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Abstract

ASGARDS-H: Enabling Advanced Smart Grid cyber-physical
Attacks, Risk and Data Studies with HELICS

William Lardier

Smart infrastructures are increasingly built with cyber-physical systems that connect phys-

ical operational technology (OT) devices, networks and systems over a cyberspace of ubiq-

uitous information technology (IT). A key objective of such interconnection is to offer

a data coverage that will enable comprehensive visibility of dynamic environments and

events. The arrival of Internet-of-Things, 5G, and beyond in smart infrastructures will

enable the collection of unprecedented volumes of data from these various sources for crit-

ical visibility of the entire infrastructure with advanced situational awareness. To break

the barriers between the different data silos that limit advanced machine learning tech-

niques against cyber-physical attacks and damages and to allow the development of ad-

vanced cross-domain awareness models, the thesis tried to develop a modular, complete

and scalable co-simulation platform allowing the generation of standardized datasets for

research and development of smart distribution grid security. It addresses the lack of re-

alistic training and testing data for machine learning models to enable the development of

more advanced techniques. Our contributions are as follows. First, a modular platform

for software-based co-simulation testbed generation is developed using the HELICS co-

simulation framework. Second, scenarios of instabilities, faults, cyber-physical attacks are

built to allow the generation of a realistic and multi-sourced dataset. Third, well-defined

datasets are generated from the developed scenarios to enable and empower data-driven

approaches toward smart distribution grid security.
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Chapter 1

Introduction

1.1 Motivations

Smart grids play an integral part in critical infrastructures at both local (cities) and national

levels. The recent arrival of these new monitoring capabilities also brings many challenges

that cybersecurity and physical security experts must face. In fact, these systems must be

built on approved standards and must precisely describe the different functionalities of the

infrastructure, which combines two very different yet crucial domains, namely electrical

grids and communication networks. Although such standards are well established, many

threats remain, and guidelines such as the NIST IR 7628 (rev.1) Guidelines for Smart Grid

Cybersecurity [1] attempt to provide comprehensive approaches to address these threats

and raise awareness of the security threats.

Recently, with the multiplication of communication standards, the arrival of 5G and

the constant evolution of interconnections between these networks, we are more and more

realizing the benefits of comprehensively enhance the visibility of dynamic environments

and events. Increases in computational power and advances in the processing of massive

data silos will permit these tremendous volumes of data to be transformed into useful in-

formation for monitoring the state of the system and thus protecting it.

Among the emerging and promising techniques to bring security within such cyber-

physical systems, Situational Awareness (SA) has emerged as a natural solution for se-

curing CPS, and in particular smart grids. For the specific case of power grids, the U.S.

National Institute of Standards & Technologies (NIST) in its practical guide to Situational

Awareness for Electric Utilities [2] has confirmed the essential need to provide a perception

1



of the environment, the understanding of its meaning and the projection of its state in the

near future.

In order to address complex threats whose effects might slightly affect each data silo to

remain undetected, it is important for learning models to ensure that they will have access

to all data and thus not risk a delayed response to major threats [3]. At the same time, the

crucial lack of means of access to this type of data makes the development of complex ma-

chine learning techniques almost impossible. The majority of real-world scalable solutions

are nowadays proposed by private companies, working in collaboration with the govern-

ment of the state in which they operate. To address these multiple problems, this work, the

first part of a larger project as part of a Mitacs agreement between Concordia University

and Ericsson, aims to develop a testbed based on open-source technologies and solutions

as well as the various standards in place.

1.2 Contributions

How to enable the co-simulation of cyber-physical systems to serve as a basis for the study

and generation of data related to cyber-physical security? Through this work, we try to

answer this problem by introducing a modular, systematic and highly scalable project al-

lowing the investigation of complex scenarios as well as the future implementation of at-

tacks and events that will serve as a basis for the development of new detection and defense

mechanisms for Smart Grid, based on machine learning.

This thesis aims to propose a co-simulation platform enabling the integration of com-

plex cyber-physical attacks, events, faults and instabilities to generate standardized datasets

for multiple scenarios. Through this project, we propose the integration of a wide range

of technologies in a single co-simulation environment. As the integration of these existing

works is only the skeleton of a larger project, many modular ad-hoc implementations are

added to create a complete, scalable and modular environment:

• We develop a highly customizable software-based solution for co-simulation testbed

generation from a simple power network model;

• The proposed testbed is compatible with Hardware-In-The-Loop (HIL) integration,

the addition of control systems, user scripting for real-time integration of machine

learning techniques, cyber-physical attacks, faults and events;
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• The capabilities of the testbed are multiple: power grid simulation via the GridLab-D

simulator, developed by the U.S. Department of Energy (DOE) at Pacific Northwest

National Laboratory (PNNL), with the integration of the HELICS co-simulator, the

OMNeT++ simulator, developed by OpenSim Ltd. also linked to HELICS and em-

bedding the INET and SimuLTE frameworks, as well as the ad-hoc implementation

of multiple protocols and functionalities from smart grids systems. Two federates are

also included in the co-simulation: a Meterpreter-like cyber-physical attack federate

and a visualization and control federate;

• We generate datasets of multiple source (‘csv’, ‘json’, ‘pcap’, ‘vec’) from the co-

simulations, according to the options defined by the user at the time of testbed gen-

eration;

• We study the integration of 5G communications within smart grids in order to de-

velop specific scenarios and highlight the benefits introduced by 5G.

The contributions of the thesis can be summarized in two points. First, we propose

a comprehensive and modular co-simulation platform for customizable smart grids co-

simulation, which includes capabilities from the power grid model integration to the la-

tency induced by an attacker performing an eavesdropping attack on a specific networked

device. Secondly, we propose a realistic environment based on complex scenarios enabling

studies of synchronized or desynchronized systems under different conditions and permit,

via the generation of standardized datasets, their study by machine learning techniques.

1.3 Ericsson GAIA program

This work is part of the Ericsson Global Artificial Intelligence Accelerator (GAIA). With

nearly 300 data scientists and data engineers around the world, GAIA, launched in Mon-

treal in 2019, brings together diverse profiles of researchers. Based in Canada (Montreal),

the USA (Santa Clara), Sweden (Stockholm) and India (Bangalore), the clusters are work-

ing jointly to meet the various needs of consumers: network performance, new revenues,

relentless efficiency and end-customer experience. In the context of the arrival of 5G, this

accelerator aims to develop artificial intelligence techniques for the development of new

technologies, applications and defenses.
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GAIA MITACS consists of 6 main research clusters, with a total of 41 projects for 82

researchers. With 20 Post-Doctoral, 38 PhD and 24 M.Sc. students from 8 Universities,

the clusters study various fields, from edge computing to cyber physical systems.

1.4 Thesis Organization

Chapter 2 provides an overview of the concepts discussed throughout this document. Chap-

ter 3 provides a literature review of existing co-simulation solutions as well as the simu-

lation of cyber attacks. Chapter 4 summarizes the co-simulation framework HELICS and

presents in detail the co-simulation testbed generation platform, the different sub-parts and

protocols/standards used, as well as the different approaches used for the simulation of

attacks, events, faults and instabilities. Chapter 5 validate the proposed platform and de-

tail the dataset generation process and implements a first use-case enabling the complete

study of our testbed capabilities. Finally, Chapter 6 will discuss this project limitations,

and Chapter 7 concludes this thesis and highlights the future work for the improvement

of this project and its use. Figure 1 summarizes the thesis organization. Blue dotted lines

highlight thesis contributions.
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Chapter 2

Background

2.1 From the Power Grid to the Smart Grid

Conventional power grids are defined as a centralized power plant delivering energy to end

users. Initially, there was little monitoring of power consumption and network status. At the

same time, the maturity of technologies has allowed the integration of new equipment into

the electricity infrastructure to improve economic development. Since then, administration

and control equipment has been developed for the specific monitoring of smart grid-related

parameters. They facilitate the monitoring of the electrical architecture and give a mod-

ern dimension to the electrical networks - the smart grids. This name encompasses the

idea of a monitored electrical network via secure two-way communication improving the

interoperability of the electrical and IT layers.

Over time and with the arrival of new supports for large-scale communications such

as 5G, smart grids continue to evolve into a global system where mobile entities (electric

vehicles) or monitoring of secondary elements (weather conditions), green energy genera-

tion (PVs, Wind Turbines, etc.) interact, as well as standardised communication protocols,

helping the operator to have a global overview of the system, we speak here of situation

awareness.

According to the US Department of Homeland Security (DHS), smart grids are one of

18 critical systems in our society [4]. This type of system is so vital that a widespread fail-

ure, global damage or inability to function would cause serious disruption at many levels:

from citizens to defense systems to economic stability. Moreover, many critical systems

depend on Smart Grids, making this complex system even more special and vital.
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For the companies, smart grids have many benefits, i.e. the reduction of electricity pro-

duction through better management of consumption, thereby lowering costs for customers

and reducing gas emissions.

2.1.1 Distribution and Transmission Systems

A distribution system, or electric power distribution, is a part of an electrical grid serving

consumers. A distribution system carries electricity from the transmission system (not cov-

ered in this work) to the end-user. As part of this project, we consider only the Distribution

part of the electrical grid, from the substation to the smart meters in households.

2.1.2 Smart Grid Communications

As summarized in Section 2.1.3, the risks of cyber-physical attacks against smart grids

represent a challenge that will be faced by multiple stakeholders, from the operator to the

end user. Smart grids are equipped with diversified systems for sensing, controlling and

processing large volumes of data:

• Real-time retrieval of physical system status such as frequency or phase angle via

Phasor Measurement Units (PMUs) is received by data aggregators (here, Phasor

Data Concentrators) before being received by the Control Center, which in turn will

analyze this data using a state estimator and intrusion detection system (IDS) in order

to send controls to the network and detect illegal attempts to tamper with the system

by an attacker;

• This principle of bi-directional communication enables the retrieval, processing and

communication of controls in real time via timestamped payloads, permitting the

controller to make decisions in an optimized way at different levels of the smart grid

system (from the generation to the distribution);

• Finally, the objective is to enable a self-healing capability in response to attacks,

various events and faults.

