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Abstract

Ultrasound Elastography: Deep Learning Approach

Md Golam Kibria

Ultrasound elastography images the elasticity of a biological tissue. Conventional

algorithms for ultrasound elastography suffer from different noises severely

compromising the quality of time-delay estimation. Calculation of time-delay

estimation is a key component of strain estimation. However, time-delay

estimation is analogous to optical flow estimation, a classical computer vision

problem. Deep learning networks have reported recent success in optical

flow estimation compared to the conventional techniques. Classical ultrasound

elastography algorithms have been unable to provide a single solution to both

commonly known issues of noise and computation time. Deep learning techniques

have a bright prospect in addressing both issues. The goal of this thesis

is to investigate whether optical flow estimation is translatable to ultrasound

elastography as the core nature of both of these problems are analogous. In this

thesis we aim to develop and train a robust deep neural network for ultrasound

elastography. First, an efficient deep learning network trained for optical flow

estimation is used for time-delay estimation. The initial time-delay estimation

is further fine-tuned by optimizing a global cost function for generating high

quality strain images. Simulation, phantom and clinical experiments show the

robustness of the deep learning approach both quantitatively and qualitatively.

Next, the weights of the deep learning network are fine-tuned using transfer

learning technique for transferring the efficacy of optical flow estimation to
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time-delay estimation. The objective is to retain the robustness introduced by the

deep learning network while enhancing the overall performance of the time-delay

estimation in ultrasound elastography. Simulation and experimental phantom

results show that the time-delay estimation has improved slightly after fine-tuning

the weights using transfer learning.
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Chapter 1

Introduction

As a medical imaging modality, ultrasound is non-invasive, portable and provides

results in real-time which increases its pragmatic importance in clinical diagnosis.

Among many other applications of ultrasound imaging technology, this thesis

focuses on speckle tracking, displacement estimation of biological tissue and

elastography.

1.1 Ultrasound Physics

Ultrasound medical imaging scanners uses acoustic waves for scanning. Although

any sound wave with a frequency above 20kHz is considered ultrasonic, clinical

devices typically use frequencies between 1-20 MHz.

The sonographic scanner primarily consists of two units, the transducer and the

processing unit. The transducer emits acoustic pulses towards the targeted tissue

and receives back the reflected and back-scattered pulses. It consists of an array

of piezoelectric sensors that can emit acoustic pulses with variable frequency and

length upon being subjected to proper electrical signals. The emitted acoustic

pulses penetrate the skin and the underlying biological tissues. The acoustic
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(a) RF frame (b) B-Mode

RF

B-mode

(c) RF vs B-mode Signal

Figure 1: ((a) RF frame and (b) B-mode image of an ultrasound scan of a CIRS
breast phantom. (c) RF and B-mode signal plot of a portion of an axial line of
the same ultrasound scan)

waves travel through many layers of different type of biological tissue which

act as different acoustic mediums. While travelling, the waves get impeded by

many scatterers. As a result, a portion of the acoustic energy gets absorbed

and scattered, and the rest is reflected towards the transducer. The acoustic

energy of the reflected wave depends on the physical property of the scatterers.

In a sense, the reflected energy signature of the waves represents the properties

of the scatterers. This way it is possible to extract information on many physical

properties of the biological tissue using ultrasound such as speckle size, blood-flow,

elasticity and characteristic of a tumor.

The data obtained by the transducer goes through different levels of processing.

Most researchers are interested in Radio Frequency (RF) data while most clinical

practice involves with B-mode ultrasound image. B-mode image is obtained

through envelop detection and log compression of RF data and is rather visually

useful than RF data for clinical diagnosis. The lesion of the CIRS breast phantom

is more clearly visible in B-mode image than in RF image (Fig. 1). Nevertheless,

useful information can be extracted from RF data. Compared to B-mode data,

RF data is less exposed to processing which gives the research community more
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room for experimenting.

1.2 Ultrasound Elastography

Ultrasound elastography [1] medical imaging technique entails calculating the

elastic properties of different organs of human body such as prostate [2, 3],

liver [4–11], thyroid [12] and breast [13–19]. Ultrasound elastography is mainly

two types; “dynamic” and “quasi-static”. Dynamic ultrasound elastography

involves generating palpation of the tissue by using acoustic force. Shear-wave

elastography [20–22] and acoustic radiation force imaging (ARFI) [23] are prime

examples of dynamic ultrasound elastography. On other hand, quasi-static

ultrasound elastography such as free hand palpation ultrasound elastography

[15,24] introduces tissue deformation by external force, generally using hand-held

probe. This thesis is primarily focused on quasi-static elastography algorithms

which can be widely categorized into three groups; classical, regularized, and deep

learning ultrasound elastography.

1.2.1 Classical Ultrasound Elastography

Most classical algorithms approach ultrasound elastography from a physical point

of view where each RF frame corresponds to a cross-section of the scanned tissue.

The RF frame can be divided into small windows which correspond to small patches

of the physical tissue. These window-based techniques [15, 16, 25–28] take two

corresponding pre- and post- deformation RF frame and conduct block-matching

search using predefined corresponding windows to track down the displacements.

The block matching techniques used are either cross-correlation based [1,29,30] or

phase-root seeking based [28, 31]. Most of these window-based methods calculate

time-delay estimation (TDE) which is spatially differentiated to obtain the strain
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image using the least-squares [32] or gradient-based methods. TDE is estimated

either in axial direction [1, 33] or in both axial and lateral direction [34, 35].

Displacement estimation in lateral direction is much less accurate than in axial

direction. Data sampling rate in lateral direction is significantly lower [36, 37]

than axial direction which is why ultrasound RF signals show wider point spread

function (PSF) [38].

