
TRUST MANAGEMENT FOR CONTEXT-AWARE

COMPOSITE SERVICES

AFAF MOUSA

A THESIS

IN

THE DEPARTMENT

OF

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (INFORMATION AND SYSTEMS

ENGINEERING)
CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

JANUARY 2021
c© AFAF MOUSA, 2021

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Afaf Mousa
Entitled: Trust Management for Context-Aware Composite Services

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with re-
spect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Constantinos Constantinides

External Examiner
Dr. Muhammad Younas

Examiner
Dr. Juergen Rilling

Examiner
Dr. Rachida Dssouli

Examiner
Dr. Roch Glitho

Supervisor
Dr. Jamal Bentahar

Co-supervisor
Dr. Omar Alam

Approved by
Dr. Mohammad Mannan Graduate Program Director

January 18, 2021
Date of Defence

Dr. Mourad Debbabi Dean, Faculty of Engineering
and Computer Science

Abstract
Trust Management for Context-Aware Composite Services

Afaf Mousa, Ph.D.
Concordia University, 2021

In the areas of cloud computing, big data and internet of things, composite services
are designed to effectively address complex levels of user requirements. A major chal-
lenge for composite services management is the dynamic and continuously changing
run-time environments that could raise several exceptional situations such as service
execution time that may have greatly increased or a service that may become unavail-
able. Composite services in this environmental context have difficulty securing an
acceptable quality of service (QoS). The need for dynamic adaptations to be triggered
becomes then urgent for service-based systems. These systems also require trust man-
agement to ensure service level agreement (SLA) compliance. To face this dynamism
and volatility, context-aware composite services (i.e., run-time self-adaptable services)
are designed to continue offering their functionalities without compromising their op-
erational efficiency to boost the added value of the composition.

The literature on adaptation management for context-aware composite services
mainly focuses on the closed world assumption that the boundary between the service
and its run-time environment is known, which is impractical for dynamic services
in the open world where environmental contexts are unexpected. Besides, the litera-
ture relies on centralized architectures that suffer from management overhead or dis-
tributed architectures that suffer from communication overhead to manage service
adaptation. Moreover, the problem of encountering malicious constituent services
at run-time still needs further investigation toward a more efficient solution. Such
services take advantage of the environmental contexts for their benefit by providing
unsatisfying QoS values or maliciously collaborate with other services. Furthermore,
the literature overlooks the fact that composite services data is relational and relies on
propositional data (i.e., flattened data containing the information without the struc-
ture). This contradicts with the fact that services are statistically dependent since QoS
values of service are correlated with those of other services.

iii

This thesis aims to address these gaps by capitalizing on different methods from
software engineering, computational intelligence and machine learning. To support
context-aware composite services in the open world, dynamic adaptation mechanisms
are carried out at design-time to guide the running services. To this end, this thesis
proposes an adaptation solution based on a feature model that captures the variabil-
ity of the composite service and deliberates the inter-dependency relations among QoS
constraints. We apply the master-slaves adaptation pattern to enable coordination of
the self-adaptation process based on the MAPE loop (Monitor-Analysis-Plan-Execute)
at run time. We model the adaptation process as a multi-objective optimization prob-
lem and solve it using a meta-heuristic search technique constrained by SLA and
feature model constraints. This enables the master to resolve conflicting QoS goals of
the service adaptation. In the slave side, we propose an adaptation solution that im-
mediately substitutes failed constituent services with no need for complex and costly
global adaptation. To support the decision making at different levels of adaptation, we
first propose an online SLA violation prediction model that requires small amounts
of end-to-end QoS data. We then extend the model to comprehensively consider ser-
vice dependency that exists in the real business world at run time by leveraging the
relational dependency network, thus enhancing the prediction accuracy. In addition,
we propose a trust management model for services based on the dependency network.
Particularly, we predict the probability of delivering a satisfactory QoS under chang-
ing environmental contexts by leveraging the cyclic dependency relations among QoS
metrics and environmental context variables. Moreover, we develop a service reputa-
tion evaluation technique based on the power of mass collaboration where we explic-
itly detect collusion attacks. As another contribution of this thesis, we introduce for
the newcomer services a trust bootstrapping mechanism resilient to the white-washing
attack using the concept of social adoption. The thesis reports simulation results using
real datasets showing the efficiency of the proposed solutions.

iv

Acknowledgments

First and foremost, I offer my utmost gratitude to Ph.D. supervisors Dr. Jamal Bentahar and

Dr. Omar Alam, for continuous support. Their immense knowledge and valuable insights

have given me more power and spirit to excel in research writing. Our discussions have

made every encounter an opportunity to improve the research quality.

I gratefully acknowledge the funding received towards my Ph.D. from the Egyptian

government. I am also grateful for the funding received through Concordia University to

undertake my Ph.D.

From the bottom of my heart, I would like to say big thank you to my family for their

patience, inspiration, immeasurable and love. I promise to continue to warrant your faith

in me.

I would like to thank everybody who was important to the successful realization of this

thesis, as well as expressing my apology that I could not mention personally one by one.

Finally, I appreciate all the ups and downs, highs and lows, great days and horrible

ones during the Ph.D. journey. I hold onto the hope I started with and power through each

challenge. Thank you, Lord God Almighty, for the gift of faith. I know I am going to make

it, as long as I don’t stop.

v

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Research Context and Motivations . 1

1.2 Problem Statement and Research Questions 3

1.3 Research Aim, Objectives and Challenges 4

1.4 Research Contributions . 8

1.5 Research Assumptions . 9

1.6 Thesis Structure . 10

2 Background and Literature Review 11

2.1 Context-aware Composite Service . 11

2.1.1 Service Compositions . 11

2.1.2 Context . 12

2.1.3 Service Dependency . 13

2.2 Autonomic Computing . 13

2.3 MAPE Loop . 14

2.4 Software Product Line and Variability Modeling 16

2.5 NSGA-II . 17

vi

2.6 Kalman Filter Model . 19

2.7 Dependency Network . 20

2.8 Relational Dependency Network (RDN) 21

2.8.1 Relational Database . 21

2.8.2 RDN Representation . 22

2.8.3 RDN Learning . 23

2.9 Context-aware Service Trust . 24

2.9.1 Subjective Trust . 24

2.9.2 Objective Trust . 24

2.9.3 Bootstrapping Trust . 24

2.10 Literature Review and Discussions . 25

2.10.1 Adaptive Service Composition 25

2.10.2 SLA Management . 29

2.10.3 Feature Model-based Adaptive Service Composition 30

2.10.4 Service Trust . 31

3 Service Adaptation Management 35

3.1 An Overview of the Proposed Approach 36

3.2 Master/Slaves Managers . 42

3.2.1 Master Manager . 43

3.2.2 Slaves Managers . 44

3.3 Experiments . 44

3.3.1 Distributed Environment . 45

3.3.2 Scalability and Robustness . 46

3.4 Conclusion . 48

4 Service Trust Management 50

vii

4.1 Multi-Dimensional Trust . 51

4.1.1 Subjective Trust . 53

4.1.2 Objective Trust . 60

4.1.3 Bootstrapping Trust . 65

4.2 SLA Violation Prediction . 70

4.2.1 Kalman Filter-based Approach 70

4.2.2 Relational Dependency Network-based Approach 73

4.3 Experiments . 79

4.3.1 Direct Trust Prediction Accuracy 80

4.3.2 Dependency Network vs Bayesian Network 81

4.3.3 Subjective Trust in Dynamic Environment 83

4.3.4 Accuracy and Resiliency Numerical Results 83

4.3.5 Bootstrapping Trust Prediction Accuracy 85

4.3.6 Kalman filter based SLA Prediction Accuracy 89

4.3.7 Relational Dependency Network-based SLA Prediction Accuracy . 91

4.4 Conclusion . 93

5 Service Adaptation Actions 96

5.1 Composite Service Adaptation . 97

5.1.1 Multi-Objective Composite Service Adaptation 100

5.1.2 NSGA-II-based Decision Algorithm 102

5.2 Service Adaptation . 104

5.3 Experimentation and Results . 106

5.3.1 QoS Requirements Flexibility . 106

5.3.2 Dynamic Adaptation . 108

5.3.3 Local Adaptation . 108

5.4 Conclusion . 110

viii

6 Conclusions 112

6.1 Summary . 112

6.2 Critical Reflection and Future Work . 116

ix

List of Figures

1 Our proposed adaptation architecture . 3

2 Research methodology, objectives and research questions 8

3 MAPE control loop . 15

4 Crossover/Mutation operators . 19

5 Kalman filter model . 20

6 Chapter 3 challenges . 35

7 Order-processing BPMN . 37

8 Order-processing feature model . 39

9 QoS-interdependence . 40

10 The performance overhead in a growing environment 47

11 The execution time in a growing environment 48

12 Chapter 4 challenges . 50

13 Multi-dimensional trust for services . 52

14 Bayesian network of a service trust . 55

15 Dependency network of a service trust . 55

16 Visualized Threat model . 63

17 Ensemble classifier architecture . 68

18 Relational Database . 75

19 Dependency network performance . 81

x

20 Dependency network-based approach (DN) vs. Bayesian network-based

approach (BN). (a) Prediction accuracy of the models. (b) Computational

efficiency for learning the models. 82

21 Adaptive dependency network performance 84

22 Service objective trust evaluation under collusion attacks 86

23 Service objective trust distributions without our approach 87

24 Service objective trust distributions with our approach 88

25 Accuracy in classifying malicious services 88

26 Accuracy in classifying trustworthy services 89

27 MRE for response time . 90

28 MRE for availability . 90

29 RDN-based model vs handcrafted model 92

30 Graphical representation of RDN based trust model for a composite ser-

vice; rt/RT,p/P, av/AV represent response time, price and availability of

constituent/composite service . 92

31 Chapter 5 challenges . 96

32 The flexibility of changing user’s requirements 107

33 The scale of change . 109

34 Awareness rate of changing QoS values 109

35 Adaptation flexibility of the centralized approach 110

36 Adaptation flexibility of our approach . 110

xi

List of Tables

1 SLA violation prediction . 27

2 Characteristics of the adaption process . 28

3 Self-adaptive capabilities . 29

4 Comparison between our approach and the approach presented in [17] in a

distributed environment . 45

xii

Chapter 1

Introduction

This chapter introduces the context of our research and presents the addressed problem.

Then, it outlines the research questions that our work aims to answer. Finally, it identifies

the objectives and contributions of the thesis.

1.1 Research Context and Motivations

Services in cloud, big-data, and IoT applications attracted the attention of the research com-

munity to deal with the continuous development and deployment of business processes.

Modern applications rely on services as components that can interact with one another to

deliver complex tasks through service composition. Service composition can be defined

as a process that provides functionalities that were not available or defined at design time

by compiling value-added services from individual services [29]. Therefore, a composite

service can be considered as a complete software solution. The growing complexity of

composite services to effectively address complex levels of user’s requirements and the in-

creasing emphasis on quality of service (QoS) necessitate solutions to deal with this com-

plexity and ensure service level agreement (SLA) compliance in dynamic environments.

1

To face this dynamism and volatility, context-aware services are designed to continue of-

fering their functionalities without compromising their operational efficiency capitalizing

on autonomic computing. Therefore, it is important to support the trust-based dynamic

adaptation for context-aware composite services to boost and secure the added value of the

composition.

Although numerous trust models for composite services can be found in the literature,

they overlook the contextual run-time environment of services that raises additional chal-

lenges to be tackled by trust models. Moreover, these models fail to comprehensively con-

sider service dependency that exists in the real business world at run time. Collaboration

among constituents in services composition creates different service dependency relations.

The knowledge about dependencies among services ensures successful provisioning of the

composite services. Furthermore, related work on the dynamic adaptation of composite ser-

vices lacks support for analyzing the inherent variability of dynamic adaptation at design

time to guide adaptation and face arising context changes in an unpredictable open world

[2]. Thus, the motivation of this thesis is to design trustworthy context-aware composite

services that can tackle unanticipated changes in the open world. Consequently, this the-

sis proposes an adaptation architecture considering these aforementioned challenges. As

Figure 1 shows, we adopt the master-slaves adaptation pattern to enable coordination of

the self-adaptation process for context-aware composite services controlled by the MAPE

(Monitor-Analysis-Plan-Execute) loop.

Such an architecture enables context-aware composite services to effectively offer their

functionalities in a dynamic open world. The hierarchical structure of the proposed archi-

tecture allows us to address the adaptation process of context-aware composite services

at two levels: (1) process level to capture the whole picture of the business logic that

will guide the high-level adaptation plan; and (2) service-level to achieve the ambitions

outlined in the high-level adaptation plan. Our approach first replaces failed services at

2

the service-level adaptation, which could avoid unnecessary complete process reconfigura-

tions. Accordingly, by considering both adaptation levels, we reduce the adaptation time

complexity. Moreover, the proposed architecture enables us to maintain the service trust

and reputation by monitoring and prediction QoS degradation for triggering appropriate

adaptation actions to meet the SLA requirements.

Figure 1: Our proposed adaptation architecture

1.2 Problem Statement and Research Questions

The dynamics of composite services in cloud and IoT settings highlights the importance of

services with self-adaption capabilities that ensure and maintain user satisfaction. A review

of the literature indicates that some problems still need to be considered. First, there is a

3

need for a dynamic adaptation approach with the minimal performance bottlenecks. Sec-

ond, there is a need for a solution to handle the complexity of service composition recon-

figuration with a search space of numerous possible configurations. Third, it is necessary

to adapt against unknown changes in the open world in order to secure the SLA. Finally,

besides the investigation of self-adaption capabilities of composite services to adapt to the

context changes, it is necessary to investigate a sophisticated method to manage service

trust and reputation and avoid malicious performance as regards providing unsatisfactory

QoS values or using a contextual environment for the service advantage.

We formulate the main research questions this thesis aims to answer as follows:

• RQ1: How can we dynamically adapt service compositions to secure SLA in the

open world?

• RQ2: How can we maximize the probability of detecting malicious performance at

run-time to ensure the trustworthiness of the context-aware composite service?

• RQ3: How can we control SLA management of composite services at run-time in a

relational setting to avoid high economic compensation caused by breach SLA?

• RQ4: How can we reconfigure a composite service to enhance its performance and

resolve conflicting QoS goals while being limited by SLA and configuration con-

straints?

1.3 Research Aim, Objectives and Challenges

The goal of our research work is to provide a trust-based dynamic adaptation approach to

restore and maintain QoS of context-aware composite services at run-time. To this end, we

frame the following objectives:

4

• Objective 1: Develop a decentralized adaptation architecture that enables the dis-

tribution of the control of the adaptation process among different managers without

communication and management overheads.

• Objective 2: Develop context-aware trust prediction models to detect malicious per-

formance at run-time and support adaptation managers in their decisions making.

• Objective 3: Put forward an SLA management model that is able to learn service

dependency in a relational setting.

• Objective 4: Introduce a context-aware adaptation approach that allows services in

an open world to monitor, detect, predict, and decide about the accurate adaptation

actions to meet the current encountered context changes while maintaining the user’s

satisfaction controlled by different types of constraints.

There are several challenges associated with these objectives:

• Challenge 1: Adaptation management. Although current research proposals have

paved the way towards dynamic adaptation of service compositions, most solutions

that tended to implement dynamic adaptations operate on centralized environments

which lack (1) efficiency for a large-scale environment such as cloud, and (2) flexible

and effective adaptation towards changes in the run-time environment [16, 17]. This

is since a single controller is inadequate for adaptation and monitoring the overall

performance. Furthermore, composite services are offered by distributed providers

and reside beyond the domain of any single controller. Subsequently, the distributed

nature of services plays against centralized adaptation controllers found in the litera-

ture. In an attempt to overcome the drawbacks of centralized approaches, some dis-

tributed approaches have been put forward [15, 60]. Unfortunately, these approaches

result in communication overhead, which is detrimental to adaptation performance.

5

Therefore, there is a need for a dynamic adaptation approach with the minimal per-

formance bottlenecks.

• Challenge 2: Variability management. A computing infrastructure that provides

support for dynamic adaptation of service compositions is highly desirable and yet

to be introduced. To this end, it is necessary to prepare the service mashup at design

time. This will facilitate prompt responses for dynamic adaptation to secure critical

systems based on service composition. Thus, it is required to capture the variabil-

ity of composite services such that each possible configuration is verified at design

time to avoid invalid configurations during execution. A composite service may have

alternative variants that provide different QoS values. Therefore, in the advent of

problematic changes, it can add a new constituent service or discard others in re-

sponse to encountered changes in the running environment, hence, delivering a new

service composition configuration. Due to the large number of possible configura-

tions, service composition reconfiguration is a complex problem.

• Challenge 3: Unpredictable open world. Current research works have focused on

the dynamic adaptation of service compositions in the closed world. In this closed

setting, it is assumed that the boundary between a service and its context is known

ahead of time and unchanging [8]. Thus, a set of adaptation actions is predefined for

fully foreseen contexts [15, 16, 17, 60]. However, services run in an unpredictable

open world. Accordingly, services should be able to react in face of continuous and

unanticipated changes in uncertain contexts.

• Challenge 4: Dynamic management. There is a need to investigate the self-adaption

capabilities of composite services to adapt to the contextual changes. In particular,

a composite service must be able to (1) self-optimize service selection according to

6

the required SLA; (2) self-configure its components according to a possibly chang-

ing environment; (3) self-heal its components and the workflow it serves in case of

failures; and (4) self-protect its provided QoS.

• Challenge 5: Trust management. At run-time, QoS of context-aware composite

services is subject to changes or even failures. Since multiple constituent services

are engaged in the composition, malicious services are expected to be involved. The

environments dynamics could lead services to misbehave by unilaterally deviating

from the agreements made upon service composition. Practically, services could pro-

vide different QoS values in different context environments. Moreover, constituent

services may maliciously collaborate, which degrade the performance of the compos-

ite service. Furthermore, newborn services that may provide better QoS could not be

involved in the composition due to the lack of resources to estimate their trust. There-

fore, a sophisticated method to estimate service trust to avoid malicious performance

is required.

• Challenge 6: Composite service trust. In a composite service, constituents’ col-

laboration creates different service dependency relations which makes it challenging

for SLA management at run-time. Knowledge about dependencies among services

allows service providers to secure an acceptable SLA. Unfortunately, service depen-

dency information is only implicitly described in the SLA. In addition, composite

services data is relational, yet current approaches ignore the relations among individ-

ual services and rely on propositional data assuming that constituents are homoge-

neous and statistically independent. Representing real-world data as homogeneous,

independent and identically distributed instances leads to statistical bias in the re-

sults. Therefore, it is necessary to allow an SLA management model to learn service

dependency in a relational setting.

Figure 2 draws the overall overview of our research work (methodology, challenges,

7

Figure 2: Research methodology, objectives and research questions

and objectives) w.r.t the identified research questions.

1.4 Research Contributions

The contributions of this thesis that accomplish the identified objectives are as follows:

• Contribution 1: We introduce a two-level adaptation process for composite services

using the master/slaves pattern that enables the service provider to monitor QoS per-

formance and trigger prompt adaptation actions. This contribution is discussed in

Chapter 3.

• Contribution 2: We explore the cyclic dependency relations among QoS metrics

and context variables and introduce a dependency network-based service trust model.

This trust model enables slaves responsible for constituent services to estimate ser-

vices trust considering cyclic dependency relations and the evolving nature of the

8

running environment. This contribution is examined in Chapter 4.

• Contribution 3: We develop an objective trust evaluation technique that enables

slaves to detect collusion attacks and minimize the number of malicious services. In

addition, we introduce for the newcomer services a trust bootstrapping mechanism

that makes slaves more resilient to the white-washing attacks. This contribution is

presented in Chapter 4.

• Contribution 4: We put forward an SLA management model that enables the master,

which manages the composite service, to predict SLA violation and maintain service

trust by securing the provided QoS. This contribution is exposed in Chapter 4.

• Contribution 5: At the master side, we model the adaptation process as a multi-

objective optimization problem that resolves conflicting goals of minimizing the cost

and maximizing the performance of composite services by considering the SLA and

feature model constraints followed by a genetic-based algorithm that solves the opti-

mization problem. At the slaves side, we introduce a local service adaptation action

that promptly substitutes the failed constituent services to maintain the overall per-

formance and reduce the need for global adaptation. This contribution is discussed

in Chapter 5.

1.5 Research Assumptions

The following assumptions are made regarding this thesis:

• We assume service availability for service substitution by the slaves.

• We assume feature availability for service reconfiguration by the master.

• We assume services face unknown context changes in the run time environment, i.e.

we have an open world run environment.

9

1.6 Thesis Structure

We provide in Chapter 2 the related background knowledge of this thesis. This chapter

covers the foundation of trust-based autonomic service adaptation. Afterwards, we present

the related state-of-the-art.

In Chapter 3, we present an overview of the proposed approach. We discuss the main

tasks of the master and slaves toward the adaptation process through the MAPE loop.

In Chapter 4, we discuss the analyze step of the MAPE loop. We address the predic-

tion models that enable the master and slaves to predict SLA/QoS violation for compos-

ite/constituent services, which support the decision making about the adaptation actions.

In Chapter 5, we discuss the plan step of the MAPE loop. We address the adaptation

actions that are triggered to secure composite/constituent services by the master and slaves.

Finally, in Chapter 6, we summarize the thesis contributions and highlight its limitations

and future work.

10

Chapter 2

Background and Literature Review

This chapter lays the essential foundations for this thesis. We present the following disci-

plines: (1) context-aware composite services, (2) autonomic computing, and (3) software

product line engineering. Then, we present a literature review in the research areas that this

thesis aims to address.

2.1 Context-aware Composite Service

2.1.1 Service Compositions

To describe the concept of service compositions, first, it is necessary to understand the

main related concepts, namely those of services, quality of service (QoS), and service level

agreement (SLA).

Services are self-contained applications that provide online services to facilitate loosely-

coupled distributed business integration. To this end, service providers publish services by

registering service information. Then, the users of the services discover the services to find

the appropriate services that provide the required functionality. Upon discovery, the user

requests the functionality by providing the required input. The service responds to the users

11

with the desired output.

