

considered. I(m) indicates the set of those EVs which have already arrived at the

CS for charging. Hence, all the parameters, e.g., demand, deadline, etc. of each EV

i ∈ I(m) are known. I
′
(m) denotes the expected/estimated arrival of EVs for future

time slots, i.e., future load; a Poisson process is assumed for these EVs to determine

the rate of their arrivals per time slot [19], and a truncated Gaussian distribution

is used for their respective charge demand and deadlines [74]. Fig.4.2 depicts the

load prediction where the solid blue cars indicate EVs i ∈ I(m) and i ∈ I
′
(m) are

presented by the dotted cars. For simplicity only 3 time slots are shown in Fig.4.2.

A CS having a PV system along with ESS is represented, where at the beginning

of slot 1, the PV power output for all three upcoming time slots is predicted and

we get the charging requests of EVs attempting charging in slot 1. Based upon the
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requirement and deadlines of these EVs, few of these cars have to charge even in

slots 2 or 3. Meanwhile, using historical data [130], the EV arrivals for slot 2 and

3 also can be predicted. The charge demand and deadlines are assumed to follow

a truncated Gaussian distribution. Using this information, all EVs (existing and

predicted) in time slot m (∀i ∈ I(m) ∪ I ′
(m)) are scheduled in such a way that the

charging price will be minimum. The overall model is explained in Fig.4.3.

Figure 4.3: Flow chart of the centralized model.

Since we cannot predict accurately the energy and load, we proceed as follows;

at the very end of time slot m, we predict the PV for the remaining slots (m +

1,m+ 2, ..., n), we also predict the load for slots (m+ 2,m+ 3, ..., n). This time, the

accurate load for slot m+1 is known: I(m+1) = I(m)+A(m+1)−D(m+1), where
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A(m+1) is the newly arrived EVs to be charged and D(m+1) is those EVs that have

completed their charging at slot m. After revising the energy and load profile, the

optimizer again schedules all EVs for all upcoming slots to ensure minimum charging

price. This is repeated for every time slot along the scheduling horizon. Hence, some

assumptions are taken at the beginning of any time slot m as-

• REj(m) is the predicted PV energy of any slot j ∈ {m,m + 1, ..., n}. Due to

very short time span, REm(m) is assumed to be accurate.

• The initial value of ESS is assumed to be constant and known as ESS1.

• EV m, the number of EVs, which attempt to charge at slot m is known. The

departure slot, i.e. deadline, ndi (m) and required amount of energy Ri(m) for

∀i ∈ I(m) are assumed to be known as well.

• EV j(m), the number of EVs, which may arrive at any future slot j ∈ {m +

1,m+ 2, ..., n} can also be predicted.

• The expected departure slot i.e. deadline, ndi (m) and required amount of energy

Ri(m) for any i ∈ I ′
(m) are assumed to follow a truncated Gaussian distribu-

tion.

• The maximum value of ndi (m) (expressed in time slot) for any EV i ∈ I ′
(m) can

be n and its minimum is j+ 3 if it would arrive at slot j ∈ {m+ 1,m+ 2, ..., n}.

Our assumption is that an EV has at least 1 hour to spend at the CS (less than

1 hour can also be managed by this model), where each 15 min is considered as

a slot.

A smart DC-DC charger is assumed to be incorporated at the CS that can charge

any EV i ∈ (I(m)∪I ′
(m)) at a rate θji (m), θji (m) = fq(m)×θmax, where, fq(m) ∈ F =

{0, 0.25, 0.5, 1} and q = 1, ..., |F |. fq(m) indicates the fraction of maximum charging
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Table 4.1: List of input parameters

Input symbols Description
I set of actually presented EVs at CS
I

′
set of anticipated EVs may arrive at future at CS

REj predicted PV energy of any slot j
Essj stored amount of energy at any slot j
Esscap storage capacity of ESS
ndi departure slot of EV i
nai arrival slot of EV i
Ri required energy of EV i
θmax maximum charging rate for any EV

θji charging rate of EV i at slot j

Cj
i charging price of EV i at slot j

γmax maximum charging rate of ESS
γj charging rate of ESS at slot j
βmax maximum discharging rate of ESS
βj discharging rate of ESS at slot j
S strategy set of the game
Si strategy set of EV i
µ payoff function set of the game
µi payoff function of EV i

rate, which an EV can enjoy at any time slot j. For example, when fq(m) = 0.25, the

charging rate of the EV is the quarter of its maximum and if the EV is not scheduled

to charge at that time slot, fq(m) = 0. Here, for simplicity we assume all EVs have

the same maximum charging rate, θmax.

Considering these assumptions and making the predictions, we seek to determine

an optimal charging schedule.

4.3.2 Problem Formulation

We seek to schedule all EVs for charging to fulfill their demand inside the deadline

at minimum price. At the beginning of any time slot m, I(m) and I
′
(m) should be

revised. After that REj(m); ∀j ∈ {m,m+ 1, ..., n} and Ri(m), ndi (m);∀i ∈ I ′
(m) are

predicted. Ri(m) and ndi (m) for any EV i ∈ I(m) are known. Hence, at each slot m,
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the optimizer minimizes the charging price for any EV i ∈ (I(m) ∪ I ′
(m)). At time

slot m, the model can be formulated as follows:

Objective:

min
n∑

j=m

Cj
i (m); ∀i ∈ (I(m) ∪ I ′

(m)) (4.5)

At time slot m, Cj
i (m) is the charging price for EV i for any time slot j ∈

{m,m+ 1, ..., n}.

Constraints:

According to our model, an EV may enjoy a variable charging rate. Hence, we

introduce a binary decision variable xj,qi (m). For any EV i ∈ (I(m)∪I ′
(m)), the value

of xj,qi (m) must be zero before its arrival slot, nai (m), and after the departure slot,

ndi (m). Eq. (4.7) ensures that xj,qi (m) = 0 for any j ∈ {{j < nai (m)} ∪ {j > ndi (m)}}.

As mentioned earlier, fq(m) indicates the fraction of maximum charging rate and by

determining the value of xj,qi (m), the optimizer picks the suitable value of fq which

is sufficient for completing the charge for EV i ∈ (I(m) ∪ I ′
(m)) inside the deadline

ndi (m) at minimum price. For a particular time slot, fq(m) should have a fixed

value. Considering these assumptions, Eqs. (4.6) to (4.8) explain this decision binary

variable.

xj,qi (m) =


1; i is charging at fq th rate at slot j

0; otherwise

(4.6)

(nai (m)− j)(ndi (m)− j)xj,qi (m) ≤ 0;∀i ∈ (I(m) ∪ I ′
(m));∀j (4.7)

∑
q

xj,qi (m) = 1; ∀i ∈ (I(m) ∪ I ′
(m))),∀j (4.8)
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For Eqs. (4.6) to (4.8), j ∈ {m,m+ 1, ..., n}.

At slot m, the charging rate θji (m) of all EVs i ∈ (I(m)∪ I ′
(m)) for any time slot

j ∈ {m,m+ 1, ..., n} are as:

θji (m) =
∑
q

(θmaxfqx
j,q
i (m)); ∀i ∈ (I(m) ∪ I ′

(m)),∀j (4.9)

n∑
j=m

θji (m) ≥ Ri(m)−
m−1∑
j=1

θji ; ∀i ∈ (I(m) ∪ I ′
(m)) (4.10)

Eq. (4.9) expresses the value of the variable charging rate while θmax depicts the

maximum charging rate. Eq. (4.10) ensures that EV i will be charging until fulfilling

its requirement.
∑m−1

j=1 θ
j
i is known at time slot m and for m = 1, this value is assumed

as 0.

Hence, our model offers a variable charging rate to different EVs. Even for a

particular EV i ∈ (I(m) ∪ I ′
(m)), this charging rate may be varied from one slot to

another according to the total available energy and total demand. To ensure equity,

the price should be directly related with the charging rate and at time slot m, the

charging price of EV i ∈ (I(m) ∪ I ′
(m)) for any slot j ∈ {m,m + 1, ..., n} can be

expressed with the following equation.

Cj
i (m) = a(θji (m))2 + bθji (m) + c ; ∀i, ∀j (4.11)

here, a, b and c are constants. The CS can set the values of a, b and c, but a

regulatory board should have the authority to declare the maximum range of these

values to ensure the social welfare 2. Moreover, no EV is allowed to start charging in

the middle of any slot and the EV has to pay for the whole slot it is assigned to.

2NREL report states that the tariff of micro grid electricity is monitored by a regulatory board
[126]
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At any time slot j ∈ {m,m + 1, ..., n}, any EV i ∈ (I(m) ∪ I ′
(m)) has to take

its charge from either real time PV generation or from the ESS. This ESS stores the

excess energy which is not used in EV charging at that time slot j. Our assumption

is that for a particular time slot j, the ESS might either charge or discharge (but

not both concurrently). To determine the charging or discharging of ESS at slot

j, another decision binary variable αj(m) is declared. Let, γmax and γmin be the

maximum and minimum rates of charging per slot for the ESS and βmax and βmin

be the maximum and minimum rates of discharging. γj(m) and βj(m) represent

the charging and discharging rate of the ESS for slot j and Ess(j)(m) expresses the

amount of energy storage after slot j. Esscap is assumed as the maximum capacity

of the ESS. Hence, Eqs. (4.12) to (4.16) explain the charging or discharging decision

of ESS and the amount of ESS after any slot j.

αj(m) =


1; ESS is charging at the jth slot

0; otherwise

(4.12)

γmaxαj(m) ≥ γj(m) ≥ γminαj(m) ; ∀j (4.13)

βmax(1− αj(m)) ≥ βj(m) ≥ βmin(1− αj(m)) ; ∀j (4.14)

Esscap ≥ Ess(j−1)(m) + γj(m)− βj(m) ≥ 0 ; ∀j (4.15)

Essj(m) =

j−1∑
j=1

(γj(m)− βj(m)) ; ∀j (4.16)

At j = 1, ESS1 is assumed to be constant and known. And at time slot m, θj(m)

is calculated to determine the amount of total energy which should be allocated for

the all EVs in jth slot . This amount must not exceed the value of REj(m) + βmax.

These scenarios are expressed for any j ∈ {m,m+ 1, ..., n} by Eqs. (4.17) and (4.18)
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∑
i

θji (m) ≤ θj(m);∀j (4.17)

θj(m) ≤ REj(m)− (γj(m)− βj(m));∀j (4.18)

4.4 Game-theoretic Decentralized System

Our proposed centralized solution might be time consuming, as it involves solving the

ILP (derived before); particularly, when the number of EVs is high, the processing

time becomes prohibitively expensive and that renders the model less significant in

practice. Hence, we present a game theoretic methodology where each EV acts as a

player in a non-cooperative game. Our problem is solved in a decentralized manner

and each of the players tries to achieve its goal simultaneously; as a result, such

decentralized solution is expected to be much faster than the centralized system.

Let, G =< I(m), S(m), µ(m) > be the game model, where at time slot m, G has

its all three major components: the player set I(m), the strategy set S(m) and the

respective payoff function µ(m).

Each EV i ∈ I(m) acts as a player and selects its own strategy to get the required

energy inside the deadline at minimum price. Here, the charging rate of a particular

EV for a particular time slot depends on the energy availability from PV and ESS

as well as the charging strategies of other participating EVs. Hence, this game is

actually a mixed strategy game [18]; every player informs the CS about the arrival

time nai (m), the energy requirement Ri(m) and the deadline ndi (m). The CS will

not take any decision about scheduling, it will simply convey the total demand and

predicted amount of PV power generation of each time slot j ∈ {m,m + 1, ..., n} to

all participating EVs. Each player has its own action set and it takes a strategy to
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minimize its charging price as much as possible. We propose two different algorithms

(game 1 and game 2) to play this non-cooperative game.

In game 1, EVs start their game at the beginning of any time slot m without

considering I
′
(m), i.e. without looking ahead for upcoming demand, that means only

EV i ∈ I(m) participates in the game and I
′
(m) = ∅. The CS predicts the REj(m)

generation for all remaining time slots as well. And due to the arrival of new EVs

i ∈ A(m) and departure of i ∈ D(m), set I(m) is revised at the beginning of each

slot, consequently all players need to play the game again. The strategies taken by

the players are depend on the predicted amount of PV energy and other players’

strategies. Algorithm 4.1 explains the procedure of game 1.

Algorithm 4.1 Game 1

1: Revise the set I(m) and assume I
′
(m) = ∅

2: Predict REj(m); ∀j ∈ {m,m+ 1, ..., n}
3: Declare Ri(m),nai (m) and ndi (m); ∀i ∈ I(m)
4: Play G =< I(m), S(m), µ(m) > to select s∗i (m);∀i ∈ I(m)
5: Increase m to m+ 1
6: If m ≤ n repeat steps 1 to 6, else go to step 7
7: End of scheduling

On the other hand, in game 2, the set I
′
(m) is not considered as empty, that means

we predict the arrival rate of EVs for all upcoming slots j ∈ {m,m+1, ..., n} and also

predict their associated demand and deadlines just like the centralized system. In

Algorithm 4.2 Game 2

1: Revise I(m) and predict I
′
(m)

2: Predict REj(m); ∀j ∈ {m,m+ 1, ..., n}
3: Declare Ri(m), nai (m) and ndi (m); ∀i ∈ I(m)
4: Predict Ri(m), nai (m) and ndi (m); ∀i ∈ I ′

(m)
5: Calculate Lj(m); ∀j ∈ {m+ 1,m+ 2, ..., n}
6: Play G =< I(m), S(m), µ(m) > to select s∗i (m);∀i ∈ I(m);
7: Increase m to m+ 1
8: If m ≤ n repeat steps 1 to 8, else go to step 9
9: End of scheduling
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the game theoretic model, each EV has to take its own decision, as a ramification we

cannot expect that an EV i ∈ I ′
(m) participates in the game at slot m. Therefore,

only EVs i ∈ I(m) play the game, but an average future load ,Lj(m);∀j ∈ {m+1,m+

2, ..n} is taken into account. This demand can be calculated from Rj
i (m);∀i ∈ I ′

(m).

As a result, in game 2 (explained in algorithm 4.2), all players select their strategies

based on the predicted RE, average future demand and other players’ strategies.

Assume that at slot m, the game has a strategy set S(m) which depends on the

strategy set of all EVs i ∈ I(m):

S(m) = {S1(m)× S2(m).........× Si(m).......× Sk(m)} (4.19)

where k is assumed to be the total number of players and Si(m) indicates the strategy

set of EV i ∈ I(m) at time slot m. Here, the strategy means the value of the variable

charging rate for a particular time slot and this value is directly influenced by the

other players’ charging rates.

Si(m) = {θji (m);∀j};∀i ∈ I(m) (4.20)

This θji (m) is defined by Eq. (4.9) and it is applicable ∀j ∈ {m,m + 1, ..., n}. The

game is a mixed strategy game. The charging rate of EV i is varied from iteration

to iteration and depends on others’ strategies. By picking a value of fk(m) ∈ F , the

EV sets its charging rate and the probability of selecting any value of fk(m) at any

time slot j ∈ {m,m+ 1, .., n} can be expressed by Eqs. (4.21) and (4.22).