The inclusion of Supervisory Control and Data Acquisition (SCADA) systems that re-

cover and process of data from the network is a major step towards a situational awareness-

capable monitoring system. After processing the data, the SCADA system sends controls

to the actuators to ensure the functional state of the system. In contrast to the Wide Area
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Monitoring, Protection and Control (WAMPC) system, a SCADA system is not limited to

process only the Synchrophasors measurements from the PMUs but is also able to collect

data from multiple sources.

2.1.3 Cybersecurity Implications

Threats to smart grids are not to be taken lightly. History has already shown that threats can

come from the computer network and have only effects, albeit devastating, on the electrical,

and therefore the physical layer. The techniques used by attackers are proportional to the

means at their disposal. The development of resilient and secure smart grids should allow

improvement at various levels, from prevention to system recovery after an event:

• Improves resilience to disruption;

• Set up predictive maintenances enabling self-healing in the face of disturbances;

• Improve cybersecurity.

Unfortunately, the addition of new, flexible and modular technologies brings new cyber

security threats for smart grids as the attack surface increases. Also, some attacks, recently

developed in the academic literature, tend to show that both physical and cyber attacks

can have devastating effects on smart grids, while remaining undetectable with current

detection means: they are called cyber-physical attacks (CPA). In 2014, the US Industrial

Control Systems Cyber Emergency Response Team noted that nearly a third of incidents

were targeting the energy sector [5].

In 2007, Iran’s nuclear power station was targeted by a malware-based attack (Stuxnet)

that infiltrated the control system in order to slow down the development of the country’s

nuclear technologies [6]. In 2014, Dragonfly, another malware, was released, targeting

over 1000 electrical companies to infiltrate the kernel for the control of the aforementioned

systems [7]. In 2015, during the civil war in Ukraine, a Trojan Horse-based attack targeted

the power grid and put 80,000 people in the dark [8]. Recently, DHS has noted an increase

in the number of cyber attacks against electrical systems, with nearly 4,300 attempts in

2017 against the French electricity grid.

However, as explained in Section 2.3.3, attacks do not always seek to damage or alter

the physical system state but can also be used to retrieve sensitive information for later

attacks or to gain strategic advantage.
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2.1.4 The Role of Co-simulation

To better mitigate cyber attacks, it is important that all stakeholders are well aware of the

risks involved in a smart grid context. This includes IT experts, cybersecurity professionals,

agencies, companies or government organizations managing smart grids, and even end-

users when using smart grid technologies. Indeed, the majority of previously presented

attacks have been achieved through some form of social engineering intervention at some

point in time, or by exploiting the lack of human vigilance to gain access to the system.

Traditional training methods are limited for a system such as the smart grid: how then to

train stakeholders in automation, ICT (networks, cybersecurity) and physical areas, when

they are all interconnected? How can stakeholders be trained for a major incident without

modeling it in the real world (which would be too costly)? These experiences and skills

can only be obtained by training on a real system or, in the case of smart grids, via a

co-simulator.

Co-simulation addresses the limitations of access to a real smart grid system by in-

tegrating various simulators, or federates, into a single synchronized and interconnected

environment. It leverages all the capabilities of the various existing simulators into a sin-

gle, unified platform that can be configured with various scenarios for the simulation of

complex events, hence the proposition of the co-simulation as an emerging and promising

technology for the study of cyber attacks and their effects in smart grids. Although many

co-simulation platforms have already been proposed, few are comprehensive enough to

fully explore the effects of cyber attacks.

In this context, we propose a new co-simulation platform named ASGARS-H (Advanced

Smart Grid cyber-physical Attacks, Risks and Data study with HELICS) to allow the study

of complex smart grid scenarios (including weather, instabilities, faults, cyber-physical at-

tacks) and the generation of realistic dataset for the development of detection techniques

based on machine learning. Our methodology combines the HELICS co-simulation plat-

form, the GridLab-D simulator, the OMNeT++ cyber simulator and other ad-hoc federates.

The following Section presents the minimum necessary concepts for a proper understand-

ing of this thesis.
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2.2 Co-simulation

The development of simulation tools depicting complex engineered systems that combine

physical, software and network technologies is emerging, due to the increasing demand

from industry and academia [9].

Thus, each tool, addressing one particular challenge, is integrated within a consistent

system and communicate with the other tools. The integration of such tools within a co-

simulation environment is highly dependent on the tool level of modularity, as well as

the moment when this communicative capability has been integrated during the develop-

ment process [10]. Indeed, the development of a co-simulation platform must be holistic:

although multi-disciplinary simulators or tools are developed independently, it is crucial

for the coherence of the co-simulation that each part is integrated with the others fre-

quently during the development process. Contrary to a classical development project, a

co-simulation platform must be validated at each level of the simulation: each simulation,

federation, then the whole co-simulation. In addition, at a more technical level, valida-

tion, debugging and the usual techniques of a project development lifecycle become more

complex as tools from different domains are introduced.

While there are many simulators for the realistic representation of partial systems, few

are capable, without major modifications, of being properly included in a holistic develop-

ment process of a co-simulation platform [11]. It is indeed complex to integrate or replace

a specific simulator, on the one hand because it have to be licensed for integration into a

larger system and on the other hand because the integration of such a simulator is complex

and requires specific knowledge of the system.

Co-simulation then realistically represents coupled system interactions. Although it

is complex to obtain a single model to represent a system as a whole, high-fidelity co-

simulation enables the study of essential aspects of the whole system, where the capture of

interactions between individual tools represents the most important challenge [10].

On a more general point of view, co-simulation is an innovative overlay for controlling

and synchronizing federates, or interconnected simulators. The latter are then considered

as complete and independent subsystems, accepting input commands, values or controls

(subscriptions) and producing output data, events or states (publications), whether peri-

odic (timestep) or dynamic (event-based). These federates can integrate various systems:

Hardware-In-The-Loop (e.g., a real Phasor Measurement Unit integrated using FNCS),
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solver equations (e.g., a power system simulator), software executing kernel (e.g., OM-

NeT++ for the network communications simulation).

2.2.1 Simulation and Co-simulation Basics

In this Section, we present the basic concepts of co-simulation. For ease of reading, we

illustrate these concepts with a virtual example of a co-simulation between a vegetation

simulator and a weather simulator.

Firstly, we speak of a dynamic system [10] when a simulator models a real system that

uses an internal state and a set of methods to make it evolves over time. For our example,

the vegetation simulator could have the states ( f lowering, growing, deciduous, wilted,

dormant). The evolution methods would represent the step(s) that change the system state

to another one, according to specific conditions (e.g., the input temperature and the time).

The Behavior Trace [10] is a set of transitions leading to a new state (and thus new

outputs) of a dynamic system. For example, the transition set x would here be defined as a

mapping between the temperature Tp, the time T and the set of reals R, that is, x : Tp∪T →
R.

In order to properly evolve the system over time, a simulator must maintain a global

variable, the simulated time t ∈ T , where T ← R is the base time. This time is different

from wall clock time τ ∈ R, which is the real-time. The relationship between these two

measurements can be summarized as t = αT . Users can modify the simulator simulation’

speed by modifying the α variable, for example to create a real-time simulator (α = 1). It

can also be used to accurately measure the performance of the simulator.

Simulation speed is not the only metric to measure the performance of a simulator.

The validity is a second crucial concept (and a property of a dynamical system) since it

represents the ability of the simulator to actually produce the right outputs, given an initial

state and a set of commands, controls, or input values. Validity allows dynamic system

simulators with a predictability capability. For example, if our vegetation simulator has

perfect validity, it is able to correctly predict the correct output state given inputs it has

never received before. We also need to dissociate the concept of validity of a simulator

from a digital twin, since a high level of validity can be achieved without necessarily having

the same routines, functions or protocols as a twin system.

Indeed, a simulator is an algorithm that computes the evolution of the state of a dynamic

system. In the case of software-based simulators, this calculation is more generally an
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approximation (for example the growth speed of a plant), whereas a hardware simulator is

able to correctly produce the optimum results, since it will directly exploit the real physical

properties. Approximations within software simulators are mainly due to the impossibility

to find a solution within a set of infinite size or to calculate a trajectory over a continuum

[10]. Finally, we can refer to accuracy when a simulator is able to produce results with a

normalized error close enough to zero, given an acceptable threshold. Any simulator needs

an initial state and a defined trajectory in order to properly start the simulation.

A simulation is the generation of a behavioral trace permitted by inputs, depending on

the validity and accuracy of the dynamic system and the simulator. [10]. A Simulation

Entity (SE) refers to a simulator with a dynamical system, that produces a behavior trace.

Now if we consider that each part of a more complex simulated system is represented by

one SE. These SE can now be integrated together and communicate to share inputs/outputs,

enabling the development of a co-simulation scenario. The co-simulation is a set of feder-

ates that represent one or more federations that produces a global behavior trace produced

by the SEs coupling. For example, the vegetation simulator is fed by the weather simulator

that will influence the growth rate of the plant.

In order to correctly interconnect these SEs which can evolve at different speeds and

simulated times (fixed time-step, dynamic time-step, discrete events, time stepped), a sched-

uler is required. This special module manages the simulated time of each SE and to syn-

chronize their inputs and outputs to guarantee a high level of validity and accuracy. When

several schedulers are connected to each other, we refer to a co-simulation.