Quality of service represents the set of those quantitative and qualitative characteris-

tics of the service to achieve the required functionality [78]. Since numerous competitive

services provide similar functionalities, QoS has become a decisive factor to distinguish

the reputation of services. Thus, services are selected for compositions using QoS. Typi-

cal QoS metrics include response time, availability, throughput and probability of success

[97]. Different QoS metrics describe service quality in different ways. For example, short

response time (negative metric) is preferable for services while high availability (positive

metric) is required.

QoS constraints (i.e, Service Level Objectives (SLOs)) are defined in service-level

agreements (SLA) between services providers and users. SLA is a commitment that gov-

erns the association between a service provider and a user and indicates the expected level

of service and the related expenses [13]. Besides, SLA defines monetary penalties in case

of any violation of the written agreement.

2.1.2 Context

Context is information about the present environment [48, 61]. Specifically, context pro-

vides information that characterizes the current situation to provide the appropriate ser-

vices. Context-awareness is the ability to extract, interpret and use context information and

adapt the functionality to the current context [2]. In other words, a context-aware system

acquires and utilizes information in the context to provide the appropriate services.

Accordingly, this thesis considers the context as the state of the running environment

and the context variable as the environmental conditions that affects the behaviour of the

service.

12

2.1.3 Service Dependency

Service composition is a collaborative process where constituent services cooperate to

achieve a complex business goal. Dependencies exist between these collaborative con-

stituent services. Knowing about these dependencies allows composite service providers

to manage SLA to ensure successful provisioning of the composite service.

Service dependency can be classified as control flow dependency that exists from the

business flow, semantic dependency that occurs through the domain ontology, message de-

pendency that happens by sending or receiving input and output messages among services,

and QoS dependency which this thesis focuses on. In particular, we consider three differ-

ent kinds of QoS dependencies: horizontal, vertical and cyclic dependencies. Horizontal

dependencies occur between constituent services, e.g., violations or changes to the QoS

values of one service affect QoS of the dependent services. Vertical dependencies exist be-

tween the composite service and its constituents, i.e., QoS values of the composite service

are affected by the QoS values of constituents. This thesis explores cyclic dependencies

among the QoS values of individual and composite services in a dependency chain (loop),

e.g., response time depends on price and vice versa.

2.2 Autonomic Computing

In consideration of the need for flexible, resilient, dependable, recoverable, customizable,

configurable, and self-optimizing software systems, self-adaptation has become an impor-

tant research topic. IBM in 2001 proposed Autonomic computing (AC) to develop sys-

tems with self-management capabilities [45]. Self-Adaptive Software (SAS) evaluates and

changes its behaviour to correctly achieves its goal or enhances its performance [30]. IBM

defined four self-properties of AC: self-healing, self-configuring, self-optimizing and self-

protecting. These properties come from biological self-adaptation mechanisms, e.g. the

13

human body adapts itself to changes in its context (changing environment temperature) [1].

These properties are described as follows:

• Self-healing is the ability of discovering, diagnosing and reacting to disruptions. A

service predicts the potential problems and repairs itself to prevent its failure which

ensures its availability, survivability, maintainability and reliability.

• Self-optimizing is the ability to monitor and manage resource allocation to meet

user’s requirements. Services should have the ability to improve their QoS values

to fulfill the SLA constraints, i.e. efficiency and functionality.

• Self-configuring is the ability of dynamically adapting to context changes by recon-

figuring software entities according to high-level goals.

• Self-protecting is the ability to detect, identify and protect against malicious be-

haviours. This makes the services less vulnerable and ensures their reliability and

functionality.

2.3 MAPE Loop

For controlling self-adaptable systems, IBM proposed an autonomic control loop, i.e.,

MAPE loop [45], that is an architectural framework of four steps. Figure 3 illustrates the

MAPE control loop steps: monitor, analyze, plan, and execute steps. The loop is completed

by connecting to the adaptable system through sensors and executers. In the context of this

thesis, an adaptable managed system is the context-aware composite service, while the au-

tonomic manager is a software layer supervising the service. The manager goes through

MAPE steps:

• Monitor: This step collects data and monitors the running service through sensors.

Those sensors could be external services to detect the existence of context changes

14

Figure 3: MAPE control loop

that could include:

– Addition/removal of a task from the composite service.

– The unavailability of constituent service, as it can leave the run-time environ-

ment dynamically.

– Discovery of new constituents with better QoS.

– QoS degradation

• Analyze: This step converts the collected data by the monitor step to behavioural

patterns and symptoms. It performs statistical computation to predict violation in

some QoS constraints defined in SLA, e.g. the measured response time exceeds its

SLA constraint.

• Plan: This step decides the adaptation actions to be taken to achieve the best perfor-

mance based on the data provided by the previous step. The adaptation action could

reconfigure the workflow of the composite service, or it could select new constituent

services to implement the needed functionalities.

15

• Execute: This step applies the adaptation actions on managed services. The adapta-

tion actions are executed by binding and unbinding services.

2.4 Software Product Line and Variability Modeling

Software product lines (SPL) is a family of software systems that satisfy the specific needs

of a particular market segment or mission with some commonalities and significant vari-

abilities [32]. A commonality is quality or functionality that is share. In contrast, variability

is the capability to change or customize a system through variation points. A variation point

is a location identifier in software at which the variation will occur. Software product line

engineering (SPLE) manages the creation of systems’ family. These systems are charac-

terized by their features, i.e. logical units of behaviour specified by a set of functional and

non-functional requirements [14]. Features may be common or vary between systems.

SPLs are described by variability models. In this thesis, we use the feature model that is

a widespread tool to represent commonality and variability in SPL. Feature model was in-

troduced in [44] to capture the problem space of a Software Product Lines (SPL), a family

of software systems with some commonalities and significant variabilities. A feature model

captures the potential variant features of members of an SPL in a tree structure, containing

those features that are common to all members and those that vary from one member to the

next. A particular member is defined by activating the desired nodes from the feature model

[24]. This is known as a feature model configuration problem, i.e, a problem of selecting a

subset of the features to optimally satisfy user’s requirements. A node in a feature model is

a logical unit of behaviour characterized by a set of functional and non-functional require-

ments [14]. A set of inter-feature relationships allows to specify (i) mandatory and optional

parent-child feature relationships as well as (ii) alternative (XOR) and (OR) feature groups

(see the legend in Figure 8). The parent-child feature relationships that comprise feature

model constraints C are summarized as follows, where C = {C1,C2,C3,C4,C5,C6}:

16

• Mandatory-feature group: Given a parent feature f sk and its mandatory-child feature

f sl ,

– C1: If f sk is selected, then its child feature f sl must be selected.

• Optional-feature group: Given a parent feature f sk and its optional-child feature f sl ,

– C2: If f sk is selected, then its child feature f sl can be selected or not.

• Or-feature group (IOR): Given a parent feature f sk and its or-children features,

– C3: If f sk is selected, then at least one of the children features must be selected.

• Alternative-feature group (XOR): Given a parent feature f sk and alternative-children

features,

– C4: If f sk is selected, then only one of the children must be selected.

• Includes relationship: Given two features f sk and f sl where f sk includes f sl ,

– C5: If f sk is selected, then f sl has to be selected as well.

• Excludes relationship: Given two features f sk and f sl where f sk excludes f sl ,

– C6: If f sk is selected, then f sl cannot be selected.

2.5 NSGA-II

Genetic algorithms (GAs) are widely used to solve complex service composition optimiza-

tion problems as reported in the survey paper published in [41]. In this thesis, we par-

ticularly selected the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [27] that

has shown better performance over other candidates (such as SPEA2) for multi-objective

optimization problems for service composition [52].

17

NSGA-II starts with an initial population of random solutions called chromosomes.

Each chromosome is composed of L genes and is encoded by a binary string. The pop-

ulation is sorted based on non-domination into a hierarchy of fronts. The non-dominant

solution set in the population is placed in the first front. Solutions dominated by the first

front are placed in the second front, and so on. Each solution s is assigned a non-domination

rank srank equals to its front, rank 1 is the best. Since each solution is a set of objectives to

be minimized, the non-domination can be defined as follows:

Definition: let s and t be two solutions where s= {ob js
1, . . . ,ob js

y} and t = {ob jt1, . . . ,ob jty},

we say that s is non-dominated by t, i.e., srank < trank, if ∀ob js ∈ s and ob jt ∈ t,ob js ≤ ob jt

and ∃ob js|ob js < ob jt .

Non-dominant solutions at the same level are sorted based on local crowding distance

(sdis) which measures how close each solution is to its neighbours. Large distance results

in better diversity in the population. In other words, each solution s has two attributes to

guide the selection process towards the optimal solutions: (1) Non-domination rank (srank),

and (2) Local crowding distance (sdis). The solution selection is defined as follows [27]:

Definition: Given two solutions s and t, we say that solution s is preferred over solution

t, i.e., s≺N t, if (srank < trank) or ((srank = trank) and (sdis > tdis)).

Therefore, solutions are sorted in different fronts where the first one contains the non-

dominated solutions (i.e. non-comparable solutions) while the second front contains so-

lutions that are dominated by the solutions at the first front, but nondominated by the

solutions at the third front and so on. Within the same front, we differentiate solutions

(non-comparable w.r.t the order) based on the distance. As argued in [27], non-dominated

solutions with the same crowding distance have no contribution to the convergence of the

algorithm. Therefore, in such cases, a random solution is selected.

18

Figure 4: Crossover/Mutation operators

To produce the next generation, NSGA-II first creates a child population, called off-

spring, by applying binary tournament selection, crossover and mutation operators. Par-

ents, solutions, are selected based on the rank and crowding distance. The crossover opera-

tor produces two offsprings by copying selected bits from each parent. We use the uniform

crossover which employs a randomly generated mask to decide which parent’s gene the

offspring will inherit. The mutation operator randomly flips bits by choosing a single bit

from an offspring and changing its value. Figure 4 illustrates an example of these operators.

The crossover mask dictates which offspring inherit the bit from the parent. If the bit is 1

in the mask, the top offspring will inherit the bit from the top parent, if the bit is 0, the top

offspring will inherit the bit from the bottom parent. The mutation operator randomly flips

bits of the offspring. After creating the first population, the offsprings are sorted based on

non-domination and the first M solutions are selected to form a new population, where M

is the population size. Again, the selection is based on the rank and the crowding distance.

The process continues to generate generations of offsprings to find better solutions.

2.6 Kalman Filter Model

Kalman filter model [74] estimates the state vector in a linear dynamic system, which is

the nature of our online QoS prediction. The main steps of the Kalman filter algorithm are

illustrated in Figure 5: (1) calculate the Kalman gain, (2) calculate/update the prediction

values, and (3) update the prediction error. These steps are repeated to minimize the error.

19

Figure 5: Kalman filter model

2.7 Dependency Network

Unlike the bayesian network, dependency network D is a graphical model that approxi-

mates the full joint probability distribution over the corresponding domain [36]. Moreover,

the graphical structure of the dependency network is not required to be acyclic. There-

fore, dependency networks can represent mutual dependencies or cycles among domain

variables. The graphical structure of a D is a directed graph where each node represents a

random variable Xi in the problem domain. Each random variable has an associated condi-

tional probability distribution P(Xi|X\Xi) = P(Xi|pai) where Pai are the parents of Xi and

Pai ⊆ (X1, ...,Xi−1,Xi+1, ...Xn). Edges represent the global constraints among nodes and

their absence entails the independence of the nodes.

For parameter learning, any probabilistic regression or classification model can be used

to model the conditional probability distribution Pi(Xi|pai). Parameters are estimated based

on the maximum likelihood method that selects the set of parameters that maximize the

probability of data given the model. This thesis adopts probability trees for modelling con-

ditional probability distributions. A probability tree consists of internal nodes representing

the binary tests, and leaves containing probability distributions for the target variable.

For structure learning, first, we lean the structure of each variable independently, then

20

the dependency network is constructed by linking dependent variables. To this end, for

each variable, we search for the structure that optimizes the structure effectiveness score.

Particularly, a greedy hill-climbing search driven by the scoring metric iteratively improves

the current structure until the score does not increase.

Finally, through Gibbs sampling, the joint probability distribution of the dependency

network is inferred. Gibbs sampling starts with a random initiation for each random vari-

able Xi, and then in each Gibbs sweep iterates over the variables in a fixed order and resam-

ples the value of each Xi from its local distribution Pi(Xi|pai).

2.8 Relational Dependency Network (RDN)

Relational dependency networks (RDNs) [62] extend dependency networks used in rela-

tional databases. RDNs are graphical models that represent an approximation to the joint

probability distribution over a relational data set and allow cyclic dependencies that are

ubiquitous in relational domains.

2.8.1 Relational Database

A relational database consists of multiple related tables that represent relationships between

classes of objects or their attributes. A unique identifier, the primary key, characterizes each

entry in a table, whereas the foreign keys connect the tables. The relationships between ta-

bles could be one-to-one, one-to-many, or many-to-many relationships. For example, a

one-to-many relationship corresponds to the connection of one row in a table to multiple

rows in another table. To process relational data, it has to be flatten or propositionalized to

obtain the data in an attribute-value format. This entails that data should comes in a single

table with the attribute-value format where each row represents an instance and columns

represent attributes of those instances. Despite the simplicity of this approach, it produces

21

propositional data with many attributes due to the complex relationships that might exist

between objects, such as one-to-many and many-to-many relationships. In addition, rep-

resentation of real-world relational data (e.g., service composition) in an attribute-value

format leads to statistical bias in the results. Alternatively, first-order logic could be used

to represent attributes of objects and relations between them by constructing relational fea-

tures that capture the relational information. Then, a learning algorithm could be adopted

to select the optimal features set that represents the problem domain.

2.8.2 RDN Representation

This thesis adopts RDN representation published in [69] using datalog (a subset of the first-

order logic language that represents complex relational domains). The language consists of

three types of symbols: constants, logical variables, and predicates. A constant is denoted

with a lower-case letter to represent a specific object. A logical variable (logvar) is denoted

with an upper-case letter. Logical variables represent placeholders for a specific subset of

objects in the domain. Predicate represents the properties of objects or relations among

objects. Each predicate P/n, where n > 0 is the arity of the predicate, has a finite range,

range(P). Unlike, traditional logic where the range of a predicate is in { f alse, true}, the

range could be categorical or numeric. An atom is a predicate where each arity is either

a constant or a logvar. A literal is an atom or its negation. A substitution maps each

logvar to logvar or a constant while grounding substitution maps each logvar to a constant.

In addition, rules can be used to define the content of a relational database that is not

explicitly represented in the database. The rules can be represented as normal clauses of

the form H← L1,L2, ...,Ln where H is an atom and L1,L2, ...,Ln are literals. The tuples of

the relational database are specified as facts which each is represented as a clause H with

an empty body.

22

Datalog contains a set of random variable declarations (RV D) which defines the ran-

dom variables in a domain. Random variables are represented by probabilistic predicates.

Hence, random variables can take any value from the associated range to the probabilistic

predicates. For example, the random variable declaration for an atom H is random(H)←

L1, ...,Ln where L1, ...,Ln is a conjunction of literals specifies that H is a random variable

in the model if L1, ...,Ln are true. A closed-world assumption, i.e. the groundings of predi-

cates that are not specified explicitly in the interpretation are false, is used to guarantee the

evaluation of the conjunction in the right-hand side of a random variable declaration.

2.8.3 RDN Learning

We use a set of random variable declarations to define the random variables in the domain.

We also construct a space of relational features to learn random variable dependency. We

learn dependency statements (P|Parents(P)), which define for each random variable P the

other random variables that it depends on Parents(P). In addition, we learn the condi-

tional probability distributions (CPDs) to model the distribution of the target predicate P

on the parent set of relational features Parents(P). In other words, we independently learn

a locally optimal CPD for each predicate. The parent set of P is determined by iterative

searching for the optimal relational features that maximize the utility score (i.e. pseudo-

loglikelihood). Parameters estimation method for the CPDs for the dependency statements

depends on the range of the predicates. This thesis uses linear Gaussian CPD since the

range of the predicates is continuous [47].

Finally, RDN model is obtained by conjoining all learned local distributions. Similar

to dependency network, inference in RDN is be performed using an ordered pseudo-Gibbs

sampler.

23

2.9 Context-aware Service Trust

This thesis adopts the concept of trust as defined in [83, 57, 33] being the confidence one

has in the behaviour of others. Trust resources could be subjective and/or objective trust.

2.9.1 Subjective Trust

Subjective trust uses the direct interactions data between the truster and the trustee to esti-

mate the service trust. We view subjective trust and context variables as follows:

• Definition: Subjective trust is the probability of providing satisfactory QoS values

under context variables.

• Context variables: We consider price-awareness and profit-awareness variables as

examples of context variables that impact the future behaviour of services and providers

respectively.

2.9.2 Objective Trust

Objective trust uses feedback from service referees due to the lack of subjective trust re-

sources. We view objective trust and context variables as follows:

• Definition: Objective trust is the reputation of a service measured using referees’

feedback.

• Context variables: We consider collision attacks as examples of context variables.

2.9.3 Bootstrapping Trust

Newborn services have neither subjective nor objective trust resources, thus bootstrapping

trust is used to initiate their trust values. We view bootstrapping trust and context variables

as follows:

24

• Definition: Bootstrapping trust is the trust assessment of newly deployed services.

• Context variables: We consider white-wash attacks as examples of context vari-

ables.

2.10 Literature Review and Discussions

2.10.1 Adaptive Service Composition

An adaptation taxonomy is defined to facilitate the analysis of adaptation approaches [16].

This taxonomy has a set of dimensions that describe expected facets of adaptive service

compositions, namely Why, When, What and How adaptation takes place.

Dimension: Why? This taxonomy dimension illustrates the goal behind the adapta-

tion. The basic goal of adaptation is to allow the service to fulfill its functional and/or

non-functional requirements. With regard to nonfunctional requirements, the goal of most

existing approaches is to maintain and enhance the delivered QoS values.

Dimension: What? This taxonomy dimension refers to the level in which changes are

carried out in order to achieve the adaptation goal. The level of adaptation can be classified

into service level and process level.

The process-level reflects a high strategic level, while the service-level reflects a low

tactic level. A process-level captures the whole picture of the business logic that will guide

the high-level adaptation plan. Moreover, for an efficient adaptation with continuous busi-

ness growth, the service-level is responsible for a smaller part of the business logic toward

achieving the ambitions outlined in the high-level adaptation plan. Accordingly, a service-

level adaptation is conducted first. If it is not successful, a process-level adaptation is

planned.

If a composite service only uses service-level adaptation, it will crash in the case of

an unsuccessful adaptation. By considering both adaptation levels, the composite service

25

can continue to function by reconfiguring its workflow. On the other hand, if a composite

service only uses process-level adaptation, unnecessary complete process reconfigurations

would be used for the simple replacement of failed services. Therefore, considering both

levels reduces the adaptation time complexity. However, in the case of an unsuccessful

service-level adaptation, the adaptation time complexity of considering both adaptation

levels would be higher than if only a process-level adaptation would have been used. Nev-

ertheless, this additional time required by the service-level adaptation is still negligible

compared to the whole adaptation time. Most approaches address the adaptation problem

either at the process-level only [2, 3, 15, 60] or at the service-level only [7, 35, 53, 66].

Dimension: How? This taxonomy dimension defines adaptation actions used to solve

the adaptation problem. Based on adaptation levels, the adaptation process triggers the

appropriate adaptation actions, such as service selection or workflow reconfiguration at the

service level or process level adaptation, respectively. In [7, 17, 35], the authors focus

on service selection actions to select new optimal constituent services, while workflow

reconfiguration actions that modify the business process are studied in [2, 17]. In addition,

this thesis proposes a new service-level adaptation action, namely constituent substitution

to replace the failed constituents locally.

Dimension: When? This taxonomy dimension illustrates the time when adaptation is

performed. Run-time adaptation can be distinguished from two perspectives, on-line and

off-line [16]. On-line approaches use historical QoS data to predict SLA violation at run-

time. Off-line approaches use historical QoS data to predict future SLA violations but do

not predict at run-time. However, most of the aforementioned adaptation approaches, use

QoS values in steps within the adaptation process to maximize the business value of the

service. Thus, this thesis gives a deep look at on-line QoS prediction approaches that focus

on maintaining the overall QoS values for the composite service. These approaches predict

QoS values in order to detect SLA violations, which enable the adaptation managers to

26

Table 1: SLA violation prediction

approach Off-line prediction Online prediction

historical data Context-aware
[98] X
[99] vast
[82] vast
[51] sample

This thesis sample X

trigger the right adaptation actions for the running composite services and prevent penalties.

State-of-the-art on-line QoS prediction approaches, rely on vast historical data to build

the prediction model, which is inefficient for on-line QoS prediction. Moreover, they do

not consider the dependency relations between QoS and context variables that come from

the dynamicity and uncertainty of the running environment.

Table 1 compares our prediction model with existing approaches in SLA violation pre-

diction. Table 2 summarizes the characteristics of the adaptation process in this thesis

against other existing approaches, and Table 3 illustrates self-properties for composite ser-

vices studied by this thesis against the state-of-art.

Conclusive Remarks The aforementioned adaptation approaches share the drawbacks

of a centralized environment, making them inappropriate for composite services that run in

distributed environments. However, distributed approaches are detrimental to the perfor-

mance because of communication overhead. Moreover, these approaches use closed world

assumptions, i.e. they define in advance the context changes. They lack support for ana-

lyzing the inherent variability of dynamic adaptation at design time to guide adaptation in

an unpredictable open world.

27

Ta
bl

e
2:

C
ha

ra
ct

er
is

tic
s

of
th

e
ad

ap
tio

n
pr

oc
es

s

ap
pr

oa
ch

W
hy

W
ha

t
H

ow
W

he
n

Q
oS

se
rv

ic
e

pr
oc

es
s

co
ns

tit
ue

nt
co

ns
tit

ue
nt

W
or

kfl
ow

on
lin

e
of

fli
ne

su
bs

tit
ut

io
n

se
le

ct
io

n
re

co
nfi

gu
ra

tio
n

[7
]

X
X

X
[6

0]
X

X
X

[1
5]

X
X

X
[1

6]
X

X
X

X
[2

]
X

X
[5

3]
X

X
X

[1
7]

X
X

X
X

X
X

T
hi

s
th

es
is

X
X

X
X

X
X

X

28

Table 3: Self-adaptive capabilities

Approach Self-healing Self-optimizing self-configuring Self-protecting

[7] X
[60] X X
[15] X X
[16] X X X
[2] X
[53] X
[17] X X X

This thesis X X X X

2.10.2 SLA Management

The authors in [65] draw attention to the problems of having uncontrolled dependencies

between software modules and introduce the concept of information hiding. A pioneering

work in [6] provides insights about dependency analysis solutions in software engineering

domain.