Another group of window-based elastography algorithms [39–41] skip the

displacement estimation and directly estimates strain. In ideal condition, the

post-compression RF window can be stretched by a factor when it becomes

identical to pre-compression window. The direct strain estimators find the

desired stretching factor using adaptive temporal stretching locally or globally

both in time-domain [39] and in spectral-domain [40, 41]. These approaches are

computationally expensive because of the exhaustive search. But as displacement

estimation is bypassed for direct strain estimation, gradient noise can be avoided.

Phased-based approaches operate in spectral domain and are generally

computationally efficient [42, 43]. Phase-root seeking method looks for the

phase-root of the zero-lagged cross-correlation of the corresponding analytic pre-

and post-compression windows [43]. On the downside of the phase-root seeking

method, an error in the displacement estimation can propagate further down the

axial line. As a result, this approach becomes more susceptible to decorrelation

noise. To overcome this Pesavento et al. [44] proposed an additional stretching

of the post-compression temporal window with lateral displacement correction

before phase-root seeking which is computationally expensive. Shiina et al. [45]

proposed a method where phase is calculated at the top of autocorrelation

envelop for axial and lateral displacement estimation. Lindop et al. [46] proposed

a phase-based algorithm, known as weighted phase separation (WPS) which

estimates displacement along with its location. Brusseau et al. [47] proposed a

4



phase-based direct strain estimation method which involves exhaustive search of

stretching factor with adaptive window length and position.

Another group of elastography algorithms take a kernel-based approach [25, 31,

48, 49] where effects of neighboring windows are considered through exponential

weighted averaging. These methods operate both in time-domain [48] and

spectral-domain [31, 49]. They gain some advantage over decorrelation noise

for kernel-based approach at the cost of overhead computation of neighboring

windows.

Other noteworthy works in classical ultrasound elastography include using

Bayesian optimization techniques [50–53], beam-steered [54] and volumetric

ultrasound data [10,55–58].

1.2.2 Regularization Ultrasound Elastography

Regularization-based ultrasound elastography techniques calculates TDE by

optimizing a cost function [5, 59–61] which integrates RF signal correspondence

between pre- and post- deformation frames with displacement continuity. The

cost function contains data similarity term which incorporates RF signal

correspondence and regularization term which ensure displacement continuity

constraint is satisfied. Optimization of the cost function yields a spatially smooth

displacement map but the process is computationally taxing which is resolved by

deploying dynamic programming (DP) technique [60,62]. DP yields integer values

field which is inadequate for accurate and spatially smooth displacement map.

DP estimates is further refined by Dynamic Programming Analytic Minimization

(DPAM) [5]. DPAM shows striking artifacts vertically along scan lines due to

discontinuity of displacement location between two adjacent scan lines in lateral

direction. To overcome this issue, Global Ultrasound Elastography (GLUE)

[63] method considers the entire RF frame into formulating a cost function.
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To further improve the quality of displacement estimation, Spatio-Temporal

Global Ultrasound Elastography (GUEST) [6] incorporates temporal continuity

where three RF frames constitute the cost function. Further fine-tuning is

accomplished by incorporating total variation regularization technique [64] and

principal component analysis [65].

1.2.3 Deep Learning Ultrasound Elastography

Deep learning algorithms have gained much popularity for image processing,

image classification and segmentation. The adaptive learning nature of deep

learning techniques holds a certain attraction for ultrasound elastography where

the classical algorithms face many sources of noise. The classical approaches

failed to provide a single solution to all the problems associated with ultrasound

elastography. The gradual training of deep learning framework promises a

robust solution to ultrasound elastography addressing both issues of noise and

computation time. As a result, there has been a recent explosion of deploying

deep learning in ultrasound elastography.

1.2.3.1 Deep Learning and Convolutional Neural Network

In artificial intelligence, machine learning algorithms can recognize patterns in

vast amounts of data that would take years for humans to detect. These pattern

detection capabilities can help in decision making in many practical situations.

Deep learning is a branch of machine learning which deals with both unstructured

and unlabeled data sets. Deep learning uses an array of interconnected nodes to

create a network and learn pattern detection and decision making in a way human

brain operates. The nodes of the network are typically compared with the neuron,

the unit cell structure of the human brain. Hence the network of nodes associated

with deep learning is widely known as neural network. A typical neural network
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Figure 2: (a) A typical neural network (b) Structure of a typical artificial neuron
of neural network
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Figure 3: Cartoon illustration of a typical Convolutional Neural Network

consists of an input layer at the left, the output layer at the right and one or more

hidden layers in the middle (Fig. 2(a)). Normally nodes of adjacent layers are

interconnected while nodes within a layer are not connected. Each node acts as

a mathematical unit where inputs are multiplied by weights and their summation

go through an activation function (Fig. 2(b)).

Convolutional Neural Network (CNN) is a special kind of neural network that

can handle image data with ease. Most CNNs are trained for image classification

where the network learns to classify images into different designated categories.
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CNNs also deal with problems related with per-pixel prediction such as semantic

segmentation, augmented reality and optical flow estimation for applications like

object detection and automated driving. CNNs takes images as input, extract

useful feature from them using convolution filters. Unlike neural networks, the

weights of the kernels of the convolution layer is shared throughout the whole

image. This way each kernel in a convolution layer learns to extract a unique

feature from the input, also known as feature maps. Unlike conventional filters in

image processing, weights of the kernels of a CNN layer are not hand-engineered

but learned through extensive training with ample amount of data. Normally, deep

CNNs are comprised of several convolution layers. There are maxpool layers in

between convolution layers which reduce the dimension of the feature maps by a

certain predefined factor. The deeper the input data travels into the network, the

data is reduced more in width and height due to maxpool operation. At the very

end the feature maps are flattened followed by a fully connected layer and output.

Fully convolutional network does not have fully connected layer which makes it

possible to take input of arbitrary size.