P j
i (fk(m)) < 1;∀i ∈ I(m), fk(m) ∈ F, ∀j (4.21)

∑
k

P j
i (fk(m)) = 1; ∀i ∈ I(m), ∀j (4.22)

The payoff function determines the impact of the selected strategy. At every

84



iteration, EV i ∈ I(m) calculates the payoff for its every possible strategy and selects

the best one. Definitely, the payoff of EV i is also dependent on others’ strategies.

Now during every iteration, each EV calculates this payoff by considering the possible

strategies of all others:

µi(m)(si(m), s−i(m)) = M −min
∑
j

Cj
i (m)

;∀si(m) ∈ Si(m),∀i ∈ I(m)

(4.23)

At time slot m, µi(m) is the payoff of EV i, si(m) is the strategy taken by the

EV i ∈ I(m) and s−i(m) indicates the strategies of all EVs except this EV i. M is a

large positive constant and here the price function needs to be slightly modified from

Eq. (4.11) of the centralized system.

As a non-cooperative game, no EV would change its strategy for other players’

benefit even for the same payoff. At slot m, it might be happened that the first

p players set their best strategies in such a way that all available energy of slot j,

REj(m)+βj(m) is consumed or almost consumed. If the (p + i)th player has no

option other than taking θjp+i(m) amount of energy from the jth slot, then none of

the players give the (p + i)th EV the opportunity of charging without getting any

incentive. Hence, we consider the charging price to be dependent not only on the

individual’s charging rates, but also on the total demand. If the total demand of a

slot becomes larger than the available energy for the taken actions of the players, an

additional price will be added. As a result any EV having options to get charge at a

lower price from other subsequent slots will make free (vacate) slot j for the (p+ i)th

EV. To add this additional price, we declare a binary variable yj(m) and the price
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function becomes as Eq. (4.27).

yj(m) =


0; if

∑
i θ

j
i (m) > REj(m) + βmax;∀j

1; otherwise

(4.24)

p∑
i=1

θji (m) + θmax ≥ yj(m)(REj(m) + βj(m));∀j (4.25)

j ∈ {m,m + 1, ..., n} and Eq. (4.25) will be slightly changed for game 2. If the

average future demand is Lj(m) for slot j at m, the equation would be as follows:

p∑
i=1

θji (m) + Lj(m) + θmax ≥ yj(m)(REj(m) + βj(m));∀j (4.26)

Cj
i (m) = a(θji (m))2 + bθji (m) + c+ (1− yj(m))Γ

;∀i ∈ I(m),∀j
(4.27)

where Γ is a large positive number. To avoid this extra price, all EVs try to set

their charging pattern in such a way that the total consumption by all EVs from

a particular slot always maintains a gap of θmax with the available energy of that

slot. Finally all the other constraints of centralized systems are also applicable here.

Now using Eq. (4.27), EV i ∈ I(m) determines its best strategy s∗i (m) only when it

considers the best strategies of other EVs:

s∗i (m) = arg min µi(m)(si(m), s∗−i(m))

;∀si(m) ∈ Si(m), ∀i ∈ I(m)

(4.28)

where at slot m, s∗i (m) is the best strategy for EV i ∈ I(m) because its payoff is
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at least as good as all other possible strategies which might be taken as a response of

the best strategies of all other players, which is expressed as

µi(m)(s∗i (m), s∗−i(m)) ≥ µi(m)(si(m), s∗−i(m))

;∀i ∈ I(m),∀si(m) ∈ Si(m)

(4.29)

The players are continuously trying to improve their payoff by changing their

strategies over others’ best responses from one iteration to another in the game. This

game goes on until any change in the strategy of any EV has no impact over the

payoff of all other EVs. This means, no further improvement in payoff is possible by

selecting a new strategy and this scenario is true for all players as well. This procedure

achieves a stable value of payoff functions for all EVs using the corresponding best

strategies from the following equation:

µ∗i (m)(s∗i (m), s∗−i(m)) = M −min
∑
j

Cj
i (m);∀i ∈ I(m) (4.30)

By this way, all the participating EVs set their charging profile to get the required

charge at the least possible price inside the deadlines by taking their own decision. But

at the beginning of next time slot (m+ 1), I(m+ 1) should be revised, consequently

∀i ∈ I(m+ 1) shall play the same game to select their charging rate for all upcoming

time slots j. This process is going till the end of scheduling horizon.

Lemma 1 (Nash Equilibrium) In this mixed strategy non-cooperative game, the

I(m) players having a compact, non-empty, convex strategy set {Si(m)|i ∈ I(m)}

play a game to maximize their payoff individually as in Eq. (4.23). Si(m) contains a

finite number of strategies. According to [168], the objective function converges to at

least one Nash equilibrium in this case if the payoff function is convex and continuous.
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Proof As a strategy, each player i ∈ I(m) takes a value from set F to set the charging

rate while the EV i ∈ I(m) is charging. By definition, this set can be covered by

a collection of open sets {H}, where each H is also compact. The strategy set is

obviously non-empty as well. As a compact and non-empty set, Si(m) shows the

completeness.

Now Si(m) is also a convex one. Any value of si(m) ∈ Si(m) belongs to the real

number set R. To prove this convexity, we assume A,b,C and d as real value such

that Asi(m) ≤ b and Csi(m) = d for both si(m) = x and si(m) = y, where si(m) ∈

Si(m). Now any value of κ is chosen as 0 ≤ κ ≤ 1 and it can easily be shown that

A(κx + (1 − κ)y) ≤ b and C(κx + (1 − κ)y) = d are also true. Hence, our strategy

set is convex.

For a finite strategy set, to get a Nash equilibrium the objective function needs

to be convex and continuous [168]. Our payoff function (Eq. (4.27)) is a quadratic

one and all its coefficients are real. Hence, as per the definition it is continuous for

any real value and it is proven that every continuous function shows semi-continuity

[140]. For the positive coefficients of the payoff function, it acts like a parabola, which

means it is strictly convex as well. All the properties of our game match with the

mentioned properties of [168]. Hence, the game must converge to at least one Nash

equilibrium.

4.5 Empirical Evaluation and Discussions

This section solves both the centralized and decentralized models derived earlier. The

objective of our model is to minimize the charging price for all EVs. The impact of

deadline over the charging pattern and the corresponding charging price is analyzed

in this section. Charging price is also expected to be influenced by demand and

the impact of energy demand over charging price is examined. The contribution
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of the ESS on handling the shortage of energy in a particular time period is also

deduced here. Recall for handling intermittency, the energy profile is revised after

each time slot using a short term prediction algorithm. The importance of this revision

is analyzed along with the load forecast. Then the performance of the proposed

model is compared with a published work [136]. Finally the performance of the

centralized and decentralized methods are compared in terms of computational time.

Randomly generated data is used for simulation and for each case, the simulator runs

for different data sets and their average is taken. For EV arrival, the parameter of

the Poisson distribution is set to a certain value e.g. 10 EVs/time slot. And if each

EV having a minimum range of 4 slots and a maximum range of 12 slots (end of

the horizon), a truncated Gaussian distribution is used to generate the respective

deadline. Finally, the energy requirement of EV i was generated by using a truncated

Gaussian distribution for the whole set of EVs. Finally for simplicity, we assume the

maximum charging rate is fixed for all EVs of 10 kWh/slot and we also assume that

the length of each time slot is 15 min.

Figure 4.4: Energy allocation based on RE, ESS and demand.
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Figure 4.5: Charging pattern variation due to different deadlines.

Consider a total of 40 EVs having different energy demand and deadlines; Fig. 4.4

shows the total energy generated by PV and the average demand of each slot for 12

consecutive time slots. The figure clearly shows that in some time slots, e.g., slot 0 and

between slots 2 and 4, the demand is more than the energy predicted from PV. After

running the centralized model with this input, the charging schedule is determined

for all EVs. It is evident from the figures, that although the demand of energy from

EVs can exceed the available energy from PV, the model makes informed decision to

store excess energy in the ESS in times of high demand to use it for allocation for

EVs. It is also clear that there is a shift in the charging of EVs to future time slots,

e.g., compare the average demand for energy with the allocated energy by the model,

in particular for those EVs with less strict deadlines.

Shifting the schedule of EVs having less strict deadlines to later time slots is more

clearly depicted in Fig.4.5, where three different EVs are taken, which start their

charging at slot 1 having the same demand of 40 kWh. We assume that one of them

has to finish its charging by slot 5, another has to finish by slot 10, and the last one

has enough time to finish its charging by slot 11. Fig.4.5 depicts that, the EV having

the most strict deadline charges at a faster rate while others have the opportunity to
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charge at a slower rate to avoid higher price.

Figure 4.6: Unit price variation with deadline.

By shifting the demand to the less congested time slots, the EV having less strict

deadline actually creates the opportunity of higher charging rate for those EVs whose

deadlines are tight. Hence, the charging price should be varied with respect to dead-

line to ensure equity, i.e., an EV needs to pay more for charging at a higher rate. A set

of EVs having same demand but different deadlines is considered. Fig.4.6 shows that,

in the centralized model, the unit price is decreasing almost linearly as the deadline

increases and this solution is optimal one. It is evident that, an EV can reduce its unit

energy price by almost 50% by increasing its deadline by 1 hour. In the decentralized

method, the average unit price also seems to be behaving in the same fashion, where

each EV tries to minimize its price after playing a non-cooperative game. We observe

that the relation between unit price with deadlines in game 2 is identical with the

centralized model, which proves that the solution of game 2 is optimal. On the other

hand, though game 1 also shows the tendency of decreasing price with the increment

of deadline, the solution is slightly deviated from the optimal solution.
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Figure 4.7: Unit price variation with demand.

Next, intuitively the unit energy price should also be influenced by the aggregated

energy demand. We depict the relation of the charging price with the respective

aggregate demand in Fig.4.7 to analyze this influence. We assume a set of EVs having

different amount of energy requirement, which start their charging at slot 0 and finish

by slot 6. All three algorithms show that the unit energy price increases with the

demand. For all three algorithms, the unit price increases slowly at the beginning

and then suddenly spikes when the demand increases from 50 kWh to 55 kWh; this

increment in the demand for energy may force the particular EV to charge at a higher

rate for certain period of charging time to be able to meet its deadline, which implies

a higher price of charging. The centralized method shows that the optimal solution

and the output of both game theoretic models are almost identical with that. The

deviation from optimal solution is slightly higher in game 1 in comparison with game

2. This sort of deviation of game 1 from optimal solution was also found in Fig.4.6,

where unit price variation was analyzed with respect to deadlines. Actually a slight

variation in charging pattern of the same EV in the two games causes the deviation,

as mentioned above. To explain this phenomenon, we choose an EV having energy

requirement of 45 kWh from a fixed set of EVs. This particular EV intends to charge

between slot 0 to slot 6. Now this set of EVs was scheduled using both games. Fig.4.8
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depicts the charging pattern of this particular EV for both game theoretic models. It

is evident that, charging pattern is slightly varied from game 1 to game 2; in game

1 the EV charges at maximum rate in three time slots, where in only two time slots

using game 2. This difference in charging pattern helps to understand the variation

in pricing between game 1 and game 2 for few of the EVs, which was already shown

in Fig.4.6 and Fig.4.7.

Figure 4.8: Charging pattern comparison between game 1 and game 2.

Another important feature of our model is its prediction of PV energy profile at

the beginning of each time slot to avoid the aberration, rather than relying on a

long term prediction at the onset of the scheduling horizon. To analyze the impact

of this continuous assessment, we run game 2 for 80 EVs with different deadlines in

two different scenarios. In one condition, we just predict the PV generation for all

upcoming slots at the beginning of time horizon and in the other, we revised it after

each time slot m. The results are presented in Fig.4.9 where we show the unit price

vs. the deadlines only of those EVs which start their charging at slot 0 having same

energy requirement but different deadlines. It is shown that for EVs with deadlines

that are lower than 105 min, the price under both conditions is the same. This is

true since for a shorter time period, the deviation between the expected predicted

93



Figure 4.9: Unit price variation with PV generation.

Figure 4.10: PV energy profile.

energy and the one that is generated at each time slot is not very high. To validate

this scenario, we may check Fig.4.10, where the deviation from predicted value of PV

energy is clearly much smaller for shorter time period rather than longer one. As per

example, at slot 2, the real generation of PV is deviated by 5% from the predicted

value, where this deviation is increased as almost 10% for slot 7 and more than 10%

for slot 11. Hence, for EVs staying longer in the system, i.e. with higher deadlines,

when PV energy is not corrected, the error or deviation with the actual becomes

higher, and ultimately affects more on price. Whereas, if the PV is predicted at each

time slot, the error with actual is smaller, and hence scheduling decisions made by

the EVs are more informed.
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Figure 4.11: Comparison with super idealistic assumption.

Throughout our discussions, we assumed that at each time slot m, in addition

to knowing the set of vehicles currently in the system I(m), we also assume an an-

ticipated incoming load I
′
(m), and at each time slot I

′
(m) is re-evaluated (only in

centralized method and game 2); at each m, both EVs in I(m) and I
′
(m) will be used

to determine the charging schedule as well as the unit price. The objective of this is to

be cautious in scheduling currently available EVs, since current actions would affect

future actions as the state of the system changes in the future with new arrivals and

changing energy generation. To evaluate the effectiveness of this approach, we assume

a somehow idealistic scenario where at the onset of the horizon, i.e., slot 0, we have

a complete knowledge of the exact set of EVs at each time slot. We compare game

2 under both the realistic and idealistic scenarios, and the results are shown in Fig.

4.11. We assume all EVs have the same demand, but their deadlines are different.

The figure shows the charging unit price for different deadlines. Clearly, both exhibit

a decreasing price with longer deadline, which is expected since EVs with larger dead-

lines may be more flexible in shifting their charging to other time slots where either

demand is lower or sufficient energy is available either from PV or from the ESS.

However, EVs with stricter deadlines are less flexible and end up requesting higher

charging rates to meet their deadlines, but at higher price indeed. Now, when the
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exact load is known throughout the scheduling horizon, i.e., idealistic scenario, a more

informed decision is made by the game to globally optimize the schedule of all EVs.

Thus, not surprisingly this method exhibits a lower unit price in comparison with the

realistic scenario where the estimate of I
′
(m) may not be accurate. In particular, the

results show that EVs with stricter deadlines are more affected by the uncertainties in

demand prediction, i.e., larger price deviation with ideal scenario, since those players

of the game may not have enough time to compensate for decisions they have made

in the few time slots they had to charge. EVs with larger deadlines have only slightly

higher unit price, because they are in the system for a longer period and have more

opportunities to modify their strategies for selecting suitable charging rates.

Now, to assess the performance of our model, we have taken Tushar et al. [136]

as an example, where they design a Stackleberg game among a set of EVs which

try to determine their charging rates for each time slot as either zero or maximum,

while the grid changes the price to make its revenue higher. As the objective [136] is

different than ours, instead of making a direct comparison, we have just taken their

strategy set (i.e., an EV charges its battery either at maximum rate or restrain itself

from charging) and test our model maintaining the same utility function. Fig.4.12

depicts that though unit energy price is increasing with the average demand of the

set of EVs for both strategy sets, our one is more capable to minimize the price.

