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Abstract

Data-Driven Optimized Operation of Buildings with Intermittent Renewables

and Application to a Net-Zero Energy Library

Vasken Dermardiros, Ph.D.

Concordia University, 2020

We are at the intersection of three major trends in the built environment where: (i) occu-

pants’ comfort, health and safety requirements are needed to support a productive workplace

while maintaining a low operating cost, (ii) economic and environmental advantages are

favouring an increased use of renewable energy generation and to reduce our reliance on fos-

sil fuels, and (iii) major utilities will require regulation and are gradually shifting towards

a more dynamic energy market. This thesis contributes a modelling and control framework

that unifies and addresses these three points together.

This thesis contributes a methodology for the development of a bootstrapped ensemble-

based low-order data-driven grey-box thermal models for supervisory-level optimal controls.

The model is integral to a robust sampling-based predictive control (MPC) framework. This

approach is directly applicable to most commercial buildings operating on a schedule and

can be extended to consider occupant-driven spaces.

The methodology is applied to the Varennes Net-Zero Energy Library: Canada’s first

institutional net-zero energy building. Exogenous inputs are modelled to consider likely

probabilistic outcomes for ambient temperature, cloudiness and interior plug loads. Bounding

cases are simulated to contrast the proposed approach against conventional methods. MPC

is applied to minimize various cost functions and emphasis is placed on a flexible profile-
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tracking cost function. The profile to track can be an open-market electrical price or a

demand response signal thus improving the grid’s flexibility while satisfying the building

constraints and better utilizing its systems and storage. In a morning peak demand reduction

case, given at least a 4-hour notice, our method is able to pre-heat the building, use minimal

energy on-peak and yield the full benefits. Considering a profile tracking case to reduce

grid interaction, a 10-12% total energy reduction was achieved for winter where the space

was gradually heated in the morning and evening while maximizing HVAC utilization during

periods of large photovoltaic generation promoting self-consumption. A similar strategy

would be near-impossible to handcraft without optimization-based approaches.

This proposed methodology can guide later implementations in the development of the

next generation of low-cost cloud-connected controllers that are easy to deploy and can be

adapted dynamically.
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a NSERC/Hydro-Québec Industrial Research Chair held by Dr. Athienitis which aims to

improve the efficiency of buildings and their interactions with the grid through optimized

controls. The Chair includes fundamental and experimental works to accelerate the imple-

mentation and demonstrate the effectiveness of advanced controls.

I acknowledge the help and support from Dr. Jiwu Rao from Concordia University for

helpful discussions and analysis of the library data and for retrieving and processing weather

data from the local airport weather station. Judith Frappier, Stéphane LaBarre, Raphaël
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Chapter 1

Introduction

1.1 Mission Statement

How can we improve the operation of buildings for their occupants, owners, the utilities

and the environment as renewable sources are increasingly employed and operational data is

more abundantly available? How can we, on a massive scale, build control-oriented models

and drive control decisions to improve grid regulation, reduce operational costs and guarantee

occupant comfort? This thesis aims to help answer these questions.

1.2 Problem Statement

Electrical energy production and consumption do not always match. There are moments

where the consumption demand peaks and puts a strain on the electric grid. During those

periods, most utilities are forced to either purchase power from neighbouring grids at a pre-

mium, turn on gas-fired peaking power plants and/or ask large clients registered to a demand

response program to reduce their demand and be compensated. Currently, generators are

scheduled via contracts for the next few days and will curtail over-generation. The grid is

not yet flexible.

The future of the grid is tending to be a transactional grid where energy and information

will be exchanged among buildings in an open market; going from a larger community towards

the micro- and nano-grid, see Figure 1.1. The nano-grid can be as simple as a single building
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Figure 1.1: Transactional grid compartmentalization (Kabessa, 2017).

with its on-site renewable energy production and storage solution. In this thesis, the Varennes

library is used as a case study, the first institutional net-zero energy building in Canada

located just off Montreal in the city of Varennes, Quebec (Dermardiros et al., 2019). The

building acts as a nano-grid with its on-site photovoltaic (PV) generation and has a thermal

energy storage solution as part of its structure. There is no electrical storage system on-site,

but can be considered for a future add-on. The work presented here can be transferable to

other buildings running on a schedule since the library is first conditioned based on the time

of day and then based on occupancy.

In a transactional grid, buildings must be dynamic and connected. They need to be

energy flexible which is defined as the ”ability to adapt the energy profile without jeopardizing

technical and comfort constraints” (Aduda et al., 2016; Reynders et al., 2018).

Throughout the world, polluting power plants are being replaced by renewable energy

sources. The price of PV solar panels has been dropping exponentially since the late ’70s

due to technological and manufacturing advancements (Kavlak et al., 2018). Solar energy

has reached cost parity in most localities globally, beating coal, with a record lowest large-
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scale installed cost at 1.79 cents/kWh in Saudi Arabia as of late 2017 (Graves, 2017). In

Quebec where electricity is the cheapest in North America, cost parity is expected in 20231.

The utility power mix is not always clean (Bucking et al., 2016) and renewable sources can

mitigate the problem.

The drawback of solar energy comes from its intermittent nature and unavailability during

the night. California is actively integrating renewable energy more so than any other State.

From the utility production in March 2017 shown in Figure 1.2, solar production peaks

during noon. However, looking at the bottom subplot, we can observe a strong negative

price signifying a phase misalignment of peak production and peak consumption. Closer to

5 PM, the price peaks due to net consumption ramping back up. Focusing on an average

profile, in Figure 1.3 we can see the net power demand during the day throughout the years.

As more and more solar panels are deployed, the utility-side net power demand is further

reduced during the day. This leads to two issues: (1) it creates an exaggerated ramp during

the evening and (2) it starts interfering with the utility’s baseload power production, which

is partly nuclear in California and cannot be modulated. Both problems force the utility

to discount electricity during noon but must ramp up power plants – if possible – in the

evening, which was previously not the case. The example shown is for the shoulder season

when the cooling load is expected to be low and the least amount of electricity would be

consumed. This circumstance foreshadows what is to be expected the rest of the year as

renewable energy production is increased without electrical storage.

In Quebec, due to the low cost of electricity, solar is lagging. The climate is cold to very

cold and the grid’s peak demand occurs in winter mornings and evenings due to residential

loads where heating is typically supplied using electric resistance and due to office and retail

buildings starting up. See the power demand curve for a very cold day in Figure 1.4. Regard-

ing the utility, the use of PV in Quebec does not aid with the morning peak in winter and

may make matters worse during the evening similarly as above by depressing the noon-time

utility output resulting in a larger ramp up. As the provincial utility, Hydro-Québec remains

a provincial government-owned corporation. Although they claim 99% of their power is pro-

1Noted during a presentation by J. Millette, then researcher at Hydro-Québec’s research office ”Laboratoire

des technologies de l’énergie (LTE)”, at the Mission Innovation 7 workshop, 2018-09-27
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Figure 1.2: California power mix includes large central and distributed solar generation.

Notice the negative electrical prices in the bottom subplot near noon and a peak close to 5

PM (EIA, 2017).

Figure 1.3: California grid duck curve. Comparing the 2012 load curve to the projected 2020

curve, a large evening ramp up period is created (EERE, 2017).

duced through renewable sources, the power source mix on the grid cannot be determined

since a significant portion is imported from neighbouring provinces and states that rely on
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fossil fuels. To reduce greenhouse gas emissions, the high-level objective should be to rely

more on hydroelectricity with a flatter demand curve and to export more clean energy to

neighbouring provinces and states during their peak periods to defer their use of fossil fuel

burning peaker plants.

One solution to the peaking problem would be to install utility-scale storage systems,

but they remain costly. Recently, Google DeepMind is in talks with UK’s National Grid to

help balance their electricity demand due to their larger reliance on energy from intermittent

renewable sources (Thomas, 2017). As of the date of this publication, no follow-up reports

have been released on the outcome of this collaboration.

Regulation can also occur on the consumption side through incentives – demand response

and energy conservation programs – and direct links with intelligent thermostats. Intelligent

buildings and homes can aid the utility by relying on energy flexibility concepts such as

optimally controlling their thermal and/or electrical storage systems (Denholm and Hand,

2011; Jensen et al., 2017; Lund et al., 2015; Moslehi and Kumar, 2010). Buildings should be

able to see the price of electricity, aid the utility by responding to demand response signals,

anticipate its internal needs due to occupancy and weather forecasts, learn and know the

intricate behaviour of its mechanical and electrical systems and act accordingly. Even with

dedicated electrical or thermal storage including phase-change materials (Dermardiros, 2015;

Dermardiros et al., 2016; Dermardiros and Athienitis, 2015; Dermardiros et al., 2015), a

suitable whole sub-building and building models will inevitably be required to capture the

thermal interactions and fulfill all the above requirements.

Current practice relies on specially designed rules from building operators or from con-

trol companies relying heavily on expertise where weather and occupancy predictions are

rarely utilized. Research, on the other hand, focuses on simulation engines which are over-

parameterized and are difficult to calibrate to an existing building: they are made for design

purposes. Tailored models have their use but can only be afforded by boutique clients. We

need general models to be trained on building data which can be scaled with cheap compu-

tational power throughout the years.
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Figure 1.4: Library electrical demand and grid demand for an extreme winter day, Hydro-

Québec data from 2011 (Laperrière and Brassard, 2011).

1.3 Method

Computational power has been growing exponentially for the past 120 years per unit

dollar following Moore’s Law. Data storage and networking follow a similar trend. Because of

smart phones, the cost of sensors are also decreasing while becoming more precise and power

efficient. Data is generated quickly and flexible models are needed to extract information.

The field of deep learning has had another resurgence because of the alignment of all the

above factors (LeCun et al., 2015; Goodfellow et al., 2016).

Buildings are unique and modelling each one individually is far from being cost-effective

given the relative cost of energy compared to engineering fees. General data-driven models

that can be broadly applied are needed. The data would first be analyzed to identify the

most influential variables that explain the desired outcome. Depending on the scale of the

model – room-level vs. floor-level vs. building-level – the selected variables will differ. The

variables would then be input to a data-driven grey-box or black-box model. Various models

will be compared and depending on the availability of data, some are likely to perform better

due to the ”No Free Lunch” theorem (Wolpert and Macready, 1997).

The models will serve to drive control decisions via model-predictive controls (MPC)

to improve comfort, minimize peak power and energy demand while minimizing operating
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costs. The models can also be used for fault detection and diagnostics (FDD) and for helping

in the early design stage especially in complementing community design tools (Bucking and

Dermardiros, 2018), but these objectives will remain secondary herein. Conventional reactive

controls seldom make use of occupancy and weather predictions to drive control sequences

and would fail or be too conservative under uncertainty.

As of this writing, we are in a pandemic. The way buildings are used has drastically

changed and will continue to change particularly with work-from-home policies and social

distancing measures needing to be imposed while at the office. The residential sector will

evolve since they will be occupied for more hours during the day and there will be a need for a

home office to perform work, while office buildings will become less dense and may primarily

be used for work and meetings that will need to be done in person. Internet of things (IoT)

sensors need to be applied to better assess occupancy and be supported by domain expertise

and artificial intelligence (AI) to achieve the goals of flexibility, sustainability, comfort and,

most importantly, health.

1.4 Thesis Structure

The thesis is structured in chapters. The chapters are published or under review in

well-established journals, however the chapters herein include more details and supplemental

information.

This introduction chapter gives an overall perspective of the way the electrical grid is

transforming: there is an increased use of renewable energy sources and buildings can aid in

the grid regulation well before necessitating electrical storage solutions. The following chapter

reviews the current literature state-of-the-art. The subsequent three chapters elaborate on

the central thesis of this work: given a building, how should it be analyzed, what modelling

methodology should be used that best forecasts the building power and thermal state under

uncertainty and how to apply it in a model-based predictive controls framework. The final

chapter gives directions for future work on how to expand the proposed methodology in

breadth and reach to scale to more buildings and to more archetypes of buildings.

Chapter 1 Introduction. States the mission and problem with a brief explanation of meth-
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ods used. The electric grid is transforming and buildings will play a central role in its

regulation.

Chapter 2 Literature Review. Pertinent references and review of current state-of-the-

art highlighting research needs by this work and prospectively. Chapter focuses on

time-series prediction and control methods specifically applied to buildings and ther-

mal systems. Handling uncertainties and assuring efficient and scalable processing is

emphasized through model simplification and iterative convex optimization methods.

Chapter 3 Energy Performance, Comfort and Lessons Learned from a NetZEB. A

description and exploratory data analysis is applied to the case study Varennes Net-

Zero Energy library. Methodology is formulated for schedule-driven buildings and pre-

processing step for building transitional models. This approach is generic and general.

Chapter 4 Establishing Low-Order Models for Building Power and Thermal State

Forecasting. A parametric study analysis and comparison is performed between physics-

based and physics-free approaches. Model calibration metrics and approaches are pro-

posed. The stability and spread of the model forecasts are analyzed when relying on a

distribution of parameter weights.

Chapter 5 Sampling-Based Model Predictive Controls. A model-based predictive

control framework is formulated for noised instances utilizing an ensemble-based model

under various cost functions. Emphasis is given on the profile-tracking cost function

that can represent the energy flexibility of the building given uncertain predictions of

consumption and energy production.

Chapter 6 Conclusion and Directions for Future Work. Potential for future work

and extended application of methods applied towards other buildings is discussed. The

support from the industry and standardization bodies is indispensable to accelerate

widespread adoption. The lasting research contributions are presented.

Appendix A Varennes Library Supplementary Information. The details on the

lighting, natural ventilation, hydronic radiant slab, ground-source heat-pump and

building-integrated photovoltaic and thermal (BIPV/T) system are expanded.
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Appendix B Supplementary Models and Assumptions. Details are included on the

causal effects between input features, on the modelling approaches for the library models

and estimating its parameter posterior distributions, for modelling the BIPV/T system,

on the exterior ambient temperature forecasts and on the cloudiness prediction model.

Appendix C Publication Contributions and Significance. A list of publications com-

pleted as part of this thesis and details of my personal contributions therein.

9



Chapter 2

Literature Review

This chapter provides background on current control practices in buildings and why there

is a need for model- and prediction-based strategies. Section 2.1 states the current opera-

tional practice. Section 2.2 details what is model-based predictive controls (MPC) giving a

brief historical perspective and the challenges that lie ahead. In section 2.3, the approaches

to MPC are broken down into subsections covering categories of models, physics-based mod-

els, model calibration, simplifications to modelling including low-order models, typical day

operational modes, hierarchical approaches and then consideration of model and prediction

uncertainties. A subsection on pure data-driven approaches including reinforcement learning

is also given. Section 2.4 discusses the financial advantage of MPC in the sustainable mar-

ketplace. Section 2.5 summarizes and links the material to then establish the research plan

and objectives in sections 2.6 and 2.6.1.

2.1 Current Practice

Typically, buildings are controlled to match deterministic setpoints. The setpoints can be

different for an occupied or vacant room and occupancy is usually either scheduled, measured

through occupancy detectors or inferred from CO2 readings. The latter would offer the largest

energy savings since fresh air is only admitted based on demand.

The setpoints are met using closed-loop control in most cases, i.e. the controlled object

needs to make the measured point match the setpoint, e.g. a supply warm-air damper is
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opened/closed to make the room air temperature match a setpoint. To attain the setpoint,

terminal equipment rely on proportional (P), proportional-integral (PI) and proportional-

integral-derivative (PID) loops, i.e. depending on the setpoint error – the difference between

the measured point and setpoint – a proportional amount of heating is applied; the smaller the

difference, the lower the heating. Purely proportional control leads to oscillatory behaviour

due to system response times – referred to as setpoint hunting. The integral and derivative

terms are added to dampen this effect. PID controls are suitable for fast responding local

loops but tend to fail for slower systems (Afram and Janabi-Sharifi, 2014).

Open-loop control is often used supplementary upstream. Continuing with the warm-air

example, the temperature of the warm-air supply is a function of exterior air: the colder it

is outside, the hotter the supplied air. However, if no zone requires heating, determined by

having the terminal dampers at the minimum position, the hot air temperature is lessened.

This process is called a temperature reset. Similarly, if air demand is low, the supply fans

can reduce their speeds to save energy; called a pressure reset ; reset strategies detailed in

(Montgomery and McDowall, 2008).

Alternatively, expertly-derived supervisor-level controls exist, especially in cases where

there are thermal storage solutions on site – chiller-priority vs. storage-priority cooling –

or demand response participants – when signal comes through, a schedule turns off non-

critical equipment decided by the building operator or consultant engineers. For a more

comprehensive list of supervisory controls, refer to ASHRAE (2015, see chap. 42 Supervisory

Control Strategies and Optimization). However, implementing supervisory controls require

a non-negligible investment from the building owner. Smaller commercial, municipal and

residential sectors, cannot justify the cost-benefit over the steep consultancy fees.

2.2 The Need for Model-Based Predictive Controls

Most large commercial and institutional building constructions contain significant thermal

mass in the form of exposed concrete, thermal and/or electrical storage solutions, and large

slow responding systems where P/PI fail (Afram and Janabi-Sharifi, 2014; Candanedo et al.,

2011; Athienitis et al., 1990). A model-based predictive control system can be used to
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better utilize the thermal/electrical storage and the algorithm can also be used to discover

optimized supervisory controls depending on the requirements of the building owner/client.

Additionally, occupants have an increasing demand for customized comfort controls and

workspaces which can lead to increased productivity (WGBC, 2013). Knowing occupants’

preferences and their likely schedules can also be used for pre-conditioning a space and to

sequence the HVAC system’s operation to reduce costs.

Lastly, the grid is slowly transforming with an increased use of renewable energy. In a

previous work, we have analyzed the primary energy factor of electricity on Canadian province

Ontario’s grid (Bucking et al., 2016) to determine periods when the grid is less reliant on

fossil fuels and to design buildings that would be net-exporting clean energy during those

periods and be net-importing when the grid is cleaner. In a follow-up paper, St-Jacques

et al. (2020) have mapped and analyzed the flow of electricity on the macro-level grid among

the various sectors of the province of Ontario and its neighbouring provinces and states.

Following this work, a building or a renewable farm designer can rely on the spatial and

temporal information of the grid to drive design decisions: which orientation should have

PVs, which city would benefit from wind turbines, and so on. This information can also be

used within the context of MPC to operate clusters of buildings to aid the utility reduce its

greenhouse gas emissions and to alleviate energy flow bottlenecks within a power sector.

2.2.1 Historical Notes on Model-Based Predictive Controls

Model-based predictive controls – or receding horizon control – were applied in the oil

and petrochemical industries as early as the 1950s. Until the mid-70s, massive mainframe

computers were required to compute the process settings. Since, the arrival of cheaper,

more reliable and powerful microprocessors greatly aided the development and implemen-

tation of MPC. Through time, process stability was addressed by developing robust MPC

and, later, nonlinear MPC. By the end of the 90s, with the improvement of the optimization

algorithms and processing power, MPC has matured to a technology used in various fields,

such as: medicine (real-time insulin regulation), finance (revenue management, product pric-

ing, credit assessment), buildings (maximize comfort, reduce power demand and energy use),

among countless examples. The control industry sometimes refers to it as real-time embedded
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Figure 2.1: Generic model-based predictive controls framework from (Oldewurtel et al., 2012).

The total cost function (1) corresponds to a loss function over a prediction horizon N−1 with

common types shown on the top left. The constraints (2) limit the search space to be within

the domain of acceptable comfort and equipment limits and are typically linear. The current

state (3) constraint is to initialize the boundary condition. The dynamics (4) is the system

model that the MPC will use to predict the future quantities used in the optimization. In

this thesis, it is a time-invariant RC thermal circuit represented by a state-space model with

xk being state variables and uk, controllable variables.

optimization with solving times in the milli- to microseconds (Lee, 2011; Qin and Badgwell,

2003; Boyd, 2008). Coffey et al. noted the earliest application of MPC as supervisory control

for a building was from 1988 (Coffey et al., 2010). However, due to computational require-

ments, it did not receive much attention until the 2000s. MPC has numerous advantages

over conventional schedule-based P/PI/PID controls. First, we describe what is MPC.

2.2.2 What is MPC?

Model-based predictive controls is an optimization-based control framework where control

actions are optimized over a prediction horizon to minimize a cost function given constraints.

It relies on a model describing the system dynamics in combination of constraints limiting the

actions to allowable or desired ranges. Future estimates of exogenous inputs and disturbances

are included, e.g. weather forecast, occupants’ behaviours (Wetter, 2009).

Specifically, the design of an MPC algorithm requires a discrete time predictive model of

the system to be controlled, weights or coefficients of the cost function of the optimization
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problem, and constraints (Rawlings and Mayne, 2009; Camacho and Bordons, 2007; Borrelli

et al., 2012). When applying the optimal control sequence to the real system the result-

ing evolution must be as close as possible to the time-series prediction. In such a dynamic

optimization problem, the objective or cost function, J , is minimized over a prediction hori-

zon, N − 1, see Figure 2.1 for more detail including mathematical descriptions of common

types of cost functions and constraints for a discrete-time MPC framework (Athienitis and

O’Brien, 2015, chap. 6.3) (Lee, 2011; Qin and Badgwell, 2003; Camacho and Bordons, 2007).

Applied to buildings, the cost function can be the actual operating cost based on electrical

rates, which can be variable to include demand response signals and can have a reward for

promoting self-consumption of renewable energy. They can aid the utility by relying on en-

ergy flexibility concepts such as optimally controlling their thermal and/or electrical storage

systems (Denholm and Hand, 2011; Jensen et al., 2017; Morales et al., 2014; Aduda et al.,

2016; Reynders et al., 2017, 2018). The constraints, which can be formulated both on system

input and output, typically include temperature range restrictions for occupant comfort or

safety reasons, equipment capacity limitations, cycling limitations and as required. The pro-

cess to be controlled is modelled as a linear time-invariant discrete time system. Specifically,

the state of the system for an incremental time step is returned by the model, f(xk, uk, wk),

of the system where xk are system variables which track the system dynamics, uk are the

control inputs or variables that can be manipulated to improve the building performance,

and wk are the time series of exogenous inputs that can be observed but not controlled, e.g.

weather. The system constraints can be softened into penalties on the objective function

where violations result in a worsened objective value instead of an infeasible solution. In

general, the objective function and constraints should be convex, e.g. quadratic costs and

linear costs, in order to use highly efficient solvers. In cases of non-convex problems, iterative

methods can be used considering a convex problem for the given iterative optimization step

(Boyd and Vandenberghe, 2004; Rawlings and Mayne, 2009; Camacho and Bordons, 2007;

Borrelli et al., 2012). To consider time-varying components, such as operable windows a set

of time-invariant parameters can be trained and these parameters selected based on the state

of the windows.

Although not central to this thesis, optimization methods can be used to aid the design of a
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building. Machairas et al. (2014) reviews and details a plethora of optimization and modelling

methods which can be transferred for building operation. For more concrete examples, see

(Bucking et al., 2014; Magnier and Haghighat, 2010).

2.2.3 Advantages and Limitations

The MPC framework makes the operating intent explicit : the cost is what needs to be

minimized, the constraints are the limits of the system and the variables are what can be

controlled. In the conventional scheduled operation, the control desires are implicit in how

the sequences are programmed and can be cumbersome to comprehend especially if they

contain many heuristics. The owner can only hope occupants will remain comfortable during

a demand response event; whereas using MPC, the cost function would force to reduce

demand during a demand response event but the constraints would guarantee comfort.

What is interesting from the outcomes of MPC is, that in some cases, well-known heuristic

rules are discovered by the algorithm. In Kelman and Borelli (2011), the MPC algorithm was

able to systematically reproduce well-known heuristics such as demand limiting, economizer

cycles, temperature reset and pre-conditioning of spaces; the heuristics were manifested based

on what was the cost function. The authors state that a limitation in this paper is that

uncertainties were not considered and can negatively affect the strategy’s performance, e.g.

pre-cooling too much in anticipation of large solar gains that do not occur thus resulting in

discomfort and would be considered in a future work1. In May-Ostendorp et al. (2011), well-

known heuristics were also discovered by MPC and the authors argue that the utilization

of MPC can be automated, replicated, is more intuitive and cheaper than expert-derived

heuristics.

Shaikh et al. (2014) reviewed the state-of-the-art and lists advantages and limitations of

MPC compared to conventional controls:

Advantages

1. MPC considers disturbance predictions – that are occupancy profiles, weather, etc.

– in trying to regulate, appropriately, the control activities along with the convex

1A technical report can be found: http://www.mpc.berkeley.edu.
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optimization strategy.

2. It usefully exploits the building’s thermal mass compared to the conventional controls

– such as PID, weather compensated or rule-based control.

3. It can take account of the energy price variation and can be easily employed in the

optimization problem formulation.

4. Shifting and minimization of the energy peak loads can be handled within a definite

period due to the selection of the tariff and least operational cost.

5. Optimization can be carried out from a pool of predefined signals and it can select the

appropriate signal.

6. The distributed control strategy can also be formulated; thus, the computational load

has been split among various solvers.

Limitations

1. MPC technology requires a model of the system which involves huge costs for modelling,

data collection, expert monitoring and deployment; due to which, it is not worth-it for

medium-sized buildings. Therefore, narrowing down the system cost and complexity

is essential to determine a minimized optimization domain and a critical degree of

freedom.

In addition, in comparison to conventional controls – such as PID, weather-compensated

or rule-based control –, MPC usefully exploits the building’s thermal mass (Hu et al., 2019).

MPC techniques have shown encouraging results in simulation frameworks to control dynamic

heating and cooling activating thermal mass as a measure of load shifting according to a

given cost function (Wolisz et al., 2020). In fact, it can take account of the energy price

variation and can be easily employed in the optimization problem formulation. Thus, shifting

and minimization of the energy peak loads can be handled within a definite period due

to the selection of the tariff and least operational cost. In addition, the optimization can

be carried out from a pool of predefined signals, selecting the appropriate signal. Finally,
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distributed control strategies can also be formulated, splitting the computational load among

various solvers to increase the control feasibility. On the contrary, the MPC technique shows

several limitations. With respect to classical control schemes, which are generally model-free,

MPC requires models that may be difficult to develop for complex building systems. Their

development involves costs for modelling, data collection, monitoring and deployment and

can become cost-prohibitive for smaller buildings unless certain simplifications are made and

the process is approached in a systematic way. Therefore, narrowing down the system cost

and complexity is essential to determine a minimized optimization domain and a critical

degree of freedom (Paris et al., 2010).

A limitation not mentioned is that to apply MPC, a separate computer is needed to

calculate the optimal control profile and to then transfer the results to the BAS by either

overwriting the normal operation schedule or directly overwriting setpoints or equipment

statuses. No off-the-shelf MPC controller exists in the current market; there exists many

start-ups, two in Montreal2 as of this writing, offering supervisory-level controls and analytics.

The approach is to first connect, collect and analyze the building data, build a model of the

building, run the MPC algorithms in the cloud, where computing power can be scaled, and

transfer the results back to a local controller. Digital privacy can become an issue when

building data is transferred out and an internet-connected building can become a target to

network attacks.

Regardless, the main limitation of MPC is the need of a model and there exist many

approaches.