1.2.3.2 Machine Learning in Ultrasound Elastography

Displacement estimation from corresponding ultrasound scans suffers greatly from

many sources of noise such as decorrelation noise, jitter noise etc. compromising

the quality of the strain images obtained from the displacement field. In an

attempt to reduce the effect of decorrelation noise on displacement estimation,

several methods have been tried over the years. Most prominent of them is the

incorporation of the data from neighbourhood pixels/windows into the algorithm.

Amidabadi et al. [66] incorporated this idea with machine learning technique

support vector machine (SVM) to extract useful features from the neighbourhood

pixels in order to reduce the peak-hopping error and ultimately improving the
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overall quality of the strain image produced by the underlined elastography

algorithm.

Recently there has been some notable contemporary works on ultrasound

elastography in deep learning domain such as implicit strain reconstruction using

end-to-end convolutional neural network [67,68]. An important aspect of obtaining

quality strain image is the selection of best-suited frame which has been automated

in [69]. Peng et al. [70] investigated the efficacy of present deep learning

networks for optical flow estimation such as FlowNet 2.0 [71], PWC-Net [72] and

LiteFlow-Net [73] by using transfer learning techniques. Tehrani et al. [74] has

proposed two deep networks MPWC-Net and RFMPWC-Net where multi-level

pyramid warping and cost volume network has been exploited for ultrasound

elastography.

1.3 Objective of the Thesis

Displacement estimation in ultrasound elastography is very analogous to optical

flow estimation. Recently, deep CNNs have gained promising success in

optical flow estimation. Dosovitskiy et al. [75] first proposed two CNN

architectures namely, FlowNetS (short for FlowNet-Simple) and FlowNetC (short

for FlowNet-Correlation), which gained competitive visual and quantitative

accuracy in optical flow estimation compared to the state-of-the-art conventional

methods while achieving real-time execution time. Ilg et al. [71] further improved

the networks by suggesting a specific training schedules and also experimented on

stacking the networks on top of each other. Finally, a new architecture FlowNet

2.0 [71] was proposed where a combination of FlowNetC and FlowNetS stacked

together and trained with a specific schedule. Surprisingly, FlowNet 2.0 achieved

much better result than its previous counterparts FlowNetC and FlowNetS while
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performing in real-time.

The overwhelming success of CNN architectures in optical flow estimation has

paved the way for exploring the possibilities of this exciting field of machine

learning in ultrasound elastography. In this thesis, we explored the possibility

of using convolutional neural network for ultrasound elastography. At first, we

checked the performance of the FlowNet 2.0 architecture with ultrasound RF

data. By using the trained weights by [71], we found that FlowNet 2.0 can

generate a coarse displacement field which needed further refinement for generating

quality strain image. Therefore, we used global optimization based ultrasound

elastography technique GLUE [63] for further refining the coarse displacement

generated by FlowNet 2.0. The fact that FlowNet 2.0 can generate coarse

displacement field from ultrasound RF data is a clear indicator that convolutional

neural network can be successfully used for ultrasound elastography and speckle

tracking. Eventually we aimed at fine-tuning FlowNet 2.0 network weights with

ultrasound RF data using transfer learning techniques for improving the coarse

displacement estimation from FlowNet 2.0 in order to generate quality strain

image.

1.4 Organization of the Thesis

In Chapter 2 we propose a robust deep neural network based ultrasound

elastography method GLUENet where we get coarse and robust displacement

estimation from FlowNet 2.0 network and further fine-tune it by a global

optimization based method GLUE for better strain estimation. Simulation,

experimental and clinical results show the superior performance of our method.

In Chapter 3 we propose fine-tuning the already trained weights of FlowNet

2.0 network model using transfer learning technique improving its performance

10



on displacement estimation. The estimated strain profile calculated from the

displacement estimation obtained from fine-tuned FlowNet 2.0 was not up to

satisfactory level. One of the reasons behind this non-satisfactory performance

of transfer learning may be the complex network structure and training schedule

of FlowNet 2.0. Simulation and experimental phantom results show slight

improvement of displacement estimation for fine-tuning FlowNet 2.0. We draw

concluding remark and mention possible future work in Chapter 4.
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Chapter 2

GLUENet: Ultrasound

Elastography Using Convolutional

Neural Network

This chapter is published in the conference paper below, which according to

our best knowledge, is the first published work that exploited deep learning in

ultrasound elastography. The paper is cited 21 times according to Google Scholar.

Kibria, Md Golam, and Hassan Rivaz. “Gluenet: Ultrasound elastography using

convolutional neural network.” Simulation, Image Processing, and Ultrasound

Systems for Assisted Diagnosis and Navigation. Springer, Cham, 2018. 21-28.

Displacement estimation is a critical step in ultrasound elastography and failing

to estimate displacement correctly can result in large errors in strain images. As

conventional ultrasound elastography techniques suffer from decorrelation noise,

they are prone to fail in estimating displacement between echo signals obtained

during tissue deformations. This chapter proposes a novel elastography technique

which addresses the decorrelation in estimating displacement field. We call our

method GLUENet (GLobal Ultrasound Elastography Network) which uses deep

12



Convolutional Neural Network (CNN) to get a coarse but robust time-delay

estimation between two ultrasound images. This displacement is later used for

formulating a nonlinear cost function which incorporates similarity of RF data

intensity and prior information of estimated displacement [63]. By optimizing this

cost function, we calculate the finer displacement exploiting all the information

of all the samples of RF data simultaneously. The coarse displacement estimate

generated by CNN is substantially more robust than the Dynamic Programming

(DP) technique used in GLUE for finding the coarse displacement estimates. Our

results validate that GLUENet outperforms GLUE in simulation, phantom and

in-vivo experiments.