Likewise, for composite services, the knowledge of service dependency is essential to

avoid unpredictable SLA violations. The authors in [7] propose a correlation-aware ser-

vice composition approach where QoS service dependencies are considered. The authors

in [28] propose a QoS-aware service composition approach that considers QoS service de-

pendency. The authors in [34] present a framework for modelling the QoS dependency

relations using different orchestration pattern of a composition. Alike, The authors in

[20] propose QoS dependency-aware service composition approach based on the Pareto

set model. These approaches incorporate correlation aware methods to prune redundant

services and reserve the services with QoS correlations that may be integrated into opti-

mal composite services. In addition, the authors in [9] propose a probabilistic dependency

graph to discover dynamic dependencies among services by analyzing service execution

data. The authors in [91] analyze and capture dependencies between services in a composi-

tion in a semi-automatic manner in a dependency model. Based on this model, the authors

29

validate the SLA against the effects of events such as service failure or SLA renegotiation

at run time. However, these approaches are based on service dependencies information

described in the SLA. They are limited in the face of implicit dependencies in the dynamic

running environment.

Therefore, a number of machine learning-based approaches have been proposed to work

out predictions in real-time automatically after design. The authors in [50] propose a pre-

diction model to predict SLA violation during runtime. A regression machine learning

model is used for training data captured from historical process instances. The authors in

[76] propose an approach for SLA violations prediction based on Naive Bayesian Classifier

using measured datasets (QoS of used services). The authors in [67] propose a Bayesian

network-based probabilistic QoS model to indicate the conditional independence relation-

ships among QoS attributes.

Conclusive Remarks Those approaches cannot be scaled to real-world environments.

In addition, they do not consider the different types of QoS dependencies, namely vertical,

horizontal and cyclic QoS dependency. Moreover, they rely on propositional data which

assumes services are independent. Thus, these approaches are in short supply for captur-

ing service dependencies. We extend these approaches by taking the advantage of RDN

to analyze different QoS dependency relations, since ignoring the dependency relations

overestimates the computed values and this overshoot is detrimental to the stability of the

prediction model [21, 58].

2.10.3 Feature Model-based Adaptive Service Composition

There are approaches that provide support for handling variabilities in composite services,

which help choose the most appropriate variant at run-time [2, 3, 23, 90]. For example, in

[2], the dynamic adaptation of the composition is supported by activating and deactivating

feature nodes at the process-level, i.e. reconfiguring the composition logic. This approach

30

is based on the closed world assumption in which changes are known at design-time and

there are predefined adaptation actions to deal with, which is not the case in the dynamic

environment where composite services operate. In [3], a framework is proposed based on

the open world assumption where changes are unknown at design-time. The framework is

guided by general rule premises in a centralized knowledge base using forward chaining.

Conclusive Remarks These approaches share the drawbacks of the centralized ap-

proach such as high overhead. Moreover, they do not adequately consider QoS require-

ments in their adaptation algorithms, since they focus on QoS of the composite service

while ignoring the QoS of the constituents.

2.10.4 Service Trust

A. Subjective Trust

The current computational trust models are based on feedback, statistics, fuzzy-logic, or

data mining [80]. This thesis extends statistics-based subjective trust models to consider the

dynamic environmental contexts, QoS metrics, and the dependency relationships between

them. Particularly, we focus on bayesian network-based models usually deployed in the

literature of related work.

In [87], a bayesian network approach is proposed to combine the trust of P2P-style

interactions between agents. The authors demonstrate that the exchange of information

about trust increases the performance of the network. In [63], a trust model based on

the bayesian network is proposed to integrate both subjective and objective trust sources.

Based on these sources, the final trust value is calculated. In [59], a bayesian network

query is proposed to select service candidates in a composite service. In [57], the authors

use a multinomial generalized Dirichlet distribution in learning bayesian networks to model

QoS and compute QoS-based trust values. The authors learn and model the composition

structure of composite services.

31

To deal with the context of the environment, [79] presents a framework to estimate QoS.

Their framework involves three steps. It begins with building a bayesian network model

to represent the QoS capabilities of the service. Then, the model is trained with feedback

from different sources to learn the unknown parameters for the service. Finally, QoS is

estimated by making probabilistic inferences on the basis of certain context variables. In

[19], the authors propose a bayesian network-based trust approach to evaluate trust from

user satisfaction experiences. The authors represent user satisfaction experience as a binary

value, with 1 indicating satisfied and 0 not satisfied, which is the outcome of a Bernoulli

trial. However, this work is based on the available social networks as prior knowledge,

which is not granted. The focus of their work is SOA-based IoT. In [86], a context-aware

approach for trust management of IoT service networks is proposed. The proposed model

in this work predicts the trustworthiness of a service provider based on its behaviour in

proving QoS in response to context variables.

Conclusive Remarks The scalability of bayesian network-based trust models is limited

because the size of conditional probability tables grows exponentially with the number of

parents of a node [37]. The aforementioned approaches disregard the cyclic relations that

could link various QoS metrics and context variables. Consequently, the likelihood that

QoS degradation would activate context variables has not been considered.

B. Objective Trust

Many models have been proposed to aggregate feedback provided by peers to estimate the

trust. Usually, these proposals weight the feedback based on the credibility of the peers

providing them. [22] uses the scores of the referees to weight the feedback. The authors

average feedback to calculate the credibility score for a given trustee. [55] uses different

assessment metrics, such as referee credibility and past feedback history to estimate the

32

trust. [85] aggregates the feedback using a Kalman aggregation method. Also, they use es-

timated feedback variance to detect malicious feedback and minimize their influence. [84]

adopts the cumulative sum control chart to detect malicious feedback and prevent them us-

ing a Bloom filter. [92] uses referrals about common peers of the truster and each referee to

estimate the credibility score to the referee. [58] proposes a personalized similarity-based

credibility score. The truster, in their approach, asks for a recommendation request of a

trustee which is certain about its trust. The similarities between the received feedback and

the known trust define the credibility level of the referees. Moreover, [58] uses a cluster-

based algorithm factoring the outliers to identify malicious referees, which are considered

as anomalies. Clustering-based anomaly detection techniques assume that anomalous in-

stances lie in sparse and small clusters [5]. Based on this assumption, [58] considers honest

referees reside within a dense area as they have small variance relating to the same trustee

whereas malicious referees have a larger variance and occupy a scattered area. Unlike

these approaches, [25] focuses on detecting dishonest feedback rather than dishonest ref-

erees. They consider feedback as an outlier when it expresses a behaviour with a low level

of occurrence in the data set.

Conclusive Remarks

The aforementioned approaches are limited in detecting the behaviour characteristics

of the colluders described by [43]. We will discuss these characteristics in more detail in

Section 4.1.2.

C. Bootstrapping Trust

[55] assigns trust values to new services based on the rate of maliciousness in the system.

With a low rate of maliciousness, new services are assigned a high initial trust value, other-

wise, they are assigned low trust. On the other hand, [93] observes the behaviours of new

services throughout the testing time. Then, using Hidden Markov Models, they model the

33

observation sequence to detect the behaviour of the services. They compare the observed

behaviour against predefined trust patterns to assign an initial trust value to the service.

Conclusive Remarks

The aforementioned approaches motivate malicious services to receive a low rate of

maliciousness through a white-washing attack. Besides, in case the observed behaviour

follows undefined patterns, the observation-based approach cannot bootstrap the trust.

34

Chapter 3

Service Adaptation Management

Figure 6: Chapter 3 challenges

35

Figure 6 (unshaded part of the figure) shows the addressed challenges in this chapter.

Consequently, this chapter starts with an overview of the proposed approach in Section 3.1.

Then, it highlights the main tasks of the master and the slaves managers in Section 3.2.

Finally, it presents the experimental results and the conclusion in Section 3.3 and Section

3.4.

3.1 An Overview of the Proposed Approach

To describe the proposed approach, we will use an example of a composite service for order

processing. Figure 7 details the operations of order processing using the Business Process

Model Notation (BPMN) where the composition of internal components (i.e. Automatic

order approval and Get items/warehouse) and external constituents (i.e. Payment calculator,

PayPal payment, Email invoice, and Stander shipping) are illustrated. The process starts

when an order is approved. Then, the order is checked for availability at the warehouse.

If unavailable, the order will be discarded and the process will end. Otherwise, the total

payment is calculated by a payment calculator service taking into account the available

discounts. Then, the payment is processed by the PayPal service with a valid account.

Finally, an e-mail will be sent to the user with the invoice and the order will be delivered

by the standard Shipping service.

The designer of this composite service assumes a reliable and efficient execution, which

is not the case in reality. This is due to the dynamic running environment. A composite

service is subject to run-time context changes such as:

• Addition/removal of a task from the composite service.

• Failures in a service operation or service is performing below SLA constraints.

• Changing end-user QoS requirements.

36

Figure 7: Order-processing BPMN

• Changing profit and/or price.

These changes may lead to SLA violation and penalty consequences. Examples of SLA

constraints (i.e. SLOs)and penalties (Ps) are listed below:

• SLO1: The shipping time of order processing should be 6 5 days.

• SLO2: The availability value of the order processing should be ≥ 97%.

• SLO3: The cost of the order processing should be 6 $700.

• P1: The user should be entitled to 2% discount per each 1 day delay.

• P2: The user has access to 2% discount per each 10% decrease in availability.

• P3: The user would not pay for an additional cost.

Composite service operations that violate SLA constraints trigger adaptation actions,

which are not cost-free. For example, the order processing service has a standard shipping

constituent as shown in Figure 7. The SLA constraints of this constituent specify that the

37

shipping time is 3 days while its availability is 90% for a cost of $30. In some cases where

the items are ordered from the warehouse due to lack of stock, SLA constraints for the

composite service (e.g. SLO1) could get violated because of the additional time required to

prepare these items. Replacing the standard shipping constituent with an express shipping

constituent, whose shipping time is 1-day while its availability is 96% for a cost of $100,

could enhance the performance, but entails an additional cost. This additional cost could

be less than the paid penalties by the provider if he did not switch to express shipping (e.g.

penalty for 1 day delay and 10% decrease in availability: 2% * $700 + 2% * $700 = $28).

However, the SLA violation reduces the provider reputation and small penalty cases are

not usual. Therefore, composite service adaptation is required to take place.

Figure 8 illustrates the feature model for the order-processing example. The figure

shows the different possible variants of the order-processing service used to adapt the

service upon a contextual change. The Prepare-Order feature has two mandatory child

features that must be selected, Prepare-item and Get-from-warehouse, whereas selecting

Buy-item is optional. Either coupon or apply discount must be selected in the alternative

feature group if their parent feature is selected, while at least one feature (e.g., express or

standard) must be selected in an or feature group if their parent feature is selected. Ac-

cordingly, an order-processing composite service could be built by activating some feature

nodes while deactivating the others as it is shown in Figure 8. A change at run-time, such

as delay in shipping time, will require deactivating the standard and Buy-item nodes and

activating the express node.

Many possible feature model configurations (i.e., a set of activated features that satisfy

the feature model constraints discussed in Section 2.4) can exist in a feature model. Indus-

trial feature models consist of hundreds of features, making feature configuration a complex

task [11]. Furthermore, different features have different impacts on the QoS properties of

composite service. For example, activating express shipping decreases the shipping time,

38

Figure 8: Order-processing feature model

but increases the cost, and activating Buy-item increases the availability at the expense of

the shipping time. Considering different QoS metrics when selecting features is a complex

task because of the interdependencies between these metrics, i.e., a change in the value of

one metric could result in a change in a different one. Figure 9 illustrates this where minus

signs refer to inverse relationships while plus signs indicate positive relationships. Further-

more, we can have conflicting user’s requirements in the feature model, such as requesting

high performance and low cost.

In consequence, the main goal of this thesis is to design context-aware composite ser-

vices that are able to keep satisfying QoS requirements when encountering changes in

dynamic and uncertain environments. To achieve this, we design the decentralized archi-

tecture of our approach based on the MAPE loop reference model and master/slaves pattern

as discussed earlier in Chapter 1.

At design time, we analyze the inherent variability of the composite service to include

39

Figure 9: QoS-interdependence

the variants of the service using the feature model to guide run-time adaptation. Indeed, we

annotate feature nodes with QoS metrics as shown in Figure 8. The standard feature model

does not consider weights in its features. However, some proposals have extended the fea-

ture model notation with non-functional metrics [10]. Likewise, we extended the feature

model-based service adaptation to represent the QoS metrics of each feature. Since our

approach selects the optimal feature subset, which is the closest to satisfying the SLA con-

straints based on the QoS metrics of each feature, these metrics are considered implicitly

as the feature weights. For example, the features of credit card and debit card are associ-

ated each with specific shipping time and availability, which implicitly form the weights of

these two features. Our approach will select the best feature among these two that satisfies

the SLA based on their associated weights.

Moreover, we model the adaptation problem as a multi-objective optimization, which

makes our solution practical for the open world with no need for predefined adaption ac-

tions. In other words, when a change is predicted, the workflow of composite service is

reconfigured using the feature model restricted by the constraints without predefined rules.

In addition, we propose distributed local adaptation actions by the slaves for replacing

failed constituent services promptly, which reduce the time complexity of reconfiguring

the composite service. To this end, each node of the feature model is realized by a service

class i.e., a set of services with the same functionality but with different QoS metrics [12].

This enables the slaves to have alternative backups for the failed constituents.

At run-time, the master and slaves go through the different MAPE steps to manage

40

the service adaptation. In the monitor step, sensing mechanisms are used to capture QoS

values and contexts, i.e. situational information about the run-time environment. Each

slave monitors the associated constituent service to ensure that it satisfies its own QoS

constraints. The global monitoring of the composite service is performed by the master to

secure end-to-end QoS, i.e. SLA.

In the analyze step, the master and slaves examine the incoming QoS information about

the composite service and the constituents, respectively. Besides, they consider the context

of the running environments to predict violations in QoS and/or SLA constraints. This

supports their decisions involving adaptation actions.

During the plan step, the master and slaves decide on the adaptation actions for the com-

posite service and the constituents, respectively. Whereas the execute step safely deploys

the adaptation actions that are produced by the planners.

This thesis focuses on the analyze and plan steps. In particular, we focus on predicting

QoS and/or SLA violations and composite service adaptation in a dynamic open world.

When the SLA is predicted to be violated, the master adapts the composite service by

reconfiguring the workflow logic. Similarly, when QoS constraints of a constituent service

are predicted to be violated, the slave substitutes the failed service with its backup from the

associated service class. Such prompt substitution maintains the global performance of the

composite service since it reduces the need to composite service adaptation that is the most

time-consuming step in the adaptation process.

The proposed adaptation approach promotes self-adaptive capabilities of the composite

service through: (1) Self-configuring capability, which enhances the ability of the service

to face open world changes; (2) Self-optimizing capability by adopting the master/slaves

pattern, which allows for monitoring QoS performance and triggering promptly adapta-

tion actions; (3) Self-healing capability via the adaptation actions that allow the service to

discover, diagnose and react to context changes; and (4) Self-protecting capability by the

41

on-line prediction models that detect malicious performance.

When the SLA is predicted to be violated, the master adapts the composite service by

reconfiguring the workflow logic, i.e. activating and/or deactivating feature model nodes.

Particularly, the master selects the optimal set of feature model nodes that maximizes the

end-to-end QoS performance and minimizes the cost under SLA and feature model con-

straints. We consider the annotating QoS metrics with each feature node as a local SLA

for this node. Thus, our approach chooses the feature configuration that yields the closest

aggregated SLA, aggregated from local ones, to the SLA using a multi-objective optimiza-

tion approach. Different aggregation models can be defined for each workflow connector,

such as XOR, AND, and OR [39]. However, these models can be reduced to the sequential

aggregation model as shown in [40]. Accordingly, the aggregation functions indicated in

our approach focus on the sequential model, as illustrated in Equations 25 and 26 which

will be explained in Chapter 5. Afterward, for each activated feature node to achieve a cer-

tain task, a slave selects the optimal implementing constituent that delivers the QoS values

specified in the local SLA.

Similarly, when a local SLA is predicted to be violated, a slave substitutes the failed

service with its backup from the associated service class. Such prompt substitution main-

tains the global performance of the composite service. Composite service adaptation is

the most time-consuming step in the adaptation process, but thanks to the proposed local

service adaptation action, the need for global adaptation has been reduced and the overall

performance is improved.

3.2 Master/Slaves Managers

The inadequacy of centralized adaptation approaches for composite services are (1) inef-

ficient adaptation for scale-free environments, and (2) inflexible and ineffective adaptation

42

towards changes in the environments. This is due to the distributed environments of com-

posite services. On the other hand, distributed adaptation approaches produce communi-

cation overhead, which is detrimental to performance. Therefore, this thesis proposes a

decentralized dynamic adaptation architecture based on master/slaves pattern as discussed

earlier in Chapter 1.

The master/slaves pattern enables us to manage services adaptation in scalable settings.

Unlike centralized approaches in which a single entity is responsible for the whole envi-

ronment, in our approach, slaves locally monitor and adapt distributed constituent services

and the master monitors the composite service to be reconfigured in order to provide the

agreed QoS constraints. Such an architecture can overcome the problem of the centralized

approach by distributing the adaptation management load over several nodes (i.e., master

and slaves). Fortunately, the architecture enables the slaves to substitute failed constituents

promptly to maintain the overall performance and avoid the global adaptation which has

high computational complexity.

The hierarchical nature of the master-slaves architecture facilitates the communication

between the salves and the master. The slaves communicate with the master to reconfigure

the workflow when replacing a failed service is unsuccessful. Moreover, the master inter-

acts with the slaves after the reconfiguration to select the implemented services. Since each

slave is controlled by a local SLA and the master is controlled by the overall SLA, i.e. the

aggregation of the local ones, there is no conflict among the slaves and the master.

3.2.1 Master Manager

The master manager goes through the MAPE loop to control the composite service. It

monitors the overall performance and adapts the service to provide the expected end-to-

end QoS.

In the analyze step, the master predicates SLA violation to support its decision-making

43

in the plan step regarding the adaption action for the composite service. The proposed SLA

violation prediction approach will be discussed in Chapter 4.

In the plan step, the master adapts the service at the process-level by reconfiguring the

service workflow. We propose a solution based on the feature model in Chapter 5.

3.2.2 Slaves Managers

Slaves locally monitor and adapt the distributed constituent services through the MAPE

loop. Each slave is responsible for the local adaptation of a constituent service at the

service-level.

In the analyze step, each slave estimates the service trust to predict QoS constraints

violation under the context of the running environment. We propose a dependency network

trust model that enables slaves to capture the dependency relations among QoS metrics and

context variables to estimate the likelihood that the services will provide acceptable QoS

metrics considering the current context. This step will be discussed in Chapter 4.

In the plan step, slave selects the optimal implementing constituent that delivers the QoS

values specified in the local SLA for each activated feature node to achieve a certain task.

This step comes after workflow reconfiguration for the composite service by the master.

Besides, this thesis proposes adaptation actions for constituent service substitution that

enable slaves to promptly replace the failed services. Thus, the self-adaptive capabilities of

the composite service are enhanced. This step will be discussed in Chapter 5

3.3 Experiments

All the experiments have been conducted on a 1.1 GHz Intel Core 2 Duo laptop with 8

GB of RAM. We use the CloudHarmony dataset 1 of 53 different services operating in

1https://cloudharmony.com/

44

different parts of the world during a period of a whole month and the average availability

is recorded. Those services are owned by well-known providers such as Amazon Web

Services and Agile Cloud. To make our experiments fair with the centralized benchmark

adaptation approach proposed by [17], which uses a small number of services, we have

selected a subset with the same number from the used dataset.

3.3.1 Distributed Environment

This experiment explores the effectiveness of our adaptive approach in a distributed envi-

ronment. Table 4 compares the QoS values and the cost obtained by our approach against

those obtained by the centralized benchmark adaptation approach. To ensure a fair com-

parison, we use the same initial configuration of the benchmark approach for the response

time, availability, and cost requirements. The two typical settings are [1, 0, 1] for con-

fig1, and [0, 1, 0] for config2, where 1 denotes a higher preference of the corresponding

requirement over the one with 0.

As shown in Table 4, our approach outperforms the centralized approach [17] by reduc-

ing the response time and the cost by 50%, and enhancing the availability by 2%. These

improvements are important for on-line adaption approaches that run in real-time.

Table 4: Comparison between our approach and the approach presented in [17] in a dis-
tributed environment

QoS config1 config2

our centralized our centralized
approach approach approach capproach

Response time(ms) 368 952 286 797
Availability (%) 98.32 96.87 98.59 96.86

Cost($) 1.56 2.94 1.21 2.53

The improvements are since our approach monitors the QoS values of the composite

45

service for triggering adaptation actions upon violation. Since we use a distributed architec-

ture in which each slave monitors each service, we are able to capture every single change

in the environment. The centralized approach uses a single entity for monitoring the whole

environment, which prevents it from capturing detailed information from each constituent

affecting its overall performance in terms of response time, availability and cost. Finally, in

our approach, the master optimizes the configuration of the composite service to respond

to a global change.

In contrast to the centralized benchmark approach, our proposal considers QoS at-

tributes in addition to the cost w.r.t resource consumption and penalties in the optimization

problem to reconfigure the workflow (as we will discuss in Chapter 5). This guarantees

an optimal reconfiguration while minimizing the total cost and not exceeding the cost con-

straint which supports the satisfaction of both the service user and provider. However, SLA

monitoring by the master and slaves in our approach entails additional costs.