As an example, for an average energy demand of 40 kWh, according to our model,

the unit price is $0.20 where it is almost $0.26 for the other, i.e., our model reduced

the unit price by almost 23% than demonstrated in [136]. By considering two more

intermediate charging rates between zero and maximum, our model actually provides

more flexibility to EVs to charge at lower price. On the other hand, EVs have to

charge at maximum rate to fulfill their demand in [136] and experience a higher unit

price. The unit price difference between these two strategy sets is becoming lower
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Figure 4.12: Performance comparison with a published model [136].

with the increasing average energy demand, e.g., for a 55 kWh of average energy

demand, the unit price difference is decreased to $0.04, when it is almost $0.06 for a

40 kWh average energy demand and the reason behind this is that for a higher energy

demand, even our model forces a larger number of EVs to select maximum charging

rate for a higher number of slots to maintain their deadline.

Finally, all three models are compared in terms of their computation times. Using

C++ platform, IBM Cplex optimizer was run to solve all three models for different set

of EVs on an Intel(R) Core(TM)i7-6700 CPU having a speed of 3.40 GHz to examine

their scalability. Table 4.2 shows that the decentralized method is much faster than

the centralized method as we expected earlier. In the decentralized method, all EVs

play simultaneously to select their charging strategies, while in the centralized system,

the optimizer solves an ILP to make decision for all EVs. As a consequence, game

based models are much faster than the centralized model, e.g. for 40 number of

EVs, the centralized method took 998 sec while the decentralized method took just

almost 3 sec. The run time would be increased with the number of EVs in both

methods. But the finding shows that the decision making time is not varied a lot

by the total number of players in the decentralized method, e.g. 2.2 sec is required

when total players are 20 and this time is 2.9 sec for 40 number of total players. On
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the other hand, the centralized method takes more time for higher number of EVs,

e.g. 168 sec is required by the optimizer for scheduling 20 EVs while it would be 998

sec for 40 EVs. Another important observation is that both game methods almost

require the same time for making the decision in identical conditions. Hence, it can

be concluded that game 2 algorithm performs best among all; not only for providing

optimal solution but also for moderate decision making time.

Table 4.2: Comparison on Computational Time

No. of EVs Centralized Method Game 1 Game 2
10 72 sec 2.0 sec 2.4 sec
20 168 sec 2.2 sec 2.5 sec
30 441 sec 2.3 sec 2.4 sec
40 998 sec 2.9 sec 3.7 sec
100 1496 sec 7.3 sec 7.6 sec
200 − 12.6 sec 13.1 sec
500 − 15.1 sec 15.7 sec

4.6 Conclusion

Users’ satisfaction should get most priority to promote the EV market. Getting re-

quired energy inside targeted deadlines at minimum price, rather than the cleanliness

of the energy source, is a major key to satisfy EV owners. However, green energy

sources need to be incorporated for achieving the anticipated benefits of EVs in mit-

igating global warming and energy scarcity. Hence, a smart CS is assumed here,

which uses a PV system integrated with an ESS to charge EVs at variable rates. A

quadratic price function is proposed, that ensures the equity among the EVs, i.e., an

EV can enjoy a higher charging rate only by paying more. As PV is the only energy

source, when few EVs are charging at higher rates, others have to charge slowly at

lower price. This load shifting mechanism together with an ESS help accommodate

the EV charging. Moreover, to avoid sudden load congestion, upcoming load forecast

98



is considered during scheduling of current EVs and a short term PV prediction is

applied to predict the energy profile. To handle the uncertain behavior of both the

load request and PV generation, a frequent prediction is made. Actually both are

predicted after each time slot of 15 min and the significance of this frequent predic-

tion over charging price minimization is analyzed. The model is examined in both

centralized and decentralized methods. Though the centralized method is capable of

providing optimal solution, it takes a very long time in making a decision, specially

for a large number of EVs. To mitigate this computational problem, two different

types of game theoretic algorithms are proposed here, game 1 and game 2. The only

difference between them is that in game 2, players consider the upcoming load re-

quests while they select their strategies for minimizing the price. In both algorithms,

each player makes her own decision simultaneously after playing a non-cooperative

game and as a consequence decision making time is very fast here. Nash equilibrium

is proven for both methods and game 2 is shown to attain the optimal solution.
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Chapter 5

Joint Routing and Scheduling of

Mobile Charging Infrastructure for

V2V Energy Transfer1

In chapter 4, a set of EVs were scheduled for charging at minimum price in a PV

based standalone CS to depict a management system of handling a green CS to

curtail the dependency over the grid and consequently, reduce the carbon emission.

But whatever the energy source of a CS, an EV has to reach there before depleting

the battery and as a ramification, an auxiliary solution is required to support EVs for

emergency energy scarcity. Hence, in this chapter, a company is assumed which has

a set of V2V enabled charging trucks to charge a set of EVs to provide the flexibility

of EV charging in terms of place and time. A joint routing and scheduling problem

is addressed and solved here for those trucks to maximize the number of served EVs.

1This chapter is accepted in IEEE Transactions on Intelligent Vehicles [68] and partially presented
in IEEE PESGM’2020 [67]
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5.1 Motivation

The higher upfront installation cost or their geographical placement may make the

CS network expansion challenging and somehow non-profitable. For example, the

Ontario, Canada government has taken a 20 million dollar project to deploy 500 fast

chargers in public places and 55% of them are already in service [54]; unfortunately,

users’ feedback indicate that most of the established CSs are under utilized. Beside

this, a massive CS deployment may also have a substantial impact on power distri-

bution grids in terms of imposing new peak and degrading the power quality [100].

As a ramification, power utility companies also need to invest a lot to enhance their

network and generation capacity. Hence, a set of auxiliary technologies need to be

elaborated to support such grid connected CS network to mitigate the range anxiety;

a contender solution would be to explore the bidirectional energy transfer capabili-

ties of EVs (especially vehicle to vehicle (V2V)) for energy transfer between vehicles’

batteries.

V2V offers an opportunity when a vehicle is unable to reach a CS, whereby a

mobile charging station is dispatched to serve an EV charging request at its location;

this model for electric charging service breaks the dependence on a fixed charging

infrastructure, by bringing the service closer to the end user. Being independent

from the charging infrastructure, and hence the grid connection, V2V promotes a new

business at commercial scale, especially where installing a permanent infrastructure

might not be profitable.

AAA, a US company, has already converted this concept into reality by launching

a number of trucks to charge EVs [26]. All these trucks are equipped with generators

and level two chargers. In fact, few of them are equipped with CHAdeMO fast charg-

ers. Meanwhile, Rivian, another automobile company, introduces V2V charging to

transfer energy from one Rivian car to another to ameliorate the range anxiety [125],
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while Hyundai provides this service for its Kona electric cars in some selected cities

such as Delhi, Mumbai, Chennai, and Bengaluru in India [82]. The lack of charging

infrastructure in India makes the initiative of Hyundai significant and indicates the

prospect of V2V in EV charging.

Since, the V2V enabled technology is still very new as we discussed in Section

2.2.1, as per our best knowledge, still no one has designed a V2V enabled service for

commercial purpose. As a consequence, we design a strategical scheduling and route

selection of charging EVs/trucks of a V2V energy provider company to maximize the

served number of EVs.

5.2 Problem Definition and Contributions

Accelerating the acceptance of EVs by the public mandates facing the growing de-

mands to address range-anxiety issues and an adequate charging infrastructure would

help in improving customers’ experience. While much work has been done on pro-

visioning, deployment and management of fixed charging infrastructure, this chapter

considers a parallel, but integrated, approach for dealing with range anxiety, namely

exploring the usability of mobile charging service which is enabled by the emerging

technology of V2V.

A number of EV users sends their requests to the company to receive charging

service; each request contains a time window (start and finish times) as well as a

demand. Users also declare their locations (any one of the parking spots advertised

by the company) at the beginning of the charging window. The company intends

to dispatch trucks to satisfy EV users charging requests while satisfying the battery

capacity restrictions of each truck. Hence, a dispatched truck has to return to the

depot before fully depleting its battery after charging the assigned EVs. The objective

is to maximize the number of served EVs to fulfill their energy demand inside their
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charging windows using the available number of trucks. We assume a mobile EV

charging company owning a set of charging trucks to recharge EVs through V2V

technology. The company has a depot where the trucks park and charge their batteries

(e.g., off peak or through a third party energy trader). Each of these trucks is assumed

to be equipped with a very large battery pack to store energy along with an on board

fast chargers.

The contributions of this work are listed below:

• We determine routes and schedules for a set of charging trucks to charge a

number of EVs through V2V energy transfer.

• Considering the deadlines of EVs and the battery capacity of each truck, we

design a mathematical model to optimize the routes and the schedules of charg-

ing trucks to maximize the served number of EVs. We formally prove that such

combinatorial problem is NP-hard.

• To reduce the computational complexity and time of the designed NP-hard

model, we apply a Dantzig-Wolfe decomposition method to separate the prob-

lem in a master and a set of pricing problems (one for each EV instead for each

truck to avoid a multiple travelling salesmen scenario which is a well known

NP-hard problem). Our proposed decomposition method is compared with two

other heuristic approaches.

5.3 Mathematical Model and Formulation

5.3.1 System Model

We consider a city where a mobile charging service is provided by company which

operates to charge EVs (through V2V technology) by dispatching a limited number
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Figure 5.1: V2V enabled EV charging model.

of charging trucks as shown in Fig. 5.1. This company has a depot, where trucks are

parked and charged. We assume that the company has a set of charging trucks T and

each truck t ∈ T has an equal battery capacity of C kWh. The company has a central

agent which receives charging requests from buyer EVs v ∈ V (V denotes the set of

buyer EVs) to purchase energy. We assume a time horizon and at the beginning of the

time horizon, all buyers EV submit their requests to the central agent along with the

energy demand Ev and the time window wv to purchase the energy. The time window

of EV v ∈ V , wv starts at δv (time when the EV v is available to charge its battery)

and finish at ∆v (after ∆v, EV v is assumed to be unable to receive charging services).

Each EV v reports its position (xv, yv), which should be one of the predefined parking

lots by the company. On the other hand, from the depot, a charging truck t ∈ T

starts its journey with the full battery capacity C to serve a number of EVs and

should return back to the depot before its battery is fully depleted. For simplicity, we

assume an average speed m for all charging trucks during their travel and e amount

of energy is assumed to be required by any truck to travel each kilometer. All entities

(e.g. depot, seller trucks and buyer EVs) are assumed to be connected with a central
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Figure 5.2: Load allocation & trajectory selection for seller trucks.

agent as shown in Fig. 5.1.

The central agent gathers all requests (submitted by EVs) and subsequently, the

central agent decides how to dispatch a number of trucks to meet the maximum

number of buyers’ energy demand. As an example, in Fig. 5.2, the central agent

receives 8 charging requests, while it has two charging trucks at its depot. Each

request is assumed to have different energy demand and charging window. The central

agent allocates these two trucks to maximize the number of served EVs. There are

a number of combinations to dispatch these two trucks to charge EVs and only an

optimal combination can ensure to charge maximum number of EVs. As an example,

Fig.5.2 depicts a route selection of these two trucks where each truck serves 3 EVs

(blue color EVs are served) in the shown order and before battery depletion, each

truck also goes back to the depot. Other two EVs (yellow colored EVs in Fig. 5.2)

cannot be served with this decision. The objective is then to determine the optimal

route and schedule of trucks to maximize the served number of EVs (an EV should

be charged up to the declared demand inside the declared charging window).
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Table 5.1: List of input parameters

Input symbols Description
T set of charging trucks t
C ∈ R+ battery capacity of any truck t
m ∈ R+ speed of any truck t
e ∈ R+ energy required by any truck t to cross 1 km distance
ζ ∈ R+ charging rate offered by any truck t
ld ∈ R location of the depot as (xd, yd)
V set of buyer EVs v
Ev ∈ R+ energy demand of buyer EV v
lv ∈ R location of buyer EV v as (xv, yv)
wv charging window of EV v as wv = [δv,∆v]

Theorem 5.3.1. The problem described above is a strong NP-Hard problem.

Proof Consider an instance of the well known NP-Hard scheduling problem P |ri|
∑
Ui

where we want to schedule jobs J = {ji : i ≤ Jn} each with a release time ri, deadline

di and processing time pi over a multiple machines to maximize the throughput. This

problem can be reduced to our problem in polynomial time as follows. Each job ji can

be mapped into a vehicle v ∈ V with starting (available for charging) time δv equals

to ri and the deadline ∆v equals to di. The required charging time (Ev/ζ) of an EV

v can be mapped to pi, the capacity of a truck can be considered as the capacity of a

machine. This reduction takes only polynomial time. And, hence the defined problem

is NP-hard.

5.3.2 Mathematical Formulation

An ILP (Integer Linear Program) is designed here to determine trucks’ optimal routes

and service order of EVs in order to maximize the served number of EVs using a

limited number of charging trucks .

Parameters: The input parameters for the model are listed in Table 5.1.

Decision variables: A binary decision variable γvto is declared to decide whether
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EV v would be charged or not.

γvto =


1 if EV v is charged by truck t in an order of o

0 otherwise

(5.1)

Here, service order o is a positive integer to indicate the order for an EV by which

that is served by a particular truck. As an example, a truck t serves the EV v at an

order o means, this truck t has served (o− 1) number of EVs before serving this EV

v. As the total number of vehicle is |V |, the maximum value of o can be |V |.

The other decision variable τv ∈ R+ is declared to determine the charging starting

time of EV v.

Objective: The objective of our model is to maximize the number of served EVs.

max
∑
v,t,o

γvto (5.2)

Job allocation and service order constraints: An EV v only can be charged by

only one truck t in a particular order o or not to be charged at all:

∑
t,o

γvto ≤ 1;∀v ∈ V (5.3)

The following equation ensures that a truck t can serve only one EV v at a par-

ticular order o:

∑
v,o

γvto ≤ 1;∀t ∈ T (5.4)

A truck t can serve EV v in order o ≥ 2 if and only if this truck serves another
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EV v′ with an order of (o− 1):

γvto ≤
∑
v′

γv′t(o−1);∀v, o ≥ 2, t (5.5)

Charging window constraints: The charging process of an EV v cannot be started

before its declared window wv = [δv,∆v]:

τv ≥ δv;∀v (5.6)

here, τv is the starting time of charging for EV v.

And the charging process of EV v should be finished by the deadline ∆v:

τv +
Ev
ζ
≤ ∆v;∀v (5.7)

here, Ev
ζ

is the required service time to charge EV v.

Trucks trajectories constraints: Eq. (5.8) confirms that to serve the EV v having

the order o = 1, truck t should leave the depot and reach to EV v by τv.

γvt1τ
t
dv ≤ τv;∀t, v (5.8)

here, τ tdv indicates the required time for truck t to reach EV v from the depot.