2.1 Introduction

Ultrasound elastography can provide mechanical properties of tissue in real-time,

and as such, has an important role in point-of-care ultrasound. Estimation of

tissue deformation is very important in elastography, and further has numerous

other applications such as thermal imaging [76] and echocardiography [77].

Over the last two decades, many techniques have been reported for estimating

tissue deformation using ultrasound. The most common approach is window-based

methods with cross-correlation matching techniques. Some reported these

techniques in temporal domain [29,48,78] while others reported in spectral domain

[25, 43]. Another notable approach for estimating tissue deformation is usage

of dynamic programming with regularization and analytic minimization [5] [63].

All these approaches may fail when severe decorrelation noise exists between

ultrasound images.

Tissue deformation estimation in ultrasound images is an analogous to the optical

flow estimation problem in computer vision. The structure and elastic property
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of tissue impose the fact that tissue deformation must contain some degree of

continuity. Hence, tissue deformation estimation can be considered as a special

case of optical flow estimation which is not bound by structural continuity. Apart

from many state-of-the-art conventional approaches for optical flow estimation,

very recently notable success has been reported at using deep learning network for

end-to-end optical flow estimation. Deep learning networks enjoy the benefit of

very fast calculation by trained (fine-tuned) weights of the network while having

a trade-off of long-time computationally exhaustive training phase. Deep learning

has been recently applied to estimation of elasticity from displacement data [79].

A promising recent network called FlowNet 2.0 [71] has achieved up to 140 fps at

optical flow estimation. These facts indicate the potential for using deep learning

for tissue deformation estimation.

This work takes advantage of the fast FlowNet 2.0 architecture to estimate an

initial time delay estimation which is robust from decorrelation noise. This initial

estimation is then fine-tuned by optimizing a global cost function [63]. We call our

method GLUENet (GLobal Ultrasound Elastography Network) and show that it

has many advantages over conventional methods. The most important one would

be the robustness of the method to severe decorrelation noise between ultrasound

images.

2.2 Methods

The proposed method calculates the time delay between two radio-frequency

(RF) ultrasound scans which are correlated by a displacement field in two

phases combining fast and robust convolutional neural network with the more

accurate global optimization based coarse to fine displacement estimation. This

combination is possible due to the fact that the global optimization-based method
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of Image 1 and warped image (Brightness error). Input data is concatenated
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depends on coarse but robust displacement estimation which CNN can provide

readily and more robustly than any other state-of-the-art elastography method.

Optical flow estimation in computer vision and tissue displacement estimation

in ultrasound elastography share common challenges. Therefore, optical flow

estimation techniques can be used for tissue displacement estimation for ultrasound

elastography. The latest CNN that can estimate optical flow with competitive

accuracy with the state-of-the-art conventional methods is called FlowNet 2.0 [71].

This network is an improved version of its predecessor FlowNet [75], wherein

Dosovitskiy et al. trained two basic networks namely FlowNetS and FlowNetC

for optical flow prediction. FlowNetC is a customized network for optical flow

estimation whereas FlowNetS is rather a generic network. The details of these

networks can be found in [75]. These networks were further improved for more

accuracy in [71] which is known as FlowNet 2.0.

Fig. 4 illustrates the complete schematic of FlowNet 2.0 architecture. It can be

considered as the stacked version of a combination of FlowNetC and FlowNetS
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architectures which help the network to calculate large displacement optical flow.

For dealing with the small displacements, small strides were introduced in the

beginning of the FlownetS architecture. In addition to that, convolution layers

were introduced between upconvolutions for smoothing. Finally, the final flow is

estimated using a fusion network. The details can be found in [71].

The displacement estimation from FlowNet 2.0 is robust but needs more refinement

in order to produce strain images of high quality. Global Time-Delay Estimation

(GLUE) [63] is an accurate displacement estimation method provided that an

initial coarse displacement estimation is available. If the initial displacement

estimation contains large errors, then GLUE may fail to produce accurate

fine displacement estimation. GLUE refines the initial displacement estimation

by optimizing a cost function incorporating both amplitude similarity and

displacement continuity. It is noteworthy that the cost function is formulated

for the entire image unlike its motivational previous work [5] where only a single

RF line is optimized. The details of the cost function and its optimization can be

found in [63]. After displacement refinement, strain image is obtained by using

least square or a Kalman filter [5].

2.3 Results

GLUENet is evaluated using simulation and experimental phantom, and in-vivo

patient data. The simulation phantom contains a soft inclusion in the middle and

the corresponding displacement is calculated using Finite Element Method (FEM)

by ABAQUS Software (Providence, RI). For ultrasound simulation, the Field II

software package [80] is used. A CIRS breast phantom (Norfolk, VA) is used as

the experimental phantom. RF data is acquired using an Antares Siemens system

(Issaquah, WA) at the center frequency of 6.67 MHz with a VF10-5 linear array at a
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sampling rate of 40 MHz. For clinical study, we used in-vivo data of three patients.

These patients were undergoing open surgical RF thermal ablation for primary or

secondary liver cancer. The in-vivo data were collected at John Hopkins Hospital.

Details of the data acquisition are available in [5]. For comparison of the robustness

of our method, we use mathematical metrics such as Mean Structural Similarity

Index (MSSIM) [81], Signal to Noise Ratio (SNR) and Contrast to Noise Ratio

(CNR). Among them, MSSIM incorporates luminance, contrast, and structural

similarity between ground truth and estimated strain images which makes it an

excellent indicator of perceived image quality.