3.3.2 Scalability and Robustness

This experiment explores the scalability of our approach to large-scale environments. First,

we increase the size of the feature model from 75 to 200 features. Accordingly, the work-

flow size increases from 28 to 115 service classes, each service class containing 100 ser-

vices. Figure 10 compares the performance overhead caused by the growth of the environ-

ment in our approach against the centralized benchmark approach. As shown in the figure,

our approach can scale well with the growth of the feature model. We can conclude that our

proposal can be effectively applied to a large-scale environment as it reduces the execution

time by 15% compared to the centralized benchmark approach. Our approach achieves

better scalability because the adaptation process is carried by multiple entities, namely the

master and slaves, whereas this process is carried by a single entity in the benchmark ap-

proach, which usually fails in large-scale settings for its incapability to deal with increasing

46

the number of constituents. However, the scalability of our approach is constrained by the

networking capacity of the master. The master’s capacity could saturate since it would be

overwhelmed by the slaves’ messages.

Figure 10: The performance overhead in a growing environment

Furthermore, we conducted a set of experiments while changing the service network

scale. In particular, we changed the number of services from 500 to 10000 while fixing

the workflow to 28 service Classes. Figure 11 shows the relationship between the service

network scale and execution time. The trend line shows a polynomial relationship between

these two factors, which proves the effectiveness of our approach in large-scale environ-

ments. In contrast to the service selection approaches, e.g. [17], where all service classes

are considered at the same time by the same entity, which is a complex task, the proposed

local adaptation action enables each slave to deal with only one class to select the imple-

mented service. Thus, our approach has the ability to substitute the failed constituents

instantly to maintain the robustness of the composite service. However, the failure of local

adaptation action to find the required substitute necessitates composite service adaptation

action to reconfigure the service. Thus, unlike service level adaptation approaches, the

robustness of the service comes at the expense of the execution time.

47

Figure 11: The execution time in a growing environment

3.4 Conclusion

In this chapter, we proposed a decentralized approach for composite services adaptation

by applying the master/slaves pattern. Unlike centralized approaches in which a single en-

tity is responsible for the whole environment, in our approach, slaves locally monitor and

adapt distributed constituent services and the master monitors and reconfigures the work-

flow of composite service in order to deliver the requested QoS. This enhances the overall

performance of the composite service in terms of response time, availability and cost in

dynamic large-scale environments. Besides, the hierarchical nature of the master-slaves ar-

chitecture facilitates the communication between the Salves and the master, which avoids

performance detriment because of communication overhead in distributed environments.

Thus, this chapter achieved the first research objective (Objective 1) discussed earlier in

Chapter 1, which is aimed at proposing an adaption architecture that fits the distribution

nature of composite services without being detrimental to the performance by communica-

tion overhead.

Master/slaves mangers go through MAPE loop steps to manage composite services

48

running in a dynamic and uncertain world. This thesis focuses on the analyze and plan

steps. Particularly, we investigate run-time QoS violation prediction models for prompt

service adaptation to maintain and secure the service performance. Chapter 4 illustrates

the proposed prediction models in Section 4.1 and Section 4.2 that enable, respectively,

the slaves and master to analyze QoS and context information to predict any performance

violation. Chapter 5 disuses the adaption actions to be taken by the master and slaves upon

violation prediction in Section 5.1 and Section 5.2.

49

Chapter 4

Service Trust Management

Figure 12: Chapter 4 challenges

50

Figure 12 (unshaded part of the figure) shows the addressed challenges in this chap-

ter. Consequently, this chapter presents our proposed solutions that tackle the challenges

facing trust-based managers, namely the master and slaves running at the analyze step of

MAPE loop. In Section 4.1, we present a context-aware multi-dimensional trust manage-

ment model that empowers each slave responsible for a constituent service to estimate the

service trust to predict QoS violation. In Section 4.2, we present a context-aware QoS

prediction approach that enables the master responsible for the composite service manage-

ment to predict SLA violation. Then, in Section 4.3, we present the experiments. Finally,

Section 4.4 concludes this chapter.

4.1 Multi-Dimensional Trust

The continuous dynamic environment is one of the challenges that trustworthy services

management faces. Services in such an environmental context have difficulty securing an

acceptable quality of service (QoS). However, a few research attention has been paid to the

comprehensive trust management for context-aware services as reported in the survey pa-

per published in [72]. Therefore, this section proposes a trust management framework that

establishes service trust by considering the direct trust from the truster (subjective trust),

aggregating referrals about the service in a collusion-resistant manner (objective trust), and

bootstrapping new services. We introduce a subjective trust model based on the formalism

of dependency networks to dynamically predict the provided QoS in response to context

environment changes. The proposed approach leverages the dependency relations that exist

among the QoS metrics and environmental context variables. The novelty at the subjective

trust level lies in considering the dynamic cyclic dependency relations that enhances the

prediction accuracy. However, subjective trust based on direct interactions could be insuf-

ficient to make the trust estimate credible. Hence, on top of the subjective layer, we propose

an objective trust management model resilient to collusion attacks by leveraging the power

51

Figure 13: Multi-dimensional trust for services

of mass collaboration among referees. Finally, we propose a bootstrapping mechanism

that is resilient to the white-washing attacks (i.e. services with poor trust reset to start

afresh with new identities) by observing the behaviours of newcomer services with no trust

resources using the concept of social adoption to estimate their initial trust values. Such

attacks can significantly affect the delivered performance of trust-based services, accord-

ingly, the proposed approach is concerned to avoid them.

Unlike most of the existing trust frameworks which focus solely on one particular trust

issue, our approach establishes the service trust starting from subjective service trust con-

sidering the environmental context and the cyclic dependency, aggregating referrals in a

52

collusion-resistant manner, and bootstrapping new services. Figure 13 exhibits the research

problem we are addressing in this section. The figure also displays the research framework

and identifies the used techniques and tools, namely dynamic dependency networks, graph

theory and ensemble machine learning classification.

4.1.1 Subjective Trust

The current computational trust models are based on feedback, statistics, fuzzy-logic, or

data mining [80]. We extend statistics-based subjective trust models to consider the dy-

namic environmental contexts and QoS metrics in addition to the dependency relationships

among them. Most existing subjective trust models, particularly Bayesian network-based

models [59, 57], predict the service trust based on QoS metrics while ignoring the run-

ning environment. Thus, these approaches are limited in trust modelling. Furthermore, the

scalability of Bayesian network-based trust models is limited since the size of conditional

probability tables grows exponentially with the number of parents of a node [37]. On the

other hand, the authors in [86, 19, 79] take in their consideration the running environment,

i.e. the context of the environment. However, they disregard the cyclic relations that could

link various QoS metrics and context variables. Consequently, the likelihood that QoS

degradation would activate context variables has not been considered.

This thesis investigates the problem of subjective trust for context-aware services. Sub-

jective service trust is defined as the likelihood of providing a requested service that sat-

isfies the agreed QoS while considering the context variables. Particularly, we predict the

QoS given the dynamic environmental contexts to measure the subjective trust which re-

lays on the direct interaction among the services. We consider the context as the state of

the running environment and the context variable as the environmental condition that af-

fects the behaviour of the service [48, 61, 86]. The price-awareness that impacts the future

53

behaviour of a service is a concrete example of a context variable. Hence, we view the sub-

jective trust of context-aware services from the angle of the likelihood that these services

will provide acceptable QoS metrics considering the current context variables. The authors

in [58] argue that ignoring the dependency relations overestimates the effective trust. This

overestimation is counterproductive to the stability of the trust model [21].

Therefore, we extend the calculation of the service trust to take into account the cyclic

dependency relations that occur between the values of QoS and the context variables of

the running environment. To illustrate these cyclic dependency relations, we consider two

awareness-driven variables for the context: price and profit. The price is the context vari-

able from the side of the user, while profit is the variable from the side of the provider. QoS

degradation will adjust the behaviour of the users driven by the price-awareness to pay less

[96]. The profit-driven provider, on the other hand, adjusts the delivered QoS based on the

offered prices, which results in degrading the QoS delivered at low prices [96]. Thus, the

two awareness variables: price and profit exhibit a cyclic dependency relation as the acti-

vation of one variable affects the delivered QoS, which in turns affects the other variable.

Therefore, we aim to develop a trust model that dynamically predicts the probability

of delivering an acceptable QoS. To this end, we capitalize on the formalism of depen-

dency networks. Similarly to the Bayesian network formalism which is a graphical model,

the formalism of dependency networks computes the joint probability distribution. How-

ever, it utilizes Gibbs sampling to approximate the probability distribution [36]. Unlike

Bayesian networks, the graphical structure of dependency networks may contain cycles.

Thus, dependency networks are able to capture the mutual dependencies and cycles among

variables of the problem domain. The nodes of a dependency network graph, which is a

directed graph, represent these variables where each node contains the local conditional

probability of the corresponding variable given its parents in the network. Whereas the

dependence and the independence of the nodes are represented by the precedence and the

54

Figure 14: Bayesian network of a service
trust

Figure 15: Dependency network of a ser-
vice trust

absence of the edges respectively.

Moreover, The authors in [37] argue that dependency networks are easier to learn from

complete data (i.e., data with no missing values), compared to Bayesian networks, thanks

to the approximate method described in [36]. In addition, the dependency network is more

robust due to the fact that any scalable classification or regression algorithm can estimate

the local distribution of each node in the network.

Using the WS-DREAM dataset [71], we create two networks for each service that plays

the role of the trustee: a dependency network and a Bayesian network. Each service is

being managed by a slave playing the role of the truster. Unlike the Bayesian network,

the dependency network is capable of capturing and representing the cyclic relations that

exist among QoS metrics and context variables. For example, Figure 14 and Figure 15

depict respectively the Bayesian and dependency networks of a service using the WinMine

Toolkit1. The presence of cyclic relations indicates that deterioration of QoS may result in

some context variables being activated. Such cyclic dependency relations affect the service

trust calculations. Ignoring such cyclic relations may lead to overestimated trust. For

this reason, we consider in this Chapter the different dependency relations linking context

variables to QoS metrics which have not been dealt with in the current approaches. Thus,

the framework of dependency networks is being used instead of the formalism of Bayesian

1https://www.microsoft.com/en-us/research/publication/the-winmine-toolkit-2/

55

https://www.microsoft.com/en-us/research/publication/the-winmine-toolkit-2/

networks usually deployed in the literature of related work.

Dependency Network Learning

In the remainder of this thesis, an upper case token (e.g. Xi) denotes a variable, a lower case

token denotes its value (e.g. xi), a bold-face capitalized token (e.g. Pai) is used to indicate

a set, and its instantiation is represented by a bold-face lower-case token (e.g. pai). We use

calligraphic token for templates and graphs (e.g. G).

We define a service using a set of random variables X = (X1, · · · ,Xn). Each variable

represents either a QoS metric or a context variable. For instance, let XRT and XT P be two

QoS metrics representing respectively response time and throughput of a given service, and

let XPC and XPF be two context variables denoting respectively price and profit of the same

service. Formally, the service would be represented as follows: X = (XRT ,XT P,XPC,XPF).

The corresponding dependency network D for X is (G ,P) where G = (V,E) is a

cyclic directed graph. Each node VXi represents a random variable Xi ∈ X , and each edge

ei, j connects VX j with VXi i f f Xi is one of the parents of X j. P is the set of local conditional

probability distributions, expressly P = (P(X1|X\X1), ...,P(Xn|X\Xn))

D is constructed by learning the local conditional distribution of each Xi ∈ X . Proba-

bilistic decision trees are adopted to estimate local conditional distribution of each Xi, i.e.

P(Xi|X\Xi) = P(Xi|Pai) where Pai are the parents of Xi and Pai ⊆ (X1, ...,Xi−1,Xi+1, ...Xn).

In other words, for each target variable Xi, we estimate P(Xi|Pai) given the remaining vari-

ables. Then, we adopt a score-based structure learning approach to search and evaluate the

space of candidate structures to select the optimal one. Thus, learning a decision-tree struc-

ture for each Xi is an optimization problem for finding a structure T with the maximum

score given observed data D. Particularly, we optimize the pseudo-loglikelihood (PLL) of

an assignment x to random variables X . Pseudolikelihood is an approximation to the joint

56

probability distribution of a collection of random variables. It estimates the set of condi-

tional distributions independently rather than jointly. PLL that estimates the contribution

for each relevant random variable conditioning on all other assignment values is calculated

as follows:

PLL(x) =
n

∑
i

log[P(Xi = xi|Pai)] (1)

In consequence, a greedy search algorithm is adopted to search the structure space and

find the one with the highest PLL. It starts with T , and for each modified structure T ′, by

edge deletions, edge additions, and/or reversals, a new score is calculated. T ′ is accepted

if PLL(T ′) > PLL(T). This is repeated until no increase in the score of the tree is possible.

Afterwards, the overall D of the service is constructed by linking each Xi with Pai.

For probabilistic trust inference of the service, Gibbs sampling is adopted to recover

the joint distribution of X , i.e. P(X).

• We begin with some initial value X (k) .

• The next sample X (k+1) = (x(k+1)
1 ,x(k+1)

2 , . . . ,x(k+1)
n) is obtained by sampling each

x(k+1)
i ∈ X (k+1) by updating it according to the distribution specified by

p(x(k+1)
i |x(k+1)

1 , . . . ,x(k+1)
i−1 ,x(k)i+1, . . . ,x

(k)
n)

as follows:

X (k+1) =

x(k+1)
1 ∼ p(x1|x

(k)
2 ,x(k)3 , ...,x(k)n)

x(k+1)
2 ∼ p(x2|x

(k+1)
1 ,x(k)3 , ...,x(k)n)

x(k+1)
3 ∼ p(x3|x

(k+1)
1 ,x(k+1)

2 , ...,x(k)n)

x(k+1)
n ∼ p(xn|x(k+1)

1 ,x(k+1)
2 , ...,x(k+1)

n−1)

(2)

57

• Repeat N times.

For particular instances, e.g. x2 , we can compute P(x1|x2) by fixing the value of X2 to

x2 during the iterations. The advantage of this is the ability to answer probabilistic queries

of the form P(x1|x2), where X1,X2 ⊂ X . For example, we can infer the probability of

getting a response time less than one second given throughput rate greater than 10 kbps as

p(XRT < 1|XT P > 10).

Accordingly, the trust of a truster u toward the trustee X is computed as follows:

trustu(X) =
1
N

N

∑
k=1

W k×z(X (k)) (3)

where z(X (k)) = ∑
n
i=1 pi× xk

i , s.t. pi is a user-defined preference regarding the different

used metrics. In addition, according to the law of large numbers, we define an ascending

weight for the samples as follows:

W k =
k

N− k+1
(4)

Adapted Dependency Network

However, dependency network assumes that the relations linking QoS metrics to context

variables are static, i.e., they are not changeable over time. Indeed, this assumption is not

realistic since the dynamic running environment is influenced by different context vari-

ables. Additionally, the user’s QoS requirements are volatile and changeable with time.

For example, the time context variable has a different effect on other context variables and

QoS values at peak service hours than non peak ones. At peak hours, services have higher

pricing rates and service users must receive an acceptable level of QoS values. In such

a manner, the dependency network representing the service trust has links and/or nodes

changing over time. Accordingly, the service trust, the value to predict, is a time-sensitive

58

variable.

To incorporate this evolving nature, we extend the dependency network approach to

consider dynamic environments. Particularly, the prediction model is adapted to deal with

the concept drift, i.e., changing underlying relationships in the data. To this end, we modify

the probabilistic decision trees to consider such a phenomenon. We are inspired by the

algorithm called ”Concept-adapting Very Fast Decision Trees (CVFDT)” proposed in [38]

to compare the score of the tree at different times to find more efficient split attributes

(binary tests) to adapt the model to the new data. This approach keeps the model consistent

with the data without retraining it from scratch by updating the sufficient statistics at the

nodes. However, the approach is proactive with no explicit strategy to detect the concept

drift. Thus, the approach suffers from slow reaction to the concept drift in data. Therefore,

we adopt the concept drift detector based on Fisher’s exact test proposed in [26]. The

Fisher’s exact test works efficiently with small sample sizes, which makes it an applicable

detector in highly dynamic environments, unlike the most statistical tests that require large

sample size for precise results. It analyses the prediction results over two windows to track

changes in the error rate of the model. A recent window containing the latest data instances

and an older window are used for this purpose. The authors in [26] assign the windows size

to 30 instances. As a new data instance arrives, it is added to the recent window, and the

data is shifted to forget the oldest data instance in the old window.

The main idea behind this detector is that the model keeps its accuracy over the two win-

dows, whereas a significant decrease within the accuracy over the recent window signals for

a drift. Based on a 2x2 contingency table that contains the errors and hits of two windows,

the probability of all observed frequencies p is calculated, which should be greater than

an adopted significance level, otherwise the null hypothesis is rejected indicating to a drift.

The null hypothesis assumes that errors are equally distributed over windows. The authors

in [64] suggest the significance level of the warning level and the drift level as w=0.05

59

Algorithm 1 adaptive local conditional distribution
1: Let T be the set of the constructing tress of D
2: Let ALT(X) be the set of alternate trees rooted at node X
3: Let NEX be the set of new data instances in the recent data window
4: Output: T with adapted local conditional distributions
5: Begin
6: for each tree t ∈T do
7: for each node X do
8: for each alternate tree in ALT (X) do
9: use NEX to calculate its score

10: end for
11: select the alternate tree that maximizes the heuristic score
12: end for
13: end for
14: End

and d=0.003 respectively. Within the warring period, the internal nodes are scanned to

adapt their local conditional distribution by adapting the underlying trees inspiring by the

approach in [38] .

Algorithm 1 illustrates the adaptive local conditional distribution of each node. First,

the dependency network is decomposed into the set of the constructing trees. For each

tree, we scan the internal nodes to find more efficient splitting attributes to enhance the

heuristic score capitalizing on the sufficient statistics. To this end, at each internal node,

we compare the sub tree rooted at this node with all alternate trees rooted at it to select

the one maximizing the heuristic score similarly to [38]. Afterwards, the overall D of the

service is constructed by connecting the nodes to their parents.

4.1.2 Objective Trust

We extend the trust framework by leveraging objective trust resources to overcome the

lack of subjective trust resources for a trustee. To this end, referrals toward the trustee

are aggregated to compute the objective trust in a collusion-resistant manner. Since mali-

cious referees collude to either promote or demote services, collusion attacks mislead trust

60

results.

Recent approaches to service objective trust evaluation capitalize on social networks for

referees discovery to estimate the service objective trust [77]. However, this depends on the

availability of friends who have direct interactions with the trustee, a condition that may

be difficult to meet under the same context environment. In addition, the social discovery

process has high system overhead.

To tackle these problems, we propose a novel service objective trust evaluation tech-

nique. The concept of the proposed technique is inspired by the open-source code projects,

e.g. Linux, where software developers around the world collaborate to raise the level of

quality. The advantage of this mechanism stems from the power of mass collaboration to

establish a meaningful service trust. In such a manner, the truster initiates a request to a

trusted third party. The request contains the direct trust of the truster u toward the trustee

X under a context environment, trustu(X). The truster uses a hash function to prevent the

referees from knowing the value of trustu(X). On the other hand, each referee r sends a

feedback report {trustr(X), pro f iler}, where trustr(X) is feedback value toward the same

trustee under the same context environment and pro f iler is the referee’s profile which con-

tains the history of his interactions. The third-party updates his central database with the

referees’ interactions history to detect collusion behaviours. Particularity, collusion among

referees are detected to filter out the malicious colluders’ reports as discussed in the next

subsection. Then, the third party calculates the similarity between each non-malicious ref-

eree and the truster [19]. Finally, it computes the service trust trust(X) toward the trustee

by combining subjective trust and objective trust using a weighted average. The weight of

each feedback trustr(X) is the similarity degree between this feedback and the truster own

opinion trustu(X). Thus, the highest weight (i.e., 1) is given to the truster own opinion

61

trustu(X). The service trust is calculated as follows:

trust(X) =
∑

RT
r=1(1−|trustu(X)− trustr(X)|)trustr(X)+ trustu(X)

∑
RT
r=1(1−|trustu(X)− trustr(X)|)+1

(5)

where RT is the number of non-malicious referees and 1− |trustu(X)− trustr(X)| is the

similarity degree between trustu(X) and trustr(X) which belongs to [0,1].

Collusion Detection

Current approaches calculate service objective trust by assigning weights to referees’ re-

ferrals according to their global credibility. However, these approaches do not address

collusion in the calculation directly. Moreover, existing collusion detection solutions are

mostly machine learning-based approaches to find frequent patterns that require that all

observations be identically and independently distributed [88]. Therefore, they are still

vulnerable to sophisticated collaborative attacks, i.e. collusion attacks.

In this thesis, we directly detect collusion based on referees history according to the

threat model introduced in [43]. Figure 16 illustrates the behaviour characteristics of the

colluders. Type A (not shown in the figure), represents colluders that are independently ma-

licious and do not form any group. On the other hand, types B, C, and D form a malicious

collective. Type B malicious colluders boost the trust of each other. However, we only con-

sider the situations where type B malicious colluders boost the trust of the newcomers of

type B in the malicious collective as Figure 16a shows. Whereas, Figure 16b illustrates that

type C malicious colluders provide dishonest feedback to good services (G) which receive

high ratings from others outside the colluding collective. Type D malicious colluders boost

the trust of type B colluders which receive low ratings from others as it is demonstrated

by Figure 16c. Particularly colluders overlap to boost or decrease the trust values. The vi-

sualized threat model motivates us to view collusion detection problem as a citation-based

62

(a) Threat model B (b) Threat model C (c) Threat model D

Figure 16: Visualized Threat model

clustering problem where we are interested in identifying overlapping referees to detect the

malicious collective.

To this end, we propose a graph-based approach that is more suitable for collusion

detection because it can capture the underlying relationships among referees via their feed-

back toward services. We view referees and services as nodes V of a directed graph

R = (V,E) where an edge from a node p to a node q means a review from p toward q

does exist. Moreover, the out-degree of a node p is the number of nodes it has a review

for, and the in-degree of p is the number of nodes that have reviews for this node. We di-

rectly detect collusion based on referees’ history of following colluder patterns illustrated

in Figure 16.