After serving EV v′ in an order o − 1, a truck t needs to maintain the following

constraint to serve EV v in an order of o.

∑
o

(γvtoγv′ t(o−1))[τv′ +
Ev′

ζ
+ τ tvv′ ] ≤ τv;∀t, v, v′, o ≥ 2 (5.9)

here, τ tvv′ is the required time by truck t to reach EV v after charging EV v′ and
Ev′
ζ

is the time required to charge EV v′.

108



Energy constraint of trucks: A truck t cannot spend more than C amount of

energy for travelling and charging EVs. The following constraint ensures this.

τ tTme+
∑
v,o

γvtoEv ≤ C;∀t (5.10)

where, the total travel time τ tT of truck t can be calculated as follows:

τ tT =
∑
v

(γvt1τ
t
dv) +

∑
v,v′,o≥2

(γvtoγv′t(o−1)τ
t
vv′)

+
∑

v,v′,o≥2

((1− γvto)γv′t(o−1)τ tdv′ );∀t
(5.11)

where τ tdv is the distance from depot to vehicle v and τ tvv′ is the distance between

vehicle v and v′.

5.4 Dantzig-Wolfe Decomposition Model

As indicated earlier, the defined problem is NP-hard and is expected, as will be also

shown later, to be computationally very complex. The objective of the program

is to maximize the number of served EVs by determining the optimal route and

schedule of a set of trucks; this might be viewed as a multiple number of travelling

salesman problems having service windows for customers. Hence, solving the designed

ILP might be time consuming especially for realistic instances (i.e., a larger number

of charging requests and charging trucks) and might not be applicable in practical

purposes. As a ramification, we seek a more scalable methodology, which provides

a good (optimal or closer to optimal) solution as well. To attain such a good and

quick solution, we decompose our problem by using the Dantzig-Wolfe decomposition
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approach. We design our Dantzig-Wolfe decomposition model (DWDM) where the

original problem (formulated as an ILP) is divided into a master problem and a set

of pricing problems (one for each EV). However, a similar decomposition approach

that can be used to solve this problem is the Lagrangian relaxation. Such approach

is efficient when there is an easy way to derive an efficient solution from the infeasible

relaxed solution. Obviously, our problem does not have this property due to the

complex set of constraints it has.

Now, by inspecting the ILP formulation, we find that there are several ways to

decompose the problem. The very direct, but naive, way of decomposing it is the

per-truck decomposition. Such a decomposition will end up with multiple salesman

problems (one for each truck). This might lead into a gain in the speed of the com-

putation, but still may not be scalable enough. Instead, we propose to decompose

the problem through an EV-wise decomposition which leads, as we will see later,

into a very simple pricing problem which is solvable by a simple greedy fashion.

The challenge in the proposed decomposition lies in how to break down the original

problem into the master problem variables/constraints and the pricing problems vari-

ables/constraints as well as the integration between the pricing problems solutions,

as columns, and the master problem. This is a consequence of the considerable lin-

earization amount required and the tidy number of constraints/variables that bind

the EVs together (e.g., Eq. (5.5), Eq. (5.9) and Eq. (5.10)).

As stated, after the decomposition, we end up with one master problem and several

pricing problems (one for each EV). The master problem is a Linear Program (LP) and

is initialized with a subset of configurations (columns) that satisfy all the constraints

of the master model (a feasible solution is obtained). The problem might have an

exponential number of feasible solutions and any one could be taken to initialize

the master problem. However, after the initialization, the LP is solved and then the

110



Figure 5.3: Flow diagram for the Dantzig Wolfe decomposition method.

dual values of each constraint are extracted to build the reduced cost function for each

pricing problem. The pricing, which is a separate model for the dual LP of the master,

tries to optimize the reduced cost function. As our main problem is a maximization

problem, each of the pricing problems intends to minimize the respective reduced cost

function to generate new columns i.e., new feasible solutions. These new columns are

added to the master and the master problem is solved again and generates new values

of dual variables. And using these new dual variables, new reduced cost functions

are formed and fed to pricing problems to generate new columns. This iteration goes

on until a pre-specified criteria is reached. In our problem, the master problem is
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solved through the barrier interior point algorithm as it is a pure linear program (LP)

and the pricing problems are solved by a greedy heuristic. The overall process of our

DWDM are illustrated in Fig. 5.3 and discussed in subsequent subsections.

5.4.1 Master Problem

As we generate a solution for each EV by solving pricing problems, those constraints

of the original problem (i.e., ILP), which deals with more than one EV i.e., Eq. (5.5),

Eq. (5.9) and Eq. (5.10) should be satisfied by the combined solutions (i.e., by the

generated columns) in the master problem. Let, Sv be the feasible solution set, while

s ∈ Sv is a feasible solution i.e., a column and the designed master problem is a LP

(linear program). The master problem model is the following:

max
∑
v,t,o

∑
s∈Sv

λsγ
s
vto (5.12)

∑
s∈Sv

λsγ
s
vto ≤

∑
s∈Sv

λs
∑
v′

γsv′t(o−1);∀v, v′, o ≥ 2, t (5.13)

∑
s∈Sv

λs
∑
o

(γsvtoγ
s
v′ t(o−1))[τ

s
v′ +

Ev′

ζ
+ τ tvv′ ] ≤

∑
s∈Sv

λsτ
s
v

;∀t, v, v′, o ≥ 2

(5.14)

∑
s∈Sv

λs(τ
st
T me+

∑
v,o

γsvto)Ev ≤ C;∀t (5.15)

∑
s∈Sv

λs = 1, ∀v (5.16)

λs ∈ R+ ∀s ∈ Sv ∀v ∈ V (5.17)
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As discussed in the previous section, the possible number of columns of the master

problem is exponential, decision variable, λs helps avoid including all the possible

columns of a problem in the master model tableau. As the master problem is a LP,

before applying constraints (5.14) and (5.15), we have to linearize Eqs. (5.9) and

(5.11). The linearized forms are provided in the appendix.

5.4.2 Initial Solution

As we mentioned earlier, at the beginning, the master problem is initialized with a

simple solution. To attain this feasible solution, we solve the problem (ILP) using

a heuristic approach, where a truck seeks the EV having the shortest deadline. If

more than one EV have same deadline, the truck follows the shortest path i.e., the

EV nearer to the truck will be served first. After scheduling the first EV, the truck

again searches the next EV and so on. A truck can serve an EV only if it has enough

energy and time to charge that EV inside the declared charging window and has

enough energy to return back to the depot. After determining the route and schedule

of one truck, the route and schedule of another truck (if available or if required) is

determined in the same fashion. By this way, the algorithm maximizes the number

of served EVs using a limited number of trucks.

5.4.3 Pricing Problems

Designing a pricing problem for each truck would create a travelling salesman problem

(a well known NP-hard problem); as a ramification, our NP-hard problem would end

up as a multiple number of NP-hard problems. Hence, we design a pricing problem

for each EV instead of each truck.

Let, αot, βg, φt and σs be the dual variables associated with constraints of (5.13),
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Algorithm 5.1 Pricing problem Algorithm

procedure Pricing problem(t,v,Φ,Ψv, δv,∆v, Ev, ζ)
γvt ← 0 . vector of all γvto
τv ← 0
if ψv > 0 then

τv ← δv
else

τv ← ∆v − Ev/ζ
end if
o←o Φv,t,o ∗ γvto
γvto ← 1
return γ, τv

end procedure

(5.14), (5.15) and (5.16) respectively. We assume that G = {g = (o, t, v, v′) : o ≥

2, {v, v′} ∈ V, v 6= v′, t ∈ T} to represent the subscript of the variables of the linearized

constraints and their subsequent dual variables. The objective of the pricing problem

is to minimize the reduced cost function which is calculated from the dual variables of

the Master problem. The reduced cost function of EV v (RCv(t, o)) for a combination

of truck and order (t, o) can be calculated as follows:

RCv(t, o) = Φvtoγvto + Ψvτv −
∑
t,o

γvto + Θv (5.18)

Φvto, Ψv and Θv are the summation of corresponding dual values achieved from

the master problem. The detailed calculation of Φvto, Ψv and Θv is given in the

appendix.

Since the pricing sub-problem solves the problem for each single EV, the same

parameters and decision variables of the original problem are used in the pricing sub

problem. Hence, the pricing problem for EV v can be expressed as:
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Objective:

min
t,o

RCv(t, o) (5.19)

such that:

Eqs. (5.3),(5.4) and (5.6)-(5.8) are the constraints.

The direct way of finding the minimum combination is going through all the

combinations of (t, o), calculate the reduced cost (through algorithm 5.1 as we will

discuss below) and pick up the (t, o) with minimum reduced value. But doing so will

give a higher chance for the trucks that appear in the beginning of the trucks list to

get assigned vehicles more than the others. This approach will after all end up with

the minimum upper bound but as the vehicles have limitations in terms of charging

rates, speed and capacity, the integer version of the master model will fail to use the

columns generated using this approach to come up with a good integer solution. To

overcome this problem, we adopted a round-robin approach where in each iteration

of the CG algorithm, we generate columns for only one truck. This will give a better

chance for all the trucks to be assigned more EVs.

To attain a quicker solution, instead of solving an ILP for each pricing, a greedy

approach is adopted to solve the pricing problem as shown in Algorithm 5.1. This

algorithm starts by initializing the output variables. Then it checks whether the term

Ψv is positive or negative. If it is negative, it assigns τv its maximum possible value

which is the time window deadline (∆v) minus the time to charge the EV (i.e., EV /ζ).

After that, it finds the order that makes the first term of the reduced cost function

appears in Eq. (5.18) to be minimum. This is done obviously by finding the minimum

Φvto term.
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5.5 Numerical Evaluation and Discussions

To evaluate the performance, we assume a metropolitan city like Montreal having a

length of 54 km and a width of 16 km [33]. We randomly choose the positions for

the depots and the set of parking lots in the city. We also consider a set of EVs

having different charging demands and deadlines (period of charging), and assume

the demands and charging windows follow a truncated Gaussian distribution [74]. A

set of trucks is considered having each a battery capacity of 250 kWh [41] along with

a fast charger having a charging rate of 40 kW [76]. For simplicity, we consider a

constant speed of 60 km/h for all trucks and 0.9 kWh energy is required to travel

1 km [89]. Using a C++ platform, IBM Cplex optimizer was run on an Intel(R)

Core(TM)i7-6700 CPU having a speed of 3.40 GHz to solve these algorithms.

We examine and compare the computational time of the ILP with our solution,

the DWDM model. Since also DWDM is a complex model itself, hence we also seek

solutions from two different heuristic approaches to examine the competency of the

DWDM model. The heuristic approaches are as follows:

• Strictest Window Shortest Path First (SWSPF): A truck seeks the EV having

the strictest charging window. If more than one EV have same widow length,

the truck follows the shortest path i.e., the EV nearer to the truck will be served

first. After scheduling the first EV, the truck again searches the next EV and

so on. A truck can serve an EV only if it has enough energy and time to charge

that EV inside the declared charging window and has enough energy to return

back to the depot.

• Shortest Demand Shortest Path First (SDSPF): The only difference of SDSPF

over SWSPF is to search the EV to charge based on minimum energy demand

instead of minimum window length. Similar to SWSPF, SDSPF also follows
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the shortest path algorithm when more than one EVs have the same energy

demand.

Table 5.2: Performance evaluation of different algorithms

Efficiency (Served EVs per truck) Computational time (sec)
No. of trucks |T |= 1 |T |= 2 |T |= 3 |T |= 4 |T |= 5 |T |= 1 |T |= 2 |T |= 3 |T |= 4 |T |= 5

ILP 8 7.5 6.66 - - 38 197 37600 - -
DWDM 7 6.5 6.33 5.75 5.8 113 213 419 870 1360
SWSPF 3 4 4.3 4.75 4.8 0.01 0.03 0.04 0.06 0.1
SDSPF 3 5 5.33 4.75 4.6 0.01 0.04 0.06 0.07 0.1

We start by first considering a scenario with 40 EVs, each sending its request for

charging. The energy demand of each EV follows a truncated Gaussian distribution

with a mean of 30 kWh and the width of charging window also follows another

truncated Gaussian distribution having a mean of 3 hrs. The number of parking lots

is 5 and all EVs select one of these 5 parking lots as their potential location at the

beginning of this charging window. To assess the performance, we introduce a term,

efficiency which indicates the total number of served EVs by each truck. Table 5.2

indicates that though the ILP provides the optimal solution, the computational time

is too large to be applicable in practice especially for a large number of requests.

The computational time is more than ten hours for an instance where the number of

EVs is 40 and number of trucks is 3. Even for |T |= 4, the system runs for too long

to achieve a solution and that is why the outcome is not shown here. On the other

hand, though the computational time of DWDM is much higher than both heuristics

(SWSPF and SDSPF), but much lower than the ILP, the efficiency of DWDM is

closer to the optimal one. As an example, when 3 trucks are considered to serve these

40 EVs, DWDM shows an efficiency of 6.33 EVs/truck while this is 5.33 EVs/truck

for SDSPF and 4.3 EVs/truck for SWSPF.

Now, recall that the performance of DWDM model is directly influenced by the

initial solution (i.e., initial columns to the master problem which is generated from
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Figure 5.4: Efficiency and required time analysis for DWDM.

a heuristic approach) and the number of iterations (i.e., generated columns from the

pricing problems); hence, to attain a better solution, the iterations as we solve should

continue till convergence. For larger problem instances, convergence may require too

many iterations and consequently, might become of less practical significance. Ac-

cordingly, there is a trade-off between achieved performance and computational time

of the DWDM model. Fig. 5.4 illustrates the efficiency and required computational

time for two different numbers of charging requests while the number of trucks is 4.

The efficiency of DWDM increases with the number of iterations for both instances

and also takes more time to provide the solution. As an example for 50 charging

requests, the efficiency is increased by almost 11.5% when the iteration number is in-

creased from 40 to 50 and requires 5 more minutes to solve, while the efficiency does

not improve past iteration 50 even when spending 10 more minutes. On the other

side, for 30 charging requests, the efficiency saturates quicker with fewer number of

iterations.

Fig. 5.4 also shows that after 40 iterations, DWDM ensures each truck can serve

8.75 EVs while the total number of EVs is 50, but this goes down to 5.5 EVs/truck

when the total number of EVs is 30. Hence, the efficiency level is significantly influ-

enced by the number of options i.e., a larger number of EVs provide more options to
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Figure 5.5: Performance comparison with heuristics.

trucks. Fig. 5.5 illustrates that, every algorithm shows higher efficiency for a larger

number of EVs. As an example, the efficiency of DWDM is 6.5 EVs/truck for 40 EVs,

while it is 7.25 EVs/truck for 50 EVs. And for any instances, DWDM outplays the

other two heuristic algorithms (e.g., for 40 EVs, DWDM ensures an efficiency of 6.5

EVs/truck, while its is 5.5 EVs/truck for SDSPF and 5.25 EVs/truck for SWSPF).