2.3 Approaches to MPC

Literature suggests that depending on the complexity of the system to be controlled or

for a more practical implementation, some simplifications can be made: (1) the modelling

approach used to describe the system dynamics can start with a calibrated detailed model

and later simplified by using results from a sensitivity analysis to reduce the number of

2BrainBox AI https://www.brainboxai.com/ which is part of the Canadian IVADO https://ivado.ca/

AI research super-cluster
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inputs/features, (2) the control problem can be divided or clustered into different operational

scenarios and made into rules or a simplified function, (3) the problem can be split into

a hierarchical system, (4) special attention needs to be taken to consider uncertainties to

improve robustness, and (5) data-driven models and reinforcement learning can be used.

These approaches are detailed next with their advantages and limitations and which

approaches were chosen for the thesis. The reader is encouraged to first read Chapter 3

which details the main case study: the Varennes library.

2.3.1 Categories of Models

The main limitation of MPC is the requirement of a model. All modelling approaches have

fundamentally the same purpose: they need to predict the thermal state of a building and its

energy demand. White-box modelling approaches are generally exploited in building energy

performance simulation tools aiming at obtaining an accurate description of the occurring

transient physical phenomena (e.g. spatial gradients through the building elements, dynamic

heat transfer loads, etc.) over a wide range of operating conditions and for preliminary

design purposes (Amara et al., 2015). Conversely, black-box models have simpler structures

and flexible mathematical formulations with a large degree of freedom to be able to model

any sort of phenomenon, guaranteeing generality and flexibility. Nevertheless, such models

are purely data-driven and, since they are tailored to the building operating conditions on

which they are trained, require a long training period and wide forecasting range to reduce

prediction errors (Bohlin and Graebe, 1995). In fact, to train a black-box model on a specific

case, diverse data are needed to learn the parameter values that minimize the prediction error.

This model essentially must learn the underlying data generating distribution or structure

(physics) to make predictions (Rätz et al., 2019). Since black-box models lack knowledge

about the physical structure of the system, semi-physical (grey-box) models, basically based

on a reduced physical descriptions of building dynamics, are preferable due to the possibility

to derive simplified mathematical energy building models via reverse engineering methods,

to drastically reduce the computation time to assess building energy performance in case of

large scale simulations, as well as to design advanced model-based controllers (Shaikh et al.,

2014). In a specialized white- or grey-box model, the modeller uses domain-expertise to

18



2.3. Approaches to MPC

describe the physical phenomena resulting in a system with less degrees of freedom requiring

less data to calibrate. Both approaches are invaluable, it all depends on whether there is a

budget to develop a tailored model or whether there is enough data to train a generic one.

But when it comes to performing an optimization, execution speed and convexity become

limiting factors. For a more in-depth description, refer to Dermardiros et al. (2015, chap.

2.4) and Candanedo (2011, chap. 2.2).

Effective grey-box, or semi-physical, models are necessary to design and implement ef-

ficient and reliable control algorithms for building energy performance analysis (Wang and

Zhai, 2016). The proper design of the control law, the tuning of its gains toward the effi-

cient simulation of the closed-loop dynamics, are not easy tasks. This is particularly true for

the efficient application of MPC algorithms which require for reduced-order building mod-

els capable to properly predict the building dynamics and its energy needs with minimal

computational effort, especially for large scale simulations (Pŕıvara et al., 2012). Thus, it is

useful to develop reduced order predictive models that are accurate and simple to solve the

trade-off between results precision and computing time.

2.3.2 Physics-Based Models

The advantage of a physics-based model is that, once defined, can be used to predict

the full behaviour of the system in any event. The disadvantage is that it takes a large

effort to correctly define all the parameters of the model relying heavily on the experience

and expertise of the modeller (Chwif et al., 2000). Building simulation software such as

TRNSYS, EnergyPlus, ESP-r, eQuest and Modelica require the building modeller to specify

all data concerning the building enclosure construction, internal loads, occupancy schedules,

equipment schedules, weather, and so forth to simulate the energy use and thermal behaviour

of the modelled zone. Many of these variables, possibly unknown, are either left to their

default values or, at worst, erroneously input by the modeller. The objective of building

simulation is to obtain insight on how a building reacts to various internal and external

profiles to assess as to what would be the best solution or most economical satisfying the

occupants’ comfort requirements, the Code (CNRC-NRC, 2015; ASHRAE, 2016), or other

special needs prescribed by the client. These detailed programs are more suitable for aiding
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design decision over being used for controls although there has been work using these engines

for that end (Zhao and Magoulès, 2012).

2.3.3 Model Calibration

The models will need to be calibrated to match the in-situ operation of the buildings and

systems they are representing. For both physics-based and physics-free methods, the metric is

what is minimized to assure a proper fit of the model parameters onto the data. Coakley et al.

(2014) reviewed modelling and calibration methods used in the building energy simulation

community. They stated that there are no thorough procedural standards for calibration

and such standards are expensive to develop. They observed that there is a poor integration

among the various design software – preliminary design to detailed design to building energy

performance simulation pipeline –, and furthermore ”there are few studies which account for

uncertainty in model inputs and predictions leading to a lack of confidence in building energy

simulation outputs”. Calibrations can be off by up to a 100% difference.

To assure models are stable for longer prediction and not just for one step, Žáčeková et al.

(2011); Pŕıvara et al. (2012) have extended a mean squared error over a prediction horizon

as a metric to minimize to train simple models for MPC.

Current calibration practice relies on minimizing calibration metrics. Calibration metrics

include what is proposed by ASHRAE Guideline 14, namely using the NMBE and CV(RMSE)

metrics. Garrett and New (2016) have shown that the ASHRAE Guideline metrics are not

necessarily stronger indicative calibration metrics than the other metrics they have tested –

correlation, kurtosis, MAPE, MBE, RMSE. They concluded that ”the correlations between

input and output error measures were not statistically significant, implying that the metrics

put forth in ASHRAE Guideline 14 are as good as any of the 4 other binary metrics tested.”

They suggested more effort should be spent on calibrating the inputs to models; to perform

a sensitivity analysis to determine the most influential parameters and their realistic value

range. Let us not forget Goodhart’s Law where ”when a measure becomes a target, it ceases

to be a good measure”. Which can be interpreted that the conventional approaches are

sufficient, however, all metrics should be consulted since they provide different information

on the fit and that the objective of a fit is to obtain a useful model and not something that
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minimizes an artificial or surrogate metric.

2.3.4 Simplified Models

For MPC to be effective, the underlying models need to be simple and fast for the algo-

rithm to converge to a solution (Oldewurtel et al., 2012; Cigler and Pŕıvara, 2010; Moroşan

et al., 2010; Candanedo and Athienitis, 2010). The models can either be simple in themselves

or simplified for a given simulation timestep. The optimal or near-optimal values would then

be sent to the Building Automation System (BAS).

Work from Heidarinejad et al. (2017) studied the behaviour of buildings given the time-

granularity of the data and how they may affect the outcome of MPC. Plant-level consump-

tion data can be expressed in hourly and daily figures while zone-level consumption needs

to be at a finer resolution. Modelling can be broken down and simplified accordingly. In

this regard, physical simplifications and model order reduction techniques are more often

considered. Physical simplifications are generally achieved by a linearization scheme and

pre-processing, so that the detailed nonlinear model can be derived into a linear and time-

invariant system by using fewer component models (Bourdeau et al., 2019). This approach

is demonstrated in chapter 4.

Simplified models are easier to interpret and calibrate in an installed system since they

contain fewer parameters to adjust. The parameters can be learned in real time – online cali-

bration – with data from the BAS. The discrepancies can be due to construction, installation,

renovations or system tolerances.

Oldewurtel et al. (2012); Lehmann et al. (2013) and the OptiControl team have been

working closely with the Swiss weather agency MeteoSwiss, Siemens and other organizations

to develop and implement MPC algorithms to buildings. They have developed a detailed

thermal resistor-capacitor (RC) model. The nonlinearities were linearized within the oper-

ating range. They used a stochastic MPC (SMPC) strategy to consider the uncertainty due

to weather variability. The objective function was to minimize energy consumption while

limiting the number of thermal comfort violations. They report that SMPC outperforms

current control practices. Kelman and Borelli (2011) has also used an RC model and ob-

tained satisfactory results. Bacher and Madsen (2011) have developed multiple RC models
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of varying detail to identify the most suitable model for a building. The selection is based

on whether the added detail improved the information gained given the added complexity

via a likelihood ratio test. They show empirically that there is a preferred trade-off. Similar

work on low-order models has also been reported by Fonti et al. (2017), with a two-part

review paper and experiment by Viot et al. (2018b,a), see Table 1 in their first paper for a

list of low-order models from the literature. The most complex model reported was 38R12C

– 38 resistances and 12 capacitances – that modelled a building with operable windows and

included the ventilation system, while the simplest one was 1R1C for a passive house. In

this thesis, the most detailed model used is 4R3C representing a simplified high-level model

of the Varennes library separating the main subsystems.

Henze et al. (2010) have studied near-optimal control strategies for various types of com-

mercial buildings in four climate zones offering different electrical tariffs. They have analyzed,

through fractional factorial analysis, the most influential parameters in medium sized offices.

The four factors derived from the fractional factorial analysis are the mass level, internal

loads, equipment efficiency, and equipment part-load performance. From very detailed mod-

els, they have trained simplified models on the four factors to replicate the results of MPC

getting up to 90% of the performance. Modern office buildings are well insulated and there-

fore independent to weather but highly dependent on internal loads. Proper utilization of

thermal mass can result in cost savings if it can be effectively charged and discharged. The

savings occur by being able to operate chillers at part load. Chillers are typically more effi-

cient at part load since more surface area of the evaporator and condenser can be used for

heat exchange. The peak savings are insensitive to the building enclosure: wall thermal re-

sistance, window U-value, window-to-wall ratio, building shape surface area-to-volume ratio,

or plenum configuration. However, the enclosure has a significant impact on the building

load and energy consumption. On the other hand, peak savings due to thermal mass charge

and discharge are most sensitive to utility rates, then by the amount of mass and internal

gains. Strong incentives, especially with low off-peak rates, produce lower pre-cooling tem-

peratures. Pre-cooling is less aggressive when there are significant off-peak energy rates, even

in the presence of high demand rates.

Gunay et al. (2016) has looked at influential parameters by first developing and analyzing
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12 different grey-box models with varying complexity and trained using an extended Kalman

filter and a particle filter. The objective was to access the amount of detail required to

model the thermal characteristics of an individual office to be used for controls. The grey-

box models are either first- or second-order. The range of models incrementally add building

measurement data. They showed that the inclusion of plug-in loads in the models had the

greatest effect. Plug loads are indicators of occupancy presence which signifies the occupant

drives the loads of his or her office.

By applying a simple correlation or a more thorough sensitivity analysis, Nguyen et al.

(2014) have shown that the number of input variables can be reduced from more than 100

to the 21 highly significant ones. In other cases, they have reported works that reduce the

number of inputs by nearly half. Garrett and New (2016) also push forward the need to

do a sensitivity analysis to reduce the input-side error and to obtain weights for the inputs

based on their influence on the output. Therefore, instead of blindly using all the available

data into the model, a sensitivity analysis, such as fractional factorial analysis, should be

performed to tease away input features that are not impactful.

A technique of simplifying the model is using system identification (SI) (Ljung, 1987). The

method consists of relating controllable inputs to outputs of interest, essentially, transforming

the detailed modelled to a simple black-box model. The simplified model would then be used

in the MPC optimization algorithm. Candanedo et al. (2013) has used this technique to study

the near-optimal use of an ice storage bank for a medium office building. Ma et al. (2012)

have extended the method by applying SI at every simulation timestep. Essentially, SI would

be applied to the EnergyPlus model, then, the MPC algorithm would determine the near-

optimal control parameters. The parameters would be applied to the original EnergyPlus

model to verify the result, after which the process would be repeated. They calculated around

25% of cost savings compared to common controls. Bernal et al. (2012) have developed an

MPC pipeline in MATLAB called MLE+3 to simulate a building in EnergyPlus, apply SI

to simplify the model, run MPC and then send the optimal control profiles to the building

via the BACnet stack. The proposed methodology was complete and their complete work

uploaded to GitHub, however development has stopped in 2013 and uncertainties were not

3https://github.com/mlab-upenn/mlep_v1.1
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thoroughly considered. MPCPy4 (Blum and Wetter, 2017) does a similar attempt to bridge

a simulation software, OpenModelica, with MPC. What was interesting in their work was the

modular approach of MPC where the model, optimization method, exogenous data import,

calibration and building communication are separate modules and can be swapped in and out.

Future researchers can improve specific modules. The modules are connected together with

Python. The team has also released a testing environment5 where researchers can compare

different modelling and control approaches and have a unified benchmark (Blum et al., 2019).

The work relies on EnergyPlus, OpenModelica and the Functional Markup Interface (FMI).

In their plans, EnergyPlus will be replaced with the Spawn-of-EnergyPlus (USDOE, 2019)

which offers a modular approach to modelling. MPCPy was difficult to setup and get it

running, I was unable to change the solver used and instead went with a different solver

using Python.

Works from Blum et al. (2019) and Garrett and New (2016)6 also put emphasis on the

repeatability of work and to have baselines for fair comparisons of modelling and control

methods. The latter have opened the database of building data they have used for their

paper and have developed a systematic testing methodology called the Trinity test. Garrett

et al. are providing a way for researchers to share their buildings’ data and to be all tested

similarly so that researchers can: (1) replicate the work of other researchers; and (2) have a

common ground to compare calibration techniques.

Low-order models for control applications can be determined during the design phase of

the building, thus combining design with operation. Recent work by Andriamamonjy et al.

(2019) aims at obtaining RC models from Building Information Modelling (BIM) models.

BIM is becoming the industry standard for design documentation being able to combine all

construction domains – architecture, engineering, construction – into a single location. It

can be used to build a construction schedules, material takeoffs for budgeting and this model

can be maintained up to date as the building evolves. These models are highly detailed and

4https://github.com/lbl-srg/MPCPy
5https://github.com/ibpsa/project1-boptest
6More information and other publications found: https://energy.gov/eere/buildings/downloads/

autotune, their Github repository: https://github.com/ORNL-BTRIC/Autotune, and for testing calibration

systematically: http://bit.ly/trinity_test.
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the authors of the paper have developed an approach to simplify surfaces and zones into

controllable spaces extending the usefulness of BIM into building operation. The grey-box

models are developed in Modelica, and can be used in MPCPy. Unfortunately, the library

case-study was designed and drafted on CAD and this approach cannot be used.

Grey-box models rely on simplified physical representations. The dependency on physics

makes it difficult to model stochastic processes. Massa Gray and Schmidt (2018) have devel-

oped a hybrid approach where a grey-box state-space model is used to capture the building

physics, followed by a black-box Gaussian process model trained on the model residuals to

capture the stochasticity due to occupancy and the weather. Alternatively, a black-box model

can be trained on data and later used to extract physical information about the system mod-

elled and used elsewhere in controls (Brastein et al., 2018; Naveros et al., 2015). A hybrid

approach is most promising for scenarios where there is a strong influence of occupancy on

the building operation, such as closed offices and/or intermittently used spaces like confer-

ence rooms; for a library building operating on a schedule, this uncertainty is not as firm and

so I have not used a hybrid method.

Hovgaard et al. (2013) have applied a non-convex MPC strategy for commercial refriger-

ation units. The systems were modelled using heat balance equations without linearization.

The non-convexity was treated by solving a sequential convex optimization problem. A 30%

cost savings would be achieved in a time-of-use priced electricity locality.

Nguyen et al. (2014) reviews work that show optimization results from using surrogate

models trained on EnergyPlus models and the results from EnergyPlus were comparable for

testing cases which means surrogate models are good approximations and are conducive for

controls.

The above cases show that it is possible to apply MPC on a detailed model or on a

surrogate grey-box or black-box model trained on the detailed model. It was also shown that

rules can be extracted to obtain an offline MPC approach.

2.3.5 Operational Modes, Typical Days and Extracted Rules

Literature suggests using an offline approach to ease and simplify the implementation of

MPC.
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Parisio et al. (2014) simplified the MPC problem into cases. The authors explored the

possibility of using MPC under two scenarios where the airflow or required load is governed

by either fresh air requirements – CO2 levels – or by thermal comfort requirements. They

have used a stochastic approach to model occupancy loads and the weather. The chance con-

straints were transformed into deterministic constraints through a sampling-based approach.

Although the authors did not apply it, a clustering method – which is an unsupervised

learning approach as part of ML – could have been used to bin consumption profiles into

typical type of days and then design the control strategies based on the type of day.

May-Ostendorp et al. (2011) have applied MPC on a building with operable windows

to minimize energy use. They relied on EnergyPlus and its Energy Management System

(EMS). EnergyPlus is computationally expensive to run and for the optimization method,

the underlying heat transfer equations remain hidden and cannot be exploited. The authors

had to rely on a meta-heuristic search technique – particle swarm optimization (PSO) – to

solve for the optimal control sequence. This method cannot be run in real time so the authors

ran the MPC algorithm for various cases and used the results to train a generalized linear

model (GLM) that would approximate MPC. The variables chosen to train the GLM consists

of data readily available in most buildings as well as time delayed values. Several models

relying on different variables were trained to assess as to how many measurements would be

required to obtain results approaching the full-MPC case. They used a step-wise regression

technique that minimizes the Akaike’s Information Criterion (AIC). The AIC is a statistical

figure of merit that objectively measures the model’s ability to reproduce the variance of the

observations with the fewest model parameters. The simplified trained GLM can very closely

mimic the general characteristics of the optimizer results, achieving 70 to 90% of the energy

savings, at a small fraction of computation.

Similarly, but simplified even further, in a paper and in his thesis, Coffey (Coffey et al.,

2010; Coffey, 2012) has extended the capabilities of GenOpt – a building design optimiza-

tion framework – to include a controls layers called SimCon. The controls layer can utilize

MPC or other user-defined strategies. In his work, he relies on TRNSYS to run the MPC

algorithm on various conditions, after which he obtains optimal control trajectories. The

trajectories are then compiled into a large lookup table, interpolated between the various
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conditions simulated to approximate the current online conditions, and used in real time in

the actual building through the building energy management system (BEMS). This results

in an offline MPC which was estimated to capture 59 to 94% of the savings of an online ap-

proach. May-Ostendorp et al. (2011) applied MPC to an EnergyPlus model as-is. Although

the computational time was long, their objective was to then extract simplified control rules

that can be implemented in the BEMS today. Drgoňa et al. (2018) have trained a state-space

model using stochastic gradient decent, ran MPC for multiple scenarios and finally trained a

neural network able to yield actions based on the current system state and future predictions.

In the application chapter – chapter 5 –, the electrical consumption of the building and the

solar radiation received has been modelled using typical days and clustering. This simplifies

what needs to be predicted to use MPC.

Extracting rules from MPC into a decision tree would serve as an analysis tool for under-

standing which actions lead to an optimal behaviour. Rules are simple to program in existing

controllers.

2.3.6 Hierarchical Approach

Scattolini (2009) reviews and classifies decentralized, distributed and hierarchical control

architectures. The main purpose of breaking down a large-scale MPC problem into smaller

systems is to ease the computational complexity – more efficiently solved sub-problems,

high/low-levels on different time scales and solving horizons – and simplify communication

– each subsystem can be operated independently. The subsystems can either minimize a

local performance index – independent algorithms – or a global index – cooperating algo-

rithms. In the independent case, a high-level controller would dispatch the constraints to

the subsystems to optimize in a master/slave configuration. In the cooperating case, both

high and low levels will all together optimize an overall cost function. In the latter case,

there will also be competition/cooperation between each sub-level system that may lead to

operational instabilities. To improve stability, the author refers to many papers that tackle

the problem. One of which is to have a high-level negotiator interacting with the low-level

autonomous agents until a consensus on the actions is attained. Many hierarchical MPC

frameworks do not have theoretical guaranteed stability properties. There is work to apply
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results from robust MPC onto hierarchical MPC but robustness naturally leads to conserva-

tive results yielding unacceptable real-world performance. Lastly, the author suggests more

work to be done on reconfigurable control structures and hybrid systems like being able to

add or remove actuators and sensors in a plug-and-play fashion and have the MPC adjust

automatically. Other suggestions include exploring optimization algorithms, state estima-

tion methods, control structure selection methods and synchronization and communication

protocols.

Similarly, Thieblemont et al. (2017) reviews that one of the ways to overcome modelling

complexity is to have several simple models and select them depending on the mode of

operation; still in the context of MPC. Another solution is to break down the approach into

a high- and low-level MPC. The high-level would deal with long term objectives such as

determining if there will be enough renenewable energy generation, how to best use it, when

to purchase or sell to the grid; i.e. it optimized the plant and storage systems. The low-level

would deal with short term objectives such as tracking the building temperature setpoints

and/or energy consumption. We could interpret this as the low-level MPC is given an energy

budget by the high-level MPC to work with.

The library is considering purchasing batteries for electrical storage. Once they do, a

hierarchical approach can be used to plan the charging and discharging of this system. A

hierarchical approach can also be used to consider the library in more detail going down to

the actuator level where the high-level MPC used in this thesis would allocate a budget to

the low-level zone-level controller to use. This remains a future work.

2.3.7 From Model & Prediction Uncertainties to Operational Ro-

bustness

The statistician George Box said ”all models are wrong, but some are useful”. What is

meant by this quote is that models represent a simplification of the complex world that can

be more easily understood and made useful. How the complexities and interconnections are

enclosed into the model is sometimes arbitrary or convenient. When the modelling purpose

is to gain insight into non-observable parts of a system, many different and non-equivalent

28



2.3. Approaches to MPC

model architectures can be designed that essentially yield the same output (Coakley et al.,

2014). Thus, mathematical formalisations of partially-observed experiments, even for well-

defined or closed systems, can generate non-equivalent descriptions of these system (i.e. ,

models whose outputs are compatible with the same set of observations but whose structures

are not reconcilable with one another). This has also been referred to as equifinality or model

indeterminacy. Therefore, the task of the modeller is to not only pick and design a model

that best describes the phenomena, but to have in mind the end use of the model and to take

in considerations the ease of use, mathematical complexity, stability and speed of execution.

MPC requires optimal control techniques to generate the optimal control sequence. Nev-

ertheless, the accuracy of the building model has a high impact on the quality of the optimal

operation strategies (Liu and Henze, 2004). In fact, changes in the operating condition and/or

disturbances in real scenarios may influence the closed-loop behaviour resulting in control

sequences which can be very different from those that are optimal. Thus, novel data-driven

feed-forward decision frameworks are proposed to determine the set of operation decisions

with uncertainties (Wei et al., 2018). Maasoumy et al. (2014) have studied the effects of

uncertainty onto the predictions which can have a large impact. The impact of uncertainties

on the energy performance of buildings can be mitigated by considering different techniques,

like fuzzy programming models (Mavrotas et al., 2008) optimization techniques integrated

into simulation analysis (Nguyen et al., 2014), chance constrained programming (Zakaria

et al., 2020), robust optimization (Kuznetsova et al., 2014; Costa-Carrapiço et al., 2020),

reinforcement learning (Hu, 2015; Rätz et al., 2019).

Models are not perfect and the predictions MPC relies on are not guaranteed. In Coakley

et al. (2014), uncertainty sources were grouped in 4 categories: specification, modelling sim-

plification and assumptions, numerical, and scenario which accounts for external conditions

and occupancy. Basically, the model structure can be mis-specified, its parameters can be

tuned incorrectly through a local minima, the simulation results can be divergent due to

numerical reasons, the weather, occupancy and energy costs are noisy predictions. There-

fore, instead of attempting to converge on a singular result, most engineering answers should

instead be expectations and have a mean value with a certainty range. Concretely, instead

of inputting the U-value of a wall assembly into a grey-box model, it would be preferable to
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input likely values based on domain knowledge which will result in a likely range of interior

temperatures.

Reddy et al. (2007) have identified that most calibration studies have overlooked uncer-

tainty analysis. In their work, Reddy et al. assigned ranges of variation to influential inputs

parameters to produce multiple possible solutions. The authors selected the top 20 solutions

rather than selecting a single solution.

Nature has published a few papers on the importance of being uncertain to ascertain the

correct use of statistical metrics, see (Krzywinski and Altman, 2013; Herzog and Ostwald,

2013; Nuzzo, 2014).

The uncertainties in weather need to be considered where there is a strong dependence

of energy use with outside temperature and when there is a PV system. Lazos et al. (2014)

reviews forecasting and modelling techniques like Zhao and Magoulès (2012). Climate pre-

diction will lead to better load management: e.g. predicting solar availability and cloud

coverage will help predict PV production.

The optimization algorithm will minimize the cost function as much as possible without

violating the constraints. This usually means the building is operated hugging the permissible

bounds which makes the optimal control sequence very sensitive to the predictions. In Kelman

and Borelli (2011), the authors state that if uncertainty is not considered, savings cannot be

attained: the building would be over-cooled in anticipating a larger-than-occurred solar heat

gains, resulting in a need to heat the erroneously over-cooled space to maintain comfort.

Occupants’ behaviour remains the largest uncertainty in office buildings. (Gunay et al.,

2014). Erickson et al. (2011) have created agent-based models to simulate occupants. The

models would be refined over time with the addition data. A better prediction of where

occupants will be and what they will do will yield a better control of the HVAC system

and result in increased comfort and productivity. Jia and Spanos (2017) have applied a

queuing-based approach to model occupancy.

Ma et al. (2015) presented an SMPC approach for building controls. The uncertain load

forecasts were modelled by finitely supported probability density functions which were up-

dated as new information is made available. Due to the complexity of the overall system,

system nonlinearities and chance constraints need to be handled to enable real-time im-
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plementation. The paper focused on the trade-off between computational tractability and

conservatism. Finally, the SMPC was compared to alternatives. The thermal zones of the

building – a library – were modelled using the ARMAX model. The model was trained using

data from unoccupied periods. Ambient weather and internal gains were modelled using a

predicted mean and forecast error. Thermal bounds served as a proxy for thermal comfort

and were softened. The rest of the constraints guaranteed proper system behaviour. To

transform the chance constraints, two methods were utilized where one, the discrete method,

relied on the probability density function and the other was a sampling-based method. Ma et

al. showed that an MPC algorithm not considering uncertainties performed worst at main-

taining comfort than conventional building controls. The discrete method consumed less en-

ergy whereas the sample-based method had less comfort violations since the sampled-based

method was more conservative towards comfort. Another method relying on Gaussian error

distributions also achieved similar energy performance but violated more comfort constraints

than the discrete method.

In these works (Ricardez-Sandoval, 2012; Sanchez-Sanchez and Ricardez-Sandoval, 2013;

Bahakim and Ricardez-Sandoval, 2014), the authors present methods to make the optimiza-

tion results more robust to uncertainties depending on the risk threshold of the control

designer. These parameters can be tuned depending on the type of building: hospital vs.

warehouse.

2.3.8 Data-Driven Models and Reinforcement Learning

The last approach to model-based predictive controls is to model the system solely on

sensor data. For data-driven models, the advantage is that very little work needs to be put

in to define the model. Sensor data is used to train the models. The disadvantage is that it

needs a lot of high quality and diverse data to learn the behaviour of the system. There is

no guarantee of good performance in cases not observed in the training set; the model may

not extrapolate very well.

Yan et al. (2017) have trained on Gaussian process regression models to predict the energy

use of a building. The GP regression also gives the certainty ranges on the outputs. This

can be useful for fault detection and diagnostics. When comparing the model to the building
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energy use, if the measured falls outside the certainty boundaries, it can signify a fault.

The authors have implemented the models and training process and have made it available

online7. Rastogi et al. (2017) have also used GP regression models to emulate a higher fidelity

simulation engine to speed up analysis.