For overlapping referees detection, we use the approach proposed in [46] that aims to

find the highly authoritative nodes and hub nodes and detects the overlap in the sets of hub

nodes pointing to the authoritative nodes. Authoritative nodes are those that have large in-

degree while hub nodes have large out-degree to multiple relevant authoritative nodes. In

our graph-based collusion detection modelling process, we have considered authoritative

nodes as services that malicious referees (hubs nodes) are reviewing. Particularly, mali-

cious referees boost or lessen the trust values of services by collaboratively reviewing the

services which, in terms of graph theory, increases the out-degree and in-degree of the

63

nodes corresponding to the malicious referees and the services respectively. Therefore, we

are interested in detecting the overlap in the sets of hub nodes (i.e., malicious referees)

pointing to the authoritative nodes (i.e., services to be reviewed) to detect the collective

collusion attacks. Each node node is associated with two different weights, namely author-

ity weight (authnode) and a hub weight (hubnode). These weights are calculated as follows:

authnode = ∑
node′:(node′,node)∈E

hubnode′×w(node,node′) (6)

hubnode = ∑
node′:(node,node′)∈E

authnode′×w(node,node′) (7)

where we define w(node,node′) as percent of positive/negative feedback in all feedback from

node toward node′ with regard to negative/positive feedback from all other nodes.

The set of authority weights {authnode} is encoded as a vector auth with a coordinate

for each node in R. In a similar way, the set of hub weights {hubnode} is encoded as a vector

hub. These vectors are initialized by value 1. Then, the vectors are updated iteratively by

Equations 6 and 7. We select the nodes with large coordinates in auth and hub as authorities

and hubs respectively.

To detect type D malicious and type B malicious colluders who boost the trust of type B

malicious colluders that receive low feedback from other referees outside of the colluding

collective, we define w(node,node′) as the percentage of positive feedback in all feedback

from node toward node′ with regard to negative feedback from all other nodes as follows:

w(node,node′) =
FD+

(node,node′)

FD(node,node′)
+

FD−
(V\node,node′)

FD(V\node,node′)
(8)

where FD+
(node,node′) is the number of positive feedback from node for node′, FD(node,node′)

is the number of feedback from node for node′, FD−
(V\node,node′) is the number of nega-

tive feedback from all nodes except node for node′, and FD(V\node,node′) is the number of

64

feedback from all nodes except node for node′.

To detect type C colluders, w(node,node′) is defined as the percentage of negative feedback

in all feedback from node toward node′ with regard to positive feedback from all other

nodes as follows:

w(node,node′) =
FD−

(node,node′)

FD(node,node′)
+

FD+
(V\node,node′)

FD(V\node,node)
(9)

where FD−
(node,node′) is the number of negative feedback from node for node′, FD(node,node′)

is the number of feedback from node for node′, FD+
(V\node,node′) is the number of positive

feedback from all nodes except node for node′, and FD(V\node,node′) is the number of feed-

back from all nodes except node for node′.

4.1.3 Bootstrapping Trust

The newcomer services that have no interaction history to estimate their initial trust values

are more likely to be overlooked in future service transactions for the lack of trust evidence.

However, services with poor history could rejoin the service community with new identities

to reset the past (i.e., white-washing attacks). Thus, one of the crucial issues in establishing

service trust is trust bootstrapping, i.e. the assignment of initial trust values to newcomer

services, that is a resilient to the white-washing attacks

Most of the existing bootstrapping approaches, for example, the approaches proposed

in [81] and [18], are based on the existence of feedback, which is not always a realistic

assumption. Moreover, bootstrapping approaches that use default values or punishments

have high-performance overhead due to the communication and aggregation processes [81].

The default-value approach assigns default trust values for newcomer services [81]. A

high default value of the trust will favour recently lunched services over existing ones

that endeavoured to achieve a good trust value. However, newcomer services with low

65

default trust value will fail to be involved in transactions. Thus, either the already existing

services or the newly added are favoured. This approach motivates malicious services with

bad history to re-publish new identities to start over, known as a white-washing attack.

The punishing approach overcomes white-washing by assigning low initial values of trust

for the fresh services. On the other hand, fresh services are disadvantaged considering

the low chance of making transactions and gaining trust. The adaptive approach assigns

trust values for newcomer services based on the rate of maliciousness in the system [55].

However, the downside of this approach is that it is vulnerable to a white-washing attack. To

overcome these limitations, this thesis estimates initial trust values for newcomer services

through behavior observation, which contributes to our proposed bootstrapping mechanism

by making it resilient to the white-washing attacks.

We propose a novel bootstrapping approach, based on the concept of social adoption

where newcomers are adopted by trusted services, i.e. bootstrappers, to initiate their trust

values. The motivations for trusted services to adopt newcomer services are: (1) the cost of

new services is free/low-cost; and (2) the newcomer services would reduce the workload of

trusted services. The incentive of newcomer services to behave well is the trust gain. The

proposed approach counts on the observed values of QoS metrics of the newcomers under

different contexts to estimate the service trust. Newcomer services will be monitored by

the bootstrapper for a predefined time window. Similar to the approach proposed by [55],

the newcomer services have no knowledge of the time of the evaluation period. During

this time window, newcomer services will be monitored in different context environments.

This mechanism makes our approach resilient to white-washing attack.

We use incremental classifiers for bootstrapping. Incremental classifiers are widely

used for their efficiency and capability to learn from a stream of observations which makes

them suitable for the bootstrapping problem. Unlike traditional classification techniques

such as decision trees or neural networks that require large labelled training data which is

66

hardly obtained, the incremental classifiers, for example, naive Bayes classifiers, are initi-

ated with a sample training dataset while the observed data is continuously used to extend

it. Particularly, we consider instance-incremental learning where the classifier learns from

each observation as it arrives [94, 49]. Accordingly, an incremental naive Bayes classifier

is used by the bootstrapper. The initial sample dataset is obtained from the bootstrap-

per’s history records of similar services to the newcomer, based on their functional and

non-functional specifications. Each service X = (x1, · · · ,xn) has a class label cl ∈ C and

C = (c1, · · · ,cL). In our case, we have two class labels, namely trustworthy and malicious.

On top of the training dataset T D, the naive Bayes classifier, namely multinomial naive

Bayes classifier with Laplace smoothing equal to 1 for zero probability cases, learns pat-

terns of data, i.e. finds out the mapping relation between each new observation X and a

class label cl as follows:

P(cl|x1, · · · ,xn) =
P(x1, · · · ,xn|cl)P(cl)

P(x1, · · · ,xn)
(10)

After labeling each observation X < X∗,c∗l >,X∗ = (x∗1, · · · ,x∗n), where ∗ denotes new

observation, the classifier updates its parameters as follows [31]:

P(cl) :=

δ

1+δ
P(cl) if c∗l 6= cl,

δ

1+δ
P(cl)+

1
1+δ

if c∗l = cl

(11)

where δ = |C|+ |T D|, s.t. |C| is the number of class labels and |T D| is the length of the

training dataset.

P(Xi = xi|cl) :=

ξ

1+ξ
P(Xi = xi|cl) if c∗l = cl,x∗i 6= xi,

ξ

1+ξ
P(Xi = xi|cl)+

ξ

1+ξ
if c∗l = cl,x∗i = xi,

P(Xi = xi|cl) if c∗l 6= cl

(12)

67

Figure 17: Ensemble classifier architecture

where ξ = |Xi|+count(cl), s.t. |Xi| is the number of values for Xi and count(cl) represents

the number of samples with class label cl .

The incremental naive Bayes classifier performs poorly under a small number of sam-

ples. However, as the number of samples increases, the performance of the classifier in-

creases. This means, the early stage of the bootstrapping mechanism has a poor perfor-

mance and produces noisy data that harm the overall performance of the classifier.

To solve this, we use an ensemble of classifiers which has been proven to be more ac-

curate than a single classifier. Particularly, we combine the incremental Bayesian classifier

with the K-nearest neighbor (KNN) algorithm as Figure 17 illustrates. In the case of the

KNN algorithm, the situation is quite the opposite. KNN performs well with a small dataset

which enhances the performance of the early stage of the classification. Thus, we combine

the advantages of both classifiers to cover their drawbacks. KNN classifies a new observa-

tion by computing the majority of votes of the labels for K-nearest neighbor set (K). This

set is determined by computing the distance, i.e. similarity, of the training data to the new

observation using the following equation, then selecting the K nearest neighbor:

argmaxb ∑(x,cl)∈K(b = cl)

where b is the majority voted class label. However, the standard KNN does not estimate

68

the probabilities of class labels [56]. To this end, we simply estimate the conditional prob-

ability P(cl|X) = Q/|K| where Q is the number of instances belonging to class cl in the

neighborhood set with length |K|.

An ensemble of classifiers arises the issue of how to combine the predictions. The

most common technique for combining the prediction of classifiers is voting. In voting

(majority vote and weighted majority vote), each classifier gives a vote for a prediction to

obtain the final prediction which receives the most votes. Unlike the majority vote, the

weighted majority vote relaxes the assumption that classifiers are equally accurate, which

is more practical. However, most of the existing weighted majority vote algorithms are

static where the weights of the combined classifiers are evaluated in the training phase.

Therefore, they are not able to capture the changes in the stream of observations. On

the other hand, dynamic weighted majority voting has the ability to deal with steam of

observations to emphasize the contribution made by accurate classifiers and suppress the

influence of others.

Current dynamic weighted majority vote approaches use genetic algorithms [75]. The

problem of computing the weights is modelled as an optimization problem to select either

the features to be used by a single classifier or the actual set of classifiers that have to be

combined. None of the existing approaches are based on the statistical performance of the

classifier. Therefore, we apply entropy and probability distribution to reflect the certainty

of the classifier in the predicted class label, thereby, reducing the interference of unreliable

noisy information and achieving accurate performance. Particularly, high entropy and a

highly spread probability distribution indicate low certainty and vice versa. First, we com-

pute the class probability distribution predicted by each classifier Pv(cl|x1, · · · ,xn)∀cl ∈C

where v ∈ {1,2}. Then, we compute the entropy of the class probability distribution Hv

predicted by each classifier as:

Hv =−∑
L
l=1 Pv(cl|x1, · · · ,xn) log2 Pv(cl|x1, · · · ,xn).

69

Finally, we compute the entropy weight for each classifier as:

wv =
1−Hv

∑
2
v=1 1−Hv

.

The output prediction will be the prediction of the classifier with maximum weight. The

new observation will be added with the predicted class label to training datasets as shown

by Figure 17. As depicted in the figure, there is a circular structure between the output

prediction and the input of two datasets. The arrows indicate that the output prediction is

included to update the knowledge about the newcomer service which is under observation.

This provides enough information to be able to assign an initial trust value to this new

service.

4.2 SLA Violation Prediction

The master analyzes QoS information of composite service to forecast SLA violations.

Based on the forecast, adaptation actions are invoked to prevent potential violations. To

this end, we propose an online prediction approach based on Kalman filters that is effiecint

in dynamic environments in the following subsection.

However, the online prediction approach fails to comprehensively consider service de-

pendency that exists in the real business world at run time, which may lead to high eco-

nomic compensation caused by breach penalties. Therefore, we propose an SLA violation

prediction approach capitalizing on relational dependency network (RDN) to express and

reason with service dependencies in a relational setting. We discuss this in details in Sub-

section 4.2.2.

4.2.1 Kalman Filter-based Approach

An online QoS prediction approach requires the following properties: (1) efficiency: the

approach should not require large historical QoS data processing in order to reduce the time

70

required to make decisions. (2) effectiveness: the approach should be able to successfully

predict as many SLA violations as possible since false predictions are costly and time-

consuming. (3) robustness: the approach should be aware of continuous changes in QoS

to adapt the composite service as early as possible as late adaptation brings additional cost.

To meet these requirements, we propose an on-line QoS prediction model based on the

Kalman filter algorithm [74].

The Kalman filter model estimates the state vector in a linear dynamic system, which

is the nature of our online QoS predication. The main reason for choosing Kalman filters

is because they do not require large historical data, making them convenient for online pre-

diction. In comparison, time series models (e.g. ARIMA/GARCH) and neural network

models (e.g. RNN) require large historical datasets to train the model which affects neg-

atively the efficiency requirement. Moreover, offline trained neural network models are

inefficient for online adaptation because of their incompetence in dynamic environments

[68]. Another related model that works on small datasets is the Grey model [42]. However,

we particularly chose the Kalman filter model over the Grey model for its ability to improve

prediction accuracy on data series that may oscillate frequently in the short-term [89]. This

would fulfill the effectiveness and robustness requirements.

The main steps of the Kalman filter algorithm are illustrated in Figure 5 in Section 2.6.

The algorithm calculates the Kalman gain, calculates/updates the prediction values, and

updates the prediction error. To reduce the estimation uncertainty, i.e., error, the Kalman

filter algorithm recursively performs prediction followed by an update. It assumes that the

state at a time k is evolved from the prior state at time k−1.

In equation format, given a state vector xk that represents QoS metrics, namely response

time, availability and cost, the QoS state dynamics at time k is described as follows:

xk = Fxk−1 +wk (13)

71

where F is the state transition matrix which applies the effect of each state parameter at

time k−1 on the state at time k and wk is the process noise vector. The covariance matrix

for wk is Q.

In addition, the measured QoS vector is represented in terms of the states to be compa-

rable to the predicted one using:

zk = Hxk + vk (14)

where zk is the measured QoS vector, H is the transformation matrix to map the state

vector parameters into the measurement domain, and vk corresponds to the measurement

noise vectors. The covariance matrix for vk vector is R. In our case, we set Fk = Hk = I,

where I is the identity matrix.

In the prediction step, the state vector is predicted from the state dynamic equation

using:

x̂k = Fx̂k−1 (15)

where x̂k is the predicted state vector at the time window k, and x̂k−1 is the previous pre-

dicted state vector at the time window k− 1. The covariance matrix of the predicted state

is calculated by:

Pk = FPk−1FT +Q (16)

where Pk−1 is the previous predicted state error covariance matrix.

In the update step, the Kalman gain Kk matrix is calculated by Equation 17. Then, the

predicted QoS state vector xk at time k is updated by Equation 18. Finally, prediction error

Pk is updated by Equation 19.

Kk = Pk(Pk +Rk)
−1 (17)

x̂k = x̂k−1 +Kk(zk− x̂k−1) (18)

72

Pk = (I−Kk)Pk−1 (19)

This process will be repeated to reduce the error Pk.

Improper choice of the covariance matrixes of process noise (i.e., Q) and measurement

noise (i.e., R) may significantly degrade the prediction performance. However, they are

mostly determined using an ad-hoc procedure, in which Q and R are assumed to be constant

during the estimation, which could not capture the dynamicity of the running environment.

Therefore, we propose a tuning approach based on GA for estimating the optimal values of

Q and R. Particularly, we find Q that minimizes the mean square error of current estimated

QoS values against the previous ones by Equation 20 and R that minimizes the mean square

error of the measured QoS values against the real ones by Equation 21.

min
k

∑
t=1

(x̂t− x̂t−1)
2 (20)

min
k

∑
t=1

(zt− xt)
2 (21)

4.2.2 Relational Dependency Network-based Approach

We use the online-order processing example to illustrate the relevant service dependencies,

namely QoS dependencies. In this example, we have 8 services. Service S1 is responsible

for products viewing and browsing, while service S2 identifies the costumer location to

allow service S3 to check the products availability. Then, service S4 gets the products and

the total price is calculated by service S5. Afterwards, the costumer pays through service

S6 along with service S7 for currency conversion. Finally, service S8 delivers the products

to the costumers.

73

In this use case, a number of QoS dependencies can exist. Changes to the QoS val-

ues of constituent services affect the QoS values of each other (horizontal dependency).

Furthermore, the QoS values of the composite service are affected by the QoS of the con-

stituents, and the other way around (vertical dependency). For example, if all or some

constituent services are provided by the same provider, data transmission would happen at

a faster rate and the response time of the composite service would be reduced. Also, the

price of the constituent services could become cheaper since some service providers offer

cheaper prices for services that come together. Consequently, the price of the composite

service would be cheaper if the constituents are provided by the same provider. Thus, the

price of the composite service depends on the prices of the constituents. On the other hand,

the price of the constituents is affected by the composite price. For example, to reduce

the price of a composite service, the price of it constituents can modified either by price

renegotiation or by replacing the constituent with a cheaper substitute. This is an example

of cyclic QoS dependency, in particular, vertical cyclic dependency. Furthermore, there is

an example of horizontal cyclic dependency because how the costumers and products are

located. We found that S8 depends on S6 which in turn depends on S7. S7 depends back on

S2 which depends on S5 that relies on S8. This creates a cyclic dependency chain among

services (i.e., horizontal cyclic dependency). Our proposed approach for SLA management

considers these dependency relations which enhances SLA violation prediction.

Although service dependencies have an impact on the composite service SLA man-

agement, there is no direct description for them [91]. Service dependency information is

implicitly described in the SLA, and current SLA management approaches are limited with

regard to capturing service dependencies. Most approaches assume that the constituent ser-

vices are independent which is impractical. Therefore, this work proposes a model to learn

the service dependency relations. Furthermore, composite services data is relational in na-

ture, yet current approaches rely on propositional data assuming the constituent services

74

are homogeneous and statistically independent ignoring the relations among those con-

stituents. Since the values of the same variable, e.g., response time, for related constituents

are statistically dependent, relational learning and inference techniques are necessary for

composite services. Such techniques improve the SLA violation predictions accuracy.

Representation of real-world data as homogeneous, independent and identically dis-

tributed (i.i.d.) instances leads to statistical bias in the results. Therefore, this thesis ex-

presses and reasons on service dependencies in a relational setting. Particularly, we view

composite service trust as the probability of compliance with SLA rules. To this end, we

propose a relational dependency network-driven model to predict SLA violation and esti-

mating the probability of SLA enforcement considering different types of dependencies in

a relational setting.

Relational Dependency Network Learning

Figure 18 shows the relational database with one-to-many associations between a compos-

ite service and the constituents. We define the properties of objects (i.e. services) and

relations among them as a set of predicates P . Then, we define the associated range for

each p∈P . Probabilistic predicates represent the random variables in the domain. Finally,

we declare a set of random variable declarations RV D that defines the random variables.

Accordingly, we define RDN as a tuple (P,RV D,dep), where dep is a function mapping

each p ∈P to a dependency statement [69].

Figure 18: Relational Database

For example, we generate predicates about the objects (i.e. compositeservice and

75

constituent) as follows:

priceConstituent/1

availabilityConstituent/1

responsetimeConstituent/1

priceComposite/1

availabilityComposite/1

responsetimeComposite/1

constitutes/2

collaborates/2

with the following random variable declarations:

random(priceConstituent(S))← service(S)

random(availabilityConstituent(S))← service(S)

random(responsetimeConstituent(S))← service(S)

random(priceComposite(C))← composite(C)

random(availabilityComposite(C))← composite(C)

random(responsetimeComposite(C))← composite(C)

random(constitutes(C,S))← composite(C),service(S)

random(collaborates(S,S1))← service(S),service(S1)

and ranges:

range(priceConstituent(S)) is R

range(availabilityConstituent(S)) is R

range(responsetimeConstituent(S)) is R

range(priceComposite(C)) is R

range(availabilityComposite(C)) is R

76

range(responsetimeComposite(C)) is R

range(constitutes(C,S)) is Boolean

range(collaborates(S,S1)) is Boolean

S/S1 and C are variables for individual service and composite service respectively. The

values of price, response time and availability are numeric and their lower and higher

bounds are controlled by the SLA. The value of the predicate constitute is Boolean to

indicate whether a service S is a constituent of the composite service C or not, and the

Boolean value of the predicate collaborates indicates whether there is a collaboration be-

tween services S and S1.

Random variable dependency is determined by relational features that represent the

relational information of the problem domain. To define the space of relational features,

given a set of logic variables L, we enumerate all conjunctions of random variables-value

tests U in the form P = v where P is an atom and v ∈ range(P). Then, we generate a candi-

date feature aggL(A,U) where A is an atom and agg is an aggregation function applicable

to range(A). There is a number of aggregation functions (functions that map every finite

multiset of elements from a domain to a single value from a range R) to be used such as

SUM. For example, using the interpretation I that assigns a value to each random vari-

able from its range, we define a relational feature of the form aggL(A,U) to compute the

composite price as follows:

service(s1)

service(s2)

service(s3)

service(s4)

compositeService(c1)

priceConstituent(s1,30)

priceConstituent(s2,40)

77

priceConstituent(s3,35)

priceConstituent(s4,30)

constitutes(c1,s1)

constitutes(c1,s2)

constitutes(c1,s4)

aggC(priceConstituent(S),constitutes(C,S) = true)

where the set of variables L is {C} ranging over composite services and the conjunction U

consists of constitutes(C,S) = true that tests if a service S is a constituent of a composite

service C. Accordingly, to compute the price of a particular composite service c1 using the

aggregation function SUM, we have a feature as follows:

SUM(priceConstituent(S),constitutes(C,S) = true) =

SUM(priceConstituent(s1), priceConstituent(s2), priceConstituent(s4)) =

SUM(30,40,30) = $100

Finally, we learn dependency statements (P|Parents(P)), which defines for each ran-

dom variable the other random variables that it depends on. In addition, we learn the

associated conditional probability distributions (CPDs) to model the distribution of the tar-

get predicate P on the parent set of relational features Parents(P). To this end, a greedy

approach is adopted to select the features in the parent set. Feature selection generally re-

quires repeated CPD estimation while measuring the change in the scoring criterion. Each

iteration selects one feature to be added to the parent set until no inclusion improves the

scoring criterion, namely the pseudo-loglikelihood. After each feature addition, CPD is

learned on the training data and then scoring it on the validation data. The procedure termi-

nates if the score becomes stable with no more improvement. Pseudo-loglikelihood (PLL)

estimates the contribution for each relevant random variable conditioning on all other sub-

stitution values in the interpretation I is calculated as follows:

78

PLL = ∑p∈P ∑g∈gr(p) log[P(I(g))|I(Parent(g))]

To learn the local CPD of each predicate, we define the CPD model to use both the

range of the target predicate P and the parent set Parent(P). We use linear Gaussian distri-

bution since the predicate’s range is continuous and all the features in the parent set have

continuous values. Finally, the inference in RDN is performed by using an ordered pseudo-

Gibbs sampler. Ordered Gibbs sampling randomly initiates each random variable, and then

iterates over the variables in a fixed order and resamples the value of each variable from its

CPD [36].