Now, since the efficiency is affected by the available options, the variation of

average energy demand or the average charging window length should have influence

as well. To investigate those influences, we depict a scenario, where 4 trucks are

involved to charge a maximum number of 40 EVs at 5 different parking lots. Fig. 5.6

depicts that a smaller average energy demand allows every algorithm to charge higher

number of EVs. But as SDSPF seeks to charge smallest demand first, its performance

is mostly influenced with the variation of average demand. The efficiency is dropped

by 23% for SDSPF while it is 10% for DWDM and 16% for SWSPF when the average

energy demand is increased from 20 kWh to 30 kWh.

On the other hand, increasing the charging window length provides more oppor-

tunities for trucks to charge more EVs. As SWSPF makes the charging decision

depending on the window length, the longer charging window helps improving the

performance of SWSPF significantly and its performance is much closer to DWDM
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Figure 5.6: Variation in efficiency based on average demand.

Figure 5.7: Variation in efficiency based on charging window

(shown in Fig. 5.7). DWDM actually shows almost a linear response with the varia-

tion of both the average window length as with the average energy demand.

Finally, to determine the required number of trucks to serve a number of charging

requests, we assume a constant energy demand by each EV having a constant charging

window length for three different number of charging requests. For all three cases,

the number of served EVs increases with the number of trucks (Fig.5.8) and initially,

this increasing rate is almost linear. After a certain number of trucks, the number

of served EVs starts to be saturated since the trucks have reached their serving

capacities, which as shown varies with the number of serving requests. In other
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Figure 5.8: Performance evaluation of DWDM with number of trucks.

words, to serve more requests from EVs, more trucks need to be deployed. As an

example, the instance where 40 EVs send their charging requests, 8 more EVs can

be served by increasing the truck number from 5 to 7, while DWDM model can serve

only 3 more EVs by increasing the truck number from 8 to 10. This finding may help

determine the required number of trucks for a company to maximize the revenue.

5.6 Conclusion

An offline problem is addressed for a company, which has a number of trucks equipped

with a larger battery along with a fast charger to charge EVs through V2V at some

predefined parking lots. The objective of the work is to serve as many EVs as possible

using this limited number of trucks by determining their trajectories. The problem

also considers the energy consumption of trucks during the travelling period and each

truck has to return to the depot after serving EVs. All requests are supposed to be

available before the time horizon. An ILP was formed to determine the optimal solu-

tion and it was formally proven NP-Hard. As the computation time for ILP was too

large to be applicable, we decomposed the problem using Dantzig-Wolfe decomposi-

tion and its performances were extensively analyzed by varying different parameters
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for different scenarios. We also compared its performance with two different heuris-

tic algorithms (SWSPF and SDSPF). Though heuristics are very prompt to provide

solutions for any realistic size (i.e., a larger number of charging request will be met

by a larger number of trucks) of instance, DWDM shows the highest efficiency in

every scenario. Finally, the trade-off between performance of computational time of

DWDM is analyzed to determine the iteration number which can ensure a better

solution within an acceptable time.
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Chapter 6

Attack Model and Detection

Methodology for a Coordinated

Switching Attack Initiated from

EV Charging Ecosystem1

Since, the success of EV smart charging relies on the real time data sharing among the

entities (e.g., EVs, CSs, grid etc.), IoT enabled charging ecosystem is being popular

by everyday and appeared as a new attack surface to the grid. Especially, while the

widely used charging protocol, OCPP is still not secured [16], an attacker may take the

control of charging/discharging of a large number of EVs to initiate different types

of attacks. Hence, we assess the competency of compromised EV charging infras-

tructures in initiating switching attack to create inter area oscillation. And finally, a

neural network based detection mechanism is proposed to detect such attempts before

being executed.

1A part of this chapter is under review in IEEE Transactions on Industrial Informatics [65], while
another portion is submitted in IEEE Transactions on Smart Grid [66]
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6.1 Motivation

A major stakeholder of EV interconnected ecosystem is the power grid which can

be exploited through the control of EVs or EV charging infrastructures targeting its

functional requirements in terms of voltage, frequency or even as transient oscilla-

tions, e.g., inter-area oscillations. Sudden transitions from off state to on state or

vice verse of a significant amount of load can create very low-frequency oscillations be-

tween two weakly tied power generation areas [78]. These oscillations often represent

themselves in the angular speed of generators which also impacts the frequency of the

grid. These angular speed are often synchronized together and are kept fixed at the

frequency of the grid using various controllers and power system stabilizers (PSSs).

Any deviation more than 2.5% in the angular speed of generators is not tolerated

and the synchronous machines will be disconnected one by one from the grid by the

protection system due to loss of synchronization, and consequently inadequate gen-

eration results in cascading failure in the grid [77] and cause a blackout as witnessed

on August 10, 1996 where an inter-area oscillation between California and the East

zone resulted in a wide area blackout [142]. Similarly, this type of oscillations was

also detected on November 29, 2005 in Alberta and September 5, 2015 in Nevada [25].

The threat imposed by this phenomenon is significant since the oscillation frequency

is too low to be detected by the practising security mechanism [78].

The consequences of inter-area oscillations are expected to be more tangible due to

higher integration level of EVs, especially because, a large-scale charging infrastruc-

ture introduces a significant number of rectifiers and hence, the damping ratio might

be decreased substantially [56]. Coupling these variations with the connectivity in

an IoT-integrated environment, and Information and Communication Technologies

(ICT)-empowered smart grids introduces new trends in the management and op-

eration of the power grids. The complexity of the resulting system and the inter
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dependency among its components lure attackers to exploit EVs and their charging

ecosystem as a new attack surface, devise new attacks, and target the grid’s stability

and availability. Moreover, EVs and their charging stations are abundant, distributed,

connected, remotely accessible, vulnerable to cyber attacks, and equipped with the

least of security measures [16]. Those properties favor a coordinated attack to switch

a significant portion of the mobile and remotely controlled EV loads on and off to

initiate oscillations in the transmission network.

Since, no one has address EV charging ecosystem as a potential source of switch-

ing attack as we mentioned in Section 2.2.1, by exploiting the by directional energy

transfer capability of EV charging infrastructures, we intend to mimic a similar co-

ordinated attack to assess the consequences and finally propose the corresponding

detection framework.

6.2 Problem Definition and Contributions

A coordinated switching attacks on the power grid through the large-scale exploitation

of EVs and their charging infrastructure is formulated and as per our best knowledge,

no one addressed EVs as a potential switching attack surface before. The threats

associated with the EV large-scale charging/discharging functionality, analyzed dif-

ferent attack strategies, determine the inter-area oscillation frequency in each attack

strategy, model the grid behavior, and characterize the grid response in the form of

inter-area oscillations are identified. This formulation is followed by extensive simula-

tion results that detail the potential impact of those attacks in realistic power systems.

Then, a framework based on neural network technique is provided to detect the attack

leveraging the available data of the EV ecosystem. As such, the contributions can be

outlined as:
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• Identification of the EV charging ecosystem as an attack surface for switching

attacks.

• Design of two attack strategies to determine the vulnerable frequency and for-

mulation of the switching attack on grids.

• Demonstration of the stealthiness of these attacks through theoretical and nu-

merical analysis.

• Propose detection mechanisms for the EV-based switching attack using neural

network techniques and system data.

6.3 System Model

Figure 6.1: A schematic diagram of probable switching attack and its detection.

The considered transmission system consists of several areas, each has power plants,

transmission lines, substations and loads as shown in Fig. 6.1. The loads represent

IoT-connected, EV-equipped cities with huge consumption of electricity and energy

distribution systems. In some transmission systems, the loads and the dense energy

consumption areas are far from each other geographically. As a result, several of

these areas are connected together by a long weak transmission link for energy shar-

ing. Each of these areas has its own power generation capacity and the capability
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of exporting (or importing) energy to (or from) any other connected area through

that long weak transmission line. Such a power system can be subjected to various

types of stability issues, among which the inter-area oscillation is the most common

one. Such condition of instability occurs when a set of synchronous generators, which

are scattered in a geographical area, starts to oscillate against the ones in the other

areas. A disturbance, such as fault or sudden change in load/generation, may trig-

ger these oscillations. Since this phenomenon may force the system generators to

lose synchronization with others and cause a blackout, power utilities deploy several

protection and control schemes (e.g., PSSs, supplementary damping controllers asso-

ciated with flexible alternating current (AC) transmission system (FACTS) devices

(e.g., Static Var Compensators), direct current (DC) line modulation, etc. [93]) to

remove the oscillations or damp them, respectively. However, those control schemes

are designed for specific operating conditions and may not be successful to damp the

oscillation especially for a wide area system or consequent to large disturbances and

attacks [51]. Additionally, the majority of the existing FACTS devices lacks such a

damping scheme for inter-area oscillations.

Now a large number of EVs of area I are assumed to charge their batteries at

a significant number of networked public or private CSs which are geographically

dispersed as shown in Fig. 6.1, while the public CSs are managed and connected

to the power grid through a central management system (CMS). The CMS receives

charging/discharging requests from these CSs using the open charge point protocol

(OCPP) and these requests are admitted accordingly after a preliminary authentica-

tion (e.g., CS ID, SoC level etc.). On the other hand, no authentication is required

for private CSs [16]. Now, this is assumed that a sufficient number of both types

of CSs in area I are compromised by an attacker having subsequently the ability of

controlling the charging/discharging requests. Therefore, the attacker can mimic a
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switching attack by commanding those CSs for a quick transition between charging

and discharging and create an inter area oscillation between areas I and II. Two dif-

ferent types of attack strategies will be consider to initiate switching attack from EV

charging ecosystem and in the first stage of this work, the attack consequences will

be observed.

After analyzing the capability of switching attack initiation from EV charging

ecosystem, an intelligent detection mechanism is proposed then to detect such ad-

versarial attempts. A back propagation neural network (BPNN) based algorithm is

designed and placed at the CMS as shown in Fig. 6.1. This algorithm acts as a

filter to detect suspicious requests and hence, instead of an immediate execution of

charging or discharging requests, the CMS may discard or create a random delay

in the execution (a detailed procedure is discussed in Section 6.7) to disorder the

coordination among attackers.

6.4 Threat Model

An attacker is assumed to have the capability of exploiting known and zero-day vul-

nerabilities in the EV ecosystem to target the power grid. In particular the following

assumptions are taken in consideration:

1. The attacker has enough knowledge from public sources about the EV charging

infrastructure [6].

2. The attacker has whether the power system data (through insiders or compromis-

ing the operator database) or the expertise to perform reconnaissance and intelligence

gathering to identify potential attack targets, craft, and execute his attacks [90].

3. The attacker is interested in targeting the power system stability through the

EV charging infrastructure.
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4. The attacker designs a coordinated multi-site attack and wants to avoid existing

detection and protection layers.

5. The attacker whether has the system parameters or is able to inject a chirp signal

and observes the system response to determine the inter-area oscillation frequency.

As many CS networks make their status (e.g., number of charging poles, charging

rate, poles are occupied or not, etc.) public as a marketing strategy, the attacker can

observe some of the inter dependencies using web-services of the EVs, CS vendors and

third parties like ChargePoint that aggregate CSs and EVs. The active status of CSs

can be accessed and that would help to manipulate the OCPP message which controls

the charging/discharging activities via the central agent. As a consequence, the first

assumption is inspired from [6], where the authors demonstrated that using publicly

available data on electric vehicles, their charging infrastructure and the power grid,

an attack to destabilize the power grid can be formulated in the presence of large-scale

deployment of electric vehicles. The second assumption is inspired by the analysis

of the attack on the Ukrainian power grid and the attacker capabilities, as outlined

in [90]. Through this assumption, the attacker is capable of attaining the expertise

required to carry out his attack. In the third assumption, we outline the attacker

interest and define the scope of his attack. The attacker can exploit the large-scale

and distributed deployment of the electric vehicles ecosystem to execute his attack.

Moreover, the cyber attack of Black Energy3 trojan on the Supervisory Control and

Data Acquisition (SCADA) system of the Ukraine power grid [94] is admonishing for

the isolation of the demand side external networks (e.g., CS network) from the smart

grid [6]. Such isolation prohibits the grid’s inherent detection mechanism from con-

tinuous monitoring over these external networks and consequently, imposes difficulty

in the detection of a very short duration attack initiated by an external network.

Hence, according to the fourth assumption, the attacker will not take any steps that
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will trigger deployed control, protection and detection mechanisms that are usually

practised by utilities. Through the fifth assumption, we avoid using the assumption

that the attacker can always obtain the vulnerable frequency of the system through

detailed modeling. Rather than relying on sufficient knowledge about the power sys-

tem detailed data, which is not practical for a large-scale system, it is assumed that an

attacker has the ability to perform a reconnaissance activity benefiting from a small

group of compromised EVs. Then, the system measurements and a set of analysis

techniques will be used to obtain the vulnerable inter-area frequencies and perform

the attack leveraging all the compromised EVs at those frequencies.

6.5 Attack Formulation

Based on the assumptions mentioned in previous subsection, here we model our at-

tack vector. Now, modeling the physical layer of the smart grids requires extensive

data about the parameters of the power system which may be even unknown to the

operator. Consequently, this is a realistic assumption that even the insiders may not

be able to help the adversary to obtain detailed data of the grid. Moreover, due to

security concerns, the operator may not keep all the system data in one database

to avoid information leakage. As such and to broaden the scopes of the preformed

analysis, two different attack models are considered as:

• Attacker A: In this attack, an adversary is considered without having accurate

information of the power grid. As such, he/she will use a specifically-tailored

and stealthy system identification technique based on eigenvalue realization

algorithm (ERA) to gather the required information of the system and calculate

the frequency of inter-area modes. Then, the adversary launches the attack by

switching the compromised EVs with the calculated frequency.
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• Attacker B: Attacker B can benefit from an insider or a compromised database

and obtain the parameters of the system. In such a case, using the detailed mod-

eling of the system, the adversary can calculate the inter-area dominant modes

of the grid as explained in Section 6.5.2, and execute the attack accordingly.

The next two subsections discuss the reconnaissance model of attacker A and the

equations that attacker B will use to obtain the inter-area modes of the smart grid.

6.5.1 Reconnaissance Model of Attacker A

This subsection aims to drive a rigorous attack model for the switching attack (at-

tacker A) to EV infrastructure and targeting the transmission grid stability. In order

to launch the switching attack, the adversary needs the frequency of inter-area modes

of the grid to switch the EV loads accordingly. Any deviation from the exact value of

this inter-area frequency will result in inefficiency of the attack model, stable opera-

tion of the grid, and increasing the awareness level of the grid operator. To capture

the accurate inter-area mode, the detailed model of the power system is required

which is not available for the attacker A. As such, a tailored version of ERA, which

initially introduced in [61], is used in this subsection.

Assume that the attacker compromised nη mass charging EV infrastructure inm =

{1, ..., η} load bus of the power system and aims to target nζ synchronous generator

whose angular speeds are n = {ω1, ..., ωζ}. Thus, the transfer function of the power

system from attacker point of view can be written as ω(nζ×1) = G(s)(nζ×nη)PL(nη×1),

where PL and ω are the vectors of the incremental active power of buses which is

compromised by the adversary and angular speed of generators, respectively. Since the

detailed parameters of the power system are not known, the main aim of the attacker

is to identify a system model Ḡ(s) using the measured data of the actual system G(s).