2.3.1 Simulation Results

Field II RF data with strains ranging from 0.5% to 7% are simulated, and

uniformly distributed random noise with PSNR of 12.7 dB is added to the entire

RF data. The additional noise is for illustrating the robustness of the method

to decorrelation noise given that simulation does not model out-of-plane motion

of the probe, complex biological motion, and electronic noise. Fig. 5 (a) shows

ground truth axial strain and (b-c) shows axial strains generated by GLUE and

GLUENet respectively at 2% applied strain. Fig. 5 (d-f) illustrates the comparable

performance of GLUENet against GLUE [63] in terms of MSSIM, SNR and CNR

respectively.

2.3.2 Experimental Phantom Results

Fig. 6 (a-b) shows axial strains of the CIRS phantom generated by GLUE and

GLUENet respectively. The large blue and red windows in Fig. 6 (a-b) are used as

target and background windows for calculating SNR and CNR (Table 1). The small

windows are moved to create a total combination of 120 window pairs (6 as target
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Table 1: SNR and CNR of the strain images, and failure rate of GLUE and
GLUENet for experimental phantom data and in-vivo data of patients 1-3.

GLUE GLUENet

SNR CNR Failure Rate(%) SNR CNR Failure Rate (%)

Phantom 39.0363 12.6588 58.0645 43.4363 15.5291 19.3548

Patient 1 53.9914 22.1641 34.6939 54.7700 27.9264 04.8469

Patient 2 47.5051 22.7523 68.3673 55.9494 25.4911 14.5408

Patient 3 31.2440 07.7831 77.0408 28.6152 19.6954 60.7143

and 20 as background) for calculating CNR values. The histogram of these CNR

values is plotted in Fig. 6 (c) to provide a more comprehensive view which shows

that GLUENet has a high frequency at high CNR values while GLUE is highly

frequent at lower values. The histogram of SNR and CNR values is a much better

comparison tool of performance than using any blind location of region of interest

for calculating single value of SNR and CNR. It provides a more comprehensive

comparison. We test both methods on 62 pre- and post- compression RF signal

pairs chosen from 20 RF signals of CIRS phantom for a measure of consistency.

The best among the estimated strain images is visually marked to compare with

other strain images using Normalized Cross Correlation (NCC). A threshold at

0.6 is used to determine failure rate of the methods (Table 1). GLUENet shows

very low failure rate (19.3548%) compared to GLUE (58.0645%) which indicates

greater consistency of GLUENet.

2.3.3 Clinical Results

Fig. 7 shows axial strains of patient 1-3 from GLUE and GLUENet and histogram

of CNR values. Similar to experimental phantom data, small target and

background windows are moved to create a total combination of 120 window

pairs for calculating CNR values. Their histogram shows that GLUENet has a
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Figure 5: First row shows axial strain images of simulation phantom with added
random noise (PSNR: 12.7 dB); (a) Ground truth, (b) GLUE and (c) GLUENet.
Second row shows the performance metrics graph with respect to various range of
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Figure 6: Axial strain images of experimental phantom data generated by (a)
GLUE and (b) GLUENet, and (c) histogram of CNR values of GLUE and
GLUENet.
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Figure 7: Axial strain images of patients and histogram of CNR values: The three
rows correspond to patients 1-3 respectively. First and second columns depict
axial strain images from GLUE and GLUENet respectively. Third column shows
histogram of CNR values of GLUE and GLUENet.
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high frequency at high CNR values while GLUE is more frequent at low values.

Table 1 shows the SNR and CNR values for all patients which is calculated by

using the large blue and red windows as target and background. We calculate

failure rate of GLUE and GLUENet from 392 pre- and post- compression RF echo

frame pairs chosen from 60 RF echo frames of all three patients. The best axial

strain is marked visually to compare with other strains using NCC. A threshold

of 0.6 is used to determine the failure rate of the methods shown in Table 1. The

failure rate of GLUENet is very low compared to GLUE for all patient data thus

proving the robustness of GLUENet to decorrelation noise in clinical data.

2.4 Discussion

The failure rates of GLUE in Table 1 are generally high because no parameter

tuning is performed for the hyperparameters. Another reason for high failure rates

is that we select pairs of frames that are temporally far from each other to test

the robustness at extreme levels. This substantially increases non-axial motion of

the probe and complex biological motions, which leads to severe decorrelation in

the RF signal. In real-life, the failure rate of these methods can be improved by

selecting pairs of RF data that are not temporally far from each other. In this

experiment, no external outliers is introduced for testing robustness. If introduced,

the failure rate for both GLUE and GLUENet would have been increased.

2.5 Summary

In this chapter, we introduced a novel technique to calculate tissue displacement

from ultrasound images using CNN. This is, to the best of our knowledge, the

first use of CNN for estimation of displacement in ultrasound elastography. The
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displacement estimation obtained from CNN was further refined using GLUE [63],

and therefore, we referred to our method as GLUENet. We showed that GLUENet

is robust to decorrelation noise in simulation, experiments and in-vivo data, which

makes it a good candidate for clinical use. In addition, the high robustness to

noise allows elastography to be performed by less experienced sonographers as a

point-of-care imaging tool.
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Chapter 3

A Transfer Learning Approach for

using Convolutional Neural

Network in Ultrasound

Elastography

Ultrasound elastography is a cost-effective, portable medical imaging modality

which can provide significant diagnostic information about a biological tissue in

real-time by imaging its elastic properties. Displacement estimation is the most

critical step in ultrasound elastography as it suffers from various sources of noise

such as decorrelation noise, jitter noise etc. and can severely compromise the

quality of the calculated strain image. CNNs can be effectively used for addressing

the noise effects in displacement estimation as the ultrasound data is filtered

and processed in local and global perspective while being forwarded through the

convolutional neural network architecture. In this chapter, we propose fine-tuning

the weights of a recently reported network trained for optical flow estimation. The

multi-level deep architecture of convolutional neural network helps the process of
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displacement estimation become more robust to the decorrelation noise. We test

our theory using simulation and experimental phantom data.