Within a co-simulation, it is important that all Pi properties satisfied by the SEs are

also satisfied at the global level. Thus, we talk about additivity of these properties: the

properties provided by the co-simulation must correspond to the sum of all the under-

validated properties.

The following subsections summarize available all three co-simulation techniques, namely

Discrete-Event (DE), Continuous-Time (CT) and Hybrid.

2.2.2 Discrete Event-based Co-simulation

Co-simulation schedulers that uses a Discrete-Event synchronization mode is based on a

system design that discretely evolves over time. Examples include a computer communi-

cations simulator, or our vegetation simulator. When a system is discrete, then it evolves

either at regular intervals (e.g., traffic lights), or as a result of changes in state or the arrival

12



of new data (e.g., the vegetal dries up due to a drought). Thus, it is possible, in DE-based

co-simulation, that the SEs continue to change their states despite the simulation being

stopped.

In fact, during a Discrete-Event simulation, it is possible at a given time t = ti, that

there is no output for a simulator: this is accepted by the scheduler, since this operating

mode relies on timestamped events, which are not constrained to follow a periodic update

scheme.

In this mode, if an event appends at a given time, it is automatically processed before

the simulation time progresses. It is also up to the scheduler to define the priority of events,

when several occur at the same time, in order to guarantee causality.

Finally, DE co-simulation must guarantee the following properties [10]:

• Reactivity: the scheduler must process events as soon as they occur.

• Transiency: the ability to allow several successive integrations not to increase the

simulation time.

• Ability to predict the next timestep: each Operating System must communicate to

the scheduler its next timestep so that the co-simulation can be correctly synchro-

nized.

• Determinism: the same initial states with the same configuration must lead to the

same behavorial traces.

• Distribution: Run co-simulations with physically remote equipment.

2.2.3 Continuous Time-based Co-simulation

Co-simulation in continuous time mode binds simulators which act as solvers of differential

equations and which, therefore, evolve continuously according to the chosen time resolu-

tion. The interpolation is then used by the scheduler to calculate all the intermediate values

between two timescales. Interpolation techniques are outside the context of this thesis.

The synchronization of this type of co-simulation is more basic, but some constraints

will have to be solved, e.g. algebraic loops, where the output depends on the input [12],

correct initialization of simulators [13], error control and convergence or noise and delays.
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2.2.4 Hybrid Co-simulation

As part of this work, we are setting up a hybrid co-simulation environment. A hybrid

co-simulation (HCS) is a mix of the characteristics and constraints of each of the SEs.

Unlike DE/CT-based co-simulations, hybrid simulations manage events in a continuous

time context (Hybrid CT) and vice versa (Hybrid DE).

The main challenge of hybrid co-simulation is to maintain accuracy and validity, as

presented above. Since HCS is highly dependent on the studied system, it is not formally

possible to pinpoint the exact requirements. However, most of them will correspond to the

scheduler’s ability to maintain a coherent co-simulation state by synchronizing simulators

that may evolve differently over time. As illustrated in the HELICS platform Section, HCS

is currently being actively studied and developed.

2.3 Cyber-physical Security in the Smart Grid

2.3.1 Security Objectives

Securing cyber-physical systems aims to guarantee three security objectives that we de-

tail below: integrity, confidentiality and availability. We also highlight three other specific

security objectives related to CPS systems: authentication, authorization and physical se-

curity.

• Integrity: Ensure that all data measured or generated during the network lifecycle is

accurate, complete and was not modified by external parties. Both non-repudiation

and authenticity are sub-properties of the integrity objective. Guaranteeing this prop-

erty is indeed a way to prove that the system is trusted, and that the data is correctly

timestamped and of good quality. Integrity can be divided into two categories: in-

tegrity against unintentional errors during data transmission, and security against

intentional modifications. In the first case, Error Correction Codes (ECC) and Cyclic

Redundancy Check (CRC) are common methods for correcting and detecting any

changes in the payload of the message. However, since this technique does not au-

thenticate the data, it does not defend against intentional modification, where the

attacker would only have to recalculate the CRC value directly. In the second case,

integrity can be guaranteed using one-way cryptographic hash functions or Message

Authentication Codes (MAC). Targeting integrity of the CPS could aim to achieve
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physical damage objectives by preventing any feedback from the sensors to the Con-

trol Center or to the actuators to reach their destination unaltered [14].

• Confidentiality: Ensure that all data measured or generated during the network life-

cycle is not disclosed to anyone else than the legitimate receiver or parties that are

authorized to access the plaintext information [14]. For this purpose, cryptographic

ciphers that comply with NIST recommendations in terms of the number of security

bits are involved [15]. Numerous protocols integrate this confidentiality capability,

the best-known being TLS. The standard currently used to encrypt data is the Ad-

vanced Encryption Standard (AES), but alternatives are being selected by NIST for

Internet of Thing (IoT) related devices, limited in their computing capacity or battery

capacity [16].

• Availability: Ensure that all authorized parties accesses to the system are ensured

in a timely fashion with available services when needed. Network communications

channels, physical controls processes and data storing, and processing must function

correctly [14]. Availability is the most important security property in the context of

smart grids: the loss of availability can lead to a blockage of the real-time decision-

making system, highly dependent on the network performance. This loss of prop-

erty can occur during unintentional events (network congestion) or during specific

attacks.

• Authenticity: All data, communications, transactions and devices are genuine and

able to successfully authenticate and thus trust other parties within the system context

[17]. Authenticity of data is enabled through the use of MAC or digital signatures

(e.g., RSA). Authentication of other parties can be enabled through certificates such

as the x509 standard. This is an essential property for systems such as Smart Grid to

prevent any attacker from illegally infiltrating the network to try to tamper with it.

• Authorization “is the granting of a right or permission to a system entity to access a

system resource. This function determines who is trusted for a given purpose” [17].

Within a CPS context, Authorization, or access control, is a set of operator-defined

policies that ensure, restrict and control the data access according to the party’s role.

In smart grids using networks such as 5G, it is important that these rules are well

defined to prevent any attacker from modifying, accessing, deleting data or sending

malicious commands that would be accepted by the communication system.
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• Physical security: To prevent any attacker from tampering with the various pieces of

equipment used to monitor the power grid that would allow him or her to take control

of it, inject malicious code or paralyze the entire system.

2.3.2 Detection Systems in the Smart Grid and Their Limitations

The main module for intrusion detection within Smart Grid systems is the IDS. There

are three categories: signature-based IDS, anomaly-based IDS and hybrid-based IDS [18].

Implemented techniques will mainly base their malicious attempt detections on known

threats, so that the models used do not guarantee sufficient security against fully unknown

risks or patterns or produce too many false positives. In addition, the multiplication of

data sources in different heterogeneous silos, correlated or not, within the rapidly evolving

smart grids requires more robust and complete methods.

In spite of the usual ideal cases that are considered when studying CPS attacks and their

consequences on Smart Grids, most of the attempts that operators will encounter will be

imperfect attacks where the access to information and devices is limited for the attacker,

leaving traces that can be detected via the different detection methods implemented. More

generally, security should be proportional and adapted to the risks considered.

Academic research is actively studying the use of machine learning techniques to extend

the detection capability of known and unknown attacks, taking advantage of the full range

of data that a SCADA system can process. However, the lack of fully developed and

documented methods for the generation of standardized, realistic and complex datasets is

a challenge for researchers implementing advanced detection techniques. In this context,

our project aims to create a highly modular platform for the generation of dataset that can

be used by these new detection techniques.

2.3.3 Threats

Following the different objectives presented in Section 2.3.1, we elaborate in more detail

on the different concrete risks Smart Grids face. Attacks are summarized in Figure 2.
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2.3.3.1 Physical Security

Although physical security is an issue that is now well understood in the cybersecurity envi-

ronment, it is of paramount importance in the context of CPS. Beyond the physical security

of the system itself, which is a legal matter, it is essential to ensure the trust of the opera-

tor in the sensing and control equipment within the system. The use of hardware modules

such as the Trusted Platform Module (TPM) is an inexpensive and common method of en-

suring physical security of equipment, via secure booting, limiting the possibilities for the

attacker, for example in terms of injecting malicious code, also enabling the secure storage

of encryption keys and ensuring the authenticity of the data [14].

2.3.3.2 Integrity

Attacks that modify data without authorization are usually aimed at hiding the effects of a

third-party attack on the system from the detector. The False Data Injection Attack (FDIA)

is a concrete example of an attack that is increasingly studied by the scientific community

[19]. For this attack, the attackers alter the measurements (frequency, phase angle, etc.)

of one or more sensors within the system in order to modify the SE calculation of the

system state in the desired way. With FDIAs, the attacker seeks to maximize the impact

of his attack on the physical system by making the most of his knowledge of the system,

while remaining stealthy. More recently, this attack has been extended to the market where

prices are dynamically negotiated within smart grids, in order to impact, depending on

the objectives, the cost for the operator, the customer, or even actively modify the overall

power consumption of a market and induce over-consumption at the global level, inducing

important financial losses.

Interdiction attacks were one of the first large-scale malicious attacks targeting smart

grids and exploiting the integrity property [3]. This attack triggers lines, transformers,

generators, buses or substations via manipulated control commands or bad measurements.

The GPS spoofing attack seeks to desynchronize PMUs by broadcasting a malicious

(packet forging) or replayed (replay attack) time signals in order to deceive the PMU and

modify the time it receives, leading to a modification of the Synchrophasor, representative

of the state of the system at this point of the network.
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2.3.3.3 Confidentiality

As opposed to an integrity attack, an attacker seeking to breach confidentiality will not

attempt to alter the state of the system in this context. The recovery of data, whether from

CC controls or SCADA system monitoring, may be highly useful in the development of an

attack such as the FDIA in order to know at least partially the state of the attacked system.