Afram et al. (2017) review artificial neural network based MPC approaches. The models

were trained using various calibration metrics and at various levels – system and subsystem.

They showed that the methodology works quite well for many cases. Zhao and Magoulès

(2012) also includes ANN models in their study with similar conclusions. Smarra et al. (2018)

have used random trees and random forests to model a building and apply MPC to reduce

energy consumption.

Reinforcement learning (RL) has received tremendous attention lately after having de-

feated the world’s strongest Go player8 trained purely by self-play (Silver et al., 2017) and

performing at a professional level in an imperfect information game of Dota 2 (OpenAI, 2018)

and Grandmaster level in Starcraft 2 (The-AlphaStar-Team, 2019). Contrary to IBM’s Deep

Blue chess program, these methods are not domain specific and the training methods can be

generally applied to any problem that can be formulated as a Markov decision process – with

care, this assumption can be relaxed. In a nutshell, an RL agent interacts with its environ-

ment to come up with a policy – what action to take when in a certain state – to maximize

its sum of future discounted rewards. There exist many learning schemes and high-quality

implementations are made available freely online through OpenAI Baselines (Dhariwal et al.,

2017), Tensorforce (Schaarschmidt et al., 2017), and others. There has been successful appli-

cation of RL agents learning on imperfect simulation systems. Simulators cannot reproduce

all the details of reality, so OpenAI et al. (2018) have instead trained a 24 degrees of free-

dom robot hand in a simulation environment where they randomize many of the parameters

and the resulting RL agent becomes robust to this reality gap. The work relies on concepts

of learning inverse dynamics models (Christiano et al., 2016), domain randomization and

7https://harvardcgbc.org/cgbc-launches-online-gaussian-processes-forecasting-tool-to-analyze-building-

energy-consumption/
8Lee Sedol has now retired due to the frustration of not being able to defeat Al-

phaGo https://www.forbes.com/sites/aswinpranam/2019/11/29/why-the-retirement-of-lee-se-dol-former-go-

champion-is-a-sign-of-things-to-come/#6b4fa4fa3887
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Figure 2.2: States included for reinforcement learning agent to decide from simplified actions.

Feedback loop of returning updated states and reward (Dermardiros et al., 2019).

adversarial training (Pinto et al., 2016, 2017).

RL has been applied to the building controls domain by adjusting the space thermostat

setting by making comfort fuzzy (Yamaguchi et al., 2015), a continuous temperature value

(Nagy et al., 2018), we have applied it on a simplified RC-network based building environment

(Dermardiros et al., 2019) where the RL agent sees certain states and applies actions similar to

what a person would desire, see Figure 2.2 , or using a full-simulation engine like EnergyPlus

(Moriyama et al., 2018). However, RL methods require the agents to learn the environment

and the optimal policy which leads to requiring a lot of data in the form of experience.

Both MPC and RL are based on dynamic programming (Bertsekas, 1995) and at their limits

converge to the same solution, however, MPC has the advantage of having an explicit model

of the building which can be troubleshooted separately from the controls. Model-based RL

approaches where the model is a grey-box model also exist (Kamthe and Deisenroth, 2017;

Sanchez-Gonzalez et al., 2018).

Compared to MPC, RL methods map a state to an action whereas MPC methods take in

the current state plus certain predictions as an input to a model and relying on an optimiza-

tion technique determine the actions. Once trained, an RL agent will perform faster than an

MPC scheme and with a smaller software footprint; however, training the agent to be robust

remains an open research question. The difference is that MPC solves the full optimization
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for the given timestep but does so for a convex case; RL approximates the optimization us-

ing value-iteration and approaches the optimal after many episodes. RL relies on a reward

function and hard constraints are usually softened into the reward function. MPC can retain

hard constraints, which could be softened using a slack variable or softened also into the cost

function. In practice, once RL has converged, it requires a single pass to compute the con-

trol profile, whereas MPC must calculate the optimal control profile; therefore RL is faster;

however, since RL utilized function approximations – neural networks –, their stability is not

fully proven theoretically. The combination of the two approaches is at a preliminary stage

but shows great promise. In this thesis, the focus is on using MPC.

2.4 Financial Bottom-Line

Although MPC has many advantages over conventional controls, it still is met by resis-

tance from the industry.

The report by WGBC (2013) reviews the costs and benefits of green buildings for devel-

opers, investors and occupants. It reports cost figures from various sources analyzing what

is the premium to build green and if the resulting benefits are worthwhile. They report that

”[over] 85% of total workplace costs [are] spent on salaries and benefits, compared to less than

10% on rent and 1% on energy.” On a monetary front, since the cost of energy is two orders

of magnitude lesser than salaries, in no way can an energy reduction measure be justified if

it affects employee productivity. Looking at it the other way, with 1% of the total operating

cost of the workplace, we can have a positive impact on the larger 85% through the increase

of comfort leading to increased performance and productivity9. The report also lists many

studies linking improved occupancy comfort leading to increased productivity. Knowing oc-

cupants’ preferences and their likely schedules can also be used for pre-conditioning a space

and to sequence the HVAC system’s operation to reduce costs.

9Which is the main theme of IEA EBC Annex 79 - Occupant-Centric Building Design and Operation

http://annex79.iea-ebc.org/ which continues the work following IEA EBC Annex 66 - Simulation and

Definition of Occupant Behaviour in Buildings
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2.5 Summary

MPC was able to replicate many known heuristics automatically suggesting that an

optimization-based approach can replace specialized and sub-optimal engineered control se-

quences. By relying on sensitivity analysis, the number of inputs can be reduced, thus

reducing the cost of data collection and make the models robust to over-fitting. Sensor data

derived models based on supervised machine learning approaches are scalable with the com-

putational capacity of the future – models can be physics-free or have physics-based domain

knowledge introduced. Uncertainty consideration will make results robust to change and have

minima that are insensitive to perturbation and be stable. Uncertainty can also describe the

codependency of parameters. The prediction horizon length can be a function of the physical

behaviour of the system, be it related to its time constant and type of zone or occupancy.

The financial benefits of MPC is briefly introduced since although HVAC energy consumption

represents a small portion of the overall operational cost, it does have a significant effect on

occupant comfort and productivity.

Works reported in this chapter have described the success and benefits of MPC for con-

trolling a building. The literature review identified the following research areas: (i) what is

the current practice and the need to explain and promote MPC to practitioners in build-

ing controls since there is a lack of real-world examples outside of academic endeavours,

the need to develop off-the-shelf equipment able to interface optimization techniques within

the context of building operation, (ii) approaches to modelling the system and its dynam-

ics broken down into a spectrum of having purely data-driven models (black-box) towards

physics-based models (white-box); possibility of using a hybrid approach where certain phe-

nomena are modelled with a grey-box model and more stochastic phenomena with stochastic

and/or black-box models; approaches to modelling the exogenous inputs, (iii) methods of

calibrating and/or training the model based on data, a discussion about metrics to minimize,

(iv) simplifications to consider whether it be on the modelling side through reduced-order

models, or on the system side through relying on hierarchical approaches and/or breaking

down into modes of operation through clustering or based on domain expertise or a calendar

schedule, (v) the importance of considering uncertainties and how to better consider them
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for operational robustness, (vi) approaches to solve optimal controls from relying on differ-

ent types of models and using different approaches: convex optimization or meta-heuristic

methods; in certain cases, various cases are solved offline and this data is used to train a

simpler model that can be deployed online with minimal loss of performance; reinforcement

learning agents can be trained offline as well – called off-policy, and (vii) there is a strong

financial incentive to make spaces more comfortable for occupants to improve productivity.

The important and interesting conclusion is that all these points can be further explored

independently and each would benefit from one another.

2.6 Overview of Research Plan

The literature identified suitable paths for simplified methodologies of applying MPC

into a wider market starting from high performance buildings with on-site renewable energy

generation.

The research plan is to begin with analyzing the current behaviour of the library and how

it compares to a national average. This analysis can spawn suggestions and guidelines for

future designs of NetZEBs, but, more importantly, serves as a modelling data pre-processing

step to filter and process raw information using domain expertise.

Although the literature covers a wide gamut of modelling approaches including neural

networks, here, simplified modelling approaches will be used. Simpler models have fewer

degrees of freedom and therefore would theoretically require less data to calibrate and a

simpler model tends to be more interpretable. Models of different order will be compared

where detail is added to capture the behaviour of more complex HVAC systems. A study

on how much data is required will determine the trade-off between having a model quick vs

having an accurate model in deployment.

A common approach to time series modelling is using autoregressive models. This ap-

proach will be compared to the simplified modelling approach to see whether a physics-free

approach converges to the same parameters or whether the physics-based co-dependencies

have an impact.

To train models, literature suggests that no metric is rightfully superior to any other
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metric and so its selection depends on the modeller. Here, we will rely on the commonly

used metrics – based on ASHRAE Guideline 14 – MSE, NMBE and CV(RMSE). However,

we would need to modify them to cover multiple future timesteps. As a modification, an

exponentially decayed weighing term will be added to emphasize nearer-term predictions.

Since models are multi-zonal, the prediction errors can be also weighted based on a relative

importance, e.g. relative volume of the space, relative comfort impact of the system. Both

aforementioned weighings will be compared.

To obtain robust predictions, literature recommends training multiple models and rely on

an ensemble of predictions. The multiple models can be different based on it being trained on:

(i) randomized initialization, (ii) different dataset, (iii) using a different importance weighing

or prediction horizon, (iv) different model architecture, (v) different loss metrics, and/or

(vi) different optimization methods. The reasoning is that each model can predict certain

instances differently and by having an ensemble of models, a more informative prediction

can be obtained. Here, we will test these approaches but keep an ensemble through the

optimization method – Markov chain Monte Carlo.

Past MPC studies applied to building were done using white-, grey- and black-box ap-

proaches and either considered uncertain exogenous forecasts or, unrealistically, used perfect

forecasts. In this thesis, the exogenous inputs will be approached to be realistic and what

would be obtainable in a real case.

The MPC framework is general and generic. Certain works relied on genetic algorithms to

solve the optimization problem whereas others used convex optimization or approximations

of convex optimization to solve the dynamic program. Convex optimization solvers are very

fast and have convergence guarantees. This thesis will rely on convex optimization: convex

cost functions, models and constraints.

The cost functions to minimize tend to be specific to the modellers end goal. They would

need to be more flexible. We instead will start with the common approach of minimizing

energy and/or power and then move towards a general approach of having the building net

consumption match a utility-imposed demand profile. This is a more abstracted method

since the profile can be designed to mimic the energy minimization problem or other but can

also be used to minimize grid interaction – by setting the profile to 0 – or track a dynamic
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price scheme. This sort of profile tracking approach is seen more in robotics literature and

practice.

To alleviate the uncertainties in the model and forecasts, a sample-based iterative method

will be used. For a given timestep, the optimization is ran multiple times by randomizing

the model instance and sampling exogenous inputs; the optimal profile is obtained for these

samples and is averaged. Next, this approach is repeated but the control profile is constraint

to not be too different than the control profile of the previous iteration. This will be repeated

for a number of iterations and the norm between control profiles from one iteration to the

next will be further constraint. This approach is reminiscent to iterative methods used in

non-convex optimization.

As a final step, the control profile obtained from the sampled MPC approach can be

compared to the actual operation of the building. As a future work, to have a gradual shift

from current operations to optimal operations, a distance metric measuring the difference

between these two can be used to constrain the optimal controls from not being very different

than current practice. This will assure a safer operation, will allow a controlled level of

exploration which will allow the collection of novel data to refine the model, and will allow the

building operator to build confidence and intuition on how the optimal controller is working.

This approach is reminiscent on trust-region bounded reinforcement learning methods and is

left as a future work.

2.6.1 Objectives of PhD Thesis

To accomplish the research plan, several objectives are identified:

1. Analyze the performance of the Varennes NetZEB and offer improvements.

• Perform an exploratory data analysis: find trends and correlations,

• Compare operation to common and best practices,

• Suggest improvements and guidelines for future buildings for the operation of the

mechanical, lighting and building-integrated photovoltaic/thermal systems.

2. Design low-order models for control purposes.
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• Given above analysis, approach needed to best obtain a low-order model, added

detail to correspond to system input, not about adding precision,

• Augment calibration metrics for model long-term stability,

• Use calibration and optimization approach that does not assume parameter inde-

pendence; distribution on parameters,

• Compare and contrast fits based on amount of data used, period of data and end

application of the model.

3. Develop a noised MPC framework using various input models and cost

functions.

• Build models for estimating future energy consumption, ambient temperature,

solar radiation, and photovoltaic generation,

• Generate noised model instances based on model parameter distributions,

• Design various cost functions including (i) reducing energy, (ii) reducing peak

demand, (iii) tracking a desired profile while considering or not the renewable

energy production; and assure optimization remains convex,

• Run optimization sampling over parameters and noised exogenous inputs; iterate

for a given timestep while constraining the optimal control profile towards robust

operation,

• Analyze results and demonstrate its performance,

• Modular approach in essence and extendable towards the general case.

The approach presented in this thesis is general but applied to a low-rise institutional

building that is operated based on a schedule. It can be extended to other schedule-driven

buildings and future work can expand to occupancy-driven spaces and residential buildings.

The Varennes library case study, introduced in the next chapter, includes renewable energy

generation, ground-source heat pumps, occupancy-driven ventilation and radiant hydronic

slabs for space conditioning. Although the library is a net-zero energy building (NetZEB),

the focus is more about the interactions among renewable production, energy storage, on-site

consumption and the grid interaction.
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Chapter 3

Energy Performance, Comfort and

Lessons Learned from a NetZEB

This chapter is based on a published article1. The article includes the overall post-

inauguration performance of the building. Some details have been omitted for the sake of

brevity and focus.

3.1 Overview

The Varennes library will be the central case-study in this thesis. It is an institutional

building designed for net-zero annual energy balance – see Figure 3.1 for overall images,

Figure 3.2 for a cross-sectional schematic and Table 3.1 for an overview of the building’s

architectural, mechanical and electrical systems. Although the library is a net-zero energy

building (NetZEB), the focus is about the interactions between renewable production, energy

storage, on-site consumption and the grid interaction. The building behaves like a nano-grid.

The analysis in this section is to understand how the building is operating, how it can be

improved in its design and in its operation which will guide future construction and improve

the current building stock. It is presented before the modelling chapter since the analysis

and understanding of the system will drive the modelling methodology. For other buildings,

1Dermardiros, V., Athienitis, A. K., & Bucking, S. 2019. Energy Performance, Comfort and Lessons

Learned from an Institutional Building Designed for Net-Zero Energy, ASHRAE Transactions, 125, Part 1.
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a similar approach of exploration and understanding must be performed before modelling

to assure the model matches the system. Raw logged quantities have to be transformed

and this requires awareness of how the various systems interact and the causal direction of

information.

The following section introduces the building and the design intent. Section 3.3 analyzes

the energy consumption and its end-use breakdown whereas section 3.4 focuses on the energy

production and the net energy balance. Section 3.5 illustrates a cold sunny day highlighting

the need for optimal controls to dampen the effect of grid interaction. For completeness,

in the Appendix, section A.1 covers the lighting, section A.2 covers the natural ventilation

system, section A.3 reproduces key findings from a previous study (Dermardiros et al., 2017)

about controlling the hydronic radiant slab system in conjunction to the air system, sec-

tion A.4 demonstrates that the current operation is causing a seasonal imbalance of heat

transfer between the library and the ground, and section A.5 details the building-integrated

photovoltaic and thermal (BIPV/T) system with a simplified linear modelling methodology

for the electrical component.

3.2 Introduction

The city of Varennes is an off-island suburb of Montreal (latitude 45◦N). With its growing

population, the city needed a new library to replace its aging one. From 2010 to 2011, a

team consisting of municipal representatives, CanmetENERGY-Varennes researchers, Con-

cordia University academics and industry partners was formed and adopted an integrated

design process through several design charettes. Since the beginning, the objective was to

make the library the first net-zero energy institutional building in Canada with a building-

integrated solar system. Two key concepts determined the overall shape of the building and

the integration of the technologies:

1. The design team estimated the annual energy consumption to be around 70 kWh/m2yr,

resulting in an energy consumption of 147,000 kWh per year. To reach site energy net-

zero (Torcellini et al., 2006) with solar electricity generated by a PV system optimally

tilted and oriented due South, a 110-120 kW system would be required. This capacity
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3.2. Introduction

Figure 3.1: Varennes library tagged images. [1] Entrance, south-west view; [2] North facade;

[3] South facade; [4] 2nd floor facing West; [5] 2nd floor, middle section, facing South; [6]

Ground floor facing South; [7-8] Mechanical room; [9] South facade; [10] Inauguration, from

left to right: Dr. Konstantinos (Costa) Kapsis, Dr. Andreas K. Athienitis, Major Martin

Damphousse, Vasken Dermardiros and Rémi Dumoulin. (A) Forced convected BIPV and

BIPV/T area; (B) Naturally convected BIPV portion (out of view); (C) West facade, vine

supports; (D) 2-car charging station; (E) Skylights on northern roof; (F) Fixed exterior

louvers, solar shading; (G) Geothermal boreholes; (H) Ceiling fans; (I) Motorized windows;

(J) Displacement ventilation integrated to bookshelves/stacks; (K) Underfloor ventilation

diffuser; (L) Hydronic radiant slab; (M) Geothermal heat pumps; (N) BIPV/T heat into

AHU; (O) AHU.

would require a roof area of 700 to 800 m2 to generate close to 1200 kWh/yr per

kW installed based on well established solar potential maps from National Resources

Canada (NRCan) and measured data (Athienitis and O’Brien, 2015).
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RADIANT FLOOR SYSTEM (1st and 2nd FLOOR)

UNDERFLOOR AIR DISTRIBUTION (2nd FLOOR)

OVERHEAD AIR DISTRIBUTION (1st FLOOR)

7650 ft² [711 m²] BIPV ROOF OF WHICH:

-4610 ft² [428 m²]  6 in. [15 cm] CAVITY BIPV NATURALLY VENTED

-1185 ft² [110 m²] 3.5 in. [7 cm] CAVITY BIPV MECHANICALLY VENTED

-1860 ft² [173 m²] 3.5 in [7 cm] CAVITY BIPV/T MECHANICALLY VENTED

EXHAUST FAN

AHU WITH ERV

SKYLIGHTS

(NORTH FACING

ROOF)

MOTORIZED

WINDOWS

8 x 400 ft [152 m]

GEOTHERMAL BOREHOLES
4 x GSHPs  TOTALLING

30 TONS (2X10 + 2X5)

HORIZONTAL EXTERIOR

LOUVERS ON SOUTH FAÇADE

AIR INLET

AIR INLET

BIPV/T FRESH AIR

BYPASS

kWh
BIDIRECTIONAL

ELECTRIC METER

NATURAL CROSS-VENTILATION

Figure 3.2: Varennes library schematic courtesy of Dumoulin (2019).

2. The depth of the building would have to be 6 to 10 m to promote deep daylight

penetration (Athienitis and O’Brien, 2015) and night free-cooling through motorized

windows on opposite facades.

The early design charettes (15) served to develop a common vision for the net-zero energy

building and to implement it into a practical design for the local climate. The SNEBRN group

aimed to educate the architects and engineers – selected after a competition organized by the

municipality – on new energy efficiency and solar technologies. Through better integration

of the different building subsystems, system components would function more efficiently and

therefore can be sized smaller. The secondary objectives of this project were for Varennes

to transfer acquired knowledge to the building design sector, convince other municipalities

to adopt the integrated design process method, reduce the perception of high-performance

having a higher life-cycle cost, and to educate and showcase to the public the library’s various

net-zero energy enabling technologies, particularly their integration.
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Table 3.1: Varennes library features.
Architectural

Site Varennes, Quebec, Canada

ASHRAE Climate Zone 6

Net Floor Area, m2, [ft2] 2100 [22600]

Width/Depth, m 55.3/17.1

Roof tilt, ◦ 37

Window type, S Double-glazed argon low-e wood-frame

Window type, N/E/W/skylight Triple-glazed argon low-e wood-frame

WWR, S/N/E/W, % 30/10/20/30

Shading, S, fixed louvers 165 mm wide, 20◦tilted toward

window 250 mm c/c, 100 mm from glass

U-value, window, S, W/m2K 2.56

SHGC, window, S 0.58

U-value, window, N/E/W/skylight 1.82

SHGC, window, N/E/W/skylight 0.47

R-value, wall, m2K/W 5.1

R-value, roof, m2K/W 8.4

Mechanical

Main system, type Centralized DOAS modulated based on CO2

Main system, features GSHP, ERV, solar thermal recovery

Distribution system, 1st floor 4-pipe fan coil, overhead diffuser

Distribution system, 2nd floor 4-pipe fan coil, UFAD, displacement diffuser

Distribution system, S/E/W perimeter Radiant slab, 125 mm thick, heat+cool

Cathedral area, 2nd floor Ceiling fans

Natural ventilation Motorized windows

BIPV/T area, m2, [# units] 173 [66]

BIPV/T maximum air volume, L/s [cfm] 1140 [2420]

Domestic water Low-flow fixtures

Electrical

On-site PV, nominal capacity, DC kWp 110.5

PV panel, unit capacity [W] and # units 260, 425

Inverter capacity, kW [kW/unit, # units] 100 [10, 10]

Lighting, typical type, controls T8 fluorescent, 1-2 tube luminaires, DALI system

LPD, W/m2 [W/ft2] 7.64 [0.71]

Other features EV charging station (2 cars), no coffee machines,

no vending machines, no refrigerated water fountains

The now-built library has on-site renewables utilizing a 110.5 kWp building-integrated

photovoltaic (BIPV) system where heat is also recovered from a section of the array and used

to pre-heat the fresh air intake. The building’s many architectural and mechanical features
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3.3. Energy Consumption and End-Use Breakdown

Figure 3.3: Daily consumption data with clustering applied. Each colour represents the day’s

cluster assignment.

were integrally designed to achieve the net-zero energy target with several key decisions

made at the early design stage. During the first year after inauguration, an operational

energy use intensity (EUI) of 78.1 kWh/m2yr was achieved and has since been reduced to

70.0 kWh/m2yr. Considering renewables production, the net-EUI was 14.5 kWh/m2yr. This

is a 95% EUI reduction over the national institutional average (NRCan, 2016).

The library was inaugurated on May 16th, 2016, achieved LEED Gold certification, won

an Award of Excellence 2014 in Real Estate for Innovation from the Urban Development

Institute of Quebec (Macogep, 2014) and won an Award of Excellence from the Association

of Consulting Engineering Companies of Canada (ACEC, 2016).

The following sections break down the energy consumption, analyze the energy production

and their interaction. The final section demonstrates how better controls can alleviate the

mismatch.

3.3 Energy Consumption and End-Use Breakdown

To get a better understanding on how the library is operated, we plot the daily electrical

consumption since September 2017 – prior data was corrupted. Figure 3.3 shows two patterns:

(1) days where the consumption drops at 9 PM and (2) days where the consumption drops

at 6 PM. Applying a k-means clustering algorithm, available from the Scikit-learn Python
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3.3. Energy Consumption and End-Use Breakdown

(a) Consumption day cluster assignments. (b) Average exterior temperature.

Figure 3.4: Calendar heatmaps.

package (Pedregosa et al., 2011), the data is separated into 3 typical days. The consumption

at each hour of the day would represent the dimension of the point (R24), and k-means

would attempt to group points that are close together – it is a centroid-based method. The

hypothesis is that there would be 3 days to represent weekends and weekdays with either

high consumption or low consumption depending if it is the shoulder season or not.

To validate this hypothesis, the next step of the exploratory analysis is to observe the

cluster assignments to the average exterior temperature. Figure 3.4, shows these side-by-side

and the hypothesis does not seem to be agreeable. The hypothesis of there existing 3 clusters

can be simplified to only 2. Alternatively, a non-parametric clustering approach, such as a

Gaussian Mixture Model or DBSCAN, can be used.

The largest part of electrical consumption is due to space conditioning, see Table 3.2.

Starting with the heating load, we plot the heating power as a function of the temperature
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3.3. Energy Consumption and End-Use Breakdown

(a) 15-minute data scatter plot. (b) 15-minute data logarithmically-scaled binned.

Figure 3.5: Heating power vs. indoor-outdoor temperature differential.

difference between inside and outside, and also for clarity, the same points are binned in a

logarithmic scale, see Figure 3.5. A trend of increasing power can be observed as the difference

gets larger in the data show for 15-minutes intervals, however showing a large spread. Looking

at the heat pumps, we have observed a cycling behaviour. The scroll compressors in the heat

pumps cannot be modulated and the heat pumps work in cycles and in stages. By resampling

the data into 1-hour intervals, we suspect the heating power to be smoother. The stages can

be observed in the figure: notice the flat portions at approximately {22, 40, 50, 80, 100} kW.

The discrete behaviour of the heat pumps must be later considered in the MPC formulation.

The heat pumps use the ground as a thermal source and remain efficient even at very cold

temperatures; the coefficient of performance (COP) of the heat pumps were calculated to be

close to 5 in heating mode.

The energy breakdown is shown in Table 3.2 between June 1st, 2016 and May 31st,

2017. During a portion of that period, although individual luminaires are addressable and

dimmable, lighting was running on a fixed schedule and at full intensity. The lighting power

has since been reduced through dimming. Fan and pump power take a significant portion due

to the radiant slab systems requiring circulation pumps and the fan coil units having each

their own fans. The other category includes plug loads such as computers, book check-out

counter, etc. From the beginning, the energy design team had decided to exclude energy in-

tensive equipment such as refrigerated vending machines, water fountains and coffee makers.
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3.4. Energy Production

Table 3.2: End-use breakdown and energy use intensity (EUI). Data from August 2015 to

August 2016: first year of operation.
Category Energy, kWh [% of total]

Consumption 166,490

Lights 49,950 [30%]

Heating/Cooling 44,950 [27%]

Pumps 33,300 [20%]

Fans 33,300 [20%]

Other 4990 [3%]

Production 134,070 [80%]

Difference 32,420 [20%]

3.4 Energy Production

The library has a 110.5 kWp roof-mounted building-integrated photovoltaic (BIPV) array.

From the total 711 m2 [425 panels] PV area, 428 m2 [258 panels] is naturally vented through

a 150 mm [6”] air gap between the PV panels and metal roofing. The remaining 280 m2 [167

panels] is fan-assisted and vented through a narrower 70 mm [2.8”] air gap. The air flow

behind the panels serves to reduce overheating and to increase production efficiency. From

a 173 m2 [66 panels] portion of the forced air area, heat from the PV panels is recovered

through the outdoor air flowing in the cavity under the panels which is used as fresh air; this

airflow to the fresh air intake is controlled through variable speed fans during the heating

season, see Figure 3.2 – this system is known as BIPV/thermal (BIPV/T) as it produces

useful heat in addition to electricity. See Appendix section A.5 for more details.

A net daily energy balance is shown in Figure 3.6. This figure demonstrates when the

library is net-consuming versus net-producing. In winter and summer, the building con-

sumes approximately 400 kWh daily, whereas during the shoulder seasons, it exports around

200 kWh daily. Taking the same period used in the end-use breakdown (June 1st, 2016 to

May 31st, 2017), we plot in Figure 3.7 the load duration curve. This figure shows the hourly

net power demand sorted from net-consuming to net-producing. By intercepting the curve

with the x-axis, the number of hours where the library is net-consuming can be determined.

For the given period, 6784 hours [77%] are net-consuming or net-importing and the rest,

1976 hours [23%], are net-producing or net-exporting.