3.1 Introduction

While some ultrasound elastography algorithms [31, 48, 49] calculate strain image

directly from the pre- and post-compression ultrasound RF frames, most of them

[5,6,25,62,63] estimate displacement field and then calculate strain image by spatial

differentiation of the displacement map using least-square or gradient methods.

Consequently, displacement estimation is a critical step in ultrasound elastography

and it faces crucial challenges from different sources of noise such as decorrelation

noise, jitter noise etc. Decorrelation noise can severely affect the displacement

estimation which in turn can affect the quality of the estimated strain image.

Conventional ultrasound elastography algorithms use cross-matching techniques

such cross-correlation, similarity, sum of difference etc. on selected overlapping

windows or pixels to track the displacement between two corresponding ultrasound

RF frames. These methods are more susceptible to decorrelation noise due to the

fact that they consider a small portion of the whole ultrasound RF frame for

displacement estimation. This makes the depth of field, the effective area of the

RF frame, for calculating displacement very shallow. Including the neighbourhood

pixel/window information can help broaden the depth of field thus improving the

robustness of displacement estimation.

Advanced machine learning techniques such as CNNs can provide a wide depth

of field on different layers and levels. This kind of deep network architecture

should provide more robustness in displacement estimation, at least theoretically,

as different patch-sized data of ultrasound RF frame is used at different levels of

the network compared to the fixed-length window-based or pixel-based methods.
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The fact that machine learning techniques like CNN can be trained on a data set

designed for a specific task makes it more powerful for filtering out unwanted noise

and artifacts. Another unique characteristic of CNN is that previously trained

and optimized network can be fine-tuned on a new and similar training data set

designed for a task related to the one it was originally trained for. This exhibits

the powerful feature CNNs have wherein they can transfer the knowledge it gained

from previous training to the next step. This is widely known as transfer learning

which makes it possible to skip the unnecessary and tedious job of designing and

training a CNN from scratch. Rather the smart move here is to build on what

have been achieved so far. This has become the normal practice in CNN through

the process of transfer learning.

The process of transfer learning works effectively, when there exists a network

already trained for an analogous task. As it happens, the task of displacement

estimation in ultrasound elastography is analogous to the task of optical flow

estimation in computer vision in the sense that in both cases motion of pixels is

tracked between two images directly correlated by a displacement field. Recently,

CNN architectures [71,75] heavily trained and optimized for optical flow estimation

have shown promising result in terms of quality of the flow estimation and

real-time performance which can be used for displacement estimation in ultrasound

elastography using transfer learning.

In this chapter, we investigate the impact of transfer learning in displacement

estimation for ultrasound elastography. In Section 3.2, we discuss possible ways

of transfer learning, involved data sets and training schedules. In Section 3.3, we

test the performance of our fine-tuned network using simulation and experimental

phantom, and clinical data. We discuss our observation on the training procedure

and the results in Section 3.4.
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3.2 Method

We retrain FlowNet 2.0 architecture with slight adjustment to the network for

fine-tuning its weights for the purpose of improving the displacement estimation

from ultrasound images. We use simulated ultrasound images for the fine-tuning.

3.2.1 FlowNet 2.0 architecture

The building blocks of FlowNet 2.0 architecture contain FlowNetS and FlowNetC

architectures. FlowNetC and FlowNetS were originally proposed by Dosovitskiy

et al. [75]. FlowNetS is a generic U-Net architecture trained for optical flow

estimation. U-Net architecture is best known for the task of semantic segmentation

and per-pixel prediction making it an excellent choice for optical flow estimation

and displacement estimation. The U-Net architecture maintains a encoder-decoder

form where the input image is encoded by the encoder part of the network

and useful features are extracted from the input. The decoder part of the

network decodes the encoded features to the desired semantic presentation

such as displacement estimation. FlowNetC is a variation of FlowNetS which

includes a non-trainable cross-correlation layer. Cross-correlation is a popular

block-matching technique in flow estimation and understandably FlowNetC gets

a boost in performance compared to FlowNetS [71]. The biggest breakthrough

of FlowNet architectures were the real-time execution of optical flow estimation

while achieving almost same performance as the state-of-the-art methods.

FlowNet 2.0 improves its performance in optical flow estimation by stacking

FlowNetC and FlowNetS on top of each other and adhrering to a specific training

schedule. The quality of the optical flow estimation was as good as the state-of-the

art methods while performing in real-time. Figure 4 represents the final FlowNet

2.0 architecture. The pipeline of one FlowNetC and two FlowNetS networks
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were trained with datasets which includes mostly large displacements. Another

FlowNetS network was trained with datasets having small displacements for more

fine estimation of small displacements. The output of these two pipeline of

networks are fused together with a small Fusion network, which also is a generic

U-Net architecture, to yield the final flow estimation.

3.2.2 Training Dataset

FlowNet 2.0 network was trained with a dataset which contains more than

22000 training samples. Each training sample contains an image pairs and their

corresponding ground truth optical flow. The whole dataset was synthetically

designed by placing chairs on different randomly selected background. The chairs

were moved with respect to the background to make the corresponding image pair

and ground truth optical flow. The number of training samples in the dataset seems

large enough to train FlowNet 2.0 to achieve nearly state-of-the-art performance.