The Compromised-Key attack allows an attacker, once the encryption key has been re-

covered, to decrypt all present (and past if the concept of forward secrecy has not been

properly implemented) communications, in a way that is completely transparent to the op-

erator. This attack, undetectable without more advanced systems like quantum encryption

with Quantum Key Distribution, endangers the system which may be attacked later and

with greater impact. In addition, the attacker could derive the known key to find or com-

pute others within the system, to take advantage of it to impersonate legitimate equipment

in the system, or even to carry out a large-scale FDIA. This type of attack is mostly avoided

thanks to trusted devices such as TPM [14].

The eavesdropping attack permits the attacker to intercept all exchanges passing through

the system. It is a passive attack that can lead to privacy problems (smart homes), if confi-

dentiality is not ensured.

Man-In-The-Middle attack refers to an attack where messages are sent to the Control

Center or sensor, usually modified to be malicious and induce erroneous controls or ma-

nipulate system equipment.

2.3.3.4 Availability

Typically, an attacker that intends to saturate the network and cause severe congestion will

implement a Denial of Service Attack (DoS), which can be amplified by distributing it

(Distributed DoS). During a DoS, the attacker will send very large amounts of data within

the network in order to paralyze it. The objectives may differ (network congestion, paral-

ysis of a firewall, a router) as well as the techniques used (TCP SYN, ICMP, UDP floods,

Ping of Death, NTP amplification attacks, etc.). Blocking communications can be a means

of hiding a change in the state of the system from the operator, thus preventing him from

taking the appropriate measures to guarantee its steady state.

As part of our work, we also implement two methods that are not strictly real-world

attacks as such, but which play on two parameters influencing availability, which are net-

work latency (packet delaying attack) and the correct transmission of information (packet
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dropping attack).

2.3.3.5 Authorization

As any system built around different stakeholders with different levels of trust and confi-

dentiality, smart grids are vulnerable to attacks that exploit a loophole in the logic of per-

missions and roles within the architecture. Some attackers will aim, through some form of

social engineering or credentials theft, to take control of a part of the system, a sub-system

or to send malicious commands by taking advantage of the rights obtained.

The proper training of the stakeholders then takes on its full meaning, besides, co-

simulators can considerably help to secure this type of system.

2.3.3.6 Malicious Code and Malwares

As illustrated in past real-world attacks, targeting the communication network is not always

the preferred solution for attackers. Indeed, circumventing the various security mechanisms

in place can be too risky or costly for an attacker. On the other hand, everything can

easily be simplified if the attacker is able to inject his own code via a malicious program

(Malware) in order to take control of the system. Infection procedures are outside the scope

of this work but represent a risk for which staff must be rigorously trained.

2.3.3.7 Risks and Adversaries

Finally, the evolution of power grids to the Smart Grid involves defending against attacks

that traditionally target cyber systems. However, there is a much more important and crucial

dimension here: smart grids are the basis of many vital aspects of a country (health care,

transportation, national defense, food and water, financial services, etc. [3]). Attacks can

have important and irreversible collateral effects that can affect us all and operators must

to put in place adequate measures to secure such systems against multifaceted attackers

(skilled hackers, disgruntled insiders with malicious intent, criminal groups, nation-states

terrorist groups and possibly state secret services [14]).
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Chapter 3

Related work

In this Section, we look at existing power system simulators, communication network sim-

ulators and smart grid co-simulation platforms and show their strengths and limitations.

3.1 Smart Grid Simulation Tools

3.1.1 Power Grid Simulators

Power grid simulation has a multitude of solutions available with many programming lan-

guages supported. Two emerging solutions for Distribution Systems are receiving increas-

ing interest from the research community: OpenDSS and GridLab-D. Both simulators are

actively developed around the concept of co-simulation and Smart Grids, offering innova-

tive methods for advanced simulation and control in the context of co-simulation. For the

simulation of Electric Transmission Systems, GridDyn [20], PSST [21] and PyPower [22]

are the preferred solutions today.

OpenDSS is a Distribution System Simulator (DSS) providing a modernization ef-

fort [23]. Created in 1997, it is an open source project developed by the Electric Power

Research Institute (EPRI) and offers advanced simulation of distribution systems. The

simulator supports many types of advanced analysis to enable the study of Smart Grid ap-

plications in the future [24]. OpenDSS is modular and developers interested in contributing

to the project or extend it for specific needs can take advantage of a permissive license and

integrate a multitude of modules through the COM interface.

GridLab-D [25] is an open source project introduced by the Pacific Northwest National

Laboratory (PNNL) and the US Department of Energy in collaboration with the energy
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industry and universities. This project is active developed and is distinguished by its ability

to adapt its simulation speed according to needs, from high-precision simulation (Delta-

mode) to system studies over a long period of time. GridLab-D embeds modern tech-

niques, modules and technologies for the integration of third-party systems such as a co-

simulation frameworks (FNCS, HELICS), but also advanced tools for power system anal-

ysis. GridLab-D is developed in collaboration with co-simulation platforms and natively

supports methods for the study of advanced scenarios in the context of co-simulation [24].

3.1.2 Communication Networks Simulators

Two main simulators for communications are extensively used today Smart Grids co-

simulation: ns-3 and OMNeT++. Both are developed in C++.

ns-3 [26] is a highly modular open source project introduced by the U.S. National Sci-

ence Foundation (NSF) for use in communication research and education. Introduced as

the successor of ns-2, ns-3 offers a complete and validated library of the different com-

munication protocols on the different layers of the OSI model, with the routing, wireless

communication or multicast capabilities that can be found in ad-hoc, mobility or smart grids

systems. This project uses other programming or scripting languages for the development

of simulation models for easy study of specific scenarios.

OMNeT++ is a highly modular and component-based simulator written in C++ and

GUI oriented, developed by OpenSim Ltd. [27]. This project aims at providing a unique

solution to enable large-scale simulation of multiple scenarios, from ad-hoc networks with

mobility to multimedia communication routing. OMNeT++ proposes, beyond the direct

C++ implementation of new functionalities, the use of multiple configuration files to dy-

namically create new devices and define advanced simulation topologies. OMNeT++ can

be extended using third-party projects such as simuLTE (4G LTE networks) [28] or the

future simu5G [29] (5G simulation), INET [30] (bringing the majority of devices and pro-

tocols useful for most simulations) or OpenFlow [31] (Software-defined networks, SDN).

3.2 Existing Co-simulation Platforms

Recent efforts have been made by the academic community to introduce new co-simulation

platforms. The Table 3.2 summarizes, for each solution, the different features and function-

alities implemented. This list is based on the work of S.C Muller et al. [32] and Vogt et
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al. [33], with the addition of new platforms recently published, compared to our proposed

solution.

Recent contributions in the field of CPA co-simulation include ASTORIA and GridAt-

tackSim. We have also proposed a work studying the security of quantum key distribution

protocols in smart grids, via the Mosaik platform [34].

EPOCHS, the Electric Power and Communication Synchronizing System is one of

the precursors in the co-simulation of smart grids [35]. It synchronizes ns-2 and PSLF

(commercial electric simulator) via an agent called AgentHQ acting as a proxy for the co-

simulation environment and the RTI module for synchronization. The platform has been

developed to study the impact of the control of a SCADA system on an electrical and me-

chanical network, with the study of the angle of the current and of a rotor. Most of the

EPOCHS applications are at the wide-area monitoring level. However, the project has not

been updated since 2006.

TASSCS [36], the Testbed for Analyzing Security of SCADA Control System at the

University of Arizona is a project synchronizing Power World and RINSE. The platform

studies the impact of attacks on the SCADA system, including managing unauthorized

access to PLC equipment, spoofing the Master Control Center, device scanning, MITM at-

tack, request tampering, malicious function injection and DoS attack. The solution focuses

on the simulation of Modbus communications and dissociates the different attacks accord-

ing to the zones of the system: corporate, power, process control network, etc. The project

has not been updated since 2011 and is not open source.

PowerNet [37] is a closed-source project integrating Modelica and NS-2 and focused

on the synchronization of these simulators to propose a realistic co-simulation. The project

does not implement the security dimension and has not been updated since 2011.

GECO: Global Event-Driven Co-Simulation Framework for Interconnected Power Sys-

tem and Communication Network [38] is a co-simulation platform studying the realism of

co-simulation depending on the resolution used. By integrating PSLF and NS-2, GECO

studies the impact of the communication layer on system performance, co-simulation scal-

ability and protection scheme validation. GECO is not available in open source.

INSPIRE [39] integrates DIgSILENT, Powerfactory and OPNET or Modeler to co-

simulate smart grid scenarios with advanced performance studies, with an important focus

on the study of delays during communications. The project, closed source, integrates new
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modules or applications. Globally, the authors show the impact of a high latency commu-

nications network on the power grid, via a controller.

24



Table 1: Overview of the existing co-simulation platforms.

Standalone
projects

Platform name Power System
Simulator

Network Simu-
lator

Co-simulation
environment

Time strategy Last
up-
date

Built-in
security
module with
UI

Availability

[35] EPOCHS PSLF NS-2 IEEE 1516-
2000 (HLA)

Fixed time-
step

2006 N/A Closed
source

[36] TASSCS PowerWorld RINSE Ad-hoc Ad-hoc 2011 Compromised
HMI attack,
DoS Attack,
MITM, TCP
attacks

Closed
source

[37] PowerNet Modelica NS-2 Time stepped Time stepped 2011 N/A Closed
source

[38] GECO PSLF NS-2 Ad-hoc Discrete event 2012 N/A Closed
source

[39] INSPIRE DIgSILENT,
Powerfactory

OPNET, Mod-
eler

IEEE 1516-
2010 (HLA
evolved)

Dynamic time
stepped

2013 N/A Closed
source

[40] GridSpice MATPOWER,
GridLab-D

N/A N/A Fixed time-
step

2014 N/A Open
source

[41] DACCOSIM
NG

None Modelica Time stepped
IEEE 1516-
2000 (HLA)

Time stepped 2018 N/A Open
source

[42] ASTORIA PYPOWER NS-3 Mosaik Discrete event 2016 Malicious
Software
Infection
Attack, DoS
Attack

Closed
source
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Table 1: Overview of the existing co-simulation platforms.