Excess electricity is sold to the grid and the library is compensated up to 50 kW as per
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Figure 3.6: Net Daily Electrical Energy Balance. Positive, red, is net-importing and negative,

green, net-exporting.

the agreement with the utility. As can be seen from Figure 3.7, by intercepting the curve with

-50 kW and integrating the area between the curve and the intercept line, we determine that

642 kWh of energy was exported pro gratis. There are no batteries installed and therefore the

library is incentivized to consume its electricity on-site and/or to sell its electricity to clients

having plugged their electric vehicles to the library’s charging station. What is missing from

the load duration curve is the sense of time: the highest net consumption happens in the

winter evening whereas the highest net production is during solar noon during the shoulder

seasons. Besides, the heating and cooling loads are not balanced and the long-term effects

of this on the ground would need to be analyzed, see Appendix section A.4. Another type

of visualization would be warranted to express the shorter-term fluctuations and assess the

need and the control strategy for shorter term thermal and/or electrical storage solutions.
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3.5. Grid Interaction on a Cold Sunny Winter Day

3.5 Grid Interaction on a Cold Sunny Winter Day

The definition of net-zero energy corresponds to a span of a 1-year window. The peak

export and peak import are months apart for the library. Shorter term needs exist where

peak daily production and consumption are hours apart.

Focusing on a cold sunny winter day, Figure 3.8 shows the energy consumption and

production throughout the day. Since the library is open to clients at night, there is a need

for heating. Could the overproduction of electricity during noon be better utilized to reduce

the need for heating at night? The library does not have electrical batteries but features a

hydronic radiant slab system which can be likened to a thermal battery. By overheating the

radiant slab during noon, the residual heat can be used throughout the night thus maximizing

the consumption of renewable energy on-site and minimizing the grid interaction.

A preliminary study has been conducted in Dermardiros et al. (2017) to better balance

Figure 3.7: Electrical load duration curve: Data from June 1st, 2016 to May 31st, 2017, first

year after inauguration. Maximum net import (consumption) occurs during heating season

around 7-9 PM; maximum net export (production) occurs during shoulder season around

solar noon.
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3.6. Conclusion

Figure 3.8: Cold winter day illustrating where evening heating requirements could be covered

by noon PV overproduction.

the daily fluctuations of heat between the radiant slab and the air within the building. The

study’s results confirmed that 50% the peak HVAC demand can potentially be reduced in

the morning through optimal controls – details reproduced in the Appendix section A.3. The

study assumed perfect information on exogenous inputs and did not consider the renewable

electricity production. The radiant model slab was detailed and this approach cannot be

easily generalizable. Going forward, a higher-level approach is considered.

3.6 Conclusion

The library is a strong case-study in this thesis because of a combination of features:

(1) on-site renewable energy generation with heat recovery for fresh air pre-heat, (2) passive

solar design: window selection and sizing, concrete slab thermal buffer, overall geometry,

(3) highly instrumented, (4) demand-driven ventilation, partially underfloor displacement

ventilation, (5) radiant slab-based heating and cooling, primary system for space condition-
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3.6. Conclusion

ing, (6) motorized windows for natural cross-ventilation, (7) operated on a schedule which

minimizes occupancy-related uncertainties, and (8) proactive and receptive building opera-

tors.

The building acts as a its own nano-grid and represents the buildings to come. By being

able to model and control this building, methods proposed can be expanded to cover more

conventional roof-top prepackaged unit based buildings, buildings operating on schedules

and buildings that have on-site renewables and storage. This also opens opportunities to

participate in demand response and dynamic tariff programs. The following chapter builds

on top of the analysis to derive low-order models suitable for controls.
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Chapter 4

Establishing Low-Order Models for

Building Power and Thermal State

Forecasting

4.1 Overview

This chapter presents a methodology to derive reduced order models to properly estate and

to forecast the thermal behaviour and energy demand of buildings. To this aim, a state-space

modelling approach with physics-based and physics-free parameterization is applied by using

model training with common metrics extended for long-term predictions. The methodology

also involves physical simplifications, necessary to break down the larger dynamic of the

building system into a smaller sub-systems, and model order reduction techniques. The idea

behind this approach is to provide a predictive model, calibrated on real data to obtain a

high level of accuracy, to be used for developing energy flexibility and advanced management

strategies for the next generation of buildings where intermittent renewable energy sources

will play a major role. To prove the effectiveness of the proposed methodology and of the

developed approach, data from a net-zero energy library, a solar net-zero energy institutional

public building located in Varennes, Quebec, Canada, are used. The chapter provides a basic

description of the models, data collection methods and controllable points. The developed

models are trained in various cases to analyze how the optimal parameter weights change
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4.2. Introduction

with time, and to observe the influence and magnitude of inputs on the model outputs.

Three different orders of models compartmentalizing the HVAC components differently and

for specific practical end uses are presented.

The following section introduces the need for model-based predictive controls (MPC) as

buildings will become key participants in utility regularization with the increase of renew-

able energy sources. Section 4.3 details the methodology for building the low-order models,

transforming the raw collected data, proposing calibration metrics and finally establishing

3 low-order models characterizing the different HVAC systems within the library. Finally,

sections 4.4 and 4.5 offer discussions on the modelling methodology, compares fit results to

what is obtained from reading the plans and offers conclusions about how to extend and

expand the methodology to other schedule-driven buildings such as buildings with roof-top

units representing a large number of all commercial and retail buildings in North America.

4.2 Introduction

As more decentralized renewable energy sources are introduced onto the grid to make

the utility power mix cleaner (Bucking et al., 2016), utility level load balancing is becoming

an issue. Photovoltaics can potentially create local generation peaks where the grid may

not be able to absorb this production if not directly consumed. Wind turbines rely on wind

which fluctuates. Thus regulation can occur on the utility side through modulating power

plants or using large scale storage solutions, or on the consumption side through incentives

and links with intelligent systems and thermostats. Intelligent buildings and homes can aid

the utility by relying on energy flexible concepts such as optimally controlling their thermal

and/or electrical storage systems (Denholm and Hand, 2011; Jensen et al., 2017; Morales

et al., 2014; Aduda et al., 2016; Reynders et al., 2017).

In this framework, commercial and institutional buildings can be considered as demon-

stration sites to implement efficiency improvement initiatives and flexibility measures and

strategies to optimally manage the energy fluxes within the building and between the building

and the grid (Buonomano et al., 2016). Demonstration projects on high energy performance

commercial and institutional buildings provide relevant examples and practical experience
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increasing knowledge and social acceptance of energy issues and actions. These buildings

have potential to adopt flexibility strategies, by optimizing the operation of integrated en-

ergy technologies (Ma et al., 2017) with the aim to reduce their pressure on the energy grid

(Mlecnik, 2018). The future of the grid is tending to be a transactional grid where energy

and information will be exchanged among buildings in an open market, going from a larger

community towards the micro- and nano-grid. The nano-grid can be as simple as a single

building with its on-site renewable energy production and storage solution.

Most large commercial and institutional building constructions contain significant ther-

mal mass in the form of exposed concrete, thermal and/or electrical storage solutions, and

large slow-responding systems where P/PI are inadequate (Afram and Janabi-Sharifi, 2014;

Candanedo et al., 2011; Athienitis et al., 1990). A model-based predictive control system

can be used to better utilize the thermal/electrical storage and the algorithm can also be

used to discover optimized supervisory controls depending on the requirements of the build-

ing owner/client. MPC technology requires a model describing the system dynamics with

acceptable accuracy to drive control decisions which traditionally involved huge costs for

modelling, data collection, expert monitoring and deployment and was cost-prohibitive for

medium-sized buildings (Shaikh et al., 2014). The objective of this chapter is to develop a

control-oriented model to be used in MPC by using collected data. This model would be

transformed into absolute quantities which are building agnostic and used to calibrate and

train linear predictive models. Different low-order models with extended metrics to train

them are derived to drive high-level MPC controls with significant level of accuracy. A key

objective of the work is to evaluate the control models applicability as a function of operating

and weather conditions of the controlled building. To this aim, physics-based and physics-free

parametrization in a state-space representation will be tested to compare and contrast their

performance in forecasting. Engineering time must be minimized to make MPC cost-effective

and so generalized approaches are preferred. Models with physical significance are expected

to maintain sensible performance during extreme conditions where black-box models tend to

fail in extrapolation.

Collected data are gathered at the Varennes library, the first institutional net-zero energy

building in Canada located just off Montreal in the city of Varennes, Quebec (Dermardiros
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et al., 2019). The building acts as a nano-grid with its on-site photovoltaic (PV) generation

and has a thermal energy storage solution as part of its structure. There is no electrical

storage system on-site, but can be considered for a future add-on. The work presented

here can be transferable to other buildings running on a schedule since the library is first

conditioned based on the time of day and then based on occupancy. A preliminary study from

the authors proposes an optimization-based MPC strategy on the radiant slab for a single

thermal zone of a nearly zero energy building, the Varennes library, located in Varennes,

Quebec, Canada (Dermardiros et al., 2017), also see Appendix section A.3.

This chapter focuses on the development of a low-order model that is to be used in

an optimized controls framework, namely MPC. The literature suggests low-order models

are sufficient for supervisory-level applications. The method herein is to first approach the

building top-down and develop the order of models as a function of the systems present and

whether there is a time lag component within the system – such as the case of heating being

applied into a radiant slab system which then gradually releases its energy towards the space

directly above. Collected data is transformed into heat flows and multi-zone temperatures

aggregated towards a weighted average of corresponding zones. By applying these trans-

formations, the modelling approach can be extended to any other building operating on a

schedule – vs being occupant-driven, and thus stochastic. The end goal being controls, the

models need to be stable over time. Common calibration metrics are extended for longer pre-

diction horizons and can optionally be weighted to put importance on nearer term forecasts

and/or have varying weighting for each thermal node. Models are trained using a nonlin-

ear least squares method and refined through a Monte Carlo based approach to break the

assumption of variables being independent. A visualization is developed to better analyze

the behaviour of the model. As a parametric study, models are formulated to either include

physics-based co-dependencies or to be physics-free equivalent to a first-order in time autore-

gressive model. Various lengths of training data are used to train the models to analyze the

impact on prediction accuracy and uncertainty in parameter weights. Neural-network-based

models are not considered since the data set is insufficient in length to adequately train them.

The chapter is developed as follows: section 4.3.1 details the 3 developed models; sec-

tion 4.3.2 explains the data transformations applied; section 4.3.3 defines the training and
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Figure 4.1: Control-oriented modelling for MPC: dark text in this chapter.

testing sets; the training metrics and explains the visualization developed to better assess

this fit; section 4.3.4 defines the modelling framework and is represented in a state-space

formulation; sections 4.3.5, 4.3.6 and 4.3.7 detail and analyze the fits for the 1st, 2nd and

3rd-order models respectively; and this paper ends with a discussion and conclusion on how

to extend the work to other cases and buildings.

4.3 Materials and Methods

The methodology proposed herein, see Figure 4.1, is about obtaining data from the build-

ing’s BAS or other sources and then process it to obtain building agnostic data: temperature

and heat flow. A causal analysis is demonstrated to validate the interdependence and influ-

ence of variables on each other in Appendix section B.1. The temperature and heat flow data

are used to fit various control-oriented models suitable for MPC. Models are fit using least-

squares followed by a Markov chain Monte Carlo (MCMC) posterior estimation to obtain

the uncertainty in the parameters. The model and model fits are thoroughly analyzed and

visualization methods are proposed to assure their applicability. Metrics for model fits are

proposed that can be tuned to obtain model behaviours giving importance to certain zones

or also weighing the prediction accuracy of the present more than the distant future. In the

following chapter, the final model will be used in an MPC framework to minimize various

cost functions.
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4.3.1 Building Models

The first step of the proposed methodology is to derive grey-box resistance-capacitance

(RC) models of varying order of detail to be used for control aims. Specifically, several

building models are developed to predict the indoor air temperature of the building under

investigation. The first model is a RC network where all building capacitances are lumped

together in a single node with one effective capacitance. This model is used to determine the

overall time constant (τ) of the building and to predict how much total heating or cooling

would be required in the next hours or day. The second RC network model splits the massive

capacitance from the massless one, i.e. indoor air, relying on two thermal nodes. The third

model further splits the building in two thermal zones, with and without active heating

elements. Finally, an equivalent auto-regressive model with exogenous parameters (ARX) in

a state-space representation of the same order in time and space is presented for comparison,

without assuming any physical co-dependencies, i.e. physics-free model. It is worth noticing

that care must be taken when selecting the model regressors, especially for training a model

with non-representative inputs: either ones that have no correlation with the output or ones

that will lead to over-fitting the model. A problematic regressor in the case of a building

operating on a schedule would be a time indicator regressor. Here, the model would fit the

interior temperature to the time of day instead of what truly affects the temperature.

All models refer to a building heated and cooled through several HVAC components,

central and local, which must be regulated to control its indoor air temperature. As a

function of the order of detail of the grey-box model, different temperatures are identified.

To characterize the derived models and to perform the parameter identification through

measurements, the Varennes Library is considered as real case study building detailed in the

previous chapter.

The hydronic radiant slab is the primary source of space conditioning in the south, east

and west perimeter zones, see Figure 4.2. The current controls for the radiant slab function

based on two operational modes: heating or cooling. If the zone is in cooling mode, no

heating can be supplied to that zone and vice-versa. There are opportunities to reduce the

overall energy consumption of a zone with radiant slabs by either pre-heating or pre-cooling

in anticipation of a future load, such as occupancy or solar gains.
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Figure 4.2: Varennes library plan highlighting areas supplementarily served by a hydronic

radiant slab circuit.

4.3.2 Data Transformation

At the library, all the control points and variables are archived. Certain variables act as

intermediate variables used by different control programs to operate the various systems and

subsystems. Certain points are logging checks, e.g. there are points that monitor contact

switches that confirm if a damper is fully opened and only after this confirmation is a fan

allowed to operate. To model the thermal and electrical behaviour of a building, many of

these points are either unnecessary or will need to be processed into other quantities, such

as massflow rate or heat.

In this chapter, the interest remains to study the behaviour of the building on a higher
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level and so certain low-level logged quantities will need to be aggregated or transformed.

Aggregation can be in the form of averaging the temperature of spaces weighted by the floor

area covered by that sensor. Transformation can be taking a pump state and its designed flow

rate, the properties of the circulating fluid and the temperature difference between inlet and

outlet to calculate the amount of heat transferred within that thermal circuit. By applying

these transformations, building specific quantities are mapped to absolute quantities – such

as temperature and heat – that are building agnostic. The work following this transformation

is general and transferable.

According to the available systems and subsystem to operate, as well as to the grey-box

models, different parameters and input are taken into account. General model inputs (not

learned parameters), including weather data and measured temperatures, alternatively used

in each RC model, are described below; units are given in round parentheses and in which

model order they are used in square brackets.

GHI (W/m2) [1,2,3] global horizontal irradiance obtained from CanmetENERGY-Varennes

– research centre located in Varennes, 8 km from the library.

Text (◦C) [1,2,3] is the exterior temperature measured on-site.

All the HVAC output (terminal fan coil units, DOAS AHU coil, convectors and radiant

slab), internal and solar gains are networked to the air node. The HVAC output and other

gains are split among the air and slab nodes in the second and third order grey-box models.

Differently, the third model further splits the building in two thermal zones to separate the

zones with and without the presence of a radiant slab system (i.e. one zone is relative to the

floor without a radiant slab and one above a radiant slab located along the south, east and

west perimeter). Accordingly, different node temperatures and inputs are identified. Their

interdependence and causal effects are further analyzed in the Appendix section B.1 and is

used to develop the models in the following sections.

Tair (◦C) [1,2] is the average library temperature as used by the central system.

Tair north (◦C) [3] area weighted average of air temperatures not above a radiant slab.
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Tair south (◦C) [3] area weighted average of air temperature above a radiant slab which are

along the south, east and west perimeter.

Qtotal (W ) [1] is the total heat transferred to the library as per the energy balance at the

heat-pump – which provides heat/cooling to the DOAS AHU, the radiant slabs and fan

coil units. Since the library is in 100% heating mode, we can be sure that the overall

heat balance calculation is valid; in a mixed mode, the fluid temperature differential

shows the net heat transfer. Qtotal = [ṁcp(Tsupply − Treturn)]water−glycol mix

Qslab (W ) [2,3] portion of total heat transferred to the slab. The radiant slab is a constant

flow on/off system. There are 11 zones with radiant slabs. The designed flowrates were

obtained from the mechanical drawings; flowrates for the fancoil units and AHU were

also on the plans. Trendlogs from the library indicate when a slab is in use. Qslab =

[ṁcp(Tslab,in − Tslab,out)]water−glycol mix

Qair (W ) [2] portion of total heat transferred to the library but not the slab.

Qair north (W ) [3] area weighted Qair where weight represents the portion of the library not

covered by the radiant systems over the total area.

Qair south (W ) [3] area weighted Qair where weight represents the portion of the library

covered by the radiant systems over the total area.

Consø HVAC (W ) [1,2,3] is the electrical power consumed at the library not including the

HVAC system. Power consumed by HVAC equipment equals to Qtotal/COPsystem where

the COP is the system level coefficient of performance accounting for the fans and

pumps and the actual heat-pump compressor. It is calculated to be approximately 4.5

for heating and 4 for cooling since the source is a ground loop.

4.3.3 Calibrating and Training a Model

Training and Testing Data Sets Two successive weeks starting in February (19 to March

5, 2018) are chosen to test the model fit. To train the model, data proceeding this date is

used for varying lengths. Winter weeks are used since it represents the most challenging case
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Figure 4.3: Exogenous model inputs: exterior temperature and global horizontal irradiance

(GHI). Training range: January 1 to February 18, 2018; testing range: February 19 to March

5, 2018; plotted range: January 1 to 14, 2018.

for both the building and the utility. The exogenous inputs include the exterior temperature

and global horizontal irradiance (GHI) and are shown in Figure 4.3 for the first two weeks

of the year. The rest of the period has temperatures near -10◦C and solar radiation peaks

slowly increasing.

Training Metric Žáčeková et al. (2011); Pŕıvara et al. (2012) have used a mean squared

error over a prediction horizon as a metric to minimize to train simple models for MPC.

We have extended their metric to include an exponential decaying term to give lesser im-

portance to further predictions, see Equation 4.1. Similarly, ASHRAE’s preferred NMBE

and CV(RMSE) metrics from Guideline 14 (ASHRAE, 2002) have been extended for a pre-

diction horizon – resulting in the extended NMBE (extNMBE) and extended CV(RMSE)

(extCVRMSE) metrics respectively, see Equations 4.2 and 4.3. The decaying term, δj, which

can be tuned, through β, to emphasize the importance of nearer term predictions over pre-
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dictions towards the end of the prediction horizon is given in Equation 4.4.

extMSEzone =

∑︁ph
j=1 δj

∑︁nt
k=1 [T (k + j)− T̂ (k + j)]2

nt
∑︁ph

j=1 δj
(4.1)

extNMBEzone =

∑︁ph
j=1 δj

∑︁nt
k=1 [T (k + j)− T̂ (k + j)]∑︁ph

j=1 δj
∑︁nt

k=1 T (k + j)
(4.2)

extCV (RMSE)zone =
100

√
extMSE

T̄
(4.3)

δ(t = j, β) = e−βj (4.4)

Optimizer The resulting calibration problem is solved using the Python lmfit package1

(Newville et al., 2016) using the Levenberg-Marquardt algorithm for nonlinear least squares

minimization (Levenberg, 1944; Marquardt, 1963). The results are then used as priors to

obtain the maximum likelihood via a MCMC sampling method using the emcee package2

(Foreman-Mackey et al., 2013). A MCMC method samples from the parameter priors to

then estimate their posterior probability distribution which explains the uncertainty of the

parameters without having to assume independence. The parameters are initialized ran-

domly. Having performed successive training runs, the initialization does not affect the

converged values. All parameters are constraint to be non-negative with the physical param-

eters bound to sensible ranges according to the information obtained from the architectural

plans.

Timestep For a physics-based formulation, the timestep is an explicit parameter in the

state-space representation. By resampling the data for longer timesteps, the fitting process

can be eased. The fitted variables represent physical properties of the building and are – gen-

erally – time-invariant. However, certain minute effects are smoothed and their corresponding

parameters can become erroneously misfit.

1https://github.com/lmfit/lmfit-py
2https://github.com/dfm/emcee/
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Visualization of Fit The goal of modelling is to choose a model that can predict the

behaviour of the system for multiple timesteps forward with minimal loss of accuracy and

without diverging behaviour. The models will be used in model-based predictive controls

where, given a starting point, the dynamic programming objective is to minimize a cost

within a prediction horizon – multiple timesteps. Although only the first optimal action will

be taken from the optimal action profile, the optimization needs to be solved on a longer

timestep to minimize the cost on the long term.

To access the quality of the model, we have developed a visualization, see Figure {4.4},

to plot the recursive rollout of the model: starting for a timestep, the model uses measured

future weather and recorded actions to predict the subsequent thermal states recursively.

Each rollout is plotted in sequential colour whereas the measured data – or ground truth – is

drawn in black. A perfect model will have the coloured lines overlapping the black line. We

have plotted the rollouts using the actual temperatures and also just the difference relative

to the measured data baseline. In the latter, the coloured lines would preferably remain near

0.

Last, the prediction horizon extended metrics, see Equations 4.1, 4.2, 4.3, are shown in

the plot for 10 hour rollouts.

4.3.4 Low-Order Model Representation, Simplified Without Hid-

den States

The RC thermal modelling approach is used to model the physical behaviour of the

systems and is represented as a state-space formulation:

y(t) = x(t+ 1) = Ax(t) +Bu(t) + Cw(t), where:

y(t) model output, which is the same as what goes back in for the following timestep (recur-

sive).

x(t) system variables to track, e.g. zone temperature.

u(t) controllable variables, e.g. heating/cooling stages, fan, damper position, or other.

w(t) exogenous inputs, e.g. weather and time indicators.

64



4.3. Materials and Methods

(a) Given the current time, the model needs

to forecast for a prediction horizon of length

n.

(b) Using the exogenous input forecasts, the

model predicts the temperature until time t+

n shown with the blue line.

(c) Time advances by one step. The actual

temperature at t + 1 is below the predicted

temperature done in the previous timestep.

The model appears to over-predict the tem-

perature on near term.

(d) The same model is now fed with the

(possibly) updated exogenous input forecasts

and predicts the temperature for another n

timesteps starting from the actual tempera-

ture at t+ 1 shown with the orange line.

(e) The process is repeated for every time

step. A good model’s prediction must remain

close to the measured data or ground truth

(black line) and not diverge on far predictions.

Figure 4.4: Visualization of fit explanation and example.

A, B, C state and input matrices.

The library is conditioned with an air system and a radiant slab where the radiant system

is only present within a portion of the building. The models would need to distinguish

between zones with the radiant system and zones without. Since the models and later

proposed optimal controls are applied at a supervisory level, the zones can be combined.

Finally, since the library is very well insulated – see section 3.1 Table 3.1 – and the walls are
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Figure 4.5: 1st-order grey-box model architecture for the Varennes library. Heat inputs

include all sources combined which can include solar and internal gains.

not made of massive elements, all the thermal capacitance can be assumed to be inside the

building in the form of the books, stacks, furniture and the concrete slab.

Three model orders are presented: (1) 1st-order model lumps both air and radiant systems

together, (2) 2nd-order model separates the air and radiant systems but not the zones with

and without radiant slab, and (3) 3rd-order model separates the systems and the zones. The

1st-order model could be used in shoulder seasons to optimally use free-cooling since the

HVAC system would be shut down. The 2nd-order model can also be used to control the

window operation in free-cooling but also have the capacity to better utilize passive solar

gains. The 3rd-order model is the simplest model that represents the HVAC system with

fidelity and is used in the next chapter. A higher-order model could be designed to separate

the floors but since both floors are operated the same way and their arrangements including

window sizes and bookshelves are similar, we stopped at the 3rd-order. Having this simplified

approach with more emphasis on data pre-processing would allow the methodology herein to

be applied to other buildings.

4.3.5 1st-Order Model

Beginning from the simplest case of taking an overall approximation of the whole library,

we can draw an equivalent thermal RC circuit in Figure 4.5 with state and input matrices

detailed in the Appendix section B.2.1.
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Training The models are trained on collected data from January 1st to February 18, 2018,

and validated on data following until March 5. As an initial test, a range from 1 to 7 weeks

of training data was used to fit a model. The extended mean squared error (extMSE, see

Equation 4.1) is used as the cost function. Two decaying factors and two lengths of prediction

horizons to train on are used. The parametric run results are showing in Table 4.1. Using

1 week of data, we obtain a model with the least amount of bias in the test set (extNMBE).

This model captures the short-term trends well but would not be stable in its parameters.

Among the 7 weeks, training the model on 3 weeks seems optimal with parameter values

equalling the results from 2 and 4 weeks of data. Using 7 weeks of data seems to be too

much for a low-order model where the model tries to fit on past behaviours which are no

longer applicable to future predictions. By extending to a longer prediction horizon, the

model parameters change a little but by including the exponential decay term, the best fits

are closer to the 3-week values. All fits resulted in having no correlation between non-HVAC

electrical consumption and interior temperature, and were forced to 0 when running the

Monte Carlo (MC) posterior estimation.

The obtained parameters for both physics-based (grey) and physics-free (black) ap-

proaches are shown in Table 4.2 with their differences. Table 4.1 reports the correspond-

ing fitted effective physical parameters. The largest difference is for the Text regressor: the

physics-free model depends less on the exterior temperature, however this can lead to predic-

tion errors in application. The physics-based approach converged to a better solution in less

iterations since it has less free variables and includes physically meaningful co-dependencies.

The MC posterior estimation method begins after first fitting the models using a nonlinear

least squares method and using the fits as priors. The MC method does not assume the

parameters are centered around a Gaussian distribution, but looking at the results from

the MC fits in Figure B.2 in Appendix B.3, we do observe the variables to follow a normal

distribution – see subplots in the diagonal. The other subplots show the drawn samples as

a parameter vs. parameter scatter plot. Locations of high density are shown with a contour

plot; locations of low density are just shown as points.
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Table 4.1: 1st-order grey-box model parametric run. Default settings: timestep: 15-min,

decay factor: 0, prediction horizon: 6 hours; metrics calculated on test set for a 10 hour

horizon.
Train Weeks 1 2 3 4 5

Uair,ext 1336±6 (0.46%) 1570±5 (0.34%) 1533±5 (0.30%) 1558±4 (0.28%) 1647±4 (0.27%)

Cair (*106) 563±4 (0.72%) 734±4 (0.54%) 724±3 (0.47%) 750±3 (0.43%) 838±3 (0.41%)

αsol 66.3±1.1 (1.70%) 105.4±1.1 (1.08%) 109.4±1.1 (0.97%) 124.9±1.0 (0.83%) 147.2±1.1 (0.75%)

αgains 0.0 0.0 0.0 0.0 0.0

extMSE 0.11297 0.10389 0.10183 0.10304 0.10606

extNMBE 0.000246 0.001930 0.000621 -0.000349 -0.000396

extCVRMSE 1.5811 1.5162 1.5011 1.5100 1.5320

Train Weeks 6 7 4 4 4

ph:10 dy:0.2 dy:0.2, ph:10

Uair,ext 1650±4 (0.25%) 1774±4 (0.25%) 1637±4 (0.24%) 1522±5 (0.31%) 1525±4 (0.23%)

Cair (*106) 861±3 (0.38%) 1020±4 (0.40%) 814±3 (0.38%) 719±3 (0.44%) 723±2 (0.33%)

αsol 153.8±1.1 (0.72%) 195.1±1.4 (0.70%) 147.4±1.1 (0.73%) 114.9±1.0 (0.88%) 117.0±0.8 (0.66%)

αgains 0.0 0.0 0.0 0.0 0.0

extMSE 0.10777 0.11798 0.10665 0.06582 0.06615

extNMBE -0.000905 -0.001587 -0.000654 -0.000146 -0.000241

extCVRMSE 1.5442 1.6158 1.5362 1.2069 1.2099

Table 4.2: 1st-order state matrix entries. Metrics calculated on test set for a 10 hour horizon.