In other words, given a set of random variable declarations RV D for all probabilistic

predicates in P , we learn the parent set of each random variable randvar. Particularly,

we learn a local distribution that models each p using the set of candidate features for

p. Consequently, conditional probability distribution and a dependency statement will be

associated with each randvar that maximizes the pseudo-loglikelihood score. The final

model is obtained by conjoining all learned local distributions to specify the joint distribu-

tion over the random variables. To this end, an ordered Gibbs sampler is applied to CPDs

to get the joint distribution.

Accordingly, the trust toward a composite service is constructed by performing N iter-

ations of the ordered pseudo-Gibbs sampling. It is computed by Equation 3 that defined in

Subsection 4.1.1.

4.3 Experiments

We implement our experiments using a machine having the following characteristics: CPU:

Intel Core i7-4790; Processor: 3:60 GHz; Operating System: 64-bit Windows 7; RAM: 16

GB. The evaluation of our framework is carried out using WS-DREAM dataset [71] that

includes real-world QoS measurements (i.e. response time ((sec)) and throughput (kbps))

79

from 142 service users on 4,500 services over 64 consecutive time slices at a 15-minute in-

terval. The dataset is publicly released for the research in the computational services com-

munity to represent the population in a fairway. This dataset has been largely accepted in

the community as comprehensive and highly representative, which makes it widely adopted

in the relevant literature on services computing.

4.3.1 Direct Trust Prediction Accuracy

In this experiment, we explore the efficiency of the service direct trust prediction. In this

experiment, we vary the training data density from 100 to 500 in order to estimate the accu-

racy of the learned dependency network-based trust model. To this end, the log score [36]

is used to measure the prediction accuracy of the model by Equation 22 on the correspond-

ing test set (x1, ...,xS). This score reports the average of log probability values across the

test set. This means that on average, the log probability that each output variable assigns to

the given value in the test case given the values of all other input variables (variables that

are used only to predict output variables) is as follows:

Score(x1, ...,xS|model) =−∑
S
i=1 log2 p(xi|model)

nS
(22)

where for each Gibbs sampler invoked to determine p(xi|model), we average 5000 itera-

tion.

Figure 19 depicts the evolution of the dependency network prediction accuracy where

the x axis represents the density of the training data and the y axis indicates the accuracy

of the learned model on the test data. Furthermore, we vary the number of input variables

that are used to predict the output variables from 10 to 50. As illustrated by the figure, the

prediction accuracy is related to the density of the training data. This result indicates that

the prediction accuracy of the dependency network increases as more data accumulated in

80

the model. In other words, the prediction accuracy of the dependency network increases as

more information is accumulated for the evidence, i.e. input variables.

Figure 19: Dependency network performance

4.3.2 Dependency Network vs Bayesian Network

This experiment compares the performance of the dependency network-based trust model

(DN) and the Bayesian network-based trust model (BN). The joint probability from a

Bayesian network is determined using the law of total probability. We compare the pre-

diction accuracy of the two models. Then, we compare the computational efficiency for

learning the models.

Figure 20a depicts the difference of the prediction accuracy of the models, where we

fix the number of input variables to 50. As shown in the figure, the Bayesian network-

based trust model shows higher prediction accuracy for small training data sets than the

one shown by the dependency network-based trust model. This is attributed to the fact that

the Bayesian network utilizes an exact inference algorithm which results in better qual-

ity compared to the dependency network. However, as more data accumulated into the

81

(a) (b)

Figure 20: Dependency network-based approach (DN) vs. Bayesian network-based ap-
proach (BN). (a) Prediction accuracy of the models. (b) Computational efficiency for learn-
ing the models.

models, contrary to the Bayesian network-based model, the prediction accuracy of the de-

pendency network-based model increases. The decrease in the prediction accuracy of the

Bayesian network-based model proves the limitation of the Bayesian Network in captur-

ing dependency relations that deteriorate its prediction accuracy. This result implies that

the proposed dependency network-based trust model is more suitable for large and com-

plex environments. Moreover, it proves its ability to capture dependency relations, which

improves its prediction accuracy.

Afterward, we measure the computational efficiency of the models on a larger scale by

considering the computation time for learning the models. Figure 20b plots the relationship

between the learning time, y axis, of both models and the training data density, x axis, where

we fix the number of input variables to 50. As shown in the figure, the proposed dependency

network-based model is superior to the Bayesian network-based model in terms of learning

time. This is because the Bayesian Network-based model uses an exact algorithm which is

known to be NP-complete, whereas the proposed dependency network-based model uses

an approximation algorithm. This proves the robustness of the proposed approach in large-

scale settings.

82

4.3.3 Subjective Trust in Dynamic Environment

This experiment explores the efficiency of our prediction approach of the service’s subjec-

tive trust in dynamic environments. We estimate the log score by Equation 22 to assess the

model’s prediction accuracy. To simulate the concept drift in data, we use a random thresh-

old to define the errors and hits made by the predicted model, such that, if p(Xi|model) for

each instance Xi in the windows of the data is less than the threshold, an error is reported

for the corresponding window, otherwise it is a hit. This threshold is changed periodically.

The concept drift is imitated by increasing the number of errors in the recent window of

data.

Figure 21 depicts the evolution of the predictive accuracy of the static model based on

traditional dependency network and the adaptive one in dynamic environments, where the

x axis represents the dimensionality of the space, i.e., the number of input variables. The

secondary vertical axis represents the concept drift level, which is the percentage of test

instances that have a change in the relationships between input and output variables. The

figure shows that our approach outperforms the traditional one by 20%. This contributes

to the ability of the proposed approach to rapidly adapt to the changing environment. In

addition, the prediction accuracy is correlated with the dimensionality of the space. In

other words, the prediction accuracy of the proposed approach increases with the amount

of available relevant information.

4.3.4 Accuracy and Resiliency Numerical Results

This experiment analyzes the accuracy and resiliency properties of the proposed collusion

detection approach against collusion attacks. We compare our approach with PeerTrust-

PSM proposed in [92], which is based on a personalized similarity measure (PSM) and

QoS Correlation Trust introduced in [58], which is based on the personal experiences of

the truster.

83

Figure 21: Adaptive dependency network performance

Due to the current limited availability of real-world datasets that report feedback rating

data [58], we follow the same simulation setup as in [58]. We set the number of interacting

nodes, i.e. services and the corresponding referees, to 100 and simulate service trust in

500-time steps. At each step, a random number of interactions occur with each of the

nodes. The initial objective trust value of each node is 0. Each referee gives a service a rate

that represents its actual performance on a scale of 10. We use the utility function, i.e. a

single metric to quantify the quality perception of the delivered service, proposed in [95] to

calculate the service performance, where all QoS metrics are weighted by their importance

and normalized by their averages and standard deviations, so they are not biased by any

metric with a large value. Finally, the objective trust of the services is updated based on the

collected feedback ratings by calculating the mean value. The final objective trust values

are the average of 100 runs.

We compare the estimated service objective trust value of our approach against QoS

Correlation Trust and PeerTrust-PSM approaches by reporting the estimation error of the

objective trust of one service as indicated by a referee and the one calculated during the

multi-round simulation. Figure 22 plots the mean errors of the aggregated trust based

84

on feedback from 99 referees. As it is illustrated by the figure, we vary the percentage

of colluders between 10% and 90% and set the percentage of malicious feedback from

them to 100%. The results show that the proposed approach performs better than other

approaches. This out-performance is justified by the fact that our approach relies on global

quality metrics based on nodes’ history of interactions. However, our approach is limited

to detect the colluders of type A, since they are independently malicious and do not form a

collectively malicious group.

Also, Figures 23 and 24 show the objective trust distributions of the nodes without

and with the proposed collusion detection approach respectively. We set the percentage of

colluders to 10% and the percentage of malicious feedback to 100%. We consider three

types of colluders: B, C, and D. Type B and D colluders boost the trust of the nodes of

type B whereas type B and C colluders lessen the trust of the good nodes. Good nodes are

those which provide good services while having good behaviour. We consider the trustee

as a good node in this experiment. For clarity, we plot only the trust values of the colluders

and the trustee. As the figures show, the objective trust of the trustee, represented by the

left bar, is increased by our approach. This is due to the fact that colluders receive 0 trust

values after their detection and they are excluded as referees. In addition, Figure 24 shows

the ability of our approach to detect all different types of colluders. Therefore, detecting

and excluding the colluders improve the effectiveness of service objective trust evaluation.

4.3.5 Bootstrapping Trust Prediction Accuracy

This experiment explores the effectiveness of the proposed trust bootstrapping mecha-

nism in providing accurate initial trust values. The bootstrapper initiates a sample train-

ing dataset from its historical records of similar services to the newcomer based on the

functional and non-functional specifications under different contextual environments. Af-

ter each interaction with the new service, the transaction record is added to the training

85

Figure 22: Service objective trust evaluation under collusion attacks

dataset. Hence the ensemble classifier is updated towards more accurate prediction.

To the best of our knowledge, there is a lack of real datasets that map the QoS values to

a behaviour class label. Hence, we modify the WS-DREAM dataset by adding behaviour

class labels {trust, malicious} for each service. We use the utility function proposed in [95]

to have a single quality metric whose value ranges between 0 and 1 for each service. The

metrics above 0.75 will be assigned class label trust, otherwise class label malicious will

be assigned. For the KNN algorithm, we set K to the square root of the number of training

samples.

Figures 25 and 26 plot the ROC (Receiver Operating Characteristic) curves gener-

ated by our classifier. The two metrics considered in these curves are sensitivity and

specificity. Sensitivity measures the percentage of positives that are correctly classified

as such (i.e., true positives). Specificity, on the other hand, measures the percentage

of negatives that are correctly classified as such (i.e., true negatives). Thus, 1− speci-

ficity indicates the percentage of negatives that are wrongly classified as positives (i.e.,

86

Figure 23: Service objective trust distributions without our approach

false positives). In other words, 1− Specificity = FalsePositives
FalsePositives+TrueNegatives , and Sensitiv-

ity = TruePositives
TruePositives+FalseNegatives . Each point on the ROC curve represents a sensitivity/(1-

specificity) pair where the point which coordinates are (0,1) represents 100 percent sensi-

tivity and 100 percent specificity. Therefore, a classification model with perfect discrim-

ination has a ROC curve that passes through this point. Thus, the closer the ROC curve

is to the upper left corner, the higher the overall accuracy of the model. Moreover, the

overall classifier’s accuracy is quantified in terms of Area Under the Curve (AUC), where

the bigger the area covered, the better the classification model is at distinguishing the given

classes. The ideal value for AUC is 1 whereas a value of 0.5 is worthless.

Since the used ensemble classifier yields a probability for the class label of the obser-

vation, we use a threshold to produce a discrete classifier. Each different threshold value

produces a different point in ROC space (corresponding to a different confusion matrix).

For detecting malicious services, Figure 25 depicts the prediction accuracy of the proposed

classification-based bootstrapping solution. It is worth mentioning that the words positive

and negative refer to the presence or absence of the condition, respectively. Thus, in this

figure, sensitivity refers to the percentage of malicious services that are correctly classified

as such and 1−specificity refers to the percentage of malicious services that are classified as

87

Figure 24: Service objective trust distributions with our approach

trustworthy. However, since Figure 26 measures the accuracy of the bootstrapping mecha-

nism in classifying the trustworthy services as such, sensitivity refers to the percentage of

trustworthy services correctly classified as such, whereas 1−specificity means the percent-

age of trustworthy services that are classified as malicious. As it is shown in the figures,

our bootstrapping approach produces high AUC values reaching 0.979, which proves its

efficiency.

Figure 25: Accuracy in classifying malicious services

88

Figure 26: Accuracy in classifying trustworthy services

4.3.6 Kalman filter based SLA Prediction Accuracy

This experiment evaluates the accuracy of the proposed online QoS prediction approach

against other prediction approaches [17] and [99].

Average: The average QoS value at each time window is used as the predicted value,

this method is used in [17].

MF: In [99], the authors applied matrix factorization [70] to the QoS prediction.

Since the Kalman filter algorithm requires a small amount of data to build the model, the

density of the dataset varied from 5% to 30% by removing QoS records from the dataset.

Those QoS records are used as training data, while the removed records are used for testing

and evaluating the prediction accuracy. We use the median relative error (MRE) metric to

evaluate the prediction accuracy of the proposed approach against the other approaches.

MRE is the median value of all the pairwise relative errors:

MRE = mediank=0,t{|x̂k− xk|/xk}, (23)

89

where x̂k is the predicted value corresponding to the real value xk, and t is the number of

time windows. We set the time window length to 1 minute for 20 time windows. Figure 27

shows MRE for response time and Figure 28 shows MRE for availability where y-axis in-

dicates MRE and x-axis refers to data density. We notice from the figures that the accuracy

of the proposed approach is independent of the data density, unlike other approaches. This

is possible because our approach does not require historical data, proving the efficiency of

our approach.

Figure 27: MRE for response time

Figure 28: MRE for availability

90

4.3.7 Relational Dependency Network-based SLA Prediction Accu-

racy

This experiment is based on the implementation published in [69] where the authors used

a Java program to perform the learning and a Prolog program to compute the value of a

feature. We compute the QoS of composite services using the aggregate functions defined

in [34]. We generate a handcrafted model to compare the learned model against it. We

define, through a set of dependency statements, different dependency relations that could

exist among composite service and the constituents based on the state-of-the-art. The hand-

crafted model is defined as follows:

priceConstituent(S)|value{S}(priceCompsite(C),constitutes(C,S) = true)

priceConstituent(S)|value{S}(priceConstituent(S1),collaborates(S,S1) = true)

availabilityConstituent(S)|value{S}(availabilityCompsite(C),constitutes(C,S) = true)

availabilityConstituent(S)|value{S}(availabilityConstituent(S1),collaborates(S,S1) =

true)

responsetimeConstituent(S)|value{S}(responsetimeCompsite(C),constitutes(C,S) =

true)

responsetimeConstituent(S)|value{S}(responsetimeConstituent(S1),collaborates(S,S1)=

true)

priceComposite(C)|sum{C}(priceConstituent(S),constitutes(C,S) = true)

availabilityComposite(C)|product{C}(availabilityConstituent(S),constitutes(C,S) =

true)

responsetimeComposite(C)|sum{C}(availabilityConstituent(S),constitutes(C,S) = true)

Figure 29 plots the quality of the probability estimation of the learned model using the

weighted pseudo-loglikelihood (WPLL) metric that is the sum of PLLs for each predicate

divided by the number of groundings of that predicate in the interpretation. We vary the

91

Figure 29: RDN-based model vs handcrafted model

Figure 30: Graphical representation of RDN based trust model for a composite service;
rt/RT,p/P, av/AV represent response time, price and availability of constituent/composite
service

92

domain size (i.e., the number of the constituents) from 1000 to 15000. The figure shows

that the learned model outperforms the handcrafted one. This is attributed to the fact that

the proposed model can capture more relations that are not considered by the handcrafted

model. We found a considerable number of bi-directional dependencies among the relevant

random variables. Figure 30 depicts an RDN for a composite service. As it is shown, the

price of the composite service depends on the price of the constituents and vice versa, and

the price of the constituent service depends on the price of other constituents. Besides,

QoS values of a service (constituent or composite) depend on each other. This is because

the providers deliver high QoS values for high price and degrade the delivered QoS for

low prices, and users pay for the received QoS values of the service [96]. In other words,

QoS degradation may change the behavior of the user to pay less which in return leads the

provider to degrade the delivered QoS.

4.4 Conclusion

The proposed framework for managing context-aware trustworthy services provides com-

prehensive trust management including subjective, objective, and bootstrapping trust. We

capitalized on the dependency network to estimate the probability of providing an accept-

able level of QoS (subjective trust). We modified the traditional dependency network to

consider the dynamic cyclic dependency relations that relate QoS metrics to context vari-

ables. We used the statistical log score to assess the model’s prediction accuracy. The

results revealed that the proposed approach outperforms the traditional one in dynamic set-

tings. Furthermore, we proposed a service objective trust evaluation technique that enabled

us to detect collusion attacks. Unlike the existing related work, we introduced a direct

collusion detection method that exposes colluding attackers who provide fake or mislead-

ing trust feedback. We employed the estimation error of the objective trust as indicated

by referees relative to the one calculated by the multi-round simulation. Our experiments

93

showed that detecting and excluding the colluders directly improves the effectiveness of

service objective trust evaluation. Furthermore, we proposed a trust bootstrapping mecha-

nism that capitalized on the service observations. Particularly, we adopted an ensemble of

classifiers to assign newcomer-services initial trust values. The ROC (Receiver Operating

Characteristic) curves are used to measure the accuracy of the classifier used in the pro-

posed trust bootstrapping mechanism. The efficiency of the proposed mechanism is proved

by high AUC values.

The main findings of this chapter are about the new intelligent trust model of au-

tonomous services that considers their dynamically changing environments. The first find-

ing is that the prediction of the provided QoS shows better results when QoS is dynamic and

responds to context environment changes by leveraging the dynamic dependency network

linking the QoS metrics and context variables of the environment. The second finding is

that the objective trust performs better when it is resilient to collusion attacks by leveraging

the power of mass collaboration among referees. The third finding is that the bootstrapping

mechanism that observes the behaviours of new comer services with no trust resources

using the concept of social adoption to estimate their initial trust values excels by being

resilient to white-washing attacks. Thus, the major practical implication of the present re-

search is to provide comprehensive trust management that enables service providers to (1)

maintain user satisfaction; (2) secure provided QoS; (3) maintain service reputation; (4) in-

volve newborn services in transactions to increase the profit; and (5) avoid high economic

compensation caused by SLA breach penalties. Providing secure, trustful and reputable

platforms for computational services benefits a large spectrum of businesses, particularly

in the modern era of data and artificial intelligence-driven applications.

Finally, we proposed an on-line context-aware QoS prediction approach based on the

Kalman filter algorithm that enhances SLA violation prediction accuracy. However, this

model does not consider service dependency that exists due to service collaboration towards

94

the composition goals. Therefore, we proposed a trust-based model for SLA management

of composite services based on relational dependency network (RDN). We leveraged hori-

zontal, vertical, and cyclic QoS dependency relations in a relational setting, that have been

neglected in the literature. Experimental results show that our proposed model achieves

higher accuracy compared with a handcrafted model that captures QoS dependencies that

are mostly known in the literature.

In summary, this chapter has achieved the second and the third research objectives

(Objectives 2 and 3) discussed in Chapter 1, which aimed at predicting SLA and/or QoS

violation of the composite service and the constituents to avoid malicious performance.

The proposed prediction models allow to take the appropriate adaptation actions that will

be discussed in the next chapter.

95

Chapter 5

Service Adaptation Actions

Figure 31: Chapter 5 challenges

96

Figure 31 (unshaded part of the figure) shows the addressed challenges in this chapter.

Consequently, this chapter discusses the adaptation actions that are triggered to prevent

QoS degradation of the running services upon QoS/SLA violation prediction. In Section

5.1, we present the proposed adaptation approach that enables the master, particularly in the

plan step of the MAPE loop, to reconfigure the composite service using the feature model.

In Section 5.2, we discuss the proposed local adaptation action that enables slaves to replace

failed constituent services promptly, which reduces the time complexity of reconfiguring

the composite service.

5.1 Composite Service Adaptation

A composite service can have alternative variants that provide different QoS values, there-

fore, it can add new services or discard others in response to encountered changes. In order

to manage runtime variability, we apply ideas from software engineering, particularly dy-

namic software product line (DSPL) [32]. The dynamic variability management of DSPL is

handled by a feature model [44]. The feature model is configured by activating/deactivating

feature nodes to adapt the workflow of the composite service. Each configuration has to

satisfy the constraints of the feature model, which is complex due to the numerous number

of possible configurations even in a small feature model. Furthermore, different features

have different impacts on performance and expose different QoS values. To tackle this chal-

lenge, we model the feature model configuration as an optimization problem that searches

for the optimal feature configuration.

A composite service uses a combination of resources such as CPU and memory to

satisfy its SLA constraints, which will represent the cost of this composite service. How-

ever, cost constraints can be violated during the adaptation process. Therefore, adaptation

actions should comply with the cost constraints to avoid situations in which the cost of

resource consumption exceeds the capacity cost. To address this challenge, we include cost

97

constraints along with feature model constraints in our optimization problem while consid-

ering minimizing the total cost in terms of resource consumption and monetary violation

costs. Since this objective conflicts with the objective of performance maximization de-

scribed in the previous paragraph, we model the problem as a multi-objective optimization

and propose a genetic-based algorithm to solve it.

Therefore, an effective composite service adaptation action requires selecting a set of

feature nodes that optimally satisfies the global QoS constraints while minimizing the cost.

We consider the availability metric QoS∗avail as an example of positive QoS constraint, i.e., a

higher value indicates a better QoS, while the response time metric QoS∗resp time and the

cost QoS∗cost as negative constraints, i.e., higher values indicate worse QoS. In addition,

we deliberate the interdependency relations among QoS constraints to address and resolve

conflicts. We model the composite service adaptation problem as a multi-objective opti-

mization problem that optimizes feature nodes selection.

Before formalizing the optimization problem, we first define the key concepts used in

the composite service adaptation.

Definition: Resource (i.e., CPU or memory) consumption rc j of a feature f j is defined

as the cost of resource usage r j
usage during a period of time: rc j = r j

usage× rh
price×T where

T is the number of usage hours, and rh
price is the pricing fee per hour, which is assumed to

be static in this thesis.

As example of pricing fees, we use a snapshot of Amazon pricing schema [4]: $0.018

per GHz/h for CPU and $0.025 per GB/h for memory.

Definition: Cost of a feature f j is the total resource consumption. Let A = {cpu,mem},

we define cost as qos j
cost = ∑a∈A rc j

a.