The use of ERA technique requires to excite the system using an impulse signal in EV
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Algorithm 6.1 Calculation of impulse response using chirp signal

1: Input: Compromised loads and generators η and ζ
2: Output: Impulse response of the G(s) between load η and generator ζ as yη,ζ
3: for ContL=1:nη do
4: Calculate the Fourier Transform of Chirp signal in each load Γη(jw) =
F(xchirpη(t))

5: end for
6: for ContG=1:nζ do
7: Calculate the Fourier Transform of measured angular speed of generator as

Πζ(jw) = F(ωζ(t))
8: end for
9: for ContL=1:nη do

10: for ContG=1:nζ do
11: Calculate the impulse response from the ηth load to ζth generator as yη,ζ =
F−1(Πη(jw)/Γη(jw))

12: end for
13: end for
14: Apply ERA based on obtained impulse response

charging infrastructure, and gather the system outputs, i.e., {ω1, ..., ωζ}. However,

such an assumption is not realistic in a power system since (i) a huge increase in the

EV generation increases the awareness level of the grid operator and reveals the attack,

(ii) production of an impulse signal is not physically possible using a limited number

of compromised EV charging stations, and (iii) using the impulse signal produces

the entire frequency data of the system which is not necessary since the attacker is

only interested in the system response in low frequencies (between 0.1 to 1 Hz). As

such, we propose to modulate a chirp signal with a limited magnitude and frequency

range to the loads of the system in m buses and obtain the impulse response of the

system using Algorithm 6.1. Then, the system model can be computed leveraging

the obtained impulse response. The use of chirp signal is advantageous since (i) its

magnitude can be modified by the adversary and be limited not to alarm the operator,

(ii) its frequency range can be modified by the adversary to focus on the range of

inter-area mode, as a result, the fast transient and high-frequency dynamics of the
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power system will be neglected, and (iii) the duration of the reconnaissance activity

can be modified by the adversary as performing a long-term reconnaissance activity

results in lower operator awareness. The chirp signal xchirp can be expressed as:

xchirp = sin

(
2πfs(r

t
f − 1)

ln(rf )

)
where rf = (

fe
fs

)
(
1

T
) (6.1)

In this equation, fs, fe, and T are the starting frequency, ending frequency, and

duration of the signal, respectively. By applying this signal to the system, gathering

the measurements and applying Algorithm 6.1, the impulse response of the grid will

be available to the attacker. Having the impulse response of the system, a modified

ERA technique can be used to obtain the system model. The linearized state-space

representation of the G(s) can be written as:

ẋ = Ax + Bu (6.2a)

y = Cx + Du (6.2b)

where x, u, and y are system states, inputs, and outputs, respectively, and matrices

A, B, C, and D represent the small signal behavior of the system. Since these

matrices are not known, the main aim here is to obtain the identified values of these

matrices, i.e., Ā, B̄, C̄, and D̄, by giving a known input and measure the system

response. Assume that the obtained impulse response of the system is rearranged

as a time series of k measurements, i.e., yI = {y0I , y1I , y2I , ..., yk−1I , ykI }, where each yiI

represent a block matrix obtained from yη,ζ in Algorithm 6.1. It is worth mentioning

that the number of the k should be large enough to show the damped response of

the system; moreover, the time steps between k and k + 1 should be small enough

to capture the frequency of the under study modes of the system, i.e., inter-area-

modes. This response is corresponded to the Markov parameters of the system as
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{D̄, C̄B̄, C̄ĀB̄, C̄Ā2B̄, . . . , C̄Āk−1B̄, C̄ĀkB̄} [46]. This expression easily identifies the

D̄ = y0I . Also, note that the system is assumed to be stable, which also matches the

attacker objective since (i) he/she is still in reconnaissance mode and doesn’t have

enough information to make the system unstable, (ii) the number of leveraged EV

chargers for reconnaissance is low, and (iii) the attacker aims to keep the operating

point of the system fixed so that the gathered data remains useful for the attack

objective. Then, using the measured data, Hankel matrices can be developed as:

H =



y1I y2I . . . yLI

y2I y3I . . . yL+1
I

...
...

. . .
...

yk−L+1
I yk−L+2

I

. . . ykI


=



C̄B̄ C̄ĀB̄ . . . C̄ĀL−1B̄

C̄ĀB̄ C̄Ā2B̄ . . . C̄ĀLB̄

...
...

. . .
...

C̄Āk−LB̄ C̄Āk−L+1B̄
. . . C̄Āk−1B̄


= OC (6.3a)

H ′ =



y2I y3I . . . yL+1
I

y3I y4I . . . yL+2
I

...
...

. . .
...

yk−L+2
I yk−L+3

I

. . . yk+1
I


=



C̄ĀB̄ C̄Ā2B̄ . . . C̄ĀLB̄

C̄Ā2B̄ C̄Ā3B̄ . . . C̄ĀL+1B̄

...
...

. . .
...

C̄Āk−L+1B̄ C̄Āk−L+2B̄
. . . C̄ĀkB̄


= OAC (6.3b)
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where O and C are the observability and controlability matrices. Then, the singular

value decomposition (SVD) of Hankel matrices can be written as:

H = UΣV T = [ŨU+]


∈I︷︸︸︷
Σ̃ 0

0 Σ+︸︷︷︸
/∈I


 Ṽ T

V +T

 (6.4)

where ˜ and + indicate the inter-area modes and the rest of system dynamics,

respectively, and I represent the set of all inter-area modes. In such a case, the

predicted matrices of the system modes can be written as:

Ā = Σ̃−1/2ŨTH ′Ṽ Σ̃−1/2 (6.5)

Assuming the inter-area modes of the matrix Ā to be λq = σq + jθq,∀q ∈ I,

the inter-area frequency can be obtained using the frequency of these modes, i.e.,

θq/2π. Despite the efficiency of the proposed technique, the size of the Hankel matrix

can significantly increase, and consequently makes it computationally difficult for the

adversary to calculate the SVD of the Hankel matrices. As such, we simplify the

attack procedure by applying a chirp signal in the input of the system and observing

the fast Fourier transform (FFT) of the system response. In such a case and based

on the discussed techniques, the observed output of the power system to the injected

chirp signal will help the adversary to calculate the inter-area modes of the system.

As the attack will be initiated from CS or from a number of CSs to bus i ∈

{1, ..., η}, after injecting the chirp signal, the active power flow to bus i can be ex-

pressed as:

PLi = P 0
Li + Pch = P 0

Li + αixchirp (6.6)

where P 0
Li is the initial load value, αi is the load escalating factor, which is a function
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of the total power rating of comprised CSs that can be calculated as αi =
∑

l nliρl,

where, nli indicates the number of comprised level l chargers connected with bus i

and ρl indicates the respective power rating. In practice, three types of chargers are

used and we assume that an attacker has access to publicly available data about the

power rating of these chargers.

The proposed attack reconnaissance phase is stealthy, since (i) the attacker will

use only a small part of the compromised EV infrastructure (less than 5% of load in

several buses of the grid) to explore the power system and find the inter-area modes,

this will ensure that the power system operator misses the attacker reconnaissance

phase since such small load variation is normal in a grid, and (ii) the start and end

frequency of chirp signal is matched with the frequency of inter-area modes of the

system in low frequency range, often less than 1 Hz, which may assist this to be

stealthy from the operator point of view again due to large period of the signal. As

such, the attacker will alter the power consumption of the EV loads smoothly by

modulating a specific pre-known signal to the power consumption of the loads and

monitoring the consequences through PMU data installed at generators. Such PMUs

with data about the rotor angle of generators are already deployed in many power

system plants [24],[156].

6.5.2 State-space Representation of Attacker B

On the other hand, for attacker B, we assume that the system data is available

and hence to conclude on the frequency of oscillations and stability condition of

the system, , small signal stability of the multi-machine power system needs to be

studied. The fourth-order model of synchronous generator as well as the algebraic

equations describing the power transmission system are combined to attain the state-

space model. Then, the eigenvalues of the system are calculated from state-space
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representation to identify the inter-area modes. The obtained state-space modeling

of the system can be used to determine the stability condition of the linearized system,

and also for design and sensitivity analysis purposes.

The following differential equations describe the fourth-order model of ith syn-

chronous machine:

dδi
dt

= ωi − ωs (6.7a)

dωi
dt

=
(Tmi − ÉdiIdi − ÉqiIqi − (X́qi − X́di)IdiIqi)

Mi

(6.7b)

dÉqi
dt

=
−Éqi + (Xdi − X́di)Idi + Efdi

T́d
(6.7c)

dÉdi
dt

=
−Édi + (Xqi − X́qi)Iqi

T́q
(6.7d)

where, Tmi, δi, ωi are the input mechanical torque, rotor angle, and rotational speed of

ith synchronous machine, respectively. Éqi and Édi also represent the internal machine

voltages. Xqi and Xdi represent q- and d- axis synchronous reactances, X́qi and X́di

are q- and d-axis transient reactances, and T́q and T́d are open-circuit time constants

in q- and d-axis. In summary, the synchronous machine equations can be described

as:

ẋ = f(x, z,w) (6.8)

where

x = {δi, ωi, Édi, Éqi} z = {Tmi, Efdi} w = {Iqi, Idi} (6.9)

Then the synchronous machine stator can be represented as:

Edi − Visin(δi − θi)−RsiIdi + X́qiIqi = 0 (6.10a)
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Eqi − Vicos(δi − θi)−RsiIqi − X́diIdi = 0 (6.10b)

where θi and Vi represent the voltage angle and magnitude at ith machine stator, re-

spectively, and Rsi represents stator resistance. These equations link the synchronous

generator to the power system whose behaviour in generator and load buses can be

described in Eqs. (6.11)-(6.12), and Eqs. (6.13)-(6.14), respectively.

IdiVisin(δi − θi) + IqiVicos(δi − θi) + PLi

−
n∑
k=1

ViVkYikcos(θi − θk −∆ik) = 0 (6.11)

IdiVicos(δi − θi)− IqiVisin(δi − θi) +QLi

−
n∑
k=1

ViVkYiksin(θi − θk −∆ik) = 0 (6.12)

PLi −
n∑
k=1

ViVkYikcos(θi − θk −∆ik) = 0 (6.13)

QLi −
n∑
k=1

ViVkYiksin(θi − θk −∆ik) = 0 (6.14)

In these equations, PLi and QLi are the active and reactive power consumption in bus

i, respectively. The magnitude and angle of the admittance between buses i and k are

also represented by Yik and ∆ik, respectively. In order to obtain the linearized model

of the system, the equilibrium point of the system is obtained from the power flow

solution of the system. It is worth mentioning that this solution can be obtained by

solving algebraic equations (6.11)-(6.14) using conventional Newton-based techniques.

This equilibrium point demonstrates the system parameters (Vi and θi) in steady-state
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operating condition. Then, the internal parameters of the synchronous generator will

be obtained assuming the differential terms of (6.7) to be zero, and solving the resulted

algebraic equations of the synchronous machine, i.e., ẋ = 0→ x0.

The linearized model of the system then can be obtained by augmenting all the

equations obtained from the linearization of separate parts of the system. As Iqi and

Idi are not the system states, as a result, they can be replaced in the system equations

by equivalent terms obtained from synchronous machine stator equations. Then, the

system can be represented as

ẋ = f (x,y) and g(x,y) = 0 (6.15)

where

y = {V1, V2, ..., Vn, θ1, θ2, ..., θn} (6.16)

The small signal model then can be represented as a descriptor system as:

 ddt∆x

0

 =

A B

C D


∆x

∆y

 (6.17)

where

aij = J(
dxi
dt
, xj)|x0,y0 bij = J(

dxi
dt
, yj)|x0,y0 (6.18a)

cij = J(gi, xj)|x0,y0 dij = J(gi, yj)|x0,y0 (6.18b)

In these equations, J(α, β) represents the Jacobian of function α with respect to

set of variables β. Consequently, the closed-loop system can be obtained as:

d

dt
∆x = Asysx, Asys = A−BD−1C (6.19)

Then, the eigenvalues of matrix Asys provide the modes of the system, where the
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damping of inter-area mode and its frequency are observable. The arrays of matrix

Asys are dependent on
∂PLi
∂Vj

, which represents the voltage-dependent nature of the

load.

Having the state-space model of the system, the eigenvalues of the system, and

consequently, the inter-area modes can be obtained. The summary of two attack

strategies are presented in Fig. 6.2.
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Figure 6.2: A flowchart of the attack strategies.

6.6 Numerical Analysis for Switching Attacks

To evaluate the performance of the grid in the presence of attack, three different

power systems are considered as test cases, i.e., two-area Kundur system, 39-bus New

England power system, and 5-area Australian power grid.

Two types of switching attack scenarios are also evaluated; 1) sudden termina-

tion of EV charging (i.e., drop in load) and 2) sudden supply from EVs (i.e., spike

in generation). The two-area Kundur system is attacked leveraging the grid param-

eters (attacker B) due to its small size, whereas the other two systems are under

attack without available data (attacker A) since they mimic realistic systems. The

state-space model and stability analyses are preformed using MATLAB, whereas the
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Figure 6.3: The two area Kundur system.
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Figure 6.4: Angular speed and active power output of the generators following a
discharging attack at bus 7.

EMTP-RV and Simulink software packages are used to obtain the time-domain re-

sults.

6.6.1 Two-Area Kundur System

The two-area Kundur system [55] is shown in Fig. 6.3. We assume that the attacker

uses the system parameters to calculate the inter-area mode (attack B) and launch

a switching attack at bus 7 of area I with duty cycle of 50% and 1.87 s period based

on the mode specification. The instability of the generators and the effectiveness of

the attack over the angular speeds of all four generators are depicted in Fig. 6.4 to

depict that the speed of generators in similar areas reacts to the attack almost with

similar manners, while Fig. 6.5 shows the corresponding active and reactive power of

the tie-lines.
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Figure 6.6: The dependency of duty cycle of charge/discharge, switching signal, and
time to instability at load 7.

To assess the consequences of such attack, another parameter, Time of Instability

(ToI) is analyzed. ToI is defined as the time required for at least one of generator’s

angular speed to pass 2.5% deviation. Fig. 6.6 depicts the influence of attack period

on the parameter of ToI for different values of duty cycle. It can be observed that

near the frequency of the inter-area mode, ToI decreases significantly for all three

scenarios. Moreover, for a higher duty cycle, the ToI is lower.
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Figure 6.7: Variation of damping ratio and frequency of inter-area mode following
the change of system loading.
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nated attack to bus 7 and 9, a) frequency, b) damping.

To investigate the impact of system loading on the damping ratio and assess the

vulnerability state of the system, the damping ratio and frequency of inter-area mode

in different loading conditions of bus 7 are shown in Fig. 6.7. It is evident that when

the system is under stress, i.e., highly loaded, the damping of system increased around

70% which indicates that more CSs need to be compromised to achieve instability.