Settings: timestep: 15-min, decay factor: 0.2, prediction horizon: 6 hours, train data: 4

weeks. The grey-box equivalent column gives the corresponding positional entries in the

state-space matrix described in the Array column.
Regressor Array Black-box Grey-box ∆(Grey-Black) %∆ Grey-box equiv.

Tint a1,1 0.99773±0.00021 0.99809±0.00001 0.00036 0. 1− Uair,ext∆t/Cair

Qtotal b1,1 (1.239±0.024)*10-6 1.233*10-6±0 -6*10-9 0. ∆t/Cair

Text c1,1 0.00111±0.00058 0.00191±0.00001 0.00133 69.6 Uair,ext ∗∆t/Cair

ConsøHVAC c1,2 0. 0. 0.0 - αgains∆t/Cair

GHI c1,3 0. 0.00015±0.000001 -0.00015 - αsol∆t/Cair

extMSE 0.1099 0.0658 -0.0441 -67.0

extNMBE 0.00754 -0.00014 -0.00768 5490

extCVRMSE 1.559 1.207 -0.352 -29.2

Testing The models are tested on collected data from February 19 to March 5, 2018. A

parametric run is tested for varying lengths of training data, two different prediction horizons

and two decaying rates. Figure 4.6 shows the resulting metrics. Focusing on the extended

MSE, we observe a minimum around the 3-4-week mark, meaning 3 weeks of data is sufficient
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(a) MSE (b) NMBE (c) CV(RMSE)

Figure 4.6: 1st-order grey-box model fit metrics given different weeks of training data; com-

paring prediction horizon (ph) length and decay (dy) factor. Extended bar is the mean value

with the extended thick line showing 1σ range and the extending further thin line showing

2σ range. The metrics show a minimum around the 3-4-week mark.

to predict the thermal behaviour of the building when using a 1st-order model. By using a

decay term, the MSE values are decreased since further predictions, which tend to diverge

more due to accumulation of errors, have less weight. For the extended NMBE, the trend is

lowered with more data but shows a large increase when using 2 weeks of data: given 2 weeks

of data, it may be better to train the model on just 1 week and retrain it after obtaining a

third week of data. The models fit on one week of data showed the most uncertainty in the

resulting metrics and so should be avoided.

Using 4 weeks of data and a small decaying term, we plot both fitted models on the

test range in Figure 4.7. In the first chart, we observe the coloured lines following the

black measured data line well. Plotting the difference between coloured lines and black,

we obtain the baselined chart. The difference seems to oscillate in 12-hour periods which

signifies that a higher-order model is warranted. If the resulting pattern was indicative of

a white-noise process, then no information is left in the data to extract. Focusing on the

physics-free parametrizations, the trends follow the measured data well except that they are

always under-predicting the temperature and this is obvious in the baselined plot.
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(a) Physics-Based (b) Baselined, Physics-Based

(c) Physics-Free (d) Baselined, Physics-Free

Figure 4.7: 1st-order model prediction traces for Tint: timestep: 15-min, decay factor: 0.2,

prediction horizon: 6 hours, train data: 4 weeks. Each sequentially coloured line repre-

sents a rollout at the hour for clarity with thin grey lines for steps in between. For graph

interpretation see 4.3.3.

4.3.6 2nd-Order Model

To separate the heat-pump output directed to the slab from the rest which goes towards

the air-based system (terminal fan coil units, DOAS AHU coil and convector). The amount

of heating or cooling going into the radiant slabs must be determined and removed from the

total. The Qslab quantity can be calculated with an energy balance based on the water-glycol

solution going into and out of the slab and can be done as a pre-processing step. The 1st-

order model is expanded to separate the effects of the two systems, shown in Figure 4.8 with

state and input matrices detailed in the Appendix section B.2.2.

Training Here, we introduce an importance weighing factor since the modelling for two

zones is using a unified metric. The weighing can be based on area, volume or another impor-

tance factor. In this case, a 50/50 and 10/90 percent slab-to-air importance factors are used.

Various combination were analyzed but we report two base cases of using a uniform weight
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Figure 4.8: 2nd-order grey-box model architecture for the Varennes library. Heat inputs

include all sources combined which can include solar and internal gains.

and a more extreme case. The 10/90 puts more emphasis on the air temperature prediction

since it has a larger effect on occupant comfort relative to the radiant slab temperature.

Table 4.3 shows the effect of this importance factor on the resulting parameter values for the

physics-based parametrization. By putting more importance on the room air, the parameters

relating to the slab are changed; no significant effect on the air parameters can be observed.

Since the physical properties of a building do not change with time – except if windows

are operated –, changing the sampling rate should have no effect on the fitted values; this

is done to reduce the time needed for convergence. Table 4.3 shows this fact holds for most

parameters except for αsol and Cslab for the 10/90 importance factor.

Table 4.4, like in the case of the 1st-order model, shows the comparison of physical and

physics-free model parametrizations for a set of specific settings. These settings were chosen

because they minimized prediction error. To predict the temperature of the slab or air, the

physics-free way comes close to the physics-based model without having explicitly considered

the co-dependence of the parameters. This signifies that the method can separate the two

systems. The other terms have some discrepancies albeit the overall accuracy appears better

for the physics-free approach, however the fitting time was longer but can be reduced using

parallelization. The parameters corresponding to the physics-based approach are shown in
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Table 4.3: 2nd-order grey-box model parametric run. Default settings: timestep: 15-min,

decay factor: 0.2, prediction horizon: 6 hours, train data: 4 weeks; metrics calculated on test

set for a 10 hour horizon.
Importance 50/50 50/50 10/90 10/90

Slab/Air timestep: 1-hour timestep: 1-hour

Uair,slab 10’000 10’000 10’000 10’000

Cslab (*106) 429±4 (0.87%) 432±12 (2.79%) 1524±44 (2.87%) 2126±134 (6.29%)

Uair,ext 1204±2 (0.18%) 1211±6 (0.52%) 1231±2 (0.15%) 1237±6 (0.47%)

Cair (*106) 354±1 (0.33%) 339±4 (1.26%) 348±1 (0.30%) 332±4 (1.08%)

αsol 53.1±0.8 (1.54%) 51.0±2.4 (4.73%) 790±25 (3.13%) 768±38 (4.88%)

αgains 0.0 0.0 0.0 0.0

extMSE 0.14876 0.12151 0.11358 0.14362

extNMBE 0.006786 0.005437 0.004368 0.006140

extCVRMSE 1.7973 1.6270 1.5821 1.7786

Table 4.3. The sum of the capacitances from the 2nd-order model is close to the capacitance

from the 1st-order model. The conductance towards the exterior is reasonably close as well,

signifying that it can be possible to grow the RC network dynamically. The uncertainties of

the grey-box approach are not shown because they are negligible.

The MC posterior estimation in Figure B.3 in Appendix B.3 for the 2nd-order model is not

as clear-cut as the 1st-order model: some parameters seem to have a bimodal distribution.

More samples can be drawn to refine the search, however, this does not improve the result.

Testing The testing set and approach is the same as the 1st-order modelling section except

that we are comparing importance indices instead of metric decay rates. Figure 4.9 shows

the resulting metrics and does show a minimum around the 3-4-week mark, but it is not as

pronounced as the previous section. The extNMBE and extCVRMSE metrics do not have a

clear minimum. Thus, obtaining more than a week’s data does not improve the accuracy of

the model predictions.

Using 4 weeks of data, a small decaying term and a 50/50 importance factor, we plot both

fitted models in Figure 4.10. The physics-based models tend to follow the measured data

well. The slab temperatures tend to be over-predicted while the air temperatures are under-

predicted. No visible trend is observed in the baselined traces; which means the order of

the model is sufficient for the data. Looking at the physics-free models, the slab predictions
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Table 4.4: 2nd-order state matrix entries. Metrics calculated on test set for a 10 hour hori-

zon. Settings: timestep: 15-min, decay factor: 0.2, prediction horizon: 6 hours, train data:

4 weeks, importance: 50/50. The grey-box equivalent column gives the corresponding posi-

tional entries in the state-space matrix described in the Array column.
Regressor Array Black-box Grey-box ∆(Grey-Black) %∆ Grey-box equiv.

Slab

Tslab a1,1 0.9466±0.00760173 (0.80%) 0.9790 0.0323 3.31 1-Uair,slab*∆ t/Cslab

Tair a1,2 0.0539±0.00835137 (15.50%) 0.0210 -0.0328 -156.53 Uair,slab*∆ t/Cslab

Qslab b1,1 (2.3803±0.8757)*10-6 (36.79%) 2.002*10-6 -0.3783E-06 -18.90 ∆ t/Cslab

Text c1,1 (0.2488±49.745)*10-6 (199.98%) N/A - - N/A

ConsøHVAC c1,2 0. N/A - - N/A

GHI c1,3 (119.40±92.507)*10-6 (77.48%) 0.000239 0.000120 50.04 αsol*∆ t/Cslab

Air

Tslab a2,1 0.0436±0.0360 (82.75%) 0.0254 -0.0182 -71.68 Uair,slab*∆ t/Cair

Tair a2,2 0.9503±0.0385 (4.06%) 0.9715 0.0212 2.18 1-Uair,slab*∆ t/Cair

-Uair,ext*dt/Cair

Qair b2,2 (1.8906±1.0033)*10-6 (53.07%) 2.676*10-6 0.7854E-06 29.35 ∆ t/Cair

Text c2,1 (19.208±86.630)*10-6 (451.02%) 0.00306 0.00304 99.37 Uair,ext*∆ t/Cair

ConsøHVAC c2,2 (0.1099±0.1110)*10-6 (101.00%) N/A - - αgains*∆ t/Cair

GHI c2,3 (240.44±34.041)*10-6 (14.16%) N/A - - N/A

extMSE 0.13838 0.14876 0.010385 6.98

extNMBE 0.00660 0.006786 0.000191 2.81

extCVRMSE 1.59928 1.7973 0.198025 11.02

follow well the measured data; the air temperature is always under-predicted. For other

hyper-parameters, the same behaviour was observed.

4.3.7 3rd-Order Model

The modelling can be further complicated by separating the areas served by the radiant

slab and air systems versus simply by the air system which are predominantly in the north

zones, see Figure 4.11 with state and input matrices detailed in the Appendix section B.2.3.

The 3rd-order model shows three nodes: the area of the library not served by a radiant slab,

the area served by a radiant slab and the radiant slab itself. Heat fluxes going into each node

are based on the designed flowrates of each circuit and the state of the valves, similarly in

approach used for the 2nd-order model. The valves are either open or closed. Solar radiation

is considered only on the south nodes. The library is mostly a large open space, and the
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(a) MSE (b) NMBE (c) CV(RMSE)

Figure 4.9: 2nd-order grey-box model fit metrics given different weeks of training data; com-

paring prediction horizon (ph) length and importance factor. Extended bar is the mean value

with the extended thick line showing 1σ range and the extending further thin line showing

2σ range. The metrics show a minimum around the 3-4-week mark.

air flow between sides is represented by a conductance between the two nodes. Physics-free

parametrization was not performed for the 3rd-order model since the convergence time was

an order of magnitude longer and prediction error was around twice as large compared to

the physics-based model.

Training Similar to before, having a 3rd-order model, three weighing factors can be used

to merge the metrics from 3 zones. Here, a 33/33/33 and 10/45/45 percent slab-to-airnorth-

airsouth importance factors are used. The 10/45/45 ratio puts more emphasis on the air

temperature predictions relative to the radiant slab temperature and was chosen to approx-

imate the case reported for the 2nd-order model. The importance factors can be chosen

depending: on the area served by the system, the capacity devoted to each space, or based

on other heuristics. Here, as an example, the importance weight of the slab is reduced since

thermal comfort is more attributed to the air temperature. The radiant effects are not large

in the library since the slab is not operating at a high temperature. The fit results are shown

in Table 4.5. The weighing factor is mostly affecting the slab equivalent capacitance and the

air conductance between north and south zones. A fit using summer data from June 18 to

July 16, 2018 is included. The model trained on this period is then tested on the following
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(a) Physics-Based: Tslab (b) Baselined, Physics-Based: Tslab

(c) Physics-Based: Tair (d) Baselined, Physics-Based: Tair

(e) Physics-Free: Tslab (f) Baselined, Physics-Free: Tslab

(g) Physics-Free: Tair (h) Baselined, Physics-Free: Tair

Figure 4.10: 2nd-order model prediction traces for: timestep: 15-min, decay factor: 0.2,

prediction horizon: 6 hours, train data: 4 weeks, importance: 50/50. Each sequentially

coloured line represents a rollout at the hour for clarity with thin grey lines for steps in

between. For graph interpretation see 4.3.3.

two weeks of data. Besides from having a fully-heating or fully-cooling mode, it is difficult to

know with certainty which part of the library would be in heating and which in cooling due
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Figure 4.11: 3rd-order grey-box model architecture for the Varennes library. Heat inputs

include all sources combined which can include solar and internal gains.

to the lack of flow measurements at the equipment level. Therefore, it is difficult to model

the library at a high-level for shoulder seasons.

When comparing the winter and summer parameter fits, the capacitances are very differ-

ent: the slab capacitance has almost an order of magnitude change and the uncertainty in the

variable fits is larger. However, looking at the effect of these uncertainties on the predictions

in Figure 4.15, the predicted temperatures are reasonably close to the measured data.

The MC posterior estimation in Figure B.4 in Appendix B.3 for the 3rd-order model shows

many parameters following a slight bimodal distribution: there could be local minima in the

cost landscape. The sampling is noisier than the previous two runs. A longer sampling is

perhaps warranted, however, as previously noted, this would not necessarily improve the final

result.

Testing The testing set and approach is the same as the 2nd-order modelling section. Fig-

ure 4.12 shows the resulting metrics. No clear minimum can be seen for any of the metrics,

therefore obtaining more than a week’s data does not improve the accuracy of the model

predictions. Unlike the previous two cases, we see a much larger resulting variability in the

results. As there are more free variables in the model, minimal fits tend to be uncertain.
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Table 4.5: 3rd-order grey-box model parametric run. Default settings: timestep: 15-min,

decay factor: 0.2, prediction horizon: 6 hours, 4 weeks of training data; metrics calculated

on test set for a 10 hour horizon.
Importance 33/33/33 10/45/45 33/33/33

Slab/AirS/AirN Summer

Cslab (*106) 564±50 (8.89%) 868±345 (39.81%) 5451±2493 (45.74%)

Uair-south,slab 10’000 10’000 4150±1100 (26.59%)

Uair-south,ext 1094±18 (1.64%) 1149±9 (0.75%) 1490±209 (14.02%)

Uair-north,ext 462.4±14.5 (3.14%) 438.8±6.7 (1.53%) 971.7±203.0 (20.89%)

Uair-north,air˜south 7447±749 (10.06%) 8893±281 (3.16%) 9880±1142 (11.55%)

Cair-south (*106) 185±10 (5.16%) 200±3 (1.43%) 987±221 (22.40%)

Cair-north (*106) 272±4 (1.30%) 271±2 (0.90%) 999±172 (17.25%)

αsol 79.7±4.8 (6.05%) 90.0±1.6 (1.80%) 78.2±19.7 (25.13%)

αgains-south 0 0 0

αgains-north 0 0 0

extMSE 0.06725 0.06238 N/A

extNMBE -0.00054 0.00026 N/A

extCVRMSE 1.20430 1.15557 N/A

Having fitted these models first using lmfit, the resulting uncertainties were not nearly as

wide as the fits following the MCMC method. The assumption of parameter independence

and its fit being normally distributed is shown to be generally not true. RC-based models

should be fit or calibrated with linear or other solvers first, and then refined using solvers

that do not make those assumptions. By erroneously keeping the independence assumption,

it may result in grossly underestimating the uncertainties in the parameter values.

Using 4 weeks of data, a small decaying term and a uniform importance factor, we plot

the temperatures in Figure 4.13. All temperatures are reasonably close to the measured

data traces. The slab temperature is over-predicted while the air temperatures are under-

predicted. Small oscillations can be observed in the baselined plots for the air temperatures

signifying that the model can have more terms added to improve fidelity. Keep note that

these traces were drawn with the mean parameter fits.

Using the MC sampled parameters, an ensemble of models can be used to draw samples

of predictions over various time steps, see Figures 4.14 and 4.15. The predictions are shown

in a 95% confidence band – from 2.5% to 97.5%. Similar to the prediction trace plots, a good

model would encompass the measured data – represented by the blue line – within the shaded
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(a) MSE (b) NMBE (c) CV(RMSE)

Figure 4.12: 3rd-order grey-box model fit metrics given different weeks of training data; com-

paring prediction horizon (ph) length and importace factor (eq=33/33/33, wt=10/45/45).

Extended bar is the mean value with the extended thick line showing 1σ range and the ex-

tending further thin line showing 2σ range. No clear minimum can be observed for any of the

metrics given weeks of data; no conclusion can be drawn about how much data is optimal.

bands. Baselined versions are drawn showing the difference of the predictions relative to the

measured data. Using this approach, hours where the prediction is most uncertain can be

observed. Prediction errors and uncertainties grow most during noon when solar radiation is

maximal; thus, complicating the simplified models to account for better solar radiation could

be warranted. However, the worst-case prediction – 95% bound for 4 hours forward – is off

by 1K, which is very accurate given sensor error is ±0.5K. Compared to winter, the summer

fit seems to be more uncertain particularly for the northern zones in the morning. This can

be due to the increase of solar radiation during the morning into the library.

4.4 Discussion

Given the selected metrics, the physics-based models with 3-4 weeks of data showed the

best accuracy. The interpretation is as follows: 1-week of data will fit the model parameters

for the immediate behaviour of the building, however, if the training data includes a holiday

or special event, this can skew the parameter fits since the collected data is not representative

of the typical behaviour of the system. When taking a much longer period – 8-weeks – the
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(a) Tslab (b) Baselined: Tslab

(c) Tair−south (d) Baselined: Tair−south

(e) Tair−north (f) Baselined: Tair−north

Figure 4.13: 3rd-order model prediction physics-based traces for: timestep: 15-min, decay

factor: 0.2, prediction horizon: 6 hours, train data: 4 weeks, importance: 33/33/33. Each

sequentially coloured line represents a rollout at the hour for clarity with thin grey lines for

steps in between. For graph interpretation see 4.3.3.

change of the weather will be averaged; the outside temperature could be warmer than it was

8-weeks ago but the model parameters will be fit using old and possibly stale data. The linear

model has a small predictive capacity and cannot fully describe seasonal variation; it must

be retrained daily using a sliding window of data. More complex models, e.g. deep-recurrent

neural network, could capture this behaviour albeit requiring much more data.

The final values of the metrics represent the inaccuracy of the model. These numbers –

taking the square-root of the MSE – are below the inaccuracy of the temperature sensors

used on site which have a rated range of ±0.5K.
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(a) Tslab (b) Baselined: Tslab

(c) Tair−south (d) Baselined: Tair−south

(e) Tair−north (f) Baselined: Tair−north

Figure 4.14: 3rd-order ensembled model prediction physics-based traces for winter: timestep:

15-min, decay factor: 0.2, prediction horizon: 6 hours, train data: 4 weeks, importance:

33/33/33. The predictions are shown in a 95% confidence band – from 2.5% to 97.5%.

By applying a data transformation on the raw data to convert values into energy and

temperature, the applied methodology is made agnostic to the representing building and can

be transferred to other buildings. The model order is chosen to discretize the energy flow

within the building to better utilize the systems present, namely to better utilize the radiant

slab as a form of thermal storage whereas the air would not be able to hold heat as well.

Through the proposed methodology, model parameters are learned with a random ini-

tialization and are not very different given the sampling period and rate: the parameters are

representations of physical qualities and are time-invariant. Whether the learned parameters

come close to calculated values based on the building architectural, mechanical and struc-
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(a) Tslab (b) Baselined: Tslab

(c) Tair−south (d) Baselined: Tair−south

(e) Tair−north (f) Baselined: Tair−north

Figure 4.15: 3rd-order ensembled model prediction physics-based traces for summer: timestep:

15-min, decay factor: 0.2, prediction horizon: 6 hours, train data: 4 weeks, importance:

33/33/33. The predictions are shown in a 95% confidence band – from 2.5% to 97.5%.

tural plans is an interesting question which typically cannot be answered due to the lack of

complete information. In this case, we had access to the full set of plans and we estimated the

building physical parameters in Table 4.6. In addition, the fitted and estimated values are

within the same order of magnitude. The estimated total U-value of the building envelope is

better than the best fit, this can be due to construction issues or due to air leakage around

the windows and doors which was not included in the estimate.

Three different orders of models compartmentalizing the HVAC components differently

were presented. The simplest 1st-order model lumps all heat transfer mediums into a single

node. This approach would be suitable to quantify the amount of heating or cooling that
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Table 4.6: Building characteristics estimated using construction drawings.
Parameter Unit Value

Cslab J/K 268.8*106

Cair J/K 357.0*106

Uair,ext W/K 860

the building would require throughout the day and prepare accordingly. For a finer analysis,

to more effectively represent the building’s various components, a higher order model is

necessary. A 3rd-order model represents the minimal number of nodes required to distinguish

the various systems and to enable the ability to forecast the radiant slab separately from the

air system. Arguably, the library can be described with 6 nodes – 3 per floor – since the first

floor utilized overhead diffusers and the second floor, an underfloor air displacement system.

The simpler approach was selected since the second floor also features ceiling fans which

are left running throughout winter and thus both floors have a well-mixed air distribution.

By first analyzing the system in a building, similar zones can be grouped together and thus

result in a simplified model. Given, for example, a 20-floor building, a typical floor approach

can be used to model all middle floors together. However, for controls, care must be taken

to not control all the middle floors the same way as to avoid generating a peak demand and

to utilize diversity and flexibility in operating schedules and actual occupancy.

We had access to all construction plans and logged quantities were used to derive heat

flows quantities; which may not always be accessible especially with older buildings where

plans are either lost or outdated. With the recent releases of Haystack 4 (Haystack, 2020) and

Brick (Balaji et al., 2016; Brick, 2020), building components can be tagged into hierarchical

and interdependent systems and more useful quantities – such as energy flow instead of

damper positions or fluid entering/exiting temperatures – can be reported to the BAS. Having

overall energy flows in a building, the creation of control-oriented models can be greatly

simplified and even be done within the end controllers. Ease of model creation can also

facilitate automated fault detection and diagnosis, preventative maintenance and help with

cost-optimal retrofit projects. Brick also has the advantage that it is specified as a database,

can be queried as such.
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4.5 Conclusion

Three different orders of models are presented in this chapter with extended metrics

to train them. The 3rd-order model is the most informative one to drive high-level MPC

controls in the library, however it includes more free parameters and it resulted in fits with

the highest levels of uncertainty. The 2nd-order model could be suitable for shoulder seasons

as well when operating strictly the radiant slab and pre-cool the slabs in anticipation of solar

gains. Finally, the 1st-order model can be used in the shoulder seasons when the windows are

opened and the HVAC system – including the radiant slab – are not functioning; it can be

used to determine how to operate the windows to maximize night-time free-cooling/flushing

without leading to over-cooling the library the next morning. It can also be used to estimate

the total quantity of heating or cooling to prepare pre-emptively for the day. As a future

work, all 3 models can be used as an ensemble giving a certain model more importance

depending on the operative and/or exterior conditions. When the windows are open and the

central HVAC is off, the 1st-order model can be prioritized.

The methodology proposed is applied to a building predominantly operating on a schedule.

Between predefined times, the building must be operating within a comfortable temperature.

In this work, the modelling approach is simplified to cover larger areas; that would signify

that this would be used for supervisory-level controls. In a simpler building utilizing rooftop

units (RTU) for single zones, the same simplified modelling approach from this work can

be directly used for controls – a 1st to 2nd-order model per RTU. A significant portion of

commercial and retail buildings in North America are of the slab-on-grade building with an

RTU system archetype and operate on schedules. The methodology in this work can be

applied directly.

For occupancy-driven buildings, such as individual offices or residential buildings, an

occupant model would first need to be learned and then input into a model as proposed here.

For more complex buildings with many zones or with systems exhibiting nonlinear behaviour,

such as large office towers or grocery stores: the HVAC system and zones can be broken down

hierarchically and the non-convexities can be made convex for a given iteration.

The work presented is for the Varennes library which utilizes a photovoltaic array and
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ground-source heat pumps. The radiant slab system offers some thermal storage but is not

a dedicated solution. The resulting controls tend to overheat the space to utilize excess

PV production during the day for the purpose of reducing electrical consumption. Thermal

comfort within the space is the limiting factor. Having a dedicated solution will alleviate

this limitation.

Depending on the building load profile, there may be a cost-benefit calculation to perform

to chose either, or both, a thermal storage solution, such as a water tank, and a battery bank,

or alternatively to charge electric vehicles (EV). If stored electricity will be used to drive a

heat-pump outside periods of solar availability, it might be more cost-effective to simply heat

or cool water in a storage tank and use the stored capacity when needed. Convex models of

water tanks can be formulated with finite difference methods and would remain feasible for

MPC. Convex models of batteries can be used if electrical storage is more economical. The

library features EV charging stations however modelling EVs can be more challenging due

to the probabilistic nature of arrival and departure times of EV owners.

The reduced-order models obtained with the proposed approach are used to be applied in

an MPC strategy for the control of the indoor air temperature. The model reduction method

is an effective tool to design predictive strategies, in which low-order models are preferable

with respect to complex and detailed models. A potential application is the simulation of

energy demands in districts where buildings will play an active role in the near future. Thus,

by having a control-oriented model of the building, dynamic controls can be used that track

the price of electricity and minimize operating costs while guaranteeing the comfort of its

occupants.
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Chapter 5

Sampling-Based Model Predictive

Controls

5.1 Overview

This chapter focuses on the potential of a novel methodology to derive low-order grey box

models exploited for model predictive controls of the next generation of buildings. To manage

the requirements of high-performance buildings and of smart grids, the developed control

strategies includes multiple optimization objectives: minimize operational cost, minimize

peak demand following a notice by the utility, track a net consumption profile to maximize

self-consumption of renewable energy production or to aid the grid toward energy flexibility.

With the aim to validate the MPC performance, the proposed approach is applied to the

first solar net-zero energy institutional building of Canada, situated in Varennes, Quebec.

This building, a library, features a hydronic radiant slab system which delivers heating and

cooling into most spaces along with an air system responsible to bring fresh air to the space

and offer supplemental conditioning. Since the methodology in this chapter is developed for

a complex case, the radiant slab may be turned off to represent a more conventional building

relying purely on an air system. The simulated cases are for bounding conditions to clearly

showcase the advantages of the proposed MPC approach over conventional strategies applied

on the calibrated model, as studied in the previous chapter. Results show how aggressive or

risky the controller can be is a function of the building owner’s request with guarantees on a
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pre-set level of performance.