[43] MECSYCO Modelica,
EMTP-RV

NS-3, OM-
NeT++, OP-
NET

DEVS Discrete event 2018 N/A Open
source

[44] SCADASIM MATLAB /
Simulink

OMNeT++ Ad-hoc Ad-hoc 2019 DoS At-
tack, MITM,
Eaves-
dropping,
Spoofing

Open
source

[45] ERIGrid MATLAB,
PowerFactory

NS-3 Mosaik, FMI-
compliant
simulation
coupling

Dynamic time
stepped

2019 N/A Open
source

[46] GridAttackSim GridLab-D NS-3 FNCS Fixed time-
step

2019 Channel
jamming,
Malicious
code, Injec-
tion attack,
Replay of
messages

Closed
source

ASGARDS-H GridLab-D OMNeT++ HELICS (Ze-
roMQ, HLA
compliant)

Dynamic time
stepped

2020 Replay At-
tack, FDIA,
DoS/DDoS,
Integrity,
Eavesdrop-
ping, MITM,
Spoofing,
TCP attacks,
Power at-
tacks, Attack
sequences

N/A
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Table 1: Overview of the existing co-simulation platforms.

Co-
simulation
frame-
works

Platform name Power System
Simulator sup-
ported

Network
Simulator
supported

Co-simulation
environment

Time strategy Last
up-
date

Built-in
security
module with
UI

Availability

[47] FNCS GridLab-D,
PowerFlow

NS-3 ZeroMQ (HLA
compliant)

Discrete event 2018 N/A Open
source

[48] HELICS GridLab-D,
MATPOWER,
GridDyn,
OpenDSS,
PSLF, InterPSS,
FESTIV, Opal-
RT

NS-3, OM-
NeT++

Ad-hoc Dynamic time-
stepped

2020 N/A Open
source

[49] [34] Mosaik PYPOWER,
IPSYS, Opal-
RT, Jpower,
PYPower

MATLAB,
OpenFire

Conservative Discrete event 2020 Quantum key
distribution

Open
Source
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GridSpice [40] is an open-source project integrating MATPOWER and GridLab-D,

with the help of a Python REST-based framework for simulation control, allowing the

project to run on the Cloud. GridSpice provides a user interface for modeling new models

as well as support for security principles (User authentication, Access Control Lists, Clus-

ter Management), databases, and an administration console. Overall, the project enables

the advanced study of various control scenarios within a smart grid. However, the realism

of communications is not achieved since no computer network simulator is integrated in

the project.

DACCOSIM NG [41] is a project developed for the French electricity network operator

(EDF), oriented on multithreaded and distributed execution. The integration of various

programming languages or tools (Java, Dymola, Matlab, Java) extends the first version

of DACCOSIM with the possibility to co-simulate more advanced models. The project

responds to concrete problems that operators in the real world have. The project has not

been updated since 2018.

ASTORIA [42] is a framework to simulate attacks within smart grids. Built around

Mosaik (PyPower) and NS-3, it provides a minimalist platform to exploit the modularity

of NS-3 and Mosaik to implement advanced scenarios for the study of attacks. The origi-

nal publication focuses on the malware infection of the SCADA system and the denial of

service (DoS) attack.

FNCS (Fenix Framework for Co-Simulation) [47] is jointly developed with GridLab-D

at PNNL and synchronizes NS-3 with GridLab-D to provide an advanced co-simulation

environment. Offering complete documentation and support for many languages and op-

erating systems, FNCS is the solution of choice for realistic and fast co-simulation, with

a 20% speed gain. Initially proposed as a simple co-simulation framework, FNCS na-

tively integrates many examples for co-simulation of cyber-physical systems such as smart

grids. The project has recently been abandoned in favor of a new co-simulation framework,

HELICS, which will be detailed in this Section.

MECSYCO [43] (Multi-agent Environment for Complex SYstem CO-simulation) is

a co-simulation platform project based on Moedelica and extended during the MS4SG

(Multi-agent Multi-Model Simulation of Smart Grids) project to include ns-3 and OM-

NeT++. The project studies how multi-agent can meet the needs of co-simulation in the

energy field, and in particular smart grids. Although the documentation is not complete,

the project is proposed in Java and C++.
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SCADASim [44] is an open source education-oriented project for the co-simulation

of SCADA systems where many sensors are evolving. The platform integrates MATLAB

and OMNeT++ as well as a Postgres DB database for dynamic data storage. The project

focuses on the simulation of malicious attacks: Denial of Service attack and Spoofing attack

scenarios focused on Modbus protocol using PLC communications and HMIs.

ERIGrid (European Research Infrastructure supporting Smart Grid Systems Technol-

ogy Development) combines ns-3 and Mosaik (PyPower) in order to set up an FMI-compliant

interface with ns-3. However, as indicated in [50], the project seems to use only dummy

devices to simulate the different interactions (grid delay, congestion), which limits the pos-

sibilities permitted by ERIGrid. Many examples are publicly accessible via their GitHub

repository.

GridAttackSim [46] is an FNCS-based framework (GridLab-D and ns-3) focused on

co-simulating attacks on smart grids, with a strong emphasis on Dynamic Pricing capabil-

ities. The project aims to provide a modular and user-friendly platform to visualize and

study the mutual impact of attacks (Channel jamming, Malicious code, Injection Attack,

Replay attack) on the computer and power system. This project represents one of the major

candidates for researchers interested in the co-simulation of CPS attacks in smart grids.

HELICS [48] (Hierarchical Engine for Large-scale Infrastructure Co-Simulation) is

a co-simulation platform developed by the Grid Modernization Laboratory Consortium

(GMLC) as an enhancement of FNCS. The project is being actively developed and already

proposes the inclusion of dozens of different simulators. The project is distinguished by

its scalable aspect (100,000+ federates) and its compatibility with many programming or

scripting languages. Not limited to smart grids, HELICS natively co-simulate multiple CPS

systems via ns-3, OMNeT++, Gridlab-D and OpenDSS.

Mosaik [49] is a Python alternative co-simulation platform-oriented for smart grids. It

natively embeds a kernel for synchronization but also PyPower, Python’s electrical simula-

tor. Through a simple and documented set of methods (API), Mosaik allows the integration

of many simulators. In the framework of this thesis, as a preliminary work, we were inter-

ested in the integration of quantum key distribution (QKD) within a microgrid [34].
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3.3 Strengths and Limitations of Existing Platforms

In this Section, we compare the different existing co-simulation platforms and motivate the

choice of HELICS as the co-simulation framework for our project.

Figure 3 presents an advanced comparison made against the associated claimed capa-

bilities offered by the different solutions with a focus on Smart Grid applications from the

European Technology Platform Smart Grids [51]. Overall, the majority of the solutions

have been proposed but have not received an update subsequent to their publication, which,

combined with the closed-source aspect, causes the academic community to abandon these

solutions. Furthermore, although native support for the study of cyber-attacks against smart

grids is increasing over time, this support remains limited and not modular enough, prevent-

ing the complex study of systems with realistic scenarios and thus allowing the generation

of datasets that can be used for machine learning.

The Per f ormance and CPA studies Completeness columns have been defined accord-

ing to the claims of the original, associated research papers, and respectively define the

capacity of each platform to allow the co-simulation of large systems and their ability to

allow, integrate or study Cyber-Physical Attacks.

Among the most complete solutions today aiming at the same objectives as our project,

we can name GridAttackSim, SCADASim and TASSCS. SCADASim and TASSCS have

brought and shown the interest of co-simulation in the context of CPA within smart grids,

implementing different attacks and protocols of smart grids, such as Modbus. GridAttackSim

has enhanced these contributions by providing the first visually usable framework for study-

ing CPA in different aspects of smart grids, with a focus on the education aspect.

However, if we were to highlight the limitations of these projects, we would emphasize

the following points:

• The mentioned solutions do not propose an advanced method for the simulation

of complex scenarios, mixing device lifecycle, power grid faults, multiple-point,

multiple-time cyber physical attacks with support for modularity (i.e., advanced def-

inition of the network capabilities, attacks and events based on temporal and spatial

parameters).

• None of the solutions natively proposes a method allowing the study of systems or

topologies different from those managed natively.
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• The support for the variation of simulation parameters in the context of computer

communication networks is limited, without the support of advanced technologies

(i.e., 4G LTE) or means to easily parameterize the network and the different protocols

used.

• Time management is not modular, and most platforms require a fixed co-simulation

speed.

• The lack of modularity of the projects does not help the user easily integrate new

simulators or controllers without a thorough knowledge of the system and offers

limited methods for real-time control of the system by a user.

Finally, the choice of a co-simulation platform rather than an existing testbed as a basis

for our work naturally emerged. Thus, we isolated three potential co-simulation framework

solutions: Mosaik, FNCS and HELICS.

Mosaik offers a modular approach, in Python, that integrates multiple simulators and

hardware (HIL). We used Mosaik in a preliminary project before ASGARDS-H, with the

study of quantum key distributions schemes in smart grids, focused on the demonstration

of attack detection, in particular eavesdropping.

FNCS is the antecedent of HELICS, leading us naturally to abandon it in favor of

HELICS, actively developed.

The selection procedure of the platform was made according to the following criteria:

• Maintenance: The interest of the developers in the project as well as the frequency

of updates and the project roadmap.