In this condition, the frequency of inter-area mode also decreases by around 0.2Hz

which shows attacker can use low-variation attack signals and reduce its visibility.

In contrary, when the system is lightly loaded, the damping increases and frequency
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decreases. To obtain the impact of loading, which also corresponds to the time of

the day, on the system vulnerability, the variation of damping ratio and frequency

of system for simultaneous different loading conditions in each area (bus 7 and 9) is

shown in Fig. 6.8.
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Figure 6.9: ToI versus the penetration level of EVs in two-area Kundur system.

The major impact of having EVs in the system is that they can also charge or

discharge depending on the number of compromised CSs. Fig. 6.9 shows the impact

of the different number of compromised CSs in the ToI parameter. It can be observed

that the discharging attack on bus 9 has a more severe impact on stability compared

to bus 7. Moreover, bus 9 is also sensitive to voltage stability issue when the number

of charging stations increases. The voltage stability can often be prevented using the

injection of reactive power in various levels of grid operation. If the adversary also

targets the voltage stability, he/she can benefit from the ability of charging stations to

absorb a high amount of reactive power and intensify the voltage stability issue in the

grid. In such a case, the system operator will perform several load shedding remedial

actions to save the system. The use of FACTS devices can also improve the system

response in terms of voltage stability since these devices can inject reactive power

using the power electronic-based switches and their control schemes, and consequently

improve the voltage profile. The control scheme of these devices can also be used to
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Figure 6.10: 39-bus New England System.

improve the stability margin of the system, however, they can not solve the instability

problem permanently.

6.6.2 39-Bus New England Power System

Fig. 6.10 depicts the 39-bus new England power system with 10 synchronous genera-

tors modeled in details with IEEE ST1 excitation system, IEEE G1 turbine governor

model, and automatic Voltage Regulator (AVR). Generator 1 has an aggregated model

that represents the US/Canada interconnections.
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Figure 6.12: The modal analysis of the 39-bus system with identification of inter-area
modes.

To investigate the frequency of inter-area mode, a chirp signal is applied (stated

in subsection 6.5.1) to the load 4, 18, 3, and 39 with only 10 MW of load which is 2%

of the load at those buses as shown in Fig. 6.10. Since we are interested in inter-area

modes of the system, starting and ending frequencies are assumed to be 0.1 Hz and

1 Hz, respectively, and the reconnaissance is taking place in 20 s to mislead the grid

operator. The frequency content of this signal is depicted in Fig. 6.11. It can be

observed that most of the energy of the signal is in the specified range i.e., 0.1 Hz to

1.0 Hz.

The modal analysis of the system reveals two critical inter-area modes with fre-

quency and damping ratio less than 1 Hz and 10%, respectively, as shown in Fig. 6.12.
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Figure 6.14: Reaction of system generators to 20% of attack (0.9 Hz mode excitation)
to the compromised area (loads 18, 3, 39, and 4).

The response of the system in terms of generator angular frequency is demonstrated

in Fig. 6.13. It can be observed from this figure that the amount of system response

is less than 0.05% of nominal system frequency, therefore, this will remain hidden

from the system operator. Fig. 6.13 also shows that the obtained signals from three

generators have two poorly damped inter-area oscillation modes with frequency of

0.64 Hz and 0.9 Hz. It also can be observed that in low frequency mode (0.64 Hz),

Generator G1 is oscillating against other ones in the system, while in the other, G4

and G6 are in the same area since their response becomes almost similar in such a

case.
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Figure 6.15: Reaction of system generators to 47 MW switching attack in all the load
buses of the system.

To demonstrate how attacker can benefit from the knowledge obtained from re-

connaissance activity, 20% of the loads in a compromised area (shown in Fig. 6.10) are

altered with a sinusoidal waveform of 0.9 Hz obtained from high-frequency inter-area

mode. Fig. 6.14 shows the angular speed of the generators 1, 6, 5, and 10. It can

be observed that the angular speed of generator 10 is becoming unstable as the most

sensitive generator. When 47 MW of all the system loads are changed as a result of

attack to EVs with frequency of 0.64 Hz, the collected results depicted in Fig. 6.15

shows a fast instability of system (around 10s) due to a huge number of compromised

EV charging stations.
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6.6.3 Australian Power System

Figure 6.16: IEEE Australian power system [40].

The Australian power system is used, as a realistic test system, to show the impact of

the switching attack. The single-line diagram of this system is depicted in Fig. 6.16.

This system has 5 areas, 59 buses, and 14 generators that operate at 50 Hz. Depending

on the loading condition of the system, different inter-area modes can be excited in
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Table 6.1: The inter-area modes of system in scenarios 1 and 2.

Scenario 1 Scenario 2
Eig. Freq. Damping Eig. Freq. Damping

λ1 −0.089± 3.578i 0.5695 −0.025 −0.175 + 4.447i 0.707 −0.039
λ2 −0.052± 2.459i 0.3915 −0.021 −0.061 + 2.846i 0.453 −0.021
λ3 −0.152± 2.098i 0.334 −0.072 −0.137 + 2.391i 0.380 −0.057
λ4 −0.843± 2.411i 0.384 −0.330 −0.679 + 1.928i 0.306 −0.332
λ5 −0.440± 1.406i 0.224 −0.298 −0.450 + 1.375i 0.218 −0.311

this grid. As a result, this system is often used in study of power grid stability issues

in low frequencies [31]. Two different loading condition scenarios are considered here.

In the first one, the power flows from north to south of the grid and the system loading

is heavy (peak time), i.e., total load is considered to be 22,300 MW. In the second

scenario, the transfer between different parts of the system is almost zero since the

system lightly loaded (off peak time), i.e., total load is considered as 14,630 MW.

For both of the considered scenarios, initially, the eigenvalues of the system in

both scenarios are shown in Fig. 6.17. It can be observed that in both scenarios, the

system has 5 inter-area modes, with frequencies {0.5695, 0.3915, 0.3339, 0.3837,

0.2238} Hz and {0.7078, 0.4530, 0.3806, 0.3068, 0.2189} Hz for scenarios 1 and 2, re-

spectively. The variation between inter-area modes of two different loaded conditions

indicates that an attacker requires different attack procedure on different time of the

day.
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Figure 6.17: System eigenvalues and inter-area modes for Australian system in both
peak and off-peak time.
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Table 6.1 shows the details of each mode for both of the scenarios. It is worth

mentioning that modes with damping close to zero represent a more vulnerable condi-

tion in the system. Thus, we focus on the first three modes. Assuming an adversary

without significant information about the system parameters, the chirp signal can

provide the required data of the system to the adversary. Fig. 6.18 shows the system

response and the estimation of the inter-area oscillation frequencies following a 10%

change in load 508 in area 5. It can be observed that the adversary obtains almost

similar frequencies by observing the system measurements. It needs to be mentioned

that the identification of the inter-area modes are done without significant change in

the system angular speeds, i.e., less than 0.2%, as a result, the adversary could be

remain stealthy.
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Figure 6.18: The angular speeds of synchronous generators following a 10% change
in load 508 in area 5.

In the next step, based on the acquired knowledge, we investigate the impact

of two types of attack scenarios (i.e., drop in load by stop EV charging or spike in

generation by discharging EVs). We assume that the adversary uses the obtained

knowledge and charges the compromised set of EVs in the system, i.e., 10% of load in

area 5 of system. Fig. 6.19 illustrates the angular speed of 5 generators from 5 areas of

the system following the attack at t=10 s on heavy loaded condition. Fig. 6.19 depicts

that the system becomes unstable in almost 35 seconds after the attack initiation.
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Figure 6.19: The angular speed of 5 generators form 5 areas of system following
charging of EVs in area 5 equal to 10% of load in this area.
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Figure 6.20: The angular speed of 5 generators form 5 areas of system following
discharging of EVs in area 5 equal to 20% of load in this area.

Besides, generator at area 5 suffers with slightly worse instability condition.

Since in the considered scenario the system is heavily loaded, it is expected that

discharging the huge amount of EVs significantly decreases the time required to meet

instability. Fig. 6.20 illustrates the angular speeds of synchronous generators in such

a condition, where the EVs start to inject their power (discharging EVs) equal to

20% of total load in area 5. As expected, the system becomes unstable quickly after

22 seconds following the attack moment. In both of these attacks, the adversary uses

the 0.54 Hz inter-area mode of system. Moreover, to demonstrate a scenario where

the adversary has the ability to compromise several areas of system, a new attack

scenario is considered in which instead of comprising CSs only from one area, the
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Figure 6.21: The angular speed of 5 generators from 5 areas of system following
charging/discharging of EVs in area 5/area 4 equal to 10% of area load.

adversary drops 10% of loads in area 5 and increase 10% generation by discharging

in area 4. The attack is launched using 0.334 Hz inter-area mode since it affects both

of these areas. Fig. 6.21 shows the angular speeds of generators and depicts their

instability. It can be observed that the system becomes quickly unstable for such

more dispersed but coordinated attack.

6.7 Attack Detection Mechanism

The above-presented challenges call for a formulation of the threats associated with

the EV large scale charging/discharging functionality, modeling the grid behavior,

and characterizing the grid response. This formulation is a first step towards de-

signing proactive and reactive strategies to prevent the impact of those attacks on

the power grid. Hence, we propose a detection method to assist the grid to be pro-

tected from the dire consequences of inter-area oscillation initiated from EV charging

ecosystem. Since, EV charging and discharging is executed through a pre-defined

message exchange as in OCPP [12], for switching attack, a set of messages need to be

exchanged and approved. Hence, a neural network based anomaly detection engine

can be designed to monitor message exchanges to detect the switching attack. The
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built engine will leverage historical patterns of charging and/or discharging behavior

of EV users. This engine will be deployed by the central management system (CMS)

of EV charging to detect malicious messages and to protect the grid from the EV-

based coordinated switching attack, instead of immediate execution, the malicious

requests might be discarded or delayed. For a detailed description, we explain the

attack scenarios to understand the features needed to be monitored by the CMS to

detect a malicious attempt. Then, we depict the detection algorithm based on back

propagation neural network (BPNN) and finally the competency of this detection

mechanism is elaborated.

6.7.1 Coordinated Switching Attack Vector

To initiate a switching attack from the CS surface, a number of CSs have to alter their

action of charging to not charging/discharging and again back to the previous state

within a very short period of time. The required compromised EV load (either public

or private or both) and duration of the attack duration are dependent on the loaded

condition of the grid. These also depend on the attack pattern, such as surge in load

(i.e., sudden change in charging/not charging) or spike in generation (i.e., sudden

increment by EV discharging). The simulation of different attack scenarios over three

different power systems (i.e., two area kundur bench mark, 39-Bus New England

power system and Australian power system) for different loaded situations (e.g., peak

time, off-peak time) provide the attack vector containing amount of comprised load;

i.e., number of comprised CSs and their charging rate, the duration of the attack,

the oscillation frequency, etc. The features of this attack vector are studied during

the training period of our proposed detection algorithm to detect malicious attempts

when they exist.

Our attack simulation reveals that a number of CSs alter their actions within a
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short period of time. Hence, along with observing the activity of a single public CS,

the algorithm will monitor or scan the activities of other active public CSs over a

certain period of time. Active CSs indicate those CSs which are in service during

the monitored time period. This period of time represents the duration required to

perform a switching attack.

As a consequence, to detect a switching attack motive of an CS, two important

features of the data need to be studied: i) the duration between two successive charg-

ing or discharging sessions and ii) the load variation for a certain period of time. The

threshold value of these features should be varied with different load conditions of the

grid and the proposed detection algorithm has to study these from the given training

set.

6.7.2 BPNN Based Detection Mechanism

Figure 6.22: A back propagation neural network to detect malicious requests.

After simulating different attack scenarios, a BPNN is designed to assess the features

of the data set to identify the switching attack attempt initiated from a connected

CS. As the BPNN is hosted by the CMS as depicted in Fig. 6.1, this can only detect

the switching attack initiated from public CSs. Since, all public CSs are assumed

to be connected through a CMS, a CMS can exploit this BPNN to detect switching

attacks.
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The designed BPNN consists of one input, one or multiple hidden layers and an out-

put layer. Each node of each layer is connected with all the nodes of adjacent layers

with a weighted link. W is the vector of the weighted link, while wlij ∈ W is the link

between node j of layer l with the node i of layer (l− 1) as depicted in Fig. 6.22 and

wlij = wlji. The bias vector is represented as B̄, while blj ∈ B̄ would be added to the jth

node of any layer l except the input layer to reduce the variance and hence introduce

flexibility and better generalisation to the BPNN. Finally, as the activation function,

we utilize ReLU function in hidden layer to avoid vanishing gradient problem and

the softmax function is utilized in output layer to generate the binary output (e.g.,

output 1 indicates an attack attempt, while 0 is for non-malicious request).

The CMS is assumed to manage a set of CS E. Whenever an action request (charg-

ing/stop charging/discharging) arrives to the CMS, this request is passed to the de-

signed BPNN to determine whether this request is malicious or not. As an example,

while the keth action arrives from CS e ∈ E, the first node of input layer measures

the time difference between keth and (ke − 1)th action request. On the other hand,

the input to the second node of input layer is the time difference between (ke − 1)th

and (ke − 2)th action. These two inputs help to identify the anomaly in the action

behavior of CS e. The input to the third node of the input layer is a binary one. As

we investigate a coordinated attack, the third input is considered as 1 while any other

malicious attempt was detected in last ∆ time; otherwise, this input is considered as

0. The value ∆ is determined from the simulation and varied from grid to grid and

even from time to time.

To train the BPNN, a large data set is required for different switching attack

scenarios initiated from public CSs. As a consequence, we simulate different attack

scenarios for different load conditions over different grids. However, at the beginning,

arbitrary values are chosen for wlij ∈ W , blj ∈ B̄ and the binary output ake for the kthe
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request from CS e is known for the training set. Now, utilizing these arbitrary values

and the activation function, the BPNN calculates the output āke as:

āke = softmax(bo +
∑
j

yj) (6.20)

here, bo is the bias of output node and yj is the output of the hidden node j as

expressed in the following:

yj = ReLU(bj +
∑
i

xi);∀j (6.21)

bj is the bias of node j of the hidden layer, while xi is the input from node i from the

input layer. Then, āke will be compared with the known ake . If these two values do

not match, a back propagation approach is introduced to set the values for W and B̄

for the whole training set to attain the objective of āke = ake . Finally, the BPNN tests

and evaluates these values.

Though conventionally an OCPP request is immediately executed just after an

authentication (e.g., CS ID, EV ID etc.), our designed algorithm can act as a filter to

assess those messages before execution. Since, the actual intention of detecting such

adversary attempts is to prevent the grid from the switching attack, whenever, the

CMS would suspect a request as an adversary one, the request might be discarded or

a random delay δ would be generated instead of the immediate execution to disrupt

the anticipated coordination of attacks. The overall process is depicted in Fig.6.23.
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Figure 6.23: Flow diagram of BPNN based detection and mitigation process.