The following section introduces the needs and advantages of the proposed method. Sec-

tion 5.3 details the methodology used to combine exogenous input models with the building

thermal model. Section 5.4 gives the model-based predictive control (MPC) general and

generic formulation, followed by various cost functions and their results. Section 5.5 pushes

the approach further taking the fully-noised and sample-based approach to solve the profile-

tracking cost function that can be defined as promoting energy flexibility. Finally, sections 5.6

and 5.7 discusses the results and offers key conclusions spawned from this method.

5.2 Introduction

Unlike conventional approaches, MPC has the advantage to make the control intent ex-

plicit and dynamic able to utilize future information to optimally operate a building. How-

ever, it is not yet widely applied. There is a need for a more robust-to-uncertainties approach

where the level of risk can be selected: worst-case would be too conservative. Uncertainties are

from predictions – exogenous inputs: weather, occupancy –, model structure/simplifications

and model trained parameters. The use of advanced controls as MPC will be crucial for the

next generation of buildings that will need to be energy flexible considered as the ”ability

to adapt the energy profile without jeopardizing technical and comfort constraints” (Aduda

et al., 2016; Reynders et al., 2018). In addition, grids will tend to be transactional, and en-

ergy and information will be exchanged among buildings in an open market which translates

to a paramount need for dynamic and connected control schemes. The MPC cost function

can track a desired load profile set by the utility to assure its reliability, while the building

operator would be compensated through incentives.

In this framework, this chapter runs sample-based MPC to determine how to operate

energy systems under uncertainty while guaranteeing a certain level of performance. The

modelling is divided into 5 parts: (1) building thermal model, (2) plug load and lighting

power, (3) ambient temperature noised model, (4) photovoltaic power generation, (5) solar

cloudiness model. These parts make a flexible framework and come together to generate the

control sequences to be applied. The overall proposed process is summarized in Figure 5.1.
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Figure 5.1: Control-oriented modelling for MPC: dark text in this chapter.

The MPC performance is demonstrated by conducting a case study analysis applied to the

Varennes library to show the advantages of the proposed MPC approach over conventional

strategies. In particular, through the proposed case study analysis, we show the robustness of

the controller as a function of the requested level of performance of the building. Specifically,

an MPC for floor heating slab systems in response to dynamic electricity prices is modelled

with the aim to shift peak power demands and provide energy flexibility. The MPC controller

is implemented in the Python simulation platform and its reliability, its thermal and energy

performance are tested.

Following the literature review presented in chapter 2 section 2.3, to further the state-of-

the-art in convex optimization based MPC utilizing convex physics-based grey-box models,

the contribution herein is the development of a robust iterative sample-based MPC approach

that does not assume distributions on the noise. An ensemble approach is used for the

building modelling and the various inputs to the models are modelled producing probable

consumption and production profiles. A winter season is analyzed for a net-zero energy

library located in Varennes, near Montreal, Canada. The winter season is used because it

represents the most strenuous period for the utility given the climate is very cold and there

is a low solar availability and therefore peaking gas production plants may need to be used

to meet demand thus increasing greenhouse gas emissions.

5.3 Materials and Methods

An MPC for floor heating slab systems in response to dynamic electricity prices is mod-

elled. The aim of the controller is to shift peak power demands and provide energy flexibility.

87



5.3. Materials and Methods

The Python programming language is considered to implement the MPC controller and to

test its reliability as well as its thermal and energy performance. A control-oriented grey-

box dynamic thermal model for the building, including the radiant slab, the HVAC and the

renewable energy systems, is developed. This section includes a detailed description of the

proposed 3rd-order grey-box thermal model developed to capture the thermal dynamics of the

system, the uncertainties and noise, as well as of the MPC formulation. A state-space repre-

sentation is considered to formulate convex and easily-solved optimization problems, and to

add white noise to obtain a more realistic stochastic model that will include uncertainties.

These are subdivided in two categories, (i) epistemic uncertainty: model related uncertain-

ties due to structure and parameter weights, (ii) aleatoric uncertainty: exogenous inputs

including exterior ambient temperature, solar radiation and occupant-driven consumption.

5.3.1 Prediction of Exogenous Inputs

Building Loads The investigated building is the Varennes library, an institutional building

designed for net-zero annual energy balance, represented in Figure 5.2. The solar building

produces electricity from a 110.5 kWp building-integrated photovoltaic thermal (BIPV/T)

system (Candanedo, 2010; Athienitis and O’Brien, 2015), also see Appendix section A.5.

The building is also equipped with a ground-source heat-pump (GSHP). Measurements from

1st-year after inauguration operational observations are considered to characterize the model

and to perform its parameter identification, as reported in Dermardiros et al. (2019), also

see section 3.3.

As an initial step, the total electrical consumption of the building is split into two parts:

one from components that the control algorithm influences and one relative to uncontrolled

devices. The plug loads and lighting are driven by occupancy and the library operation

schedule. As mentioned, the building is heated and cooled through several HVAC components

– central and local – regulated to control its indoor air temperature. The HVAC system is

driven by the ambient conditions, operation schedule and, finally, on occupancy via CO2-

based demand-driven fresh-air ventilation.

The uncontrollable loads need to be predicted to determine the future electrical con-

sumption of the building. The consumption due to the HVAC component can be obtained
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Figure 5.2: Simplified schematic cross-section of the Varennes library equivalent to the ther-

mal network circuit.

via Consø HVAC = Constotal -
Qtotal

COPsystem
and the remainder is contributed by the plug loads

and lighting. Since subsystem metering is not available, these categories cannot be further

distinguished. A system-level coefficient of performance (COP) of 4 for cooling and 4.5 for

heating is considered for the operation of GSHP, circulation pumps and fans.

Removing the consumption of the HVAC component from the total one should eliminate

weather-related dependencies, except for the lights. Lighting might be on longer during

the winter and/or there should be more plug loads during exam periods given students

tend to study in libraries. The electrical consumption can be clustered using the k-means

algorithm to discover whether typical days can be obtained: shoulder seasons – spring and

fall – weekdays, non-shoulder weekdays and weekends/holidays. In this case, the k-means

algorithm groups similar points together where a point is in R96 representing 24-hour data

in 15-minute timesteps. However, clustering did not clearly separate the data. A second

option is to group the data based on the day of the week since the library operates on a

weekly schedule and some similarity between each day are expected, as shown in Figure 5.3.

Considering that there are only passive infrared occupancy detection sensors in the library, the

number of guests is unknown. Thus, to visually inspect if the electrical consumption follows
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occupancy, the Google Popular Times API (Google, 2020) was considered to obtain a relative

occupancy rate when the library is open to the public. By having better occupancy data,

enhanced occupancy prediction models can be utilized shifting from operating the building

using a fixed schedule towards an occupant-driven operation enabling higher savings and

improving comfort.

The consumption predictions are used in the MPC formulation to minimize grid interac-

tion. Note that for a given day, a consumption profile is sampled for that day. Alternatively,

a sample can be generated by taking an averaged profile and noising the full profile based on

the variance from the data.

Exterior Ambient Temperature Forecast Noised Model Weather data is obtained

from the local airport – Pierre-Eliot Trudeau, IATA: YUL, ICAO: CYUL – which publishes

forecasts for the next 168 hours three times a day: morning, noon and evening (of Canada,

2015; SWOB-ML, 2020). It is processed to obtain a model representing the uncertainty in

the data and can be used in a sampling-based setting – details in Appendix section B.5.

Photovoltaic Power Generation The PV AC generation is calculated from the projected

unit solar radiation onto the PV arrays according to geometric correlations (Duffie et al.,

2020) – details in the Appendix section B.4. To do so, solar radiation data were obtained

from CanmetENERGY-Varennes located 8 km away from the library for 2018 in 5-minute

intervals to match the building’s electrical data collection rate. The model was trained for

every month, obtaining a good match as shown in Table 5.1 and in Figure 5.4. The best-fit

parameter in January (0.0544) differs the most and is due to a malfunction resulting in a

total loss of production for a few days. This approach can also be useful for a simplified fault

detection strategy. Note that this part remains separated from energy model, but it is input

in the optimization.

Solar Radiation Cloudiness Sampling Solar radiation prediction is very difficult. In-

stead of trying to predict what will really happen, the idea is to use what could happen and

that for certain types of days. Specifically, the bounding cases are simple that they have little

variance: fully overcast and perfectly clear days. In between the two cases highly depends on
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Table 5.1: Linear PV AC production model best-fit parameters per month.
Month Parameter

JAN 0.0544

FEB 0.0800

MAR 0.0898

APR 0.0864

MAY 0.0844

JUN 0.0814

JUL 0.0801

AUG 0.0806

SEP 0.0831

OCT 0.0834

cloud movements and is highly variable. In application, only the class of day would need to

be predicted. Solar radiation data were collected in 5-minute intervals for 2018 with details

of the approach in the Appendix section B.6. As an example, solar radiation daily profiles

for the three types of days are given in Figure 5.5.

5.3.2 Building Thermal Model

The investigated library building is split in 2 thermal zones, the first one refers to the

area served by both the radiant slab and the air system whereas the second one refers to the

area only served by the air system. A 3rd-order minimal RC thermal model that represents

the overall library is developed with a sketch of the thermal network reported in Figure 4.11,

see section 4.3.7. The thermal nodes represent: (1) the radiant slab that is present on the

southern perimeter of the building, (2) the air of the thermal zone above this slab, and (3) the

air of the thermal zone without radiant slab.

5.4 Model-Based Predictive Control

5.4.1 Formulation

In this section, the system and input prediction models are brought together into a MPC

formulation. A general MPC framework is described in Equation 5.1: a loss function is to be

minimized over a prediction horizon, subjected to various constraints where some describe
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the dynamics of the system to control while others define limits and boundary conditions.

J = min
u0,...,uN−1

N−1∑︂
k=0

lk(x
k, uk, wk)

subject to hi(x
k, uk, wk) = 0, i ∈ {1, . . . ,m}, equality constraints

gj(x
k, uk, wk) ≥ 0, j ∈ {1, . . . , n}, inequality constraints

x0 = x, current state

xk+1 = f(xk, uk, wk) = Axk +Buk + Cwk, system dynamics

(5.1)

Where,

xk system variables track the system dynamics,

uk control variables which can be manipulated in order to improve the building performance,

wk exogenous inputs representing time series that can be observed but cannot be controlled,

such as weather,

l(x, u, w) loss or cost function which could be to minimize the utility cost, or the grid inter-

action, or some other cost,

h(x, u, w) = 0 equality constraints; here, the system dynamics of the system (next-step inte-

rior temperature) is given by the trained model, and,

g(x, u, w) ≥ 0 inequality constraints, here, the inequality constraints are the boundaries of

the problem: can include the capacity of the heating system, toggling limitations to

reduce wear, the comfortable temperature range, an allowance for discomfort, etc.

Having a model and the MPC formulation, the cost function l(x, u, w) can be tuned to

minimize other likely cost functions: operation cost,

J = min
Q0,...,QN−1

N−1∑︂
k=0

ckQk
total, c : relative heating cost (5.2)

peak demand following a notice by the utility,

J = min
Q0,...,QN−1

N−1∑︂
k=0

(ckQk
total) + ∥Qtotal∥∞ (5.3)
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track a net consumption profile to maximize self-consumption of renewable energy production

or to maximize aid to regulate grid’s overall demand – energy flexibility,

J = min
Q0,...,QN−1

⃦⃦⃦⃦
cQtotal

COPheating system

+ Eplug loads − profiledesired

⃦⃦⃦⃦
norm

(5.4)

where PV generation can also be included,

J = min
Q0,...,QN−1

⃦⃦⃦⃦
cQtotal

COPheating system

+ Eplug loads − profiledesired − PVgen

⃦⃦⃦⃦
norm

(5.5)

and where the norm can be norm-1 or norm-2 where the profile divergence would be either

penalized linearly or quadratically.

The constraints are common and summarized:

subject to T − scomfort ≤ T ≤ T + scomfort, no comfort slack for Tslab

Q
total

≤ Qtotal = Qair +Qslab ≤ Qtotal

[Q ≤ Q ≤ Q]air, slab

x0 = x

xk+1 = Axk +Buk + Cwk, k ∈ {0, . . . , N − 1}
∆t

∑︁
scomfort

3600
≤ scomfort budget

scomfort ≥ 0

Qtotal

COPheating system

+ Eplug loads ≤ Emax

PVgen = αprojected2PVpowerIproj

(5.6)

Where,

Q thermal power,

E electrical power,

PVgen photovoltaic power generation, force to zero for MPC to not consider generation,

profiledesired desired electrical power profile to track, a profile of 0 would minimize grid

interaction,

v and v lower and upper limit of variable v,
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scomfort slack variable for comfort, used to allow optimization problem to be feasible if initial

temperature is outside allowed limits,

scomfort budget slack variable for comfort budget,

αprojected2PVpower best-fit parameter to convert projected solar radiation into AC electrical

power output – see Table 5.1, and,

Iproj solar radiation normal projection onto the PV array.

5.4.2 Solver

The MPC framework is programmed in cvxpy (Diamond and Boyd, 2016) in Python and

solved using the ECOS solver (Domahidi et al., 2013) using default settings on an x86-64bit-

based Linux machine with an Intel Atom processor to emulate a low-power edge device. In

the most difficult case, the full noised iteration would complete in less than 5 minutes for a

12-hour prediction horizon for the 3rd-order model.

5.4.3 Energy and Power

Energy results are reported for a sample cold (µ: -13◦C) sunny weekday, January 26, 2018,

and the MPC performs optimization starting midnight with a 24-hour prediction horizon.

The cost function to be minimized is the operation cost – Equation 5.2 – which corresponds

to the minimization of the energy demand. Perfect forecast information is used and a comfort

budget of 0.5◦C is allowed per library zone. The addition of this slack variable reduces the risk

of having an infeasible optimization problem when the state conditions are not favourable.

Results in Figure 5.6a refer to the north thermal zone without radiant slab – Air no

Radiant – being heated starting at 5AM until around 7:30AM after which the south thermal

zone with radiant slab – Air over Radiant – is heated. The temperature profile follows a

linear ramp without being explicitly programmed to do so. Heating is also applied towards

the end of the day for the south zone. The slab is not utilized. It is worth noticing that

the MPC algorithm supplies just enough heat to the north zone throughout the day to

maintain its temperature exactly at the heating setpoint. The dashed lines show how the
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building was operated on that day following conventional reactive controls. Compared to

MPC, regular controls consume 821 kWh of energy for HVAC during the full day, whereas

the MPC approach consumes 630 kWh. Since power is not penalized, the optimal control

tends to turn on aggressively early and late in the day.

To consider a case of a morning peak in a time-of-use tariff structure, the energy cost

between 6 to 9AM is increased by a factor of 5. Results in Figure 5.6b shows the north side to

start being heated immediately until heating is completely shut off at 6AM. The over-heated

space can then free float during the peak period and remain within the comfort boundaries.

The south zone is gradually heated and a small amount of heating is used during the peak

period. This pre-heating and system staging strategy has emerged through the minimization

of the operational cost. To obtain this behaviour in conventional controls, control algorithms

would need to be designed, tested and implemented heuristically and the results would not

be as perfect. Compared to the uniform pricing case, this case consumes 670 kWh. If

additionally there is an evening peak from 4 to 8PM, the evening behaviour is affected by a

slight pre-heat but not as aggressive as in the morning since the library closes at 9PM – see

Figure 5.6c. This case consumes 815 kWh of energy.
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(a) Monday

(b) Tuesday

(c) Wednesday

(d) Thursday

(e) Friday

(f) Saturday

(g) Sunday

Figure 5.3: Electrical consumption without HVAC per day of week with Google Popular

Times overlayed on secondary axis.
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(a) Solar radiation and projection

(b) Photovoltaic power generation: predicted and measured

Figure 5.4: Linear PV AC production model using projected solar radiation data.

Figure 5.5: Sample of three types of days and base clear day profile in black.
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Figure 5.7: Electrical power demand reduction achieved in the morning peak period given

notice to the building. A notice of 4 hours and more yields maximal reduction in morning

power demand. 100-sample per notice runs for Friday January 26, 2018 – sunny.

5.4.4 Peak Power Reduction Given a Notice

However, the utility may not always promptly share when the electricity price is increased:

it may simply give a short notice. To simulate this case, we ran the above cost function but

starting at a different time in the night. The measured condition at that time was used as

the initial value in the MPC problem. The amount of peak power reduction given the hour

of notice is shown in Figure 5.7 for a case where all exogenous inputs are noised, including

the weather, solar radiation and consumption. As more notice is given, the more the peak

can be reduced. Given more than 4-hour notice marginally improves the results; a minimum

of 3 hours is desired. From this box and whisker plot, we can state that a certain peak power

demand can be reduced for a certain percentage of the time, e.g. if a 3-hour notice is given,

around 7 kW of power can be saved 75% of the time (see box end – 25th quantile) and at

worst, a saving of just below 6 kW (see whisker end – minimum value). Overall, for this

building, the full benefits of demand response can be achieved if at least a 5-hour notice is

given; 89% for a 4-hour notice; 61% for a 3-hour notice; and very little benefits for shorter

notices without compromising comfort.
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5.4.5 Profile Tracking

To test the energy flexibility of the building, we will minimize the norm of the difference

between the overall electrical energy consumption of the building – HVAC and non-HVAC

combined – and a demand profile, see Equation 5.4. As an example, a sinusoidal demand

profile is used that peaks at noon with a mean of 20 kW, an amplitude of 5 kW and a period

of 2 per day, see Figure 5.8a. The room temperatures stay within the comfort bounds and the

HVAC equipment is cycled so that the total electrical consumption approaches the desired

profile – see bottom subplot. In a dynamic pricing event, the demand profile may look similar

to the simulated profile with curtailment events around noon and demand response in the

mornings and evenings. A low price of electricity near midnight can be translated in a higher

demand profile to track. The sine wave can be interpreted as an approximation of an inverted

duck curve.

Considering the renewable energy production following Equation 5.5, the total net elec-

trical consumption does not perfectly match the profile during the day, see Figure 5.8b. The

HVAC system maximum capacity is reached at approximately 100 kW thermal representing

a 28.5 kW electrical load. The spaces and slab are heated much more than needed and the

residual heat may reduce the morning start-up energy required for the following day. Any

excess power during noon must be exported to the grid and is credited for up to 50 kW

according to the current agreement.

In a more basic case, to limit the grid interaction of the library and to promote self-

consumption, the demand profile can be set to 0 kW throughout. Figure 5.8c shows the

result where the room temperatures are brought to their upper limits and the heat pump is

operating at full capacity as soon as there is solar availability. Instead of exporting excess

electricity to the grid, the MPC solution heats the library to reduce the evening heating

demand.

This approach is sensitive to the following predictions: exterior temperature which drives

the heating demand, solar availability which drives the renewable energy production, and

occupancy plug loads which drive consumption. Instead of using idealistic and perfect pre-

dictions, a noised and sample-driven approach is employed in the following subsection.
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5.5. Noised MPC

5.5 Noised MPC

In this section, we consider four alternatives to the self-consumption cost function: for

the HVAC system to consider the photovoltaic production or not, and to either use norm-1

or norm-2 on the cost function.

Fully-noised exogenous inputs and model parameters are used. The noised MPC problem

is solved using an iterative sample-based approach. During an initial burn-in period, the

action profiles between iterations are independent. After this period, the action profiles

are averaged, and weighted exponentially based on recency, see Equation 5.7. To assure

stability, the norm of the difference between action profiles of a current and past iteration

are bounded. For the thermal comfort budget, it is restricted to its final value during the

burn-in period. After which, it is set to a large value and decayed with the number of

iterations, see Equation 5.8. The thermal comfort budget is a slack variable for comfort: it

provides some flexibility in operation and is used to allow the optimization problem to be

feasible if initial temperature is outside allowed limits. The bounds are restricted with the

number of iterations to obtain a robust profile. Once the number of runs is exhausted, the

actions within the control horizon is applied.

A robust MPC result would maintain the temperature of the air a little above the setpoint

temperatures given the effect of exterior temperature on the space. If the temperature is too

close to the setpoint, a sudden drop of exterior temperature can lead to discomfort. When

the controls have converged, they are applied to the best-fit model of the building using the

recorded exogenous inputs to simulate the behaviour of the actions and the resulting space

temperatures.

⃦⃦
uk − uk−1

⃦⃦
2
≤ γkαdist

uk =

∑︁k−1
i=0 wiu

i∑︁k−1
i=0 wi

(5.7)

scomfort budget =

⎧⎪⎨⎪⎩smin comfort budget, if k ≤ burn-in period.

min(smin comfort budget, γ
ksinitial comfort budget), otherwise.

(5.8)

Where,
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uk weighted control variables at iteration k,

γ relaxation factor,

αdist allowed distance in norm-2 of control variables,

w weight, and,

s slack variable for comfort budget or minimum comfort budget.

This approach is demonstrated for the week starting on January 22th, 2018, optimizing

on a 12-hour prediction horizon and applying controls on a 15-minute control horizon. A

total of 50 samples are drawn from which 20 are for the burn-in period. After the burn-in

period, the comfort slack variable and action profile difference norm bounds are decayed

per iteration until a lower limit. In the following section, results for the winter period are

reported. Figure 5.9 shows the sampled exogenous inputs starting from 6AM and extending

for 12 hours. The prediction horizon is 12 hours and the extra hours are shown to better

understand the evolution and divergence of the exogenous inputs as predictions are extended.

Although the MPC is run starting midnight, we show the results for 8:45 and 9:00PM

for brevity in Figure 5.10. Here, the convergence of the action profiles and their respective

temperature profiles are plotted. Pale lines in pink show the burn-in samples whereas the

black lines represent the samples afterwards going from pale to dark for the later iterations.

The blue line represents the action profile taken in the previous control horizon and the red

line represents the action profile to be taken. If the blue and red lines remain close to each

other, the final action profile from the previous iteration has been shown to be stable for two

control horizons so the algorithm is considered sufficiently robust. The inverse signifies that

the arrival of new information requires the action profile to change for the building operation

to remain optimal. This situation has been observed when moving from 8:45 to 9:00PM

since the prediction horizon is 12 hours, the controls at 9:00PM see the setpoint change at

9:00AM the following day. This information affects not only the immediate actions around

9:00AM but also actions prior resulting in a linear ramp setpoint profile. The optimal control

profile from 8:45PM is relatively flat comparatively, showcasing the advantage of predictive
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controls over their reactive counterparts and how the linear ramp was discovered through

optimization.

The final result of the power consumption, production and the corresponding temperature

progression is shown in Figure 5.11. The control profiles and time progressed as would be

in a real application. In this figure, the temperature are tending to be between the heating

and cooling setpoints for the south zone but closer to the higher limit during noon. This is

due to the MPC favouring over-heating the space to consume more energy during noon when

production is increased exporting less to the grid while remaining closer to the lower limit

during the morning and evening. For the north zone, the space temperature remains warm

throughout. During days with less sun – shown by a decrease in solar PV production – the

temperatures are closer to the lower bound since there is no excessive production to warrant

overheating a space. The setpoints seem to be violated at the opening and closing hours, but

it is in fact the comfort slack variable being fully utilized, and so comfort is attained for the

full simulated period for all cases.

Heating is applied to all 3 thermal nodes to minimize grid interaction. The radiant slab’s

temperature does not seem to fluctuate greatly. It is likely that the collected data does not

span the whole range of operation so it is therefore difficult to get an accurate calibration to

model the slab. A stronger excitation would be needed to properly characterize the slab. A

similar excitation can also be beneficial for refining the other parameters. By applying MPC

to a building, its operation changes and the collected data distribution shifts and widens.

The new data would be used to enhance the accuracy of the building power and thermal

state estimation, which in turn would improve the results from the MPC algorithm.

5.5.1 Current Operation and MPC

One of the key challenges in this type of study is comparing a proposed control strategy

or policy with what is currently being used, or base case. The building model, regardless of

the type used, is calibrated based on available data. The data is generated following a prior

control strategy and although can be abundant, it needs to cover a larger domain space,

in other words, to have more variance. If the building has always operated a certain way,

how can we assure that the MPC policy will lead to the calculated savings? One method
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(a) Exterior temperature (b) Electricity consumption without HVAC

(c) Global horizontal irradiance

Figure 5.9: Noised exogenous model inputs, from 6AM to 6PM, 50 samples.

would be to compare the distribution of actions taken by both approaches and calculate the

Wasserstein distance (WD) between the two, see Figure 5.12. This distance metric shows the

minimal amount of area required to move to turn one distribution into the other. In this

case, it represents how much energy needs to be displaced to match one strategy to another.

An analysis window of one week is used to get a more representative comparison since MPC

may act earlier and is consuming more energy during high solar gain periods to minimize

grid interaction. A large value signifies that how we are operating the building is vastly

different than the conventional controls. Running an MPC algorithm while bounding this

metric would allow the control policy to be gradually shifted from current operations towards

optimal operations; it would also limit how much the model would tend to extrapolate. This,

however, remains an approach to explore in a future work. The results show that the north

zone is under utilized in the existing operation. Temperature distributions are shown for the

analysis period in Figure 5.13 and show a bimodal distribution where the peaks represent

the minimal unoccupied and occupied setpoint temperatures, thus the MPC algorithm tends

towards the limits to best minimize energy use.
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(a) Actions - 20:45 (b) Temperatures - 20:45

(c) Actions - 21:00 (d) Temperatures - 21:00

Figure 5.10: South zone air over radiant slab action profile iterations and resulting tempera-

tures, day 2 of January 22, 2018 week. Upper blue and lower red lines are the comfort limits,

pink lines are the burn-in profiles, black lines are the iterated profiles, bright red line is the

converged profile and light blue line is the previous timestep’s converged profile.

The analysis was repeated to cover the winter season starting January 1st, 2018 – solar

data was not available prior to this date and would lead to an incomplete analysis. The

strategies are compared and summarized in Figures 5.14 for profile tracking for the two

norms as well as with or without the HVAC considering renewable generation. MPC can

reduce the consumption of the building and, although it uses more power, it is not billed for

it – the utility rate charges for power above 50 kW. Net consumption bar charts are shown

in Figures 5.15 where it can be seen that the strategy not considering renewable production

does not fully utilize this generation: in cases with PV, the power consumption is increased

during full production to limit grid interaction and improve self-consumption shown by a

decrease in the net consumption chart.

Overall, the proposed MPC strategies can reduce the energy consumption by 10-12%

globally for the winter period without modifying or learning occupancy profiles. We anticipate
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(a) Overall electrical consumption and production (b) Radiant slab

(c) South zone air over radiant slab (d) North zone air

Figure 5.11: Resulting power and temperatures given day progression over a week for a

15-minute control horizon and 12h prediction horizon.

greater savings if lighting would also be controlled. Additionally, varying the profile will vary

the behaviour. For demand response, the profile can be altered to penalize grid import during

this event. Conversely, for curtailment events, the profile can be modified to penalize grid

export and incentivize import.

5.6 Discussion

By applying a sampled-based approach, we need not assume a distribution on the un-

certainties of the inputs. Using an iterative method of action convergence does help with

robustness but work is required to quantify and provide bounds. A true robust strategy

would need to optimize over all uncertain instances for a sample-based approach or over the
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(a) Radiant slab

WD : 7889, 7991, 6610, 6707 kWh

(b) South zone air over radiant

slab

WD : 7372, 5975, 8307, 7557 kWh

(c) North zone air

WD :

11077, 4002, 11892, 4027 kWh

Figure 5.12: Heating power distribution for analysis period week of 22 January 2018: current

operation and MPC. Wasserstein distances given in legend order compared to the base case.