Definition: Global SLA is defined as a 3-tuple SLA=<QoS∗cost ,QoS∗resp time,QoS∗avail>,

where QoS∗respt ime represents the lower bound constraint on response time, QoS∗avail is the

upper bound constraint on availability, and QoS∗cost is the cost constraint.

98

Definition: A feature model is defined as a set of features F = { f1, f2,. . . , fm}, where

m refers to the total number of features.

Definition: Each feature f j ∈F is expressed as 3-tuple f j =<qos j
cost ,qos j

resp time,qos j
avail>.

Let S be the set of predicted values of QoS metrics estimated by Kalman-based pre-

diction model, S = {scost ,sresp time,savail}, When a metric falls behind the SLA constraint,

a penalty will be applied for each violation. Penalty is defined in the specifications of

the global SLA agreements and expressed as a function P(s) : R→ R. The penalty values

increase monotonically, i.e., higher number of violations results in a higher total penalty

value.

Accordingly, we calculate the total penalty value for each violated value s ∈ S as fol-

lows:

P = ∑
s∈S

P(s), i f s is violated (24)

Given a running composite service, a global SLA, a feature model, and the feature con-

straints C = {c1,c2,c3,c4,c5,c6}, adapting this composite service is a process of activating

and deactivating features form the feature model F that optimally satisfy the global SLA

constraints and feature constraints C.

The response time and availability metrics of the composite service are optimized by

delivering QoS values close to the QoS bounds identified in the global SLA. Accomplishing

these objectives while minimizing the total cost form the fundamental objectives of the

composite service adaptation action. In other words, the optimization problem aims to

maximize the performance (availability and response time) of the composite service while

minimizing the cost subject to the constraints.

The optimization problem faces the following challenges:

• The adaptation cost minimization.

• Feature model configuration.

99

• QoS interdependence.

5.1.1 Multi-Objective Composite Service Adaptation

The global SLA constraints have to be satisfied during the optimization process. To achieve

this, our approach selects feature nodes that yield aggregate QoS values close to the global

SLA constraints by minimizing the Euclidean distance. It is worth mentioning that since

QoS values are represented as one-dimensional vectors in our problem, the Euclidean dis-

tance is more appropriate than the cosine similarity for the minimization problem. In fact,

applying the cosine similarity in such a case will always result in 1, which misleads our

selection approach. Moreover, unlike cosine similarity which does not consider the mag-

nitude of the vectors in the calculation, the Euclidean distance supports our objective to

minimize the magnitude of the one-dimensional vectors to optimize QoS performance by

selecting the closest features that satisfy the SLA constraints. The approach is as follows:

• Minimize the distance for the availability property between the global SLA con-

straint (QoS∗avail) and the aggregate availability value of the selected feature nodes as

expressed in Equation 25.

• Minimize the distance for the response time property between the global SLA con-

straint (QoS∗resp time), and the aggregate response time value of the selected feature

nodes as expressed in Equation 26.

• Minimize the total cost and penalties as expressed in Equation 27.

Let f s j be a boolean variable s.t. f s j = 1 if the feature f j is selected and f s j = 0

otherwise. Also, let f s ⊆ F s.t. ∀ f j ∈ f s, f s j = 1. Thus, the multi-objective optimization

that computes the set of selected features f s can be formalized as follows:

min

√
|QoS∗avail− (

m

∏
j=1

qos j
avail ∗ f s j)|2 (25)

100

min

√
|(

m

∑
j=1

qos j
resp time ∗ f s j)−QoS∗resp time|2 (26)

min P+
m

∑
j=1

f s j ∗qos j
cost (27)

where:
m

∑
j=1

f s j ∗qos j
cost ≤ QoS∗cost (28)

f s j ∈ {0,1} j = 1, . . . ,m (29)

f s conforms to C (30)

Theorem 1: The multi-objective composite service adaptation problem (CSAP) is NP-

hard.

Proof The multi-objective multidimensional knapsack problem (MOMKP) has been proven

to be NP-Hard [54]. The problem of multi-objective composite service adaptation is re-

duced by MOMKP. We verify the proof by finding a solution that fits for both CSAP and

MOMKP. The formation of MOMKP is as follows: given E items Ie [e = 1, ˙...,E] with C

characteristics we
c[c = 1, ˙...,C], and P profits re

p[p = 1, ˙...,P], select the items that maximize

the total profit while not exceeding the C knapsack characteristics Wc. CSAP is formulated

as a set of m features F = { f1, f2,. . . , fm}, corresponding to E items of MOMKP. Each

feature f j =<qos j
cost ,qos j

resp time,qos j
avail > is annotated by its cost and performance (i.e.

response time and availability). For each feature f j, set response time and availability as the

profits of the item Ie, while the cost will be considered as a profit and a characteristic. The

content of the knapsack is the feature set that is selected to minimize the distance between

the profit and the global SLA constraints while not exceeding the cost. The minimization

101

objective in the case of CSAP is equivalent to the maximization for MOMKP. Therefore,

a solution to CSAP would yield a solution to MOMKP. Since the transformation from

MOMKP to CSAP is polynomial, we conclude that the multi-objective composite service

adaptation problem is NP-hard.

5.1.2 NSGA-II-based Decision Algorithm

Computational intelligence techniques that include heuristic and meta-heuristic algorithms

have demonstrated their ability to solve complex problems (usually NP-hard problems) in

many areas [41]. Hence, these techniques can be used to solve composite service adap-

tation, which is an NP-hard problem. Meta-heuristic algorithms include particle swarm

optimization, ant colony optimization, and evolutionary algorithms such as genetic algo-

rithms (GAs). GAs are widely used to solve complex service composition optimization

problems as reported in the survey paper published in [41]. In this thesis, we particularly

selected the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [27] that has shown

better performance over other candidates (such as SPEA2) for multi-objective optimization

problems for service composition [52].

We propose an NSGA-II-based decision algorithm to the problem of composite service

adaptation as illustrated in Algorithm 2. It starts with an initial population of randomly

generated solutions (Line 5). Each solution represents a feature selection in the feature

model. In line 6, the algorithm validates the feature selection according to the set of con-

straints C as shown in Algorithm 3. Then, the set of solutions are evaluated in Algorithm 4

using the previously discussed Equations 25, 26 and 27 (line 7). The population is sorted

based on the rank and crowding distance (lines 8, 9) and the fittest solutions are selected to

go through a process of evolution based on crossover and mutation operators (lines 11-13).

This process creates a child population, which is validated and evaluated similarly to its

parent (lines 14, 15). Both populations, the parent and child, are merged and sorted (lines

102

Algorithm 2 NSGA-II-based decision algorithm

1: Input: a feature model F = { f1, f2, . . . , fm} with f j =<qos j
cost ,qos j

resp time,qos j
avail >

,C, global SLA and population size M
2: Output: The non-dominated solutions in the final population

3: Begin
4: t← 0
5: Pt ← RANDOM-POPULATION(M)
6: validate-pop (Pt) //Algorithm 2
7: evaluate-pop (Pt) //Algorithm 3
8: fast-nondominated-sort(Pt)
9: crowding-distance-assignment(Pt)

10: while the termination criterion is not met do
11: Qt ← select (Pt)
12: crossover (Qt)
13: mutate (Qt)
14: validate-pop (Qt) //Algorithm 2
15: evaluate-pop (Qt) //Algorithm 3
16: Rt ← Pt ∪Qt
17: fast-nondominated-sort(Rt)
18: crowding-distance-assignment(Rt)
19: Pt+1← /0
20: Pt+1← Rt [0 : M−1]
21: t← t +1
22: end while
23: End

16, 25). A new population is filled with the fittest M solutions (line 26). This process con-

tinues until a stopping criterion is met. This criterion can be the number of iterations, time,

or any other relevant conditions.

The resulting solutions set is located at the first level front, which is known as the Pareto

optimal solutions set. This set includes all solutions which cannot be dominated by others.

Accordingly, the Pareto optimal solutions set is the set of solutions s s.t. srank = 1.

103

Algorithm 3 validate-pop (Pt)
1: Begin
2: for each chromosome chroc ∈ Pt do
3: for each feature f j ∈ chroc do
4: if f j ∈C1 then
5: for each f ′ ∈ f j-children do
6: chroc← chroc∪ f `
7: end for
8: if f ∈C4 then
9: for each f ′ ∈ f j-sibling do

10: chroc← chroc−{ f ′}
11: end for
12: if f j includes f ′ then
13: chroc← chroc∪ f `
14: if f j excludes f ` then
15: chroc← chroc−{ f ′}
16: end for
17: end for
18: End

Algorithm 4 evaluate-pop (Pt)
1: Begin
2: for each chromosome chroc ∈ Pt do
3: Evaluate objective functions using Eq. (25),(26),(27)
4: end for
5: End

5.2 Service Adaptation

Local service adaptation action is triggered to: (1) substitute the failed service constituent

when local SLA is predicted to be violated, or (2) select the implementing constituents after

composite service reconfiguration. Particularly, the main task of the adaptation slaves is to

substitute/select failed/new service constituents.

Each node of the feature model is realized by a service class providing its functionality

but with different QoS. The QoS metrics annotated in feature nodes express local SLAs

for the slaves. Using local SLA, each slave v ranks its associated service class SCs based

on the utility value, i.e., the aggregate QoS value, of the members and QoS similarity with

104

the feature node f j. At run-time, the slave selects the top constituent Sis to implement the

functionality of f j, while the other service services will be backed up in case the running

service Sis fails.

Definition: service class SCs = {S1, . . . ,Sp} is a collection of p service with the same

functionality but different QoS metrics.

Definition: constituent service Sis is described by a 3-tuple Sis =<qosi
cost ,qosi

resp time,qosi
avail>

identifying cost, response time and availability metrics of service Sis respectively.

Computing the utility value of a service Sis requires normalizing its QoS values as

follows:

qosi
cost =

maxs
cost−qosi

cost
maxs

cost−mins
cost

(31)

qosi
resp time =

maxs
resp time−qosi

resp time

maxs
resp time−mins

resp time
(32)

qosi
avail =

qosi
avail−maxs

avail
maxs

avail−mins
avail

(33)

where maxs
o =max∀Sis∈SCsqosi

o, mins
o =min∀Sis∈SCsqosi

o, s.t. o∈{cost,resp time,avail}.

Accordingly, the utility function of service Sis is computed as:

U(Sis) = qosi
cost +qosi

resp time +qosi
avail (34)

QoS similarity between service Sis and feature node f j is computed using the Euclidean

distance as follows:

d(Sis, f j) =
√

cost2 + resp time2 +avail2 (35)

105

where,

cost =

qosi

cost−qos j
cost , i f qosi

cost > qos j
cost

0,otherwise

resp time =

qosi

resp time−qos j
resp time, i f qosi

resp time > qos j
resp time

0,otherwise

avail =

qos j

avail−qosi
avail, i f qosi

avail < qos j
avail

0,otherwise

Finally, service class SCs is ranked in descending order based on service scores mea-

sured by Equation 36. The top service will be selected to implement the functionality of

f j, whereas the remainder service will act as backups.

score(Sis, f j) =
U(Sis)

d(Sis, f j)
(36)

5.3 Experimentation and Results

We conduct a set of experiments to validate the effectiveness of our approach against a set

of benchmark measurements using the same setup described in Section 3.3. The NSGA-

II-based solver algorithm is implemented in C based on the code written by the author of

[27].

5.3.1 QoS Requirements Flexibility

This experiment explores the flexibility of our approach to the user’s QoS requirements

changes. We compare the ability to react to QoS requirements changes of the proposed

approach using feature model with the approach of [17] which counts on the goal model

106

Figure 32: The flexibility of changing user’s requirements

and the approach of [7] which relies on knowledge model of different composition plans.

For this propose, we measure the efficiency of the composite service E(CS) in terms of the

number of the satisfied global SLA constraints by Equation 37:

E(CS) =
∑QoS∗∈SLA SAT (QoS∗)

N
(37)

where SAT (QoS∗) returns 1 if the constraint QoS∗ is satisfied and 0 otherwise, and N is the

number of QoS∗ constraints

Figure 32 illustrates the flexibility of QoS constraints modification by the proposed

approach and the approaches of [17, 7]. The y-axis denotes the efficiency of the composite

service, while we vary the scale of change represented by the number of modified QoS

constraints from 1 to 10. The scale of change is denoted by the x-axis. The results show

that our approach outperforms other approaches facing QoS constraints modification, those

results are justified by the fact that using the feature model enables our approach to capture

the variabilities of the composite service. Hence, optimal feature model reconfiguration

responds to different user’s QoS requirements.

107

5.3.2 Dynamic Adaptation

In this experiment, we study the efficiency of the proposed adaptive approach towards

the changes in dynamic environments. We observe how changes in QoS values affect the

execution time. In this experiment, we consider the scale of change represented by the

number of service that experience changes in their QoS, and the frequency of change in the

QoS values represented by the rate of context-awareness.

We vary the scale of change in the QoS values from 10% to 50%. Figure 33 shows

the outcome of the scale of change on the execution time of the proposed approach. The

execution time increases from 30ms to 170ms with the periodic scale of change from 10%

to 30% which proves the efficiency of the proposed approach in dynamic environments.

The efficiency stems from local adaptation actions that promptly substitute predicted failed

service to avoid global violations and composite service reconfigurations. The observed

increase in execution time within the scale of change 50% is acceptable since we have a

highly dynamic and a fairly complex environment.

To assess the impact of frequency of change on the execution time, we fix the scale

of change in the QoS values to 30% and increase the frequency from 10% to 50%. As

shown in Figure 34, the execution time dropped from 150ms to 28ms which underscores the

importance of online QoS prediction to increase context-awareness for efficient adaptation.

5.3.3 Local Adaptation

This experiment examines the impact of local service adaptation action on the performance

of the adaptation process. We compare the adaptation flexibility and the ability to react

to context changes by the proposed approach with the centralized approach [17]. The

adaptation actions are recorded during one minute using the initial configuration, config2

[17]. As discussed earlier, a local service adaptation action can be used for (1) service

108

Figure 33: The scale of change

Figure 34: Awareness rate of changing QoS values

substitution, (2) service selection within composite service adaptation action. Figure 35

and 36 illustrate the adaptation flexibility of the centralized approach and the proposed

approach, respectively. The x-axis denotes the discrete time intervals of one minute and

the adaptation actions are recorded on the curve.

Figure 35 shows that 10 of the 29 adaptation actions consist of composite service adap-

tation, shown in red points, while 19 of them are service selections, shown in black points.

Figure 36 shows that only 4 of the 29 adaptation actions were for composite service adap-

tation and the remaining actions were for service adaptation actions.

The figures indicate that local service adaptation actions, especially service substitution,

109

add more flexibility to the adaptation process. Each predicted failed service can be substi-

tuted promptly to maintain the performance of the composite service and avoid a global

violation. This minimizes the need for the composite service adaptation action, which has

a high computational complexity.

Figure 35: Adaptation flexibility of the centralized approach

Figure 36: Adaptation flexibility of our approach

5.4 Conclusion

In this chapter, we proposed adaptation actions that enable the master and slaves to se-

cure the composite service and the constitutes. We used the feature model to model the

alternative variants of the composite service and we adopted the MAPE loop to manage

run-time dynamic adaptation. We modelled the composite service adaptation process as

a multi-objective optimization problem to select the optimal feature nodes that maximize

the performance and minimize the cost, constrained by SLA and feature model constraints.

110

In addition, we proposed local service adaptation action that drastically improves perfor-

mance and reduces overhead by promptly substituting the predicted failed service locally.

The experimental results showed that our approach is efficient in dynamic environments

compared to a benchmark centralized approach. Particularly, our approach reduces the

response time and the cost by 50% and increases the availability by 2%. Moreover, our ap-

proach outperforms the benchmark centralized approach by 15% in terms of reducing the

execution time in a large-scale environment. In addition, we measured the execution time

of our approach where we increased the number of service constituents from 500 to 10000.

The results showed that the execution time of our approach grows polynomially with the

increase in the number of constituents, which proves the scalability of our approach. Fur-

thermore, local service adaptation action adds to the flexibility of the adaptation process.

This decreases the number of composite service adaptation action, which has a high time

complexity, by 60%. Moreover, the execution time decreased by 80% when the frequency

change is 50%. Thus, this chapter has achieved the fourth research objective (Objective 4)

discussed in Chapter 1, which aimed at dynamically adapting composite services running

in an open-world against unforeseen context changes.

111

Chapter 6

Conclusions

6.1 Summary

In this thesis, we addressed the problem of providing context-aware composite services that

continue offering their functionalities in dynamic and uncertain running environments. To

this end, we designed an adaptation architecture that enables the service to:

• self-configure the workflow and the constituent services to face open world changes;

• self-optimize the QoS performance over run-time by triggering promptly adaptation

actions;

• self-heal its failure by the capability to discover, diagnose and react to context changes.

• self-protect its reputation and gained trust against malicious attacks.

In particular, we developed a decentralized adaptation approach that enables the dis-

tribution of the whole MAPE loop among multiple mangers, namely the master and the

slaves, to manage the composite service adaptation in scalable settings. Experiments con-

ducted on a real services dataset show that our architecture reduces the execution time in

a large-scale environment. When we increased the domain size, the results show that the

112

execution time of our approach grows polynomially with the increase in the number of

constituents, which proves the scalability of our approach. In addition, we elaborated on

the multi-dimensional service trust model that considers the cyclic QoS dependency rela-

tions among QoS metrics and context variables. Promisingly, experiments conducted using

the real-life dataset reveal that this solution enhances trust estimation accuracy while being

resistant to collusion and white-wash attacks. Moreover, we developed an SLA violation

prediction approach that supports decision making by the master regarding composite ser-

vice adaptation. Experiments prove the prediction accuracy of the proposed solution. This

efficiency is because of our approach captures service dependencies in a relational setting,

unlike current prediction approaches. Finally, we designed adaptation actions for compos-

ite service reconfiguration and constituent services selection and substitution. Experiments

show that our approach is efficient in dynamic settings. The proposed constituent service

adaptation action adds to the flexibility of the adaptation process by decreasing the need

for composite service adaptation action by prompt replacing the failed service.

The following points summarize the main contributions of this thesis:

1. We introduced a two-level adaptation process for composite services that enables the

service provider to monitor QoS performance and trigger prompt adaptation actions.

More specifically:

• We applied a master/slaves pattern to manage the composite service adaptation

in scalable settings.

• We distributed the whole MAPE loop among multiple mangers, namely the

master and the slaves.

2. We proposed a subjective trust framework for context-aware services that improves

the trust prediction accuracy by capturing cyclic dependency relations between QoS

metrics and context variables. We modified the dependency network graph to capture

113

the dynamic cyclic dependency relations linking QoS metrics and context variables.

3. We extended the trust framework to provide a comprehensive and effective trust man-

agement for services, including objective and bootstrapping trust. In this contribu-

tion:

• We introduced an objective trust evaluation technique that addresses collusion

attacks. The proposed collusion detection method is based on graph theory

which is more suitable for sophisticated collusion attacks. Using graph theory,

we are able to capture the underlying relationships among referees via their

referrals for services.

• We introduced a trust bootstrapping mechanism for the newcomer services to

estimate their initial trust values through behaviour observation based on the

concepts of social adoption and ensemble classification. These concepts con-

tribute to our proposed mechanism by making it resilient to the white-washing

attacks.

4. We improved SLA violation prediction accuracy by including the runtime contextual

environment to address the continuous QoS degradation. In this contribution:

• We proposed an SLA violation prediction approach based on kalman filters.

This approach is efficient for online prediction since it requires small QoS data

and rapidly adapts itself towards an accurate prediction of SLA violation. How-

ever, it fails to consider QoS dependency that exists in the real business world

at run time.

• We introduced a trust based model for SLA Management capitalizing on the re-

lational dependency network. We leveraged horizontal, vertical, and cyclic QoS

dependencies in a relational setting which enhance the SLA violation prediction

accuracy.

114

5. We supported dynamic adaptation by the master by a solution based on the feature

model that captures the variability of the composite service. More specifically:

• We extended the feature model-based service adaptation to represent QoS prop-

erties of each feature.

• We modelled the adaptation process as a multi-objective optimization problem

to resolve conflicting goals of minimizing the cost and maximizing the perfor-

mance of the composite service. The optimization problem takes into account

the SLA and feature model constraints.

• We proposed a genetic-based algorithm to solve the proposed multi-objective

optimization problem. The algorithm computes the pareto-optimal set of recon-

figuration solutions of composite service.

• We presented a local service adaptation action to be performed by the slaves

which promptly substitute the failed service to maintain the overall performance

and reduce the need for global adaptation.

The first contribution is proposed to answer the first research objective (Objective 1),

which is to develop an adaptation architecture that overcomes the performance degradation

caused by centralized and distributed designs. The second, third, and fourth contribu-

tions are proposed to answer the second and third research objectives (Objectives 2 and

3), which are to detect multi-type malicious attacks and support the decision making re-

garding adaptation actions. Finally, the fifth contribution is proposed to answer the fourth

research objective (Objective 4), which is about enabling the service adaptation in a dy-

namic open world to secure the service performance and avoid economic compensation

caused by breach penalties.

115

6.2 Critical Reflection and Future Work

The research work addressed in this thesis leaves some open questions for future work. In

the following, we devise some of these aspects that we plan to address.

Although the proposed adaptation approach is able to predict SLA violation for the

composite service using relational dependency network, it fails to comprehensively con-

sider dynamic QoS dependency. The relational dependency network based model (offline

trained model) is based on static relational data. Accordingly, it is inefficient for online

adaptation because of its incompetence in dynamic environments. Therefore, we plan to

reinvestigate it to capture the QoS dependencies between services that interact and operate

in environments characterized by continual changes to QoS requirements and/or state of

services.

Moreover, context information that represents real-world situations could be inherently

imperfect due to, for example, sensor limitations. This information is associated with cer-

tain quality indicators, such as precision and freshness [73]. These quality indicators should

be considered with context acquisition, aggregation, and reasoning. In addition, context in-

formation is privacy sensitive. Users of context-aware services need to control the privacy

of their context information. However, users could limit their context information that neg-

atively affects the quality of the adaptation process. A future direction for this thesis is

to provide users with control over their privacy with the trade-off between privacy and the

quality of service adaptation. We plan to provide a trust-based model that selects trustwor-

thy context information at a specific quality level. We also plan to extend the capability

of the context-aware services to avoid privacy violations which is a critical threat to the

service reputation.