• Quality, Capabilities: The quality of the project’s code as well as the different func-

tionalities offered.

• Documentation: The presence of a complete and simple documentation to simplify

the use of our project by researchers who do not master programming or system

configuration.

• Completeness: Management of advanced synchronization or data exchange mecha-

nisms.

The main reason why we chose HELICS over Mosaik is its distributed synchroniza-

tion capability and its high performance, which is unattainable with the Python language.

31



HELICS is now the most advanced project in terms of co-simulation, is open-source and

have a permissive license. Also, HELICS proposes a set of APIs for different languages,

allowing the integration of a larger set of simulators.
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Project Name

EPOCHS
Electric Power and 

Communication 

Synchronizing System

⚫ ◔
State Monitoring; Abnormal

conditions, defense and restoration; 
〇 〇 〇 〇 ◑ 〇 ◔

Agent-based power system protection 

scheme; Protection scheme for 

transient power system Stability; 

Wide-area monitoring;

⚫

TASSCS
Testbed for Analyzing 

Security of SCADA 

systems

⚫ ◑
Anomaly-based detection of SCADA 

Attacks, SCADA security analysis and 

evaluation testbed

⚫ ⚫ ⚫ 〇 ⚫ 〇 ◕
PLC simulation (MODBUS Server); 

MITM; Spoofing; DMZ; Modbus 

attacks; DoS attack;

⚫

PowerNet
A communication 

framework for the 

smart power grid

◔ ◔ Basic, real-time synchronization ⚫ 〇 〇 〇 ◔ 〇 ◔
Real-time voltage studies and 

simulator synchronization; ◑

GECO
Global Event-Driven 

Co-Simulation 

Framework for 

Interconnected Power 

System and Comm. 

Network

⚫ ⚫
State Monitoring; Abnormal

conditions, defense and restoration; 
〇 〇 〇 〇 ◑ 〇 ◔

Protection schemes, co-simulation 

synchronization methods, Agent-based 

remote backup relay protection 

scheme;

⚫

INSPIRE
Integrated co-

simulation of power 
and ICT systems for 
real-time evaluation

⚫ ◑
State Monitoring; Abnormal

conditions, defense and restoration; 

HVDC Grid based system

⚫ ⚫ 〇 〇 ◑ 〇 ◔

Evaluation of the real-time 

performance of wide-area monitoring, 

protection and control; impact of 

communication delays;

◑

GridSpice
A Platform for 

Modeling, Analysis, 
and Optimization of 

the Smart Grid

◑ ⚫

Interactions and responsibilities 

between distribution grid operators 

and other stakeholder; Sustainable 

system operations and low-level 

system user dispatching; Electric 

Vehicle (EV) integration into 

Distribution systems

〇 〇 ⚫ ⚫ ⚫ 〇 ◔
Optimal placement of solar panels in 

distribution networks, considering 

transmission network effects
◑

Note: ⚫ is better

Figure 3: Co-simulation platform comparison
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DACCOSIM

NG
Co-simulation made simpler and 

faster

⚫ ⚫ Socio-Economics 〇 〇 ⚫ ⚫ ⚫ ◕ ◔
Heat transfer between buildings. 

Advanced multicore and 

distributed co-simulation
◑

MECSYCO
Multi-agent Environment for 

Complex SYstem CO-simulation

◑
⚫

⚫

Smart, flexible distributed demand and 

generation response for Secure 

Distribution System Control, Extended 

Distribution System Protection across the 

value chain, System security for 

Distribution Operation

〇 〇 ⚫ ⚫ ◑ ◑ ◑

Co-Simulation of IP Network Models 

in the Smart Grids Context; Multi-

agent multi-model simulation of smart 

grids; Multi-modeling and co-

simulation-based mobile ubiquitous 

protocols and services dev. and 

assessment;

◑

SCADASIM
Multi-agent Environment for 

Complex SYstem CO-simulation

⚫ ⚫
SCADA system modeling, co-simulation 

and security analysis
⚫ ⚫ 〇 ⚫ ◑ 〇 ◕

Study of CPA on SCADA systems: 

DoS, MITM, Spoofing, Eavesdropping, 

Worms

⚫

ERIGrid
European Research 

Infrastructure

⚫ ⚫

Smart grid best practices; power system 

evaluation and components 

characterisation, automation validation, 

co-simulation, power/controller HIL

⚫ ⚫ ⚫ ◉ ⚫ ⚫ ◑
Access to a physical, real smart grid

hardware simulator; mosaik-based co-

simulation; Strong HIL support;

⚫

GridAttack

Sim
A Cyber Attack Simulation

Framework for Smart Grids

⚫ ⚫

Grid State Monitoring; Abnormal

conditions, defense and restoration; 

Dynamic Pricing studies; ICT System 

security for Distribution Operation; 

Training tools

〇 ⚫ ⚫ 〇 ◑ ⚫ ◕
Advanced CPA studies; Dynamic 

Pricing; Results Visualization;
N/A

(proposed

solution)

ASGARDS-H

⚫ ⚫

Grid State Monitoring; Abnormal

conditions, defense and restoration; 

Dynamic Pricing studies; ICT System 

security for Distribution Operation;

⚫ ⚫ ⚫ ⚫ ◕ N/A ⚫

Advanced CPA studies, multiple-time 

attacks and faults; Results

Visualization; Dynamic testbed

generation; Documentation; 

Standardiized dataset generation;

N/A

⚫: High scalability

◑: Distributed 

co-simulation

◔: Low scalability

⚫: 1,000+s

◑: 11-1,000s

◔: 0.1-10s

⚫: built-in support

〇: no built-in

support

⚫: Open source

〇: Closed Source

◉: Hardware 

equipment

⚫: 1,000+

◕: 201-1,000

◑: 11-200

◔: 1-10

⚫: Updated in 2020

◕: Updated in 2019

◑: Updated between

2016 and 2019

◔: No update

⚫: Full modularity and built-in

support

◕: Excellent built-in support for 

CPAs

◑: Some native CPA capabilities

◔: Simulators can be extended to 

implement CPA

⚫: 21+ 

citations since

2018

◑ : 1-20 

citations

◔ : 0 citation

Figure 3: Co-simulation platform comparison
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Chapter 4

Project Platform Overview

This Section presents the formal requirements for ASGARDS-H. It first provides an overview

of the technologies used and objectives of this project, as well as the various aspects that

will be detailed throughout this Thesis.

4.1 HELICS Framework

HELICS is a co-simulation framework developed in C++. It is interesting, before going

into the details of the framework, to motivate why we chose HELICS among numerous

available solutions and we explain the different parts that constitute an environment of

co-simulation with HELICS.

4.1.1 Motivations

In this Section, we illustrate how HELICS performs according to the co-simulation plat-

form selection criteria.

• Maintenance: HELICS is actively developed with 22 contributors and more than 5

project updates (commits) every weeks. The project roadmap is now mentioning the

future HELICS version 3.x which promises many more improvements for the future.

• Quality, Capabilities: HELICS offer strong support for multiple programming lan-

guage, and offer advanced tools and modules to set-up, configure and run co-simulation.

The GMLC−T DC GitHub repository contains 36 sub-repositories offering wide sup-

port for different simulators, scenarios and tools.
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• Documentation: HELICS offers a complete ReadT heDocs documentation for both

Developers and Users.

• Completeness: HELICS supports advanced synchronization mechanisms as well as

communication capabilities such as co-simulators filters, delays and routes.

4.1.2 HELICS Terminology

In this Section, we present six HELICS-related concepts.

First, the Federate is an individual simulator that is connected to the co-simulation

environment and communicates with them, either by sending or receiving data, or both. We

highlight here the difference between a simulator and a federate: a federate is in all respects

equal to a simulator, except that it is part of the co-simulation environment (networked

simulator).

The second element is named Core. It is a module added to a federate to connect it to

the co-simulation environment. This Core can be developed in any programming language,

as long as it is compliant with the HELICS API or the HLA standard.

The Broker is an entity that links and coordinates multiple cores or brokers. It is

indeed possible to have multiple levels of brokers, allowing distributed co-simulation with

different machines.

The Root Broker is unique and corresponds to the main broker managing the different

federates forming a federation.

A Federation is a set of federates operating together in co-simulation. It is possible to

have several independent systems consisting of several federates running in parallel within

a co-simulation.

An Interface is a way for federates to communicate with other federates. These inter-

faces include Endpoints, Publications, Filters, and Inputs.

The Figure 4 illustrates the above-presented concepts with a realistic architecture of a

distributed smart-grid co-simulation with HELICS.
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4.1.3 Federate Communications

There are different types of federates. The first, Value federates are fixedly connected to

the other federates, while Message Federate have no constraints and can be used to in-

tegrate an event-based dimension within the co-simulation environment, without timestep

constraints. It is also possible to create a federate of both types at the same time. These

types will define how the federates will manage to exchange information with other feder-

ates.

In the context of Value federates, the data (inputs/publications) will follow a fixed route

and embed the associated unit. This kind of message is mainly used for sharing simulated

data from a simulator such as GridLab-D to OMNeT++. On the other hand, Message
federates exchanges follow a fixed route during co-simulation and are encapsulated in a

blob format (opaque), with a source/destination mechanism similar to what a simulator

like OMNeT++ simulates within communication networks. Message federates allows to

add events within the co-simulation.

In the context of specific simulations with a realistic aspect, HELICS also introduces a

system of filters for the simulation of events at the level of information transmission: time

delay, firewall, rerouting, random dropping, etc. For example, a filter can be used to reroute

control messages from OMNeT++ to GridLab-D.

To enable communication between different machines, HELICS proposes the use of the

ZeroMQ protocol for the transmission of information.