6.7.3 Performance Evaluation of BPNN

Now, in order to evaluate the effectiveness of the proposed detection method, first,

we have simulated switching attacks for different load conditions to attain the train-

ing and testing data set. These simulations assist to map the respective charg-

ing/discharging requests, e.g., each charging/discharging session starting time, du-

ration, charging rate, etc.

Figure 6.24: Performance analysis of the designed perception.

To evaluate the performance, we consider three different performance parameters;

percentage of error, percentage of false negative and percentage of false positive de-

cisions. Percentage of error considers the overall error rate based on the total data

length, while false negative indicates those decisions which show attack attempts as
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non-attack. As a ramification, a higher ratio of false negative decisions may allow

attack attempts, even when applying a BPNN having a higher accuracy. On the

other hand, a higher ratio of false positive (i.e., non attack attempt is detected as at-

tack) may deprive legitimate EV users from obtaining their service and consequently,

degrade the quality of service (QoS) of the CSs.

Fig. 6.24 depicts the performance of a perception (i.e., the BPNN having a single

hidden layer) for different attack duration, while the performance metric is actually

the average value after running 10 time for each data set. The figure depicts that the

percentage of error decreases with the attack duration; for instance, the percentage

of error decreased from 8% to 5% when the attack duration increased from 20sec to

30sec and this perception is almost 100% accurate for those attacks whose duration

is more than 40sec. As a consequence, an attacker having smaller period to carry

its attack, i.e., a prompt attack, is stealthier and more difficult to detect. However,

though almost 92% accuracy is shown for attacks having 20sec duration, the ratio

of false negative decision is almost 30%, which indicates that even after a higher

accuracy, the BPNN is not able to detect all attempts. However, as our intention

is to prevent the grid from an anticipated switching attack and since such attack

is actually attempted from a set of CSs, even this amount of accuracy could be

sufficient to disrupt the mutual coordination among those comprised CSs and pacify

their desired consequences (i.e., the rest false negative requests would not be large

enough to create the instability).
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Figure 6.25: Accuracy variation with number of hidden layers.

The accuracy is also evaluated with the number of hidden layers as shown in Fig.

6.25 and this depicts that there is no consistency in accuracy with the number of

hidden layers. As an example, a BPNN having six hidden layers shows the worst

performance for the attack set having a duration of 20sec, while this becomes almost

accurate for an attack duration of 30sec. This observation imposes a challenge to set

a global design for different attack scenarios.

6.8 Conclusion

The increased popularity of EVs and their charging infrastructure has opened new

windows for rogue actors to attack the power grid. Through the exploit of large-scale

deployment of EV charging systems and EV functionalities, we presented a coor-

dinated switching attack to initiate inter-area oscillations in the power grid. Our

switching attack was formulated in two forms: a decrease in load through the termi-

nation of EV charging, and an increase in power supply through EV ancillary services

which is a unique functionality of EVs. The consequences of the attack were presented

through a state-space model, and tested on the two-area Kundur system, 39-Bus New

England system, and on the Australian 5-area power grid. Two attack strategies are
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considered to demonstrate the impact of attacker knowledge on the performed attack.

We have shown that using the reconnaissance method by altering a very small amount

of load, the adversary can observe and determine the inter-area mode. After gather-

ing the knowledge for different loaded systems, we examined different attack scenarios

i.e., only drop in load or only spike in generation or a combination between both. Fi-

nally, we provided a framework to detect these attack attempts by implementing a

BPNN based algorithm hosted by the CMS.
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Chapter 7

Discussion and Future work

7.1 Discussion

To ameliorate the consequences of global warming, a prompt transportation electrifi-

cation is inevitable and fortunately, the global EV market was burgeoning. But the

sudden impact of the Global pandemic, COVID-19 is jeopardizing the anticipated

growth and lowering the EV sale by 17% in Europe [88]. However, IEA makes an

interesting observation that while EV growth is declining by 17%, then this declining

rate is 80% for combustion engine vehicle [88] and hence, that can be taken as an

indication that this pandemic is making people more environment conscious. Con-

sequently, in the post pandemic market, the EV growth may surpass the previous

anticipation and consequently, ongoing research needs to be continued and acceler-

ated to ensure their graceful penetration. In this thesis, our main objective was to

accelerate this EV penetration by developing the EV charging scheme more smart

and secured. However, among with other causes, the range anxiety was identified

as the major obstacle that make people reluctant in switching to EVs. The smaller

battery size, frequent charging requirement, longer charging and waiting time, inade-

quate charging facility etc. originate such anxiety. Since, an abrupt change in battery

162



technology (i.e., larger battery in cheaper price with lighter weight) is not possible,

the strategical placement and dimension of a fast charging network might be a major

key to mitigate the range anxiety, while a prolific CS network should offer a minimum

QoS to encourage people in using public CSs and should not degrade the power qual-

ity of the grid. On the other hand, to attain the goal of carbon reduction, the grid

dependency for EV charging also requires to be curtailed and hence, auxiliary green

charging sources have to be stimulated. Though introducing RE based standalone

CSs or implementing bidirectional energy transfer capability of EVs (especially V2V)

could be potential solutions for curtailing the dependency on the grid, we addressed

the intermittent behavior of RE production as the major challenge of managing a RE

based standalone CS, while the trajectory and scheduling selections of V2V enabled

charging trucks are required for an efficient strategy of charging EVs to maximize the

revenue. However, to attain such smart charging solutions, a successful information

sharing communication platform is inevitable and fortunately is now reality. But

unfortunately, this communication link introduces different types of attack possibili-

ties especially to the grid stability. Accounting this in our consideration, as per our

best knowledge, we are the first who investigated the competency of EV charging

ecosystem as a potential surface for initiating switching attack to create an inter area

oscillation between two weakly tied power generation areas. After simulating a de-

tailed attack scenarios and observed the dire consequences, we also proposed a neural

network based detection algorithm which has a high accuracy of detection before the

attack being executed.

First, a two stage model was proposed to tackle a charging infrastructure net-

work design problem, while the first stage determined the optimal locations and the

second one decided the capacity (i.e., the required number of poles) to minimize the

deployment cost. Assuring a minimum QoS in terms of tolerable waiting time and
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detour distance might make the design appealing to EV users. Given that the mass

deployment of CSs may degrade the voltage level at any bus of the power distribution

network. Hence, to make it stable, we considered installing voltage regulators (if re-

quired) and determined the respective tap positions. The strategical CS deployment

was capable of reducing the required number of voltage regulators to minimize the

cost. We also determined the transformer capacity to support the installed CSs and

the capacity of distribution grid was also considered to avoid load congestion. Finally,

We examined two different designs of expanding CSs facility to meet the increasing

anticipated demand and suggested to consider the anticipated future load during the

present installation for being more compatible and cost efficient at the long run.

However, users’ satisfaction should get most priority to promote the EV market.

Getting required energy inside targeted deadlines at minimum price, rather than the

cleanliness of the energy source, is a major key to satisfy EV owners. On the other

hand, green energy sources need to be incorporated for achieving the anticipated

benefits of EVs in mitigating global warming and energy scarcity. Hence, in the

second project, we assumed a smart CS, which used a PV system integrated with

an ESS to charge EVs at variable rates. A quadratic price function was proposed,

that ensured the equity among the EVs, i.e., an EV could enjoy a higher charging

rate only by paying more. As PV was the only energy source, when few EVs were

charging at higher rates, others had to charge slowly at lower price. This load shifting

mechanism together with an ESS helped accommodate the EV charging using the

limited amount of energy. To handle the uncertain behavior of both the load request

and PV generation, a frequent prediction was made. The model was examined in both

centralized (ILP based model) and decentralized methods (game theoretic model).

Though the centralized method was capable of providing optimal solution, it took

a very long time in making a decision especially for a large number of EVs. On
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the other hand, the game theoretic model was prompt and capable of providing

optimal solution, while this considered the upcoming load requests during the strategy

selection.

Next, an offline problem was addressed for a company having a number of trucks

equipped with a larger battery along with a fast charger to charge EVs through V2V

at some predefined parking lots. The objective of the work was to serve as many

EVs as possible using this limited number of trucks by determining their trajecto-

ries and schedules. An EV was considered served only when its demand would be

fulfilled inside its given charging window. The problem also considered the energy

consumption of trucks during the travelling period and each truck had to return to

the depot after serving EVs. An ILP was formed to determine the optimal solution

and it was formally proven NP-Hard. As the computation time for ILP was too large

to be applicable, we decomposed the problem using Dantzig-Wolfe decomposition and

its performances were extensively analyzed by varying different parameters for dif-

ferent scenarios and compared with two other proposed greedy algorithms. We also

discussed the trade-off between performance and computational time of this decom-

position model to determine the iteration number which can ensure a better solution

within an acceptable time.

Since, the inter connected EV charging infrastructure has opened new windows for

rogue actors to attack the power grid, through the exploit of large-scale deployment

of EV charging systems and EV functionalities, we presented a coordinated switching

attack to initiate inter-area oscillations in the power grid. Our switching attack was

formulated in two forms: a decrease in load through the termination of EV charging,

and an increase in power supply through EV ancillary services which is a unique

functionality of EVs. The consequences of the attack were presented through a state-

space model, and tested on the two-area Kundur system, 39-Bus New England system,
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and on the Australian 5-area power grid. Two attack strategies were considered to

demonstrate the impact of attacker knowledge on the performed attack. We had

shown that using the reconnaissance method by altering a very small amount of load,

the adversary can observe and determine the inter-area mode. After gathering the

knowledge for different loaded systems, we examined different attack scenarios i.e.,

only drop in load or only spike in generation or a combination between both.Finally,

we provided a BPNN based framework to detect the attack attempts and attained a

high accuracy of detection before the attack execution.

7.2 Future Work

The work presented in the thesis provided considerable effort to identify the challenges

that hinder the EV adoption and hence, obstruct to attain the carbon emission re-

duction goal from the transportation sector. We designed a strategical placement,

dimension and expansion methodology for the DC fast charger in an urban area to

mitigate the range anxiety. After that we proposed a smart management system for

a PV based standalone CS to propel the RE integration in EV charging, while V2V

energy sharing was also considered to curtail the dependency on traditional CSs. Fi-

nally, the competency of compromised CSs as switching attack surface was tested and

a BPNN based detection algorithm was presented. However, there remains several

future research directions as extensions of these addressed problems which may add

extra benefits to ensure a smooth penetration of mass number of EVs.

As an example, our proposed method suggested to deploy a large number of CSs

to mitigate the range anxiety and hence integrate a remarkable load with the grid,

which may cause a significant power loss and introduce a new peak on load profile

and as a ramification, a set of strategies need to be taken from the power generation

and transmission end. Hence, we are aiming to do a detailed investigation regarding
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the possible negative consequences of large scale fast CSs penetration to determine

the possible mitigation for the power operators.

In both our second and third contributions, we addressed two scheduling problem,

while the problems were solved in an offline fashion. However, in real life, that might

not be always possible to attain all information prior the decision making process

and sometimes, an instantaneous decision is required to be made. As a consequence,

as an extension of those works, we are planning to solve the problems in an online

fashion. On the other hand, instead of handling a single PV powered CS as our

second project, this could be worthy to handle a multiple number of standalone CSs,

where the scheduler will also solve the CS selection for an EV to minimize its charging

price and time. Moreover, other renewable energy sources also could be incorporated

and handled for such standalone CSs. On the other hand, as an extension of the

third work, where we determined the routing and scheduling of a set of V2V enabled

trucks, instead of considering pre-assigned parking lot, we could optimize the charging

locations to serve more number of EVs. We can also consider multiple number of

depots, while one truck may start its journey from one depot and finish at the most

convenient one to maximize the objective. To attain a more realistic scenario, we will

consider different battery sizes of charging trucks as well.

The Internet of Things (IoT) enabled CS network was successfully investigated

as a potential switching attack surface to the grid in this thesis and we devised a

BPNN based detection mechanism having sufficient accuracy to derange the coordi-

nation of attacks attempts. However, other machine learning (ML) algorithms also

can be implemented and tested. On the other hand, for mitigation purpose, we are

aiming to design a wide area controller. However, beside initiating switching attacks,

attackers may compromise CSs or manipulate OCPP messages to control the charg-

ing/discharging operations to create different types of attack and creates substantial
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losses to EVs, CSs and grid. Hence, monitoring CS networks from the CMS end for

detecting any type of malicious activities becomes noteworthy for taking mitigation

initiatives. However, for developing such a detection mechanism, a detailed simula-

tion will be required which should consider EV charging ecosystem, OCPP protocol

and the smart grid. Since, a test bed might be too expensive and complex to test such

scenarios, we are also planning to develop a co-simulator to serve these purposes.
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Appendix A

Appendix

Linearization:

The linearized form of Eq. (5.9) is as follows:

∑
o

(Λ
o(o−1)
vv′t + Γ

o(o−1)
vv′t

Ev′

ζ
+ Λ

o(o−1)
vv′t τ tvv′) ≤ τv;∀v, v′, t (A.1a)

Λ
o(o−1)
vv′t ≤ ∆v′Γ

o(o−1)
vv′t ;∀v, v′, o, t (A.1b)

Λ
o(o−1)
vv′t ≤ τv′ ;∀v, v′, o, t (A.1c)

Λ
o(o−1)
vv′t ≥ τv′ −∆v′(1− Γ

o(o−1)
vv′t );∀v, v′, o, t (A.1d)

Λ
o(o−1)
vv′t ≥ 0;∀v, v′, o, t (A.1e)
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Γ
o(o−1)
vv′t ≤ γvto;∀v, v′, o, t (A.1f)

Γ
o(o−1)
vv′t ≤ γv′t(o−1);∀v, v′, o, t (A.1g)

Γ
o(o−1)
vv′t ≥ γvto + γv′t(o−1) − 1;∀v, v′, o, t (A.1h)

Eqs. (A.1f) - (A.1h) also can be utilized to linearize Eq. (5.11).

Reduced cost function:

To calculate the reduced cost function for any EV v, Φvto, Ψv and Θv are calculated

as follows:

Φvto =
∑

|v|≥o≥2,t

αotγvto −
∑

|v|−1≥o≥1,t

αotγvto +
∑
g3

β20f
g γvto

+
∑
g4

β20g
g γv′to −

∑
g3

β20h
g γvto +

∑
t

Evφt
∑
o

γvto+

∑
t

ωtτ
t
dvγvt1 +

∑
t

ωtτ
t
v′tγv′to; ∀v

(A.2)

Ψv =
∑
g4

β20d
g τv′ −

∑
g4

β20c
g τv′ ;∀v (A.3)

Θv =
∑
s∈Sv

σs; ∀v (A.4)

G = {g = (o, t, v, v′) : v, v′ ∈ V, v 6= v′, t ∈ T, o ≥ 2} represents the subscript of the

variables of the linearized constraints and their subsequent dual variables. And β20c
g ,

β20d
g , β20f

g ,β20g
g and β20h

g are the dual values come from constraints (A.1c), (A.1d),

(A1.f), (A1.g) and (A1.h) respectively.
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