For fine-tuning FlowNet 2.0 for estimating displacement from ultrasound images,

we used a dataset of simulated ultrasound images of 2000 training samples. The

only way to get ground truth displacement from corresponding ultrasound images

is to simulate the ultrasound images. Each training sample contains two ultrasound

images with ground truth axial and lateral displacement. The simulation phantoms

in the dataset contains inclusions of various numbers, sizes and positions. The axial

and lateral displacements of the simulation phantoms, subjected to various degrees

of external pressure resulting in various degrees of applied strain, was calculated

using Finite Element Method from Abaqus and Ansys. This displacement map

is our ground truth for training purpose. The ultrasound image is simulated

using Field II [80] software. The center frequency of ultrasound was set to 5

MHz and the sampling rate of the probe was set to 40 MHz. The simulation

phantom data we used for comparing the improvement in displacement estimation
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is completely different set from the ones we used for fine-tuning the FlowNet 2.0

model. This phantom contains a single lesion which is softer than its surrounding

tissue. The ultrasound RF data was simulated at 5MHz with a sample rate of 40

MHz. Complete details of the simulation phantom can be found here [5]

3.2.3 Fine-tuning FlowNet 2.0

FlowNet 2.0 is a very large convolutional network as a whole with stacks of

sub-networks on top of each other. FlowNet 2.0 weights have been obtained by

following a specific training schedule and datasets. Details of the training schedules

and datasets can be found here [71]. The input to the network is a pair of images

which are correlated by a flow or motion of one or more objects in the images. The

ground truth contains the flow of the any object present in the pair of images in

both horizontal and vertical direction. The task of the network is to predict the

flow as close as to the ground truth given two images having flow information.

At first, we fine-tune FlowNetS with ultrasound images. The calculated

displacement estimation is not good enough to extract any meaningful

displacement or strain information. Then we fine-tune FlowNetC yielding no

notable improvement. FlowNet 2.0 is originally trained following a very complex

and sophisticated schedule. Fine-tuning FlowNet 2.0 according to the original

steps and schedule is very challenging. Finally we fine-tune the entire FlowNet

2.0 network with ultrasound images. Tissues without tumor/inclusion such as

homogenous tissue, tissues with different layers etc. can be introduced during first

stages of fine-tuning, gradually exposing the network to more complex datasets.
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Figure 8: First row shows displacement estimation of simulation phantom; (a)
Ground truth, (b) FlowNet 2.0 and (c) Fine-tuned FlowNet 2.0. Second row shows
the axial strain images of simulation phantom ; (d) Ground truth, (e) FlowNet 2.0
and (f) Fine-tuned FlowNet 2.0.

3.3 Results

In this chapter, the goal was to improve the quality of displacement estimation

by FlowNet 2.0 to a degree that it is possible to extract strain image from

the displacement estimation without the necessity of refinement of dispalcement

estimation through GLUE. We tested the efficacy of fine-tuned weights of the

model by comparing displacement estimation and strain estimation using gradient

based or least-square based methods. We use computed simutated phantom and

experimental phantom data for such purpose.

3.3.1 Simulation Phantom

Figure 8 shows the results in simulation phantom. The first row corresponds

to the estimated displacement fields by the networks. Second row corresponds
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to strain estimation from the displacement using least-square or gradient-based

methods. The columns correspond to the results obtained from FlowNet 2.0 and

the fine-tuned FlowNet 2.0 respectively. The improvement of the displacement

estimation for fine-tuning the network is clearly not enough for strain estimation

using least-square or gradient-based method. The overall strain estimation is

smoother by fine-tuned network as a result of a subtle improvement in displacement

estimation.

3.3.2 Experimental Phantom

Our experimental phantom is a CIRS tissue mimicking phantom. We used

ultrasound machine to take RF data from the CIRS phantom. The Region

Of Interest (ROI) of the ultrasound scan contains a hard inculsion compared

to the surrounding softer tissue. Figure 9 shows the results obtained using

experimental phantoms. The first row shows the estimated displacement and the

second row shows strain images obtained from the displacement using least-square

or gradient-based method. The first column corresponds to the results obtained

from FlowNet 2.0 network and the second column correspond to the results

obtained from fine-tuning FlowNet 2.0 network. The improvement in displacement

estimation for fine-tuning the network is evident in the smoothness of the strain

estimation by fine-tuned FlowNet 2.0. Although the improved result is not upto

the level of the state-of-the-art elastography algorithm, this slight improvement

indicates that the displacement can be improved to a much satisfactory level with

proper scheduling of training and proper amount of training data.
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3.4 Discussion

In this chapter, our goal was to retrain FlowNet 2.0 with ultrasound elastography

dataset to improve displacement estimation between two corresponding ultrasound

images to a satisfactory level where fine-tuning the estimated displacement from

FlowNet 2.0 deems unnecessary for quality strain image. After some modification

of the FlowNet 2.0 architecture and retraining, the subtle improvement acheived

is not good enough for generating strain images competetive with the quality of

the state-of-the-art elastography images. But the small improvement suggests

the possibility of more meaningful improvement in displacement estimation for

ultrasound elastography. From the results we can observe that the fine-tuned

network has achieved finer and smoother displacement than achieved from FlowNet

2.0 network. It is also noticeable that the lesion/inclusion structure integrity

is not depicted in the strain images derived from the displacement estimation

in both FlowNet 2.0 and its fine-tuned version. It may be for the reason that

the FlowNet 2.0 network was originally trained with a dataset where the objects

have displacements while the background remained stationary. This may be okay

for general optical flow estimation but the displacement profile in ultrasound

elastography is somewhat different and has a physical restriction. As it happens,

biological tissues are physically attached to one another on different layers and

any displacement introduced during ultrasound elastography is tightly coupled,

that is, the background and the lesion both have different level of displacement

depending upon their strain profile. This fact introduces the restriction that the

displacement estimated in one region of interest along a scan line should be similar

to the neighboring regions of interest. In other words, displacement should not

have a sharp change rather a gradual change at different level of strain. This

is an important regularization feature considered in almost every conventional
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elastography algorithms. The dataset used in training FlowNet 2.0 lacks this

property which may be the reason FlowNet 2.0 has difficulty in retaining the shape

and edge of the lesion in strain images. Another way to improve the performance is

to incorporate more correlated data in the network. At least two ultrasound images

are required for displacement estimation but more correlated ultrasound images

in temporal domain have shown better results in displacement estimation [6].