4.1.4 Input and Publication Messages

Inputs and publications make a pair. From a federate point of view, an input corresponds to

a value recovered from the co-simulation environment, to which the federate has previously

subscribed via its core. A publication will correspond to data that the federate can send to

other federates.

At any time within the co-simulation environment, multiple data will transit. The data

can be locally or globally accessible, depending on the needs. In addition, different types

of labelled data are proposed: integers, booleans, strings, etc., allowing the transport of

information in addition to the value exchanged.
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4.1.5 Hardware-in-the-loop Design

In the context of co-simulation, it may be interesting to include real equipment in order to

study its behaviour in a larger scale simulation. HELICS natively permit the addition of

Hardware-In-The-loop (HIL) equipment.

For example, the Pacific Northwest National Laboratory recently demonstrated the use

of HELICS with HIL capability. Indeed, HELICS uses ZeroMQ and is compatible with

equipment using High Level Architecture (HLA) for the quick the integration of compatible

equipment. For this purpose, they have integrated a real building with VOLTTRON [52] in

their market-based control technique co-simulation.

4.1.6 Co-simulation Configuration

There are three important parameters for the configuration of federates in HELICS:

• Uninterruptible: This parameter will fix the timestep to make sure the federate will

operate at fixed intervals even if new data arrives earlier;

• Period: Almost all simulators have a minimum time-resolution. This parameter can

be used to synchronize the federate by considering its time-resolution. For exam-

ple, GridLab-D uses a user-settable time-resolution that can be correctly handled by

HELICS;

• Offset: In some realistic case, introducing synchronization delays to better simulate

physical interactions between federates induce time grants that are offset slightly in

time.

4.1.7 Synchronization

Dynamic time stepped is a modular way to synchronize simulators that evolve differently

over time. HELICS regulates the time of each federate individually via a request system

from each federate. It is an iterative process of requesting co-simulation time managed

by a central mediator who will control that a simulator will only move forward in time

by the amount of time required for the co-simulation to work properly. For example, if

GridLab-D is able to simulate the next second but OMNeT++ has not finished and needs

the outputs of GridLab-D for the second it has just finished simulating, then the mediator
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will pause GridLab-D until OMNeT++ tells the environment that it has finished simulating

its second. This process is dynamic and can be split into two mechanisms. Firstly, a

dynamic mechanism of queuing federates to ensure consistency of the co-simulation, and

secondly the frequency at which these federates will need to communicate with each other.

It is possible, for example, that two federates will communicate with each other every

second, while one of them will have to communicate every millisecond with a third one.

The methodology proposed by HELICS is a dynamic timestep simulation that consistently

reports the events taking place within heterogeneous simulators.

When all simulators have indicated to HELICS that their simulation is complete, or that

the co-simulation has reached the maximum simulation time configured beforehand, then

the simulation will end and a termination cascade will take place to properly finalize the

co-simulation.

4.1.8 HELICS Co-Simulation Lifecycle

Every co-simulation lifecycle begins with the model design step. Model design is a crucial

step where the architecture and configuration of the co-simulation is realized. In the context

of this project, this step is fully supported by our testbed generation interface.

The second step corresponds to the configuration of the federates. Again, our project

supports this capability natively. The configuration of the federates defines which are the

inputs/publications as well as the different routes that the exchanged data will follow. The

configuration of the federates can be completed using a JSON file where are specified the

name of the federate, the type of core, the inputs/outputs, as well as the timestep value.

After this preliminary configuration, the co-simulation testbed environment is ready.

The next step is managed by the Root Broker. All federates enter initialization state

and communication channels are established. Also, it is very common that federates al-

ready started their simulation to reach a self-consistent state (or steady state) before the

co-simulation really starts.

Then, based on the configuration above, all federate will run individually and request

time to the Root broker. Depending on the specified timestep, the resolution will change.

For example, OMNeT++ will retrieve information from GridLab-D every 0.2 seconds

which can be shifted over time as a function of the performance of the communication

network, while GridLab-D will update the values every millisecond.

According to the time requests of each federate, the broker will determine which one(s)
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will be allowed to run. This is called time granting.

When a federate receives the green light from the broker, it can run until the next time

request. This would mean that GridLab-D will get 200-time grants when OMNeT++ only

receives one, in order to correctly simulate 200 milliseconds in a consistent way.

When the simulation time limit is reached, the federates will left and the broker will

ensure that the co-simulation environment is terminating properly.

4.2 Project Objectives

ASGARDS-H is being developed as part of Ericsson’s Ericsson Global Artificial Intelli-

gence Accelerator (GAIA) program, and is proposed as a core solution for future studies

on the development and detection of physical cyber attacks in smart grids using machine

learning. It should allow a user-friendly use with complete and validated co-simulation

for the generation of standardized dataset containing data from different sources and sim-

plify the study of complex scenarios mixing cyber physical attacks, control systems attacks,

power grid faults and network events. The objectives are as follows:

• Completeness: The project must implement all aspects that guarantee the validity of

the co-simulation as a whole. This includes its ability to maintain synchronization

between federates, the completeness of each simulator in their configuration and in-

terconnections, as well as the integration of protocols, devices, scenarios, attacks and

aspects of smart grids.

• Automatic testbed generation: In order to permit an easier use of the project for

researchers not initiated to programming, the project must generate multiple testbeds.

The generation should be based on user-specified inputs, configuration files, and the

model of the electrical network that will be used as a basis for the testbed.

• Accessibility: The addition and modification of new capabilities must be docu-

mented and accessible without requiring too much modification to the project. In

addition, the use of a testbed must be possible for each stakeholder without requiring

advanced knowledge of cyber attacks, co-simulation or system.

• Data validation and dataset generation: The project must generate valid data, i.e.

be able to co-simulate a smart grid system correctly and embed all the serializers and
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methods to generate files from different sources and formats. The dataset generation

must be made possible at the end of a co-simulation, and this in a dynamic way from

the output files of the co-simulator.

• Modularity: The software architecture of the project must be modular to ensure (1)

an advanced use of the implemented capabilities in order to design precise scenarios

and (2) to simplify the integration of new federates within the system.

• Strong events support: The platform must facilitate the study of complex scenarios

that can mix cyber attacks, power system faults and network events. Also, the com-

bination of these elements must be possible and configurable. Finally, the user must

be able to interact with the co-simulation in real time through a dedicated federate in

order to manually control attacks and events.

• Good performances: Although this project integrates many functionalities distributed

through different federates, it is important to guarantee, in the worst case, an accept-

able performance that is at least as good as real time. This performance can be

relaxed in special cases where the scenario is about high time resolution (subsecond)

or specific attacks (DDoS).

• User-friendliness: The project Generator as well as the visualization interface and

the attack federate must be easy to use, modern and accessible for all users.

• Visualization: The visualization federate must display in real-time the power grid as

well as the computer network in order to visualize the system status over time.

The project is structured around two main components: the project generator and the

dynamic co-simulation platform. The next Section details, for each aspect of the project,

the various characteristics and requirements of each of the aspects.

4.3 Formal Requirements

The project requirements are detailed here and formally define the objectives we were

aiming for this project.
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4.3.1 System-level Requirements

These system requirements define the supported operating system, the libraries used and

the compiler. The Table 2 summarizes the system-level requirements of our project.

System-level requirements
Objective: define the operating environment of ASGARDS-H
Operating System Linux (Debian)

Programming languages
C++ (federates), Python (Data processing and federates),
Javascript (Visualizer) and QML (User Interface)

Third party libraries
Conda for Python 3.7, HELICS shared API, simuLTE,
INET, HELICS CLI

Compiler gcc, g++

Co-simulator Framework HELICS v2.2.2+

Table 2: System-level requirements

The project is developed for Linux, although it embeds projects that are all equally

compatible with Windows. The choice of the Linux platform is here determined by perfor-

mance needs and better control of the development environment. Also, the QML language

has been chosen to realize the User Interface (UI) in order to take advantage of hardware

acceleration and to propose a clean, modern and user-friendly UI.

Moreover, we define in Figure 5 the testbed features.
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4.3.2 Co-simulation Architecture-level Requirements

The Table 3 summarizes the architecture-level requirements of our project. The project

architecture will be discussed in more detail in the 4.4 Section.

Architecture-level requirements
Objective: define the federation structure and behavior
Power Grid Simulation GridLab-D v4.1+ (develop branch)

Communication network simulator
OMNeT++ v5.6.1+ with INET v4.2.0+ and Si-
muLTE

Power grid control
Market control
Visualization (server federate)

Modular python v3.7+ federate with HELICS

Visualization (front-end)
Javascript using Server-sent-events (SSE) and
D3JS

CPS attacks
Multi-processed and multi-threaded python v3.7+
Meterpreter command-line interface program

Table 3: Architecture-level requirements

In addition to the GridLab-D and OMNeT++ simulators, we offer the use of customiz-

able Python scripts to implement any form of mechanism within the various controllers.

This choice of design is motivated by the need to include machine learning techniques or

attacks directly at the controller level. These special federates are dynamically connected

to the co-simulation environment.

4.3.3 Project Generation-level Requirements

The project generator is an advanced wizard that generates a functional and complete co-

simulation platform from the user-defined parameters. This aspect of the project is detailed

in Table 4 and will be described in more detail in the Chapter 4.5.