(a) Radiant slab (b) South zone air over radiant

slab

(c) North zone air

Figure 5.13: Temperature distribution for analysis period week of 22 January 2018: current

operation and MPC.

distributions which leads to an explosion in the number of equations in the optimization.

The resulting will likely be infeasible or certain strong assumptions would need to be made

on the distributions. For a practical application in buildings, the proposed method would be

sufficient and advantageous over conventional approaches. Finally, comfort was maintained

by enforcing a setpoint profile and a small comfort budget slack variable.

A limitation here is that the model is at a system level and not at the component level.
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(a) Energy

(b) Power

Figure 5.14: Weekly consumption where HVAC considers renewable production or not using

norm-1 and 2.

The actions output would need to be translated to supply water temperature setpoints or
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(a) Energy

(b) Power

Figure 5.15: Weekly net consumption minus production where HVAC considers renewable

production or not using norm-1 and 2.
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other. The end components would use the water as needed since the MPC does not consider

pump, fan, valve or damper operation. Should the components and their PI/PID controllers

be in the MPC loop? This would result in a non-convex optimization. The MPC formulation

matches the data collection timestep of 15 mins but controllers are running at much faster

rates of multiple scans per second. A hierarchical approach can be used where the MPC

algorithm decides the water loop temperatures, operational limits or budgets. It may also be

used to update the KP, KI and KD gains on the PI/PID controllers as a macro adjustment.

A bounding weather period is used in the case study. If savings can be achieved for these

days and season, savings can be achieved for the rest of the year. To get accurate numbers, a

higher fidelity virtual building should be used to truly compare a rule-based reactive approach

to MPC (Blum et al., 2019). The high-level modelling can be broken down to the zone level.

The state-space modelling and MPC approach can be used as-is and the solution should

converge within reasonable delay on a modern computer.

The methodology proposed is applied to a building predominantly operating on a schedule.

Between predefined times, the building must be set to a comfortable temperature range. The

modelling approach is simplified to cover larger areas; in this work, that would signify that this

would be used for supervisory-level controls, whereas in a simpler building utilizing rooftop

units (RTU) for single zones, the modelling approach can be directly used for controls. A

significant portion of commercial and retail buildings in North America are of the slab-on-

grade building with RTU archetype and operate on schedules onto which the methodology

in this thesis can be applied directly. This approach could be adapted and applied to control

a hot water tank or a battery system in a light-weight residential building. Since wood-

framed homes do not carry significant thermal mass, predictive controls would not show great

benefits. In a much larger community setting with a shared thermal loop, this method can

be adapted however the model and exogenous inputs would need to be selected according to

what is most influential. In all cases, the time scale can be adjust to reflect the time constant

of the system.

For occupancy-driven buildings, such as individual offices or residential buildings, an

occupant model would first need to be learned and then input into a state-space model as

proposed here. For more complex buildings with many zones or with systems exhibiting
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nonlinear behaviour, such as large office towers or grocery stores, the problem can be broken

down hierarchically and/or the non-convexities made convex for a given iteration.

The work presented is for the Varennes library which utilizes a photovoltaic array and

ground-source heat pumps. The radiant slab system offers some thermal storage but is not

a dedicated solution. The resulting controls tend to over heat the space to utilize excess PV

production during the day to then reduce electrical consumption. Thermal comfort within

the space is the limiting factor and having a dedicated solution will alleviate this limitation.

Depending on the building load profile, there may be a cost-benefit calculation to per-

form to chose either a thermal storage solution, such as a water tank, a battery bank, or

alternatively to charge electric vehicles (EV) or a combination thereof. If the stored electric-

ity will be used to drive a heat-pump outside periods of solar availability, it might be more

cost-effective to simply heat or cool water in a storage tank and use the stored capacity when

needed. Convex models of water tanks can be formulated with finite difference methods and

would remain feasible for MPC. Convex models of batteries can be used if electrical storage

is more economical.

There is a constraint on the slab surface temperature and more flexibility can be achieved

using dedicated electrical or thermal storage solutions. For the period between January to

August 2018, we have performed an analysis for the current operation of the building to size

a battery. In winter for the months of January to March, the battery should output 35 kW

to satisfy 95% of the cases; 15 kW for 50% of the cases. During the months of June to

August, a 26 kW system would satisfy 95% of the cases in summer. The battery should be

sized to be around 250 kWh for the building to be 50% grid-independent and 530 kWh for

95% grid independent. A battery system with those specification would not be cost-efficient

given the cost of electricity, even if a portion of the power is sometimes exported without

compensation.

The alternative would be to store thermal energy instead of electrical by running the heat

pumps during solar availability. The HVAC contributes to 35% of the total consumption of

the building; therefore, around 35% of the battery would be used to drive the heat pumps for

heating and cooling. For the case of 50% grid independence, that would result in 87.5 kWh.

By using a design ∆T of 40K, keeping the glycol heat transfer fluid properties of the library
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and assuming an average COP of 4, this would require a very large 7700 litre tank volume

which would work as a dug-in tank. An alternative would be to rely on phase-change materials

or high temperature brick thermal storage solutions. EVs are another option, but modelling

a electric vehicles can be more challenging due to the probabilistic nature of arrival and

departure times of EV owners.

5.7 Conclusion

This chapter describes ways of applying a noised MPC algorithm to optimize the operation

of a NetZEB. The building features a hydronic radiant slab system along with an air system

and on-site renewable energy sources. Since the methodology is developed for a complex

case, certain systems can be effectively turned off to represent a conventional building.

The methodologies for modelling the exterior temperature forecast noise, the solar radia-

tion noise given predicted cloudiness, a method to sample the building electrical consumption

net of HVAC and a state-space model used in a model-based predictive control framework are

detailed. Multiple cost functions are given for several uses: energy reduction, peak reduction

via an increased cost of energy during a period, analysis of peak reduction given a notice from

the utility, a flexible profile to alternate the consumption of the building with and without

considering the renewable energy production. Given the comfort budget, it was observed

that the temperatures were maintained between the desired boundaries within the enforced

tolerances. Lastly, given all uncertainties, a method is given to select an action profile that

would attempt to be robust to the exogenous input uncertainties. These uncertainties are not

assumed to be normal. The model parameter weights can also be noised by fitting the model

with different data and having a range for all the parameters. The system-level coefficient

of performance of the HVAC system can also be fine-tuned to be variable depending on the

ground temperature, however, our measurements do not show a large enough variation to

justify further analysis. If the heat-pumps were air-sourced, this analysis should be done

since a strong correlation does exist.

This study was for the winter season where the operable windows must remain shut. For

the shoulder seasons and summer, windows can be operated to allow for free cooling strate-
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gies. The model would need to include this information since operable windows effectively

reduce the effective thermal resistance of the enclosure due to infiltration. Given the state

of the windows, the set of model parameters describing the system would be used within

the MPC formulation. To choose the optimal window operating schedule, a branching-based

optimization would need to be used and remains as a future work.

The methodology proposed is applied to a building predominantly operating on a schedule.

Between predefined times, the building must be set to a comfortable temperature. The

modelling approach is simplified to cover larger areas. Therefore this methodology would be

used for supervisory-level controls.

In this work, the price of electricity is assumed to remain fixed. In a dynamic market,

like in a transactive micro-grid, the cost of electricity will be a function of grid availability

in both directions. A good strategy will buy electricity when cheap and sell when expensive,

whereas an optimal strategy will anticipate the price – and by extension what the rest of

the grid will be doing – and act accordingly. The MPC formulation for flexibility herein will

attempt to minimize the norm of the net electricity consumption vs. the desired profile. In

a dynamic market, this profile alters continuously and the MPC formulation will track it.

The final assumption is that the approach is applied to a calibrated model and not to

the actual library. Applying it to the library would require coordinating with the controls

company to develop an edge device that can run all the modelling and optimization scripts

on one end and be able to push BACnet commands on the other. This would require a

substantial resource investment for hardware, software and cloud-based solution development.

As planned future work, this methodology may alternatively be applied to a digital twin

model developed in EnergyPlus, Modellica or another white-box modelling software.

Lastly, a physics-based model is a causal model and its structure allows for extrapolation,

whereas a black-box model is usually a statistical model which tends to fail in extrapolation.

Here, extrapolation can be seen as applying actions that go away from the conventional

controls. In this work, we rely on the Wasserstein distance to assess how different the controls

are. For a future work, this metric can be input as a constraint where the optimal controls

will tend to stay within a trusted region and as data is collected, this region would expand

and shift gradually.
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Chapter 6

Conclusion and Directions for Future

Work

Most buildings today are controlled based on schedules and setpoints. The schedules

state when the building is occupied or unoccupied. When the building switches mode, the

heating or cooling starts to bring the temperature towards comfort. The amount of heating

or cooling provided into a space is proportional to the difference between the current and

desired temperatures. When the operation mode is switched from unoccupied to occupied,

suddenly, this difference becomes significant and the heaters or coolers are turned on at full-

capacity causing a surge in power. To reduce this peak, better conventional controls soften

this using a ramp.

Many other such rules are written by expert operators to improve the efficiency of build-

ings. These heuristics are static and need to be updated with time. Most rules seldom make

use of weather and occupancy forecasts, nor do they make use of the building’s thermal mass,

electrical and thermal storage solutions, nor track dynamic electricity pricing. Hiring an ex-

pensive controls technician to improve the commissioning of the building does not guarantee

continuous savings since static rules need to be updated regularly.

HVAC control systems must be adaptive. The building structure is usually designed to

last 100 years. Offices are remodelled closer to every 8 to 10 years, sometimes less. With

new tenants come new demands. The original design may not always be accommodating and

updates to the system is necessary and can be costly if it needs to be done by an engineering
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firm. An adaptive system would learn the new occupancy and guarantee comfort in real-time.

As of this writing, we are in a pandemic. We are experiencing a shift of conventional office

work into more flexible agreements. The need for adaptive systems have become essential

to minimize the cost burden of operating buildings assuming full capacity when this will no

longer ever be the case. The addition of IoT sensors backed by advanced analytics, modelling

and artificial intelligence is necessary.

A challenge that lies to aid adaptive methods is to make discovery of the building mapping

and systems hierarchy. A solution would be to rely on a standardized tagging or naming

ontology like Haystack 41 (Haystack, 2020) and Brick2 (Balaji et al., 2016; Brick, 2020). Being

able to automatically map a building without requiring sifting through construction plans

will greatly aid in the widespread adoption of optimal controls in buildings. Incorporating

virtual meter information, such as heat flux into a space, or effective COP of a chiller, within

smart BACnet objects will simplify modelling and automated fault-detection. Lastly, current

day controllers are designed to be robust for low-level applications and they simply do not

possess the computational power or memory to perform optimization and advanced analysis;

thus more powerful systems or cloud-connected edge devices are necessary to carry out the

computation.

The utility is transforming. End users are turning from passive consumers to prosumers

and playing an active role by injecting energy from distributed renewable energy sources

such as solar panels installed on the roof or from on-site batteries. The utility is becoming

a transactive market. Future work will need to address how buildings would operate on a

dynamic grid to, besides providing for its occupants and owners, can play an active role in grid

regulation. Research to enable a cluster of intelligent buildings to provide ancillary services to

redress utility load ramps and valleys reducing the reliance on polluting gas-turbine peaking

plants and their associated maintenance costs, and to assure a robust operation and a clean

environment for the generations to come.

The International Energy Agency’s (IEA) Energy in Buildings and Communities (EBC)

Program put forth a new research annex called ”Annex 81 - Data-Driven Smart Buildings”3

1https://www.project-haystack.org/
2https://brickschema.org/
3https://annex81.iea-ebc.org/

116

https://www.project-haystack.org/
https://brickschema.org/
https://annex81.iea-ebc.org/


where the end goal is to derive software to ease the development of control-oriented mod-

els to be applied in buildings. The annex covers methods of data collection using low-cost

techniques, derive models, derive control applications, and drive the adoption rate through

case studies, business model propositions, and result dissemination. The objective is also

to provide case studies for Brick and to combine it with standardized building controls lan-

guages. Validation work is also conducted to have a standardized framework to compare

various approaches – including proposing energy modelling as a data science Kaggle chal-

lenge4 (unpublished work), see chapter 2. Collaboration in this Annex is planned and would

allow the proposed methods in this thesis to be applied to many other similar type buildings.

Additionally, the Varennes library would be a Canadian case study building to test Haystack

and Brick ontologies with the standardized controls language.

By using a model-based predictive control method, we can explicitly state what we want

to maximize (comfort) and minimize (cost, greenhouse gas emissions) and what are the limits

to respect (equipment use, cycling). Rule-based methods are implicit in their intent offering

no guarantees in performance without being fine-tuned continuously.

In this thesis, the objective was to demonstrate a methodology of optimally controlling

a NetZEB to reduce its grid interaction under uncertainty. The approach taken was to use

a model-based predictive control framework which requires a model of the system being

controlled. The focus in this thesis is to analyze the behaviour of the building at the utility

and plant level and see how it compares to other buildings of the same archetype according

to Canadian and American national statistics.

A linear time-invariant resistance-capacitance network was designed, calibrated on col-

lected data, validated and used. Reducing the number of inputs is reported to improve

the accuracy of models. Here, the collected trendlogs from the building automation system

(BAS) is transformed to physical quantities using domain expertise: heat flux, area-weighted

temperatures, and so on, which are agnostic to the building. Grey-box models of different or-

ders were reported to have worked better for certain applications over black-box approaches.

Here, 3 different orders are designed that capture different phenomena. Higher order models

can be used to increase accuracy but they tend to result in higher uncertainties because of

4https://www.kaggle.com/c/ashrae-energy-prediction
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having more degrees of freedom.

Linear and nonlinear model fitting algorithms assume parameters to be independent and

typically to follow a Gaussian distribution. These assumptions guarantee high performance.

However, in building science, the effective conductance of a wall is not independent of the

effective capacitance of the building and cannot be dealt separately. In this work, a fitting

algorithm is used to determine the model parameters which are then used as priors to be

refined using a Monte-Carlo posterior estimation method. Although the model architecture

was simplified, distributions over the parameters were used to emulate an ensemble. For

comparison, a physics-free approach of the same order was used and we showed that the

addition of physics greatly improved the accuracy of the models.

Exogenous inputs were also modelled. Services providing weather forecasts do not give

their uncertainty ranges and literature only supplied sparse values. These ranges had to

be estimated based on collected data by comparing predictions with what eventually oc-

curred. These distributions serve to add noise to future ambient temperature predictions to

obtain control sequences robust to uncertainties in these forecasts. Solar cloudiness was also

modelled based on a clustering-based approach where the raw radiation data was normalized

according to a clear-sky model. We determined that 3 cloudiness groups was sufficient to have

a realistic case which represented: clear sky, partially overcast and fully overcast conditions.

In an application, the sky type would need to be forecast for the day and this model would

be sampled to obtain likely solar radiation profiles. Lastly, for the electrical consumption of

the building not including the HVAC system, we simply sample a historic profile based on

the day of the week.

Optimization literature prefers models and constraints to be convex to assure quick and

reliable convergence to a minima and provide guarantees on the primal problem via the

dual. Cost functions of MPC can be tuned to the end use ideally as long as it is convex.

Many papers have minimized energy or operating costs. In Quebec, the operating cost also

includes the price of the peak energy demand5 which can be represented as a 1-norm on the

5Buildings are charged for their maximum power occurring in a 15-minute window for the given month

– for Hydro-Québec. Electrical plans are continuously changing and the reader is encouraged to read and

understand their local utility plans.
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energy within a prediction horizon, which is convex. The cost can be extended to describe

energy flexibility and grid interactions – a sum of convex functions is convex. Both model

and exogenous input are sampled and the MPC problem is solved multiple times where the

optimal control profile is converged towards a robust optimal iteratively.

System modelling, exogenous input modelling, the MPC cost function and constraints

were derived for the Varennes library case study however remain general and generic for most

any other case. The profile-tracking cost function – see Equations 5.4 and 5.5 in section 5.4

– is very flexible and allows the desired profile to be set by the utility. Other cost functions

were also demonstrated as well as the case of determining the minimal notice required for

the building to react to a demand response signal. The MPC formulations showed a reduce

energy and power demand while promoting self-consumption of the on-site renewable PV

power production. The contributions herein include the methodology, proposed metrics and

visualizations, general MPC cost functions and how to approach MPC using a sampling-based

method.

Salient research using reinforcement learning (RL) is being published and shows great

potential to be applied in building operation. We have used it in a previous study (Der-

mardiros et al., 2019) but found that certain constraints had to be softened and included

in the reward/cost function. This makes the problem multi-objective where electrical cost

must be weighted against the other constraints. In MPC, constraints need not be softened

into the cost function; if needed, they can be softened using a slack variable. Thus, the cost

function can remain strictly as dollars or energy.

As future work, there are many avenues left to explore. In chapter 4, we determined

that 3-4 weeks of training data was sufficient to train a model. In an application, automati-

cally calibrating the model as new data is collected or if the model accuracy drops below a

threshold. To mirror the system one-to-one, we would match the order of the model to the

number of zones. In this case, we would be constructing a virtual twin of the building and

would need to include the states and flowrate of the pumps and fancoil states and would

result in a high-fidelity model where saving estimates would be more accurate.

The digital twin method can be applied for other buildings that were designed using BIM

where the architectural, mechanical and electrical details can be extracted and parsed into a
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simplified model. Tagging and describing the HVAC system using Brick could also be used

to simplify the application of MPC or other advanced control methods, such as RL.

RL can be applied to the Varennes library too. RL is stochastic by design and would

implicitly learn the various uncertainties, however it requires many samples to converge onto

an acceptable control policy. The digital twin can serve as a virtual environment to train

such a model. A future work can consider using RL with safety bounds and a rollout policy

method (Gamble and Gao, 2018) which seems to be at the intersection of MPC and RL.

Since typical controllers installed in buildings do not contain strong processors, an edge

device would be required to pass cloud-calculated optimal profiles to the BAS. The design

and use of this sort of device remains a boutique application. A local computer able to

communicate with the controllers, for example using BACnet, is an alternative option for

clients not wanting to open their building network to the Internet and potentially be at risk

of cyber-attacks.

Alternatively to a computer sending control profiles to each controller, various cases can

be solved offline and these solutions can be simplified into decision trees – if-then-else logic

perhaps with a clustering pre-process step – which can be run directly on BAS controllers.

Here, the computer would update the weights and parameters on the controllers from time

to time. This would be the simplest approach that would not interfere with the controllers’

internal logic.

Lastly, in chapter 5 section 5.5, we analyze the difference between the MPC-proposed

controls vs the current operation of the library through the Wasserstein distance – also

called the earth mover distance. The Wasserstein distance can be added as a constraint to

the MPC formulation to limit actions that diverge the system behaviour too far away from

the conventional controls to stay within a trusted region. As more data is collected, this

region would expand, shift and gradually allow the system to approach a safe optimal policy.

The far-reaching goal is to optimally operate the built environment to improve comfort

within buildings and reduce our impact on the environment through the reliance on renewable

energy sources. Through better understanding the occupant, better data collection through

IoT devices and sensors, through better analytics and leveraging domain expertise mixed with

machine learning tools for modelling and controls, through better system design, integration
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6.1. Thesis Contributions

and inter-building energy distribution networks and, finally, through better utility energy and

communication platforms integrating grid-level renewable power generation with electrical

storage – chemical or potential and either centralized or distributed virtually through a

network of grid-connected electric vehicles – I believe we can make a net-positive difference.

6.1 Thesis Contributions

The contributions of the thesis are listed below:

1. Approach and analysis methodologies applied to a net-zero energy building: Chapter 3.

2. A novel approach to analyze building data to derive quantities/features suitable to

calibrate a low-order model offering a scalable and mass-applicable approach. The

model and data pre-processing are derived together: Chapter 4 sections 4.3.2 and

Appendix B.1. Calibration metrics suitable for longer prediction horizons with a visu-

alization to assess stability are developed: Chapter 4 section 4.3.3.

3. The design and selection of a low-order model based on the system characteristics is

performed: Chapter 4 sections 4.3.4, 4.3.5, 4.3.6 and 4.3.7.

4. A general and generic formulation of applying MPC is proposed. This approach consid-

ers model parameters as distributions and uses different sampling models for exogenous

inputs: ambient temperature, cloudiness based on day types and consumption based

on day of week. See: Chapter 5 section 5.4 and Appendix sections B.5 and B.6.

5. A sampling and iterative-based approach is detailed resulting in a robust control profile:

Chapter 5 section 5.5.

6. The use of the Wasserstein distance metric to assess how different MPC proposed

controls are from current practice; opens an avenue to apply trust-region based controls:

Chapter 5 section 5.5.1.
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Moroşan, P.-D., R. Bourdais, D. Dumur, and J. Buisson (2010, September). Building temper-

ature regulation using a distributed model predictive control. Energy and Buildings 42 (9),

1445–1452. http://linkinghub.elsevier.com/retrieve/pii/S0378778810000915. 21

134

https://linkinghub.elsevier.com/retrieve/pii/S0378778817332942
https://linkinghub.elsevier.com/retrieve/pii/S0378778817332942
https://linkinghub.elsevier.com/retrieve/pii/S0301421508000104
http://linkinghub.elsevier.com/retrieve/pii/S0360132310002477
http://linkinghub.elsevier.com/retrieve/pii/S0360132310002477
http://link.springer.com/10.1007/978-1-4614-9411-9
http://link.springer.com/10.1007/978-1-4614-9411-9
http://arxiv.org/abs/1808.10427
http://linkinghub.elsevier.com/retrieve/pii/S0378778810000915


Bibliography

Moslehi, K. and R. Kumar (2010). A reliability perspective of the smart grid. IEEE Trans-

actions on Smart Grid 1 (1), 57–64. 5

Nagy, A., H. Kazmi, F. Cheaib, and J. Driesen (2018). Deep Reinforcement Learning for

Optimal Control of Space Heating. pp. 8. 33
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Appendix A

Varennes Library Supplementary

Information

A.1 Lighting

In high-performance buildings, the relative consumption of the HVAC system is reduced

compared to the rest of the loads. Lighting can become a proportionally larger consumer

only to be superseded by plug loads, and so paying attention to controlling lighting level can

lead to worth-while energy savings.

The library features T8 fluorescent luminaires equipped with a digital addressable light-

ing interface (DALI) where each luminaire can be dimmed individually and controlled by

sector. When the library was first opened, the lighting was set to a minimum of 800 lux

everywhere. Since then, lighting was reduced following Illuminating Engineering Society of

North America (IESNA) guidelines (DiLaura et al., 2011). Two main tasks are conducted

in a library: (1) office work and reading, and (2) browsing the library book shelves/stacks.

IESNA recommends 300-500 lux for office work and library reading; and 200-500 lux for the

library shelves. However, when lighting was reduced, occupants complained that it was too

dim, possibly because of strong contrast between the daylit areas and the book stacks.

The library is open to employees much earlier that to clients. During that period, the

lighting in areas designated for clientele can be switched off or sparsely lit. Photosensors

dim luminaires when daylight is present. After the 5th year of operation, many ballasts
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A.2. Natural Ventilation

began failing and their repair was unsuccessful because the ballast lost their addressability

and dimming features. The building manager replaced the luminaires with LED luminaires

since they last longer, are more economical to operate, can be dimmed efficiently and do not

contain harmful elements like mercury.

A.2 Natural Ventilation

The library has motorized operable windows installed along the length of the building,

see Figure A.1. The windows open to let in fresh air and is used for free-cooling. Due to

concerns with vandalism, the windows remain shut during the night.

In a complimentary study, Yuan (2016) has proposed a window opening strategy based

on exterior air water content and temperature, see Figure A.2. The ambient air is acceptable

if the admitted air does not raise the indoor air relative humidity above 70% at 22◦C. In her

study, she allows ambient air down to 8◦C to be admitted for pre-cooling when the building

is unoccupied – night-time free-cooling strategy.

Applying the proposed ranges to the library, we note a window opening rate increase from

9.0 to 9.4% going from the current control program to Yuan’s most conservative scenario:

see Table A.1, Yuan Case 1 where the exterior conditions are closest to interior conditioned

air. By increasing the range of acceptable air, window use can be increased to almost 29%.

However, admitting the lower bound 8◦C air should only be considered in unoccupied hours

otherwise it will lead to thermal discomfort near the windows. By utilizing longer natural

ventilation and night-time pre-cooling strategies during the cooling season, the cooling load

can be reduced. To address the concern for vandalism, night-time pre-cooling can be applied

to the upper level only.

The challenge of natural ventilation is to be able to utilize it alongside the HVAC system

to reduce the overall energy use.
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A.3. Hydronic Radiant Slab Control Strategy

Figure A.1: Library second floor plan view showing operable motorized windows, same

coloured arrows operate together.

Figure A.2: Psychrometric chart showing proposed conditions for allowing exterior air. Cases

mapped to colour and hatch: {1: orange vertical, 2: cyan horizontal, 3: purple NW to SE,

4: green NE to SW}.

A.3 Hydronic Radiant Slab Control Strategy

We have completed a preliminary study (Dermardiros et al., 2017) on how to apply an

optimization-based MPC strategy on the radiant slab on an archetype zone.

144



A.3. Hydronic Radiant Slab Control Strategy

Table A.1: Natural ventilation current use and potential use (Yuan, 2016). Windows auto-

matically close upon rain detection. Data from February 20, 2016 to February 20, 2017.
Cases Conditions % in Effect % if Combined

Yuan Closed 71.4

1 15-22◦C 30-70% RH 9.43

2 15-22◦C W < 11.6 g/kg 6.09 15.52 (1+2)

3 12-15◦C W < 11.6 g/kg 5.61 21.13 (1+2+3)

4 8-12◦C W < 11.6 g/kg 7.47 28.6 (1+2+3+4)

Current Closed 90.96

13-22◦C Fresh air need 9.04

The hydronic radiant slab is the primary source of space conditioning in the east, south

and west perimeter zones of the Varennes library. It is supplemented by the air system which

also brings in the required fresh air based on occupancy and demand. The current controls

for the radiant slab function based on two operational modes: heating or cooling. If the

zone is in cooling mode, no heating can be supplied to that zone and vice-versa. There are

opportunities to reduce the overall energy consumption of a zone with radiant slabs by either

pre-heating or pre-cooling in anticipation of a future load, such as occupancy or solar gains.

Conventionally, hydronic radiant slabs are controlled through inlet-oulet temperature

differentials and based on ambient conditions correlations. Predictive measures are seldom

applied which can be beneficial for peak demand reduction and shifting. The MPC algorithm

here replicates a pre-cooling strategy in anticipation of mid-day solar gains.

Based on a model of the radiant slab and on future forecasts, MPC will determine the

operational trajectory the system needs to follow to minimize a cost function. For a case

where heating is needed in the morning and cooling in the afternoon, it is possible that

the lowest energy optimal is to cool the slab in the morning in anticipation of solar gains

at noon but use the diffusers for heating in the morning. This strategy was found by the

optimization routine. The method also dramatically reduced the peak electrical demand by

as much as 50% by pre-emptively cooling the slab instead of simply reacting to solar gains –

as is the current case. The preliminary study did not consider the electricity production in

its optimization function and so higher savings can be anticipated when included.