116

Bibliography

[1] An architectural blueprint for autonomic computing. Technical report, IBM, June

2005.

[2] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz. Dynamic adaptation

of service compositions with variability models. Journal of Systems and Software,

91:24–47, 2014.

[3] G. H. Alférez and Vicente Pelechano. Achieving autonomic web service compositions

with models at runtime. Computers and Electrical Engineering, 63:332–352, 2017.

[4] Amazon. Amazon EC2 pricing.

[5] Mennatallah Amer and Markus Goldstein. Nearest-neighbor and clustering based

anomaly detection algorithms for rapidminer. In Proc. of the 3rd RapidMiner Com-

munity Meeting and Conferernce, 08 2012.

[6] Trosky Arias, Peter Van der Spek, and Paris Avgeriou. A practice-driven systematic

review of dependency analysis solutions. Empirical Software Engineering, 16:544–

586, 10 2011.

[7] Lina Barakat, Simon Miles, and Michael Luck. Adaptive composition in dynamic

service environments. Future Generation Computer Systems, 80:215–228, 2018.

117

[8] L. Baresi, E. Di Nitto, and C. Ghezzi. Toward open-world software: Issues and

challenges. Computer, 39(10):36–43, 2006.

[9] S. Basu, F. Casati, and F. Daniel. Toward web service dependency discovery for

soa management. In 2008 IEEE International Conference on Services Computing,

volume 2, pages 422–429, 2008.

[10] David Benavides, Pablo Trinidad Martı́n-Arroyo, and Antonio Ruiz Cortés. Auto-

mated reasoning on feature models. In Seminal Contributions to Information Systems

Engineering, 2013.

[11] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated reasoning on

feature models. In Proceedings of the 17th International Conference on Advanced

Information Systems Engineering, CAiSE’05, pages 491–503, Berlin, Heidelberg,

2005. Springer-Verlag.

[12] Jamal Bentahar, Zakaria Maamar, Djamal Benslimane, and Philippe Thiran. Using

argumentative agents to manage communities of web services. In 21st International

Conference on Advanced Information Networking and Applications (AINA 2007),

Workshops Proceedings, Volume 2, May 21-23, 2007, Niagara Falls, Canada, pages

588–593, 2007.

[13] Philip Bianco, Grace Lewis, and Paulo Merson. Service level agreements in service-

oriented architecture environments. Technical Report CMU/SEI-2008-TN-021, Soft-

ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2008.

[14] Jan Bosch. Design and use of software architectures: adopting and evolving a

product-line approach. Addison-Wesley, 2000.

[15] Antonio Bucchiarone, Martina De Sanctis, and Annapaola Marconi. Decentralized

dynamic adaptation for service-based collective adaptive systems. In Khalil Drira,

118

Hongbing Wang, Qi Yu, Yan Wang, Yuhong Yan, François Charoy, Jan Mendling,

Mohamed Mohamed, Zhongjie Wang, and Sami Bhiri, editors, Service-Oriented

Computing – ICSOC 2016 Workshops, pages 5–20, Cham, 2017. Springer Interna-

tional Publishing.

[16] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti, and R. Mirandola.

MOSES: A framework for QoS driven runtime adaptation of service-oriented sys-

tems. IEEE Transactions on Software Engineering, 38(5):1138–1159, Sept 2012.

[17] B. Chen, X. Peng, Y. Yu, and W. Zhao. Requirements driven self-optimization of com-

posite services using feedback control. IEEE Transactions on Services Computing,

8(1):107–120, Jan 2015.

[18] Chien Chin Chen, Yu-Hao Wan, Meng-Chieh Chung, and Yu-Chun Sun. An effective

recommendation method for cold start new users using trust and distrust networks.

Information Sciences, 224:19–36, 2013.

[19] I. Chen, J. Guo, and F. Bao. Trust management for soa-based iot and its application to

service composition. IEEE Transactions on Services Computing, 9(3):482–495, May

2016.

[20] Y. Chen, J. Huang, C. Lin, and X. Shen. Multi-objective service composition with

qos dependencies. IEEE Transactions on Cloud Computing, 7(2):537–552, 2019.

[21] Jin-Hee Cho, Ananthram Swami, and Ing-Ray Chen. Modeling and analysis of trust

management with trust chain optimization in mobile ad hoc networks. Journal of

Network and Computer Applications, 35(3):1001 – 1012, 2012. Special Issue on

Trusted Computing and Communications.

[22] William Conner, Arun Iyengar, Thomas Mikalsen, Isabelle Rouvellou, and Klara

Nahrstedt. A trust management framework for service-oriented environments. In

119

Proceedings of the 18th International Conference on World Wide Web, WWW, pages

891–900. ACM, 2009.

[23] Javier Cubo and Ernesto Pimentel. DAMASCo: A framework for the automatic com-

position of component-based and service-oriented architectures. In Ivica Crnkovic,

Volker Gruhn, and Matthias Book, editors, Software Architecture, volume 6903 of

Lecture Notes in Computer Science, pages 388–404. Springer Berlin Heidelberg,

2011.

[24] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-

based feature models and their specialization. Software Process: Improvement and

Practice, 10(1):7–29, 2005.

[25] Gianni D’Angelo, Francesco Palmieri, and Salvatore Rampone. Detecting unfair rec-

ommendations in trust-based pervasive environments. Information Sciences, 486:31–

51, 2019.

[26] Danilo Rafael de Lima Cabral and Roberto Souto Maior de Barros. Concept drift

detection based on fisher’s exact test. Information Sciences, 442-443:220 – 234, 2018.

[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,

6(2):182–197, Apr 2002.

[28] S. Deng, H. Wu, D. Hu, and J. Leon Zhao. Service selection for composition with qos

correlations. IEEE Transactions on Services Computing, 9(2):291–303, 2016.

[29] Mohamad Eid, Atif Alamri, and Abdulmotaleb El Saddik. A reference model for

dynamic web service composition systems. International Journal of Web and Grid

Services, 4(2):149–168, 2008.

120

[30] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM

Systems Journal, 42(1):5–18, 2003.

[31] Xiu-Jun Gong, Shao-Hui Liu, and Zhong-Zhi Shi. An incremental Bayes classifica-

tion model. Chinese Journal of Computers, 25:645–650, 06 2002.

[32] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic soft-

ware product lines. In Rafael Capilla, Jan Bosch, and Kyo-Chul Kang, editors, Sys-

tems and Software Variability Management: Concepts, Tools and Experiences, pages

253–260, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[33] C. Hang, A. K. Kalia, and M. P. Singh. Behind the curtain: Service selection via trust

in composite services. In 2012 IEEE 19th International Conference on Web Services,

pages 9–16, June 2012.

[34] K. Hashmi, Z. Malik, A. Erradi, and A. Rezgui. Qos dependency modeling for com-

posite systems. IEEE Transactions on Services Computing, 11(6):936–947, 2018.

[35] Qiang He, Jun Yan, Hai Jin, and Yun Yang. Adaptation of web service compo-

sition based on workflow patterns. In Athman Bouguettaya, Ingolf Krueger, and

Tiziana Margaria, editors, Service-Oriented Computing – ICSOC 2008: 6th Interna-

tional Conference, Sydney, Australia, December 1-5, 2008. Proceedings, pages 22–

37, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[36] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounth-

waite, and Carl Kadie. Dependency networks for inference, collaborative filtering,

and data visualization. J. Mach. Learn. Res., 1:49–75, September 2001.

[37] Geoff Hulten, David Maxwell Chickering, and David Heckerman. Learning Bayesian

networks from dependency networks: A preliminary study. In Proceedings of the

121

Ninth International Workshop on Artificial Intelligence and Statistics, AISTATS, Key

West, Florida, USA, January 3-6, 2003.

[38] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data

streams. In Proceedings of the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’01, page 97–106, New York, NY,

USA, 2001. Association for Computing Machinery.

[39] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl. Qos aggregation for web service

composition using workflow patterns. In Proceedings. Eighth IEEE International En-

terprise Distributed Object Computing Conference, 2004. EDOC 2004., pages 149–

159, Sep. 2004.

[40] J. Jang, D. Shin, and K. Lee. Fast quality driven selection of composite web services.

In 2006 European Conference on Web Services (ECOWS’06), pages 87–98, Dec 2006.

[41] C. Jatoth, G. R. Gangadharan, and R. Buyya. Computational intelligence based qos-

aware web service composition: A systematic literature review. IEEE Transactions

on Services Computing, 10(3):475–492, May 2017.

[42] Deng Ju-Long. Control problems of grey systems. Systems & Control Letters,

1(5):288 – 294, 1982.

[43] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust

algorithm for reputation management in p2p networks. In Proceedings of the 12th

International Conference on World Wide Web, WWW ’03, pages 640–651, New York,

NY, USA, 2003. ACM.

[44] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer

122

Peterson. Feature-oriented domain analysis (FODA) feasibility study. Techni-

cal Report Technical Report CMU/SEI-90-TR-021, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, Pennsylvania, 1990.

[45] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,

36(1):41–50, Jan 2003.

[46] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,

46(5):604–632, September 1999.

[47] Daphne Koller, Uri Lerner, and Dragomir Anguelov. A general algorithm for approx-

imate inference and its application to hybrid bayes nets. UAI, 15, 01 2013.

[48] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E. J. Malm. Managing context

information in mobile devices. IEEE Pervasive Computing, 2(3):42–51, July 2003.

[49] Sotiris Kotsiantis. Increasing the accuracy of incremental naive Bayes classifier using

instance based learning. International Journal of Control, Automation and Systems,

11(1):159–166, 2013.

[50] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar. Monitoring, prediction and

prevention of sla violations in composite services. In 2010 IEEE International Con-

ference on Web Services, pages 369–376, 2010.

[51] G. S. Li and N. Wang. Web service qos prediction with adaptive calibration. In

2015 International Conference on Computer Science and Applications (CSA), pages

351–356, Nov 2015.

[52] Li Li, Pengyi Yang, Ling Ou, Zili Zhang, and Peng Cheng. Genetic algorithm-based

multi-objective optimisation for qos-aware web services composition. In Yaxin Bi and

Mary-Anne Williams, editors, Knowledge Science, Engineering and Management,

pages 549–554, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

123

[53] Helan Liang, Yanhua Du, Ting Jiang, and Fanzhang Li. A comprehensive multi-

objective approach of service selection for service processes with twofold restrictions.

Future Generation Computer Systems, 92:119 – 140, 2019.

[54] Thibaut Lust and Jacques Teghem. The multiobjective multidimensional knapsack

problem: a survey and a new approach. CoRR, abs/1007.4063, 2010.

[55] Zaki Malik and Athman Bouguettaya. Rateweb: Reputation assessment for trust es-

tablishment among web services. The VLDB Journal, 18(4):885–911, Aug 2009.

[56] S. Manocha and Mark A. Girolami. An empirical analysis of the probabilistic k-

nearest neighbour classifier. Pattern Recognition Letters, 28(13):1818–1824, 2007.

[57] M. Mehdi, N. Bouguila, and J. Bentahar. A qos-based trust approach for service

selection and composition via bayesian networks. In 2013 IEEE 20th International

Conference on Web Services, pages 211–218, June 2013.

[58] M. Mehdi, N. Bouguila, and J. Bentahar. Trust and reputation of web services through

qos correlation lens. IEEE Transactions on Services Computing, 9(6):968–981, Nov

2016.

[59] M. Motallebi, F. Ishikawa, and S. Honiden. Trust computation in web service com-

positions using bayesian networks. In 2012 IEEE 19th International Conference on

Web Services, pages 623–625, June 2012.

[60] A. Moustafa, M. Zhang, and Q. Bai. Trustworthy stigmergic service compositionand

adaptation in decentralized environments. IEEE Transactions on Services Computing,

9(2):317–329, March 2016.

[61] R. Neisse. Trust and privacy management support for context-aware service plat-

forms. PhD thesis, University of Twente, Netherlands, 3 2012. SIKS Dissertation

Series No. 2012-09.

124

[62] Jennifer Neville and David Jensen. Relational dependency networks. Journal of

Machine Learning Research, 8:653–692, 03 2007.

[63] H. T. Nguyen, W. Zhao, and J. Yang. A trust and reputation model based on bayesian

network for web services. In 2010 IEEE International Conference on Web Services,

pages 251–258, July 2010.

[64] Kyosuke Nishida and Koichiro Yamauchi. Detecting concept drift using statistical

testing. In Vincent Corruble, Masayuki Takeda, and Einoshin Suzuki, editors, Discov-

ery Science, pages 264–269, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[65] D. L. Parnas. Designing software for ease of extension and contraction. IEEE Trans-

actions on Software Engineering, SE-5(2):128–138, 1979.

[66] Barbara Pernici and S. Hossein Siadat. Adaptation of web services based on QoS sat-

isfaction. In E. Michael Maximilien, Gustavo Rossi, Soe-Tsyr Yuan, Heiko Ludwig,

and Marcelo Fantinato, editors, Service-Oriented Computing: ICSOC 2010 Interna-

tional Workshops, PAASC, WESOA, SEE, and SOC-LOG, San Francisco, CA, USA,

December 7-10, 2010, Revised Selected Papers, pages 65–75, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg.

[67] Ali Asghar Pourhaji Kazem, Hossein Pedram, and Hassan Abolhassani. Bnqm: A

bayesian network based qos model for grid service composition. Expert Systems with

Applications, 42(20):6828 – 6843, 2015.

[68] V. R. Puttige and S. G. Anavatti. Comparison of real-time online and offline neural

network models for a uav. In 2007 International Joint Conference on Neural Net-

works, pages 412–417, Aug 2007.

[69] Irma Ravkic, Jan Ramon, and Jesse Davis. Learning relational dependency networks

in hybrid domains. Machine Learning, 100, 05 2015.

125

[70] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In John C.

Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Advances in Neural

Information Processing Systems 20, Proceedings of the Twenty-First Annual Con-

ference on Neural Information Processing Systems, Vancouver, British Columbia,

Canada, December 3-6, 2007, pages 1257–1264. Curran Associates, Inc., 2007.

[71] Mark Senn. WS-DREAM: Towards open datasets and source code for web service

research.

[72] Qiping She, Xiaochao Wei, Guihua Nie, and Donglin Chen. QoS-aware cloud ser-

vice composition: A systematic mapping study from the perspective of computational

intelligence. Expert Systems with Applications, 138:112804, 2019.

[73] K. Sheikh, M. Wegdam, and M. van Sinderen. Middleware support for quality of con-

text in pervasive context-aware systems. In Fifth Annual IEEE International Confer-

ence on Pervasive Computing and Communications Workshops (PerComW’07), pages

461–466, March 2007.

[74] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-

proaches. Wiley, 2006.

[75] Claudio De Stefano, Antonio Della Cioppa, and Angelo Marcelli. An adaptive

weighted majority vote rule for combining multiple classifiers. In 16th International

Conference on Pattern Recognition, ICPR, Quebec, Canada, August 11-15, pages

192–195, 2002.

[76] B. Tang and M. Tang. Bayesian model-based prediction of service level agreement

violations for cloud services. In 2014 Theoretical Aspects of Software Engineering

Conference, pages 170–176, 2014.

126

[77] Raquel Ureña, Gang Kou, Yucheng Dong, Francisco Chiclana, and Enrique Herrera-

Viedma. A review on trust propagation and opinion dynamics in social networks and

group decision making frameworks. Information Sciences, 478:461–475, 2019.

[78] A. Vogel, B. Kerherve, G. von Bochmann, and J. Gecsei. Distributed multimedia and

qos: a survey. IEEE MultiMedia, 2(2):10–19, 1995.

[79] L. Vu and K. Aberer. Towards probabilistic estimation of quality of online services.

In 2009 IEEE International Conference on Web Services, pages 99–106, July 2009.

[80] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. A survey on

trust and reputation models for web services: Single, composite, and communities.

Decision Support Systems, 74:121 – 134, 2015.

[81] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. Towards trust-

worthy multi-cloud services communities: A trust-based hedonic coalitional game.

IEEE Trans. Services Computing, 11(1):184–201, 2018.

[82] C. Wang and J. L. Pazat. A two-phase online prediction approach for accurate and

timely adaptation decision. In 2012 IEEE Ninth International Conference on Services

Computing, pages 218–225, June 2012.

[83] H. Wang, C. Yu, L. Wang, and Q. Yu. Effective bigdata-space service selection over

trust and heterogeneous qos preferences. IEEE Transactions on Services Computing,

11(4):644–657, July 2018.

[84] Shangguang Wang, Zibin Zheng, Zhengping Wu, Michael R. Lyu, and Fangchun

Yang. Reputation measurement and malicious feedback rating prevention in web

service recommendation systems. IEEE Trans. Services Computing, 8(5):755–767,

2015.

127

[85] Xiaofeng Wang, Ling Liu, and Jinshu Su. RLM: A general model for trust represen-

tation and aggregation. IEEE Trans. Services Computing, 5(1):131–143, 2012.

[86] Y. Wang, I. Chen, J. Cho, A. Swami, Y. Lu, C. Lu, and J. J. P. Tsai. Catrust: Context-

aware trust management for service-oriented ad hoc networks. IEEE Transactions on

Services Computing, 11(6):908–921, Nov 2018.

[87] Y. Wang and J. Vassileva. Bayesian network-based trust model. In Proceedings

IEEE/WIC International Conference on Web Intelligence (WI 2003), pages 372–378,

Oct 2003.

[88] Zhuo Wang, Songmin Gu, Xiangnan Zhao, and Xiaowei Xu. Graph-based review

spammer group detection. Knowledge and Information Systems, 55(3):571–597, Jun

2018.

[89] Guiyi Wei, Yun Ling, Binfeng Guo, Bin Xiao, and Athanasios V. Vasilakos.

Prediction-based data aggregation in wireless sensor networks: Combining grey

model and kalman filter. Computer Communications, 34(6):793 – 802, 2011.

[90] Jules White, Harrison D Strowd, and Douglas C Schmidt. Creating self-healing ser-

vice compositions with feature models and microrebooting. International Journal of

Business Process Integration and Management, 4(1):35–46, 2009.

[91] Matthias Winkler, Thomas Springer, Edmundo David Trigos, and Alexander Schill.

Analysing dependencies in service compositions. In Asit Dan, Frédéric Gittler, and

Farouk Toumani, editors, Service-Oriented Computing. ICSOC/ServiceWave 2009

Workshops, pages 123–133, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[92] Li Xiong and Ling Liu. Peertrust: supporting reputation-based trust for peer-to-peer

electronic communities. IEEE Transactions on Knowledge and Data Engineering,

16(7):843–857, July 2004.

128

[93] Hamdi Yahyaoui and Sami Zhioua. Bootstrapping trust of web services based on trust

patterns and hidden markov models. Knowledge and Information Systems, 37(2):389–

416, 2013.

[94] Ying Yang and Geoffrey I. Webb. Non-disjoint discretization for naive-Bayes classi-

fiers. In Proceedings of the Nineteenth International Conference on Machine Learn-

ing (ICML), Sydney, Australia, July 8-12, pages 666–673, 2002.

[95] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection

with end-to-end QoS constraints. ACM Trans. Web, 1(1), 2007.

[96] Valarie A. Zeithaml. Consumer perceptions of price, quality, and value: A means-end

model and synthesis of evidence. Journal of Marketing, 52(3):2–22, 1988.

[97] Liangzhao Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and

H. Chang. QoS-aware middleware for web services composition. IEEE Transactions

on Software Engineering, 30(5):311–327, May 2004.

[98] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Collaborative web service qos predic-

tion via neighborhood integrated matrix factorization. IEEE Transactions on Services

Computing, 6(3):289–299, July 2013.

[99] J. Zhu, P. He, Z. Zheng, and M. R. Lyu. Online QoS prediction for runtime ser-

vice adaptation via adaptive matrix factorization. IEEE Transactions on Parallel and

Distributed Systems, 28(10):2911–2924, Oct 2017.

129

	List of Figures
	List of Tables
	Introduction
	Research Context and Motivations
	Problem Statement and Research Questions
	Research Aim, Objectives and Challenges
	Research Contributions
	Research Assumptions
	 Thesis Structure

	Background and Literature Review
	Context-aware Composite Service
	Service Compositions
	Context
	Service Dependency

	Autonomic Computing
	MAPE Loop
	Software Product Line and Variability Modeling
	NSGA-II
	Kalman Filter Model
	Dependency Network
	Relational Dependency Network (RDN)
	Relational Database
	RDN Representation
	RDN Learning

	Context-aware Service Trust
	Subjective Trust
	Objective Trust
	Bootstrapping Trust

	Literature Review and Discussions
	 Adaptive Service Composition
	SLA Management
	Feature Model-based Adaptive Service Composition
	Service Trust

	Service Adaptation Management
	An Overview of the Proposed Approach
	Master/Slaves Managers
	Master Manager
	Slaves Managers

	Experiments
	 Distributed Environment
	Scalability and Robustness

	Conclusion

	Service Trust Management
	Multi-Dimensional Trust
	Subjective Trust
	Objective Trust
	Bootstrapping Trust

	SLA Violation Prediction
	Kalman Filter-based Approach
	Relational Dependency Network-based Approach

	Experiments
	Direct Trust Prediction Accuracy
	Dependency Network vs Bayesian Network
	Subjective Trust in Dynamic Environment
	Accuracy and Resiliency Numerical Results
	Bootstrapping Trust Prediction Accuracy
	Kalman filter based SLA Prediction Accuracy
	Relational Dependency Network-based SLA Prediction Accuracy

	Conclusion

	Service Adaptation Actions
	Composite Service Adaptation
	Multi-Objective Composite Service Adaptation
	NSGA-II-based Decision Algorithm

	Service Adaptation
	Experimentation and Results
	QoS Requirements Flexibility
	Dynamic Adaptation
	Local Adaptation

	Conclusion

	Conclusions
	Summary
	Critical Reflection and Future Work