The most suitable organs for ultrasound elastography are breast tissue, liver,

prostate etc. As ultrasound cannot penetrate bones ultrasound elastography

of the organs protected by bones such as heart, brain, lungs etc. are more

challenging. Although ultrasound is inexpensive but it requires extensive training

of a sonographer for obtaining diagnostically meaningful images from ultrasound.

This is more true for ultrasound elastography. Hopefully introduction of machine

learning techniques would acheive such improved system that highly expertise

from human would not be needed anymore. But for that more rigorous testing

with much more data from various sources and parts of the body is required for

evaluating the fine-tuning results for any future clinical application approvals.
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2.0
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(c) Strain from FlowNet 2.0
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(d) Strain from Fine-tuned FlowNet 2.0

Figure 9: First row shows displacement estimation of experimental phantom; (a)
FlowNet 2.0 and (b) Fine-tuned FlowNet 2.0. Second row shows the strain image
of experimental phantom; (a) FlowNet 2.0 and (b) Fine-tuned FlowNet 2.0.
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Chapter 4

Discussion and Future Work

4.1 Concluding Remark

In this chapter we discuss our findings and propose avenues for future work. In

this thesis our goal was to use the convolutional neural network architecture

for displacement estimation in ultrasound elastography. In Chapter 2 FlowNet

2.0 architecture was used for displacement estimation from two corresponding

ultrasound images. The estimated displacement is robust to decorrelation noise

but was not fine enough to extract strain images of the quality of those of

state-of-the-art ultrasound elastography algorithms. The coarse displacement

estimation was further fine-tuned by a global optimization based algorithm

GLUE which uses coarse initial displacement estimate for calculating finer

displacement estimation. We call our method GLUENet which collectively

produces fine displacement estimation and quality strain images while being robust

to decorrelation noise.

In Chapter 3, our goal was to use transfer learning technique to fine-tune the

already trained weights of FlowNet 2.0 architecture so that finer displacement

estimation can be achieved for quality strain images. FlowNet 2.0 was trained
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with specific datasets and complex training schedules for optical flow estimation.

Although optical flow estimation is very similar to ultrasound displacement

estimation, the characteristics of input data has a fundamental difference. The

target dataset for optical flow estimation mostly includes RGB pictures or movie

frames with one or more object freely moving with respect to its background

where the spatial frequency in both axial and lateral direction is the same.

Ultrasound data is normally a collection of axial scans from an array of ultrasound

transducers where spatial frequency in the axial direction is higher compared to

the spatial frequency in lateral direction. The difficulties in retraining the weights

of FlowNet 2.0 were two-folds. Firstly, the architecture of the whole network

involved multi-level stacking and hence the training schedule was complicated.

Secondly, the volume of the original training dataset for FlowNet 2.0 was very large

whereas the available simulation dataset of ultrasound elastography for training

was very small in comparison due to computation complexity of the simulation.

When fine-tuning with such small amount of training data, there is a tendency of

overfitting which distorts the displacement estimation. As a result, the outcome

loses its semantic value and the size, position, shape and contrast of the lesion is

not recognizable beyond doubt from the strain images. The best result obtained

in Chapter 3 shows that the estimated displacement gets smoother as a result

of fine-tuning FlowNet 2.0. Therefore, more studies are needed to improve the

results, as outlined in the following section.

4.2 Future Work

CNN has opened a new domain of works in ultrasound elastography. This deep

learning technique provides robustness to common sources of noises in ultrasound

elastography while generating useful displacement information. In this thesis,
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FlowNet 2.0 was chosen as the target CNN architecture for ultrasound elastography

because it has reported the best results in optical flow estimation to the best of

our knowledge. There are many possibilities where we can extend our work in the

following technical avenues.

• The output of FlowNet 2.0 for optical flow estimation and ultrasound

elastography is almost identical in the sense that in both cases displacement

estimation is extracted from two corresponding images. The inputs for

optical flow estimation and ultrasound elastography differs in the sense of

nature of the data. Therefore, it is intuitional and logical that the first few

layers of each stack of FlowNet 2.0 architecture should be fine-tuned rather

than fine-tuning the last couple of layers which is common practice in transfer

learning. New layers can be introduced and retrained with ultrasound data

at the beginning of the network so that useful features can be extracted from

ultrasound data and passed to the following layers for better displacement

estimation. A recent work from our group studied how selection of layers

for fine-tuning can affect the results [82], and it is interesting to apply this

framework to ultrasound elastography.

• In Chapter 2 the coarse displacement estimation from FlowNet 2.0 was

further refined by GLUE. A U-Net architecture can be used and trained

to obtain this refinement. This trained architecture can be stacked following

FlowNet 2.0 architecture. This approach will make a complete end to end

architecture and possibly be more robust and faster.

• The FlowNet 2.0 architecture while producing state-of-the-art quality optical

flow estimation involves complex structure which makes the training schedule

more complex. A single U-Net architecture can be used and trained from

scratch for ultrasound elastography.
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The deep learning methods specially CNNs have shown excellent performance in

semantic augmentation. Moreover the concept of transfer learning has introduced

endless possibilities specially in medical imaging. The nature of ultrasound

elastography algorithms are best suited for CNNs specially those architectures

aimed for semantic augmentation and per-pixel prediction. A successful endeavor

in one area of ultrasound imaging can be carried forward to different related

areas through transfer learning. In this thesis, we have successfully utilized the

convolutional neural network techniques for ultrasound elastography. We also

ventured in transfer learning to improve the performance of the network. While

the introduction of ultrasound imaging in deep learning domain has been a success,

transfer learning proved to be more challenging and need more work for achieving

performance to match that of traditional techniques.
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