The study was to take and model a cross-section of the library that would include the

areas served with a radiant slab and areas served strictly with the air system. The section
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Hydronic Radiant Slab Conventional Slab

4.0 m; Depth:4.0 m 13.1 m
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In Out
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Figure A.3: Library cross-section (Dermardiros et al., 2017).

shown in Figure A.3 represents a slice of the library oriented North-South; it is also shown in

Figure 3.1 panel 4. The section serves as an archetype zone of an institutional building that

allows deep daylight penetration and cross ventilation through the use of motorized windows

on both sides. The U.S. National Renewable Energy Laboratory’s Research Support Facility

(NREL RSF) features a similar concept (NREL, 2014).

The two zones – with and without radiant slab – are modelled with single conductances

representing the influence of the exterior conditions and with single capacitances representing

the effective thermal storage effect of the walls, air and furniture in the space. The HVAC

system is modelled as a simple constant air volume system where the HVAC system is a

node and is connected to the zone air node with conductance representing the air changes

per hour. The southern slab containing the piping is discretized in smaller parts. First,

the slab surface is partitioned into 4 sections depth-wise from the window. These 4 sections

are discretized into 2-dimensional volumes: 5 nodes in width and 4 in depth. The concrete

depth is 75 mm for the base scenario. Along the direction of fluid flow, the temperatures

are assumed constant within a node of a section. The fluid exiting a section after having

transferred energy to the slab enters the following section. The analogous electrical circuit

equivalent of the thermal network is shown and explained in Figure A.4. The temperature of

the fluid travelling through a slab section follows an exponential regime (Cengel et al., 2011,
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south

HVAC,south

         south

HVAC,north

north

south north

HVAC,
south
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north,
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people
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+ lights
+ equip

people
+ solar
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Figure A.4: Circuit representation of library section, surface finish and slab. Each zone is

represented by a single node with a single capacitance representing the effective thermal

mass of the walls and furniture. It is connected to the exterior ambient air via an effective

windowed wall conductance. The slab is separated in 4 sections. Each section is represented

by a 5*4 (width*depth) 2-D grid. All the nodes have a capacitance representing the concrete

volume and are connected to one another. The side and bottom boundary of the slab are

adiabatic. The heat input from the fluid flow is connected to the bottom corner. The slab

top nodes are connected by conductors representing the topping material and merge into the

slab section’s floor surface node. The floor surface receives part of the solar gains passing

through the window and connect to the zone air node through a combined convective and

radiative conductance. The north zone does not have an active slab.

see chap. 8).

The MPC scheme will maintain the setpoint profile by employing future predictions of
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the weather and attempt to minimize a predefined cost function. For this study, the future

predictions are deterministic. There are three control variables: the north and south air and

water temperatures. They are optimized over the longer (8 hour) prediction horizon, but

only the control sequences within the shorter (1 hour) control horizon are applied. Once the

control horizon trajectory is applied, the process is repeated.

All the thermal nodes in the model were initialized at 19◦C. The first day served as a

warm-up period and is not shown in any of the results. Looking at the results for the base

scenario of a vinyl tile covered 75 mm concrete hydronic slab in Figure A.5, we can observe

that the setpoints are generally respected. Since the simulated days were clear and although

the exterior temperature was frigid, cooling is required for the south zone. The extracted heat

from the room would be transferred to adjacent zones requiring heating in winter. The slab

water inlet temperature is mostly at around room temperature, although there are periods

of cooling that begin in anticipation of the peak solar gains.

This optimized operation was able to reduce the peak energy demand by 50% for this

case. However, this study was simplified and real-world results would defer. This served as

an initial step to apply MPC into the library and to analyze which modelling approach to

follow. The cost functions in the paper had decaying terms – more importance attributed to

closer actions – to compensate for the perfect knowledge assumptions taken. In the thesis,

this was forgone in favour of uncertain predictions and utilizing a sampling-based approach.

The renewable generation was also later considered.

A.4 Ground-Source Heat-Pump Ground Interactions

The building’s heating and cooling is supplied from four ground-source heat-pumps

(GSHP) connected to eight 152 m [400’] deep boreholes with combined cooling capacity

equalling 30 tons. The radiant slab acts more as a short-term thermal storage system whereas

the ground is more of a long-term or seasonal system. Preliminary heat interactions with the

ground revealed a yearly imbalance in the range of -65,000 kWh, see Figure A.6, which sig-

nifies that the ground is heating over time, i.e. the building is cooling dominated. Typically

in Quebec, buildings are heating-dominated. The library’s orientation and window design
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Figure A.5: Optimal supplied air and radiant slab inlet temperatures for a sunny winter

day. Supplied water is colder to absorb solar gains and move to northern side of the library

(Dermardiros et al., 2017).

allows for better passive solar heat gains and the heat recovery from the BIPV/T system

reduces the need for pre-heating. On a yearly basis, the heating load is less than the cooling

load because of these factors. How this imbalance will play a role in the future capacity of

the geothermal system will be monitored. Natural ventilation and better radiant slab control

strategies can mediate the effects. Installation of motorized shades can reduce solar gains

and diminish cooling loads. Should there be a need for seasonal control strategies will need

to be investigated.

149



A.5. Building-Integrated Photovoltaic and Thermal System

Figure A.6: Heating and cooling loads and resulting cumulative energy balance towards the

ground.

A.5 Building-Integrated Photovoltaic and Thermal

System

The Varennes library features a building-integrated photovoltaic and thermal recovery

(BIPV/T) system. Aside being a highly efficient and well-insulated building, the on-site

renewables contribute on making this building a net-zero energy building (NetZEB). This

section details the BIPV/T system, what its typical behaviour is in winter, the detection of

loss of performance that was later remedied, and the design and application of an on-site

solar irradiance measurement station. In appendix B.4, details of a simplified linear model

to estimate the electrical production used in the MPC formulation in chapter 5 is described.

A.5.1 System Overview

The library has a 110.5 kWp roof-mounted building-integrated photovoltaic (BIPV) array.

From the total 711 m2 [425 panels] PV area, 428 m2 [258 panels] is naturally vented through

a 150 mm [6”] air gap between the PV panels and metal roofing. The remaining 280 m2
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A.5. Building-Integrated Photovoltaic and Thermal System

Figure A.7: BIPV/T roof showing panels connected to inverters identified by colour.

[167 panels] is fan-assisted and vented through a narrower 70 mm [2.8”] air gap. Air flow

behind the panels serves to reduce overheating and to increase production efficiency. From

a 173 m2 [66 panels] portion of the forced air area, heat from the PV panels is recovered

through outdoor air flowing in the cavity under the panels which is used as fresh air. This

airflow to the fresh air intake is controlled through variable speed fans during the heating

season, see Figure 3.2 – this system is known as BIPV/thermal (BIPV/T) as it produces

useful heat in addition to electricity.

A.5.2 Production on a Cold Sunny Day

As an example, for a typical cold sunny day, 220 kWh can be harvested as solar heat.

On average, 6835 kWh have been harvested per heating season (November to April). On

approximately 50% of the occupied time the BIPV/T system harvested above 2 kW of heat

and 14% of the occupied time above 10 kW of heat. The BIPV/T portion covers 16% of

the roof; if the whole roof were BIPV/T, 6.5x more heat could theoretically be recovered

and potentially fed to a thermal micro-grid to assist neighbouring buildings in heating, how-

ever injecting excess heat to the ground would further increase the imbalance of season heat

transfer, see Appendix section A.4. The BIPV/T system was designed to maintain an air
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A.5. Building-Integrated Photovoltaic and Thermal System

Figure A.8: BIPV/T control graphical user interface. Left-most ducting shows BIPV/T heat

recovery being supplemented with the fresh air supply.

velocity within the air channel near 1 m/s as it was found to be a good compromise between

maximizing heat transfer while reducing pressure loss (Candanedo, 2010, chap. 3). In sum-

mer, the mechanical ventilation under the panels is turned on for a minimum of 30 minutes

whenever the air at the end of the cavity reaches 25◦C. This air is exhausted directly to the

outside since there is no need to harvest heat during summer.

A.5.3 Loss of Production

Expertise in the installation and configuration of photovoltaic arrays was lagging in Que-

bec since grid-purchased electricity remains relatively inexpensive and there is not yet a

strong push towards on-site renewables.

Ten 10 kW inverters convert the DC output from the photovoltaic system to AC to be

used by the building or exported to the grid. The inverters were slightly undersized with
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Figure A.9: Daily Electrical Peak Power Production. Around June 2015 the peak no longer

crosses 90 kW, and around May 2016 the peak no longer crosses 80 kW. A new controller

was installed on February 2017 to monitor individual inverters.

the aim to achieve higher yields during average days. The daily peak production for the

whole history of the building is plotted in Figure A.9 and shows that the installed 110.5 kWp

power was never achieved due to losses in wiring and conversion. Tracking the peaks, past

June 2015, they reach a maximum of 90 kW. Similarly, past May 2016, the daily peaks do

not surpass 80 kW. After a site visit, we noticed that two inverters were not functioning

whereas a third was functioning erratically. These inverters were connected to larger strings

of PVs. Poorly functioning inverters have since been replaced. We suspect the inverters

are breaking down due to a combination of (1) a much larger production than their rated

10 kW caused overloading, (2) the maximum power point tracker (MPPT) had failed, (3)

the PV strings were not wired correctly, and/or (4) the inverter settings were incorrect and

led to failures. A dedicated controller has been installed since February 2017 to monitor

the individual inverters; only aggregate amounts were logged beforehand. We can observe

similar trends by looking at the daily energy production in Figure A.10. Further rewiring

and correction were also commissioned in a follow-up study from CanmetENERGY-Varennes

highlighting the need for improving the familiarity of these systems and to warrant better
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Figure A.10: Daily Electrical Energy Production.

training of electricians and installers.

A.5.4 Solar Irradiance Measurements

Three sources of solar irradiance values are available near the library: (1) the Montreal

international airport (IATA: YUL, ICAO: CYUL), (2) the St-Hubert airport (IATA: YHU,

ICAO: CYHU), and (3) CanmetENERGY-Varennes PV research measurement station. The

airports offer radiation data in 1-hour intervals and is too crude for a detailed analysis when

the rest of the collected data has a 5-minute to 15-minute resolution. CanmetENERGY

is located 8 km from the library. To assure the data collected there corresponds closely

to the library’s on-site conditions, I designed and built a solar-battery-powered data-logger

with an instrument amplifier connected to two pyranometers (LI-COR LI-200R with 400

to 1100 nm range) sitting on a 3D-printed customized mount, see Figure A.11. Data was

collected in the summer period and showed a strong correlation with data obtained from

CanmetENERGY. Due to considerations outside the scope of expertise, the data from the

data-loggers cannot be used since temperature corrections due to the change of the resistance
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(a) Small PV panel charging control box battery seen

on the right of the pole

(b) Two pyranometers installed on a custom-designed

3D-printed mount with angles matching library roof

panels

Figure A.11: On-site pyranometer measurement, instrument amplifier and data-logger setup.

Data collected used to compare values obtained from CanmetENERGY Varennes located

nearby.

of the gain-setting resistor on the instrument amplifier was not considered. As of summer

2019, CanmetENERGY has installed a weather station on the library’s site with two infrared

thermal cameras directed to the two BIPV/T roof sections.
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Appendix B

Supplementary Models and Details

B.1 Causal Effects between Input Features

Runge et al. (2019) has developed a method to, beyond simple correlations, determine

the causal effects within variables and have made it available through their Python package

tigramite1. The proposed method was used on the Varennes library data that would be

used to fit partially the 3rd-order model to keep the graphs simple. Figure B.1 shows the

relationship of the points to one another through time; arrows depicting the direction of

causality – the numbers on the arrows represent the significant time lags to consider whereas

the colours of the dots represent the self-correlation through time.

Solar radiation (GHI) is affecting the room air temperature of the space above the radiant

slab, which is on the southern perimeter. Not having known its orientation, it may have been

inferred based on this correlation. Solar radiation also affects exterior temperature. Focusing

on the heat sources, they are all interdependent because of a common thermal loop and this

does show up in the correlation analysis. Due to the common loop, this methodology is

unable to strongly separate their individual effects to their attributed zones. The analysis

was carried considering a maximum time lag effect of 8 steps – 2 hours – and the maximum

reported significant time lag in the 10% significance threshold is 2 – 30 minutes – for the

radiant slab; 15 minutes for the air systems. This means that an applied heat to a thermal

node takes at most 30 minutes to be felt by a zone. The pipes in the radiant slab are close

1https://github.com/jakobrunge/tigramite/
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B.2. State-Space Model Matrices

to the surface. At the 10% sigma level, the exterior temperature is shown to not influence

the interior temperature. For a well-insulated and air-tight building like the library, the

exterior temperature is only felt through the fresh air into the air handling unit, and for this

particular building, that effect is also lessened due to having a demand-driven system which

utilizes heat recovery from the BIPV/T system.

The modelling approach herein is based on predicting one timestep at a time. Should

we have used an approach to predict a longer sequence, we would have limited it to 2 past

steps and 2 future steps since there is no strong evidence to go longer and warrant a more

complicated model.

B.2 State-Space Model Matrices

This section details the different ordered – in space – state-space models used in this

work. The general state-space formulation – 1st-order in time – is given:

y(t) = x(t+ 1) = Ax(t) +Bu(t) + Cw(t), where:

y(t) model output, which is the same as what goes back in for the following timestep (recur-

sive).

x(t) system variables to track, e.g. zone temperature.

u(t) controllable variables, e.g. heating/cooling stages, fan, damper position, or other.

w(t) exogenous inputs, e.g. weather and time indicators.

A, B, C state and input matrices.

The state and input matrices are designed for the different models.

B.2.1 1st-Order Model

The 1st-order model in its state-space representation can be described by the following

equations:

x =
{︂
Tair

}︂
T
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Figure B.1: Input causality graphs: 10% significance, data from January 7 to February 14,

2018.

u =
{︂
Qtotal

}︂
T

w =
{︂
Text ConsøHVAC GHI

}︂
T

A =
[︂
1− Uair,ext∆t

Cair

]︂
B =

[︂
∆t
Cair

]︂
C =

[︂
Uair,ext∆t

Cair

αgains∆t

Cair

αsol∆t
Cair

]︂
Ablack =

[︂
a1,1

]︂
Bblack =

[︂
b1,1

]︂
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Cblack =
[︂
c1,1 c1,2 c1,3

]︂
Where,

Uair,ext Library effective wall conductivity between Tair and Text.

Cair Library air effective thermal capacitance; includes the air, furniture, the walls.

αgains Factor converting electrical consumption net of HVAC equipment to internal gains.

αsol Factor converting GHI to solar gains within the library.

B.2.2 2nd-Order Model

The 2nd-order model in its state-space representation can be described by the following

equations:

x =
{︂
Tslab Tair

}︂
T

u =
{︂
Qslab Qair

}︂
T

w =
{︂
Text ConsøHVAC GHI

}︂
T

A =

⎡⎣1− Uair,slab∆t

Cslab

Uair,slab∆t

Cslab

Uair,slab∆t

Cair
1− Uair,slab∆t

Cair
− Uair,ext∆t

Cair

⎤⎦
B =

⎡⎣ ∆t
Cslab

0

0 ∆t
Cair

⎤⎦
C =

⎡⎣ 0 0 αsol∆t
Cslab

Uair,ext∆t

Cair

αgains∆t

Cair
0

⎤⎦
Ablack =

⎡⎣a1,1 a1,2

a2,1 a2,2

⎤⎦
Bblack =

⎡⎣b1,1 0

0 b2,2

⎤⎦
Cblack =

⎡⎣c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

⎤⎦
Uair,slab Effective conductivity between the air Tair and radiant slab Tslab.

Uair,ext Effective conductivity between the air Tair and exterior Text.
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B.2. State-Space Model Matrices

Cslab Radiant slab effective thermal capacitance.

Cair Library air effective thermal capacitance; includes the air, furniture, the walls.

B.2.3 3rd-Order Model

The 3rd-order model in its state-space representation can be described by the following

equations:

x =
{︂
Tslab Tair−south Tair−north

}︂
T

u =
{︂
Qslab Qair−south Qair−north

}︂
T

w =
{︂
Text ConsøHVAC GHI

}︂
T

A =⎡⎢⎢⎢⎣
1− Uair−S,slab∆t

Cslab

Uair−S,slab∆t

Cslab
0

Uair−S,slab∆t

Cair−S
1− Uair−S,slab∆t

Cair−S
− Uair−S,ext∆t

Cair−S
− Uair−N,air−S∆t

Cair−S

Uair−N,air−S∆t

Cair−S

0
Uair−N,air−S∆t

Cair−N
1− Uair−N,air−S∆t

Cair−N
− Uair−N,air−S∆t

Cair−N

⎤⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎣
∆t

Cslab
0 0

0 ∆t
Cair−south

0

0 0 ∆t
Cair−north

⎤⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎣
0 0 αsol∆t

Cslab

Uair−south,ext∆t

Cair−south

αgains−south∆t

Cair−south
0

Uair−north,ext∆t

Cair−north

αgains−north∆t

Cair−north
0

⎤⎥⎥⎥⎦
Uair-south, slab Effective conductivity between the south air Tair-south and radiant slab Tslab.

Uair-south, ext Effective conductivity between the south air Tair-south and exterior Text.

Uair-north, ext Effective conductivity between the north air Tair-north and exterior Text.

Uair-north, air-south Effective conductivity between the north and south air Tair-north &

Tair-south.

Cslab Radiant slab effective thermal capacitance.

Cair-south South-side library air above radiant slab effective thermal capacitance.

Cair-north North-side library air not above radiant slab effective thermal capacitance.
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αgains-[side] Factor converting electrical consumption net of HVAC equipment to internal

gains where [side] corresponds to either north or south.

B.3 Monte Carlo Posterior Fit Sampling

This section shows the Monte Carlo sampling outputs for the 3 models. Each dot in the

plots represents one sample and if there are adequate number of samples, a contour plot is

used instead for clarity. Within the contour plots, a darker colour represents a higher density

of points. The last plot on each row shows a density plot for that corresponding parameter.

The 1st-order model is shown in Figure B.2, the 2nd-order in Figure B.3, and the 3rd-order in

Figure B.4.

B.4 Photovoltaic Power Generation Projected Solar

Linear Model

The PV AC generation is calculated from solar radiation data obtained from CanmetEN-

ERGY and projected onto the PV arrays per unit square, according to geometric correlations

(Duffie et al., 2020). The PV AC generation can be modelled as a linear function using the

projected values, see Equations B.1 and B.2. This part remains separated from energy model

but is input in the optimization in chapter 5.

PVgen = αprojected2PVpowerIproj (B.1)

The PV array – 425 panels – is separated into two areas with different orientations: a due

south – 167 panels, ψ = 0 ◦– and south-east – 258 panels, ψ = −14 ◦east of south – section.

Both sections have the same tilt – β = 37 ◦. The solar projection onto the whole array per

unit area is as follows:

Iproj = DHI
1 + cos(β)

2
+ DNI(

167

425
cos(θS) +

258

425
cos(θSE)) (B.2)

Where,
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B.4. Photovoltaic Power Generation Projected Solar Linear Model

Figure B.2: 1st-order emcee Monte Carlo sampling output after first fit using lmfit. Set-

tings: timestep: 15-min, decay factor: 0.2, prediction horizon: 6 hours, train data: 4 weeks.

Posterior parameter distributions for the effective conductance and capacitance, and the so-

lar gain coefficient shown. Distributions appear normal and unimodal and therefore stable

around the best estimate. Lnsigma is a coefficient used for sampling.

DHI diffuse horizontal irradiance (W/m2),

DNI direct normal irradiance (W/m2),

θ incidence angle between the normal to the panels and the Sun’s rays, calculated using solar

angle equations,

ψ surface azimuth angle (west of south is positive),
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B.4. Photovoltaic Power Generation Projected Solar Linear Model

Figure B.3: 2nd-order emcee Monte Carlo sampling output after first fit using lmfit. Set-

tings: timestep: 15-min, decay factor: 0.2, prediction horizon: 6 hours, train data: 4 weeks,

importance: 50/50. Posterior parameter distributions for the conductances and capacitances

for the slab and air nodes, and the solar gain coefficient shown. Distributions appear uni-

modal but with fatter tails. Lnsigma is a coefficient used for sampling.

β surface tilt angle relative to horizontal.

Collected data is used to fit the α coefficient by minimizing the mean squared error
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B.4. Photovoltaic Power Generation Projected Solar Linear Model

Figure B.4: 3rd-order emcee Monte Carlo sampling output after first fit using lmfit. Set-

tings: timestep: 15-min, decay factor: 0.2, prediction horizon: 6 hours, train data: 4 weeks,

33/33/33 importance. Posterior parameter distributions for the conductances and capaci-

tances for the slab and both air nodes, the conductance connecting both zones, and the solar

gain coefficient shown. Distributions appear slightly bimodal and may contain combinations

of equifinality. Lnsigma is a coefficient used for sampling.
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B.5. Exterior Ambient Temperature Forecast Noised Model

between actual and predicted values, and is reported in Table 5.1 and shown in Figure 5.4

in section 5.3.1.

B.5 Exterior Ambient Temperature Forecast Noised

Model

To have a realistic noise in the exterior ambient temperature predictions, forecast data was

collected and analyzed to derive a model to describe this uncertainty as a function of forecast

length. Collected data from the local airport (IATA: YUL, ICAO: CYUL) from January

2015 to October 2016 are considered. The predicted ambient temperatures are aligned to

what happened in the future to calculate the differences, shown in Figure B.5 for hours with

at least 50 samples. This analysis serves to better understand how off and how accurate

these predictions are and the errors serve to add a sensible amount of noise to temperature

predictions in a live application.

With the differences at various hours collected, their covariance can be calculated, see

Figure B.6 left. Since not every prediction hour has enough samples to generate the full

covariance matrix, the missing values were interpolated using a bivariate spline approximation

(SciPy, 2019).

Lastly, noise samples are generated from a multivariate normal distribution with mean 0

and the covariance calculated and interpolated above, see Figure B.6. The noise would be

added to the temperature predictions from the weather source.

B.6 Solar Radiation Cloudiness Sampling Model

Solar radiation prediction is very difficult. In this section, a simplified approach is pro-

posed where the type of day would be predicted and a profile with the magnitude of solar

radiation would be sampled from normalized historical data.

The k-means clustering is applied assuming the existence of 3 clusters or types of days:

overcast, partially cloudy and clear sunny days. Applying clustering naively on collected

data, a seasonal variation – length of day – instead of the intraday variances is observed, as
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B.6. Solar Radiation Cloudiness Sampling Model

shown in Figure B.7.

To remedy this behaviour, collected solar radiation data are compared to a sunny day

using the Hottel clear sky model (Hottel, 1976). Comparing the clear sky model to collected

data, both did not agree perfectly and a one-year periodic calibration function was used to

scale the amplitude. To remove the seasonal bias, the beginnings and ends of each day was

cut short. Figure B.8 shows the clustering applied to the ratios and a calendar corresponding

to those clusters are shown in Figure B.9.

Finally, the objective of the clustering approach is to predict the solar radiation cluster

for the next day, sample a ratio curve from Figure B.8, fill the morning and evenings where

the ratio was cut with normally distributed noise with variance equalling that of the cluster’s,

Figure B.5: Ambient temperature prediction error for various look-ahead periods. Periods

are noted in the subplot titles.
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B.6. Solar Radiation Cloudiness Sampling Model

(a) Error covariance, brighter colour signifies

stronger variance

(b) Prediction noise

Figure B.6: Ambient temperature covariance and forward noise.

Figure B.7: GHI clustering using raw data.

(a) Overcast (b) Partially cloudy (c) Sunny

Figure B.8: GHI ratio clustering.

and, last, multiply this filled ratio to the corrected Hottel clear sky output to obtain a likely

radiation profile. The analysis was done on 5-minute interval data and can be resampled

to longer intervals by randomly picking an appropriate number of points, e.g. to resample

to 15-minutes, one of the three 5-minute points is sampled. As a comparison, we have
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B.6. Solar Radiation Cloudiness Sampling Model

Figure B.9: Solar day type clustering calendar.

also simulated with using normally distributed noise with variance equalling that of the

cluster’s. The noise-based, sample-based and resampled sample-based approaches are shown

in Figure B.10. The sampled solar radiation can then be used in the building energy and

photovoltaic production models.
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B.6. Solar Radiation Cloudiness Sampling Model

(a) Gaussian noise (b) Sampled ratio noise with Gaus-

sian noise extrapolation

(c) Sampled ratio noise with Gaus-

sian noise extrapolation, resam-

pled to 15 minutes

Figure B.10: GHI for sunny, partially cloudy and overcast days.
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Appendix C

Publication Contributions and

Significance

The following is a list of the contributions completed as part of this PhD dissertation

categorized per main topics.

Papers [Journal: 2; Conference: 1, 2, 4; Poster: 1, 2] explore methods of optimal operation

for the library, describe its operation and assesses the energy flexibility of the building. Per-

sonal contribution Lead on the data collecting and processing for the building. Performed

the exploratory data analysis, analyzed its early performance and suggested improvements.

ASHRAE journal paper was written to highlight the key features that got the building to

be net-zero and receive a LEED Gold certification. International policies for climate change

incentivize these types of buildings and the interplay of the HVAC system with the renewable

generation must be better mastered. For co-authored publications, I offered explanation of

the design intent and for the detailed specifications, data and scripts to aid in their respective

end goals.

Papers [Journal: 1, 3; Conference: 5,6] analyze the performance of a novel phase-change

material based expandable thermal storage solution that would be installed as a retrofit

measure: part of the HVAC system or into the building envelope. Personal contribution

The design of the storage solution is my brainchild. This is work continuing from my Master’s

where modelling of the thermal storage was carried out and validated using experiments that

I designed and ran. The studies features this storage solution to be used to reduce the peak
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C.1. Articles Published in Refereed Journals

demand of a building through MPC. For the co-authored papers, I provided support for the

parts utilizing the phase-change material through explaining the thermal cycling procedure

and offered help with the programming implementation.

Papers [Journal: 4; Conference: 7] simulate and optimize the design of a net-zero energy

building taking into consideration the primary energy factor of the grid where instead of

relying on electricity price, a building that can operate while clean energy sources would

be available would be optimal. Personal contribution I was responsible of collecting and

cleaning public energy data from the Ontario grid; I wrote a script to automate the procedure.

I designed an approach to use surrogate deep learning models instead of EnergyPlus for design

exploration offering a 100x speedup, however, that approach was largely abandoned.

Paper [Conference: 3] is an exploratory idea to design a reinforcement learning based

optimal controller that can be mass-applied to residential buildings. Personal contribution

First, I designed and implemented a reinforcement learning (RL) agent class that can learn

with experience. I also created controllers utilizing ON/OFF staging and PID loops to be

able to compare the predictive method to the conventional ones typically present in homes.

Second, I built a generic and general physics-based environment to train the RL agent. The

environment parameters can be tuned with collected data and randomized to cover a wide

range of possible instances. The model would learn on these cases and would perform well-

enough to be mass-applied and its policy would be refined in situ.

C.1 Articles Published in Refereed Journals

1. Morovat, N., Candanedo, J.A., Athienitis, A.K., Dermardiros, V. (2019). Simula-

tion and performance analysis of an active PCM-heat exchanger intended for building

operation optimization. Energy and Buildings.

2. Dermardiros, V., Athienitis, A.K., Bucking, S. (2019). Energy performance, com-
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