4.3.4 Project Capabilities Requirements

We define here the project capabilities requirements. The information proposed in the

Table 5 presents the basic functionalities that the project embeds. However, it is possible

to extend these functionalities.
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Testbed generation-level requirements
Objective: define the project generator capabilities

Input

A GridLab-D GLM model file with the support for nodes, triplex nodes,
meters, triplex meters, lines, overhead lines, underground lines, line spac-
ing, load, triplex load, Switch, substation, generators, auction, controller
and house objects

Output
A fully functional co-simulation testbed with dynamically generated node
placement, network topology, federates configuration and input parameters

Parameters

(1) Co-simulation global parameters (co-simulation timestep, GLM
model, random seed, weather file, federates activation or disabling).
(2) OMNeT++-specific parameters (OpenADR, Synchrophasor, Firewall,
communication data rates, PCAP file generation, random noise, Control
Center). (3) Co-simulation profiles (operator, defender and attacker) with
user-defined accessible and monitorable resources for each profile). (4)
Output Dataset configuration (recording parameters, frequency and statis-
tics collection). (5) Advanced event configuration (power system faults).
(6) Cyber physical attacks, hooks and specific-node parameters configura-
tion (attack sequences, packet dropping, replay attack, packet delayer, in-
tegrity attack, eavesdropping, desynchronization, dynamic pricing attack,
statistics outputs)

UI
A Qt QML-based user interface using Python v3.7+ with scenario saving
and loading capability in JSON format with a dynamically generated PDF
file that summarizes the scenario

Table 4: Testbed generation-level requirements

4.3.5 Devices Requirements

The project must natively facilitate the study of advanced scenarios of smart grids. For

this purpose, a number of key features are implemented within the OMNeT++ commu-

nication simulator. New equipment can be added simply by leveraging the modularity

offered by OMNeT++ and INET. The Table 6 presents the device requirements within the

co-simulation.
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Project capabilities-level requirements
Objective: define the considered testbed capabilities that are used for data generation

Simulation time resolution
Subsecond mode (DELTAMODE), real-time mode and dy-
namic timestep

Smart grid capabilities
OpenADR protocol (Demand-Response) over HTTP, Syn-
chrophasor protocol (IEEE C37-244-2013), Dynamic Pric-
ing market (auction system), Power grid control

Co-simulation dynamics
Weather capability (TMY3 file), OMNeT++ lifecycle
events

Table 5: Project capabilities-level requirements

Devices requirements
Objective: define implemented devices capabilities

OpenADR VEN
Virtual End Nodes monitor smart meter-related data as defined in the
operator profile. It acts as a HTTP server

OpenADR VTN
OpenADR Virtual Terminal Node is an HTTP browser, either an
Aggregator (VTN/VEN) or the Demand-Response Service provider
(Control center)

PMU
Phasor Measurement units monitor the power grid frequency, voltage
magnitude and phase angle. It uses the IEEE C37-244-2013 protocol
and is connected to a Phasor Data Concentrator (PDC)

PDC
Phasor Data Concentrators aggregate all received data from one to
many PMUs before forwarding it to the Control Center

Dynamic Pricing
Acts as a basic TCP client that sends captured market bids from
GridLab-D to the Control Center. The CC then forward all bids to
the Market federate.

Firewall
A multi-protocol rule-based firewall using a ip-table like configura-
tion file. Protects the Control center

Control Center
The Control Center implement both OpenADR, Synchrophasor and
Dynamic Pricing capabilities.

eNodeB
In 4G LTE mode, this device is the antenna that receive and transmits
messages from the user equipment (UEs) to the Packet Data Network
Gateway (PGW)

UEs
UEs correspond to sensors and end-user devices that use the 4G LTE
wireless network to communicate with the Control Center

PGW
This equipment routes messages from the 4G network to the opera-
tor’s network

Table 6: Devices requirements
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4.3.6 Networking protocols

Within OMNeT++, we choose to use Transmission Control Protocol (TCP) for data mon-

itoring (HTTP over TCP, and TCP client-servers). However, the UDP protocol is used for

wireless communications within the 4G LTE network. Equipment are interconnected using

the Point-To–Point (PPP) protocol of the data link layer of the OSI model.

The choice of the TCP protocol is motivated by the realistic aspect of co-simulation.

For a physical cyber system such as smart grids where availability is important, it is very

unlikely that the UDP protocol, which does not guarantee the acknowledgement of sent

messages, will be used. TCP thus makes it possible to study network performance in more

detail.

4.3.7 Implemented Model Files

As default study models, we propose and implement four models in GLM format of various

sizes. These are summarized in the Appendix A. The integration of new models is possi-

ble, provided that they correctly implement the modules defined in the Table 4. Different

variants of these models are proposed in order to support a greater variety of scenarios.

4.4 Co-simulation Testbed Architecture Overview

In this Section, we detail the architecture of the testbed as a whole. The detail of the

architecture can be found in Figure 6.

First, the Project Generator will generate different modules: GridLab-D Federate,

OMNeT++ federate, Controller federates and Attacker federate. This generator embeds a

set of rules and methods to dynamically generate, in addition to the specific configurations

of each federate, the HELICS configuration files in JSON format to correctly interconnect

and synchronize the federates between together.

Second, the HELICS Broker is dynamically executed when starting the co-simulation

with the HELICS CLI tool. The latter controls all the federates and routes the different mes-

sages exchanged according to the project configuration. Three profiles are available and are

managed invisibly by the broker. The Operator profile is there to define the data consid-

ered during the co-simulation. Indeed, adding or removing parameters to the operator will
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change the behavior of the smart meters, the visualization federate and impact the data gen-

erated during the co-simulation. The Defender profile will mainly impact the visualization

by filtering the information available. In the same way, the attacker profile realistically

simulates an attacker who has no knowledge or access to the system. The attacker profile

directly impacts the output of the co-simulation when using the Eavesdropping attack, the

visualization federate, and the Attacker federate.

Around the broker, 6 federates are interconnected and synchronized:

• Power Federate: GridLab-D is connected to HELICS through the helics_msg library

of the connection module. It is configured using the model_ f ile. json file and offers

multiple functionalities described in the Figure 6. This federate directly exchanges

information with OMNeT++ and receives commands from both controllers (Market

and Power Grid).

• Cyber Federate: OMNeT++ is connected to HELICS using the HELICS shared li-

brary via a helics_hel per object which is a singleton shared by all the simulation

equipment. This federate is also dynamically configured via a configuration file gen-

erated by the Project Generator.

• Attacker Federate: Attacker Federate implements a reactive command line inter-

face with auto-completion to let the user launch attacks on the system in real-time.

This federate obtains information from GridLab-D and OMNeT++ and the user can

exploit it for feedback control.

• Controller Federates: There are 2 controllers (Market controller and Power Grid

Controller). The first one, dynamically included if the power grid has the capacity

of the market, controls the GridLab-D auction object by retrieving data from the

OMNeT++ communication network. The Power Grid Controller ensures the same

objectives, with the difference that the data retrieved does not come from the Market

but from PMU Synchrophasor measurements.

• Monitoring Federate or Visualizer, retrieves only the information from the co-

simulation (read-only), and display them in real time within a web graphical inter-

face.

Hardware devices can be connected to the co-simulation using HELICS capabilities

through their standardised interface or via an ad-hoc developed core. Specific equipment
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such as Opal-RT or real power network equipment (power-hardware-in-the-loop, PHIL) are

already supported by HELICS. PHIL scenarios can help researchers better study real-world

effect of CPS threats and advanced scenario at lower cost and without risk.
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4.5 Project Generator

The project generator is developed in Python 3.7 and is divided into two main modules:

Front-end Graphical User Interface: The user interface is developed in QML via

PyQt5. The latter is visible in the Figure 7. The interface is designed to be very easy to

use and is based on Qt’s QML technology with the use of hardware acceleration. We can

distinguish five menus:

• Platform Overview shows some useful metrics and information about the testbed

once the project has been generated.

• Steady-state Configuration permits the user to configure several parameters for all

federates that do not depend on the topology (e.g., the global latency of the OM-

NeT++ network or the firewall configuration).

• Profile configuration, dataset generation is a special menu for profiles configu-

ration as well as dataset generation parameters. Profiles are configured through a

matrix of checkboxes.

• Scenario, instability and events configurations is a configuration menu of events

for GridLab-D (e.g., line faults). This menu is enabled after the project generation.

• Firewall and Cyber-physical attacks configuration is a menu for adding, removing

or configure cyber attacks and enable the Attacker Federate configuration.

The testbed generation is a two-step procedure comprising the Project Generation step

and the Project Build step. The first step objective is to prepare the testbed project folder by

parsing the chosen GLM model file and applying steady-state configuration parameters. It

updates the GUI by adding model-related information such as the list of network nodes to

permit the advanced configuration of the testbed, addition of attacks and power grid faults.

The user can save the current interface settings and generate a PDF file summarizing

the defined scenario. The interface uses the JSON format (.cosim. json) to store the infor-

mation.

Back-end Testbed generator: The user interface communicates with a Python module

in charge of testbed generation. For this purpose, it uses a common template that will be

modified according to the options chosen by the user. The project generator uses mostly
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Figure 7: Graphical User Interface main window
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dynamic regex to remove, add or modify aspects of the project. The functional structure of

the Project Generator is detailed in the Figure 8.

The generation of a testbed relies on a set of options and a power grid model in GLM

format (GridLab-D Model). The Generate function interacts with multiple helpers:

• GLMHelper: This is the main function of project generation. It calls the GLM-

Parser class in order to retrieve all the information about the GLM file, and then

generates multiple aspects of the project (network topology, OMNeT++ configura-

tion, node placement, addition of devices specific to the cyber network, wired or

wireless mode).

• JSONGenerator: This script generates the JSON HELICS configuration file of

GridLab-D and OMNeT++ and also prepares the extraction of the different attack

points on the power grid (lines, swing bus, etc.).

• OMNETHelper: Writes the JSON configuration file for OMNeT++ and the various

parameters to the NETWORK.ned or omnetpp.ini file.

• ATTACKHelper: Writes to the federate Attacker to inform about steady-state at-

tacks.

The building via the BUILD function adds configurations related to events and specific

to the considered electrical network:

• GLDHelper: Writes GridLab-D related events to the GLM model file.

• HookHelper: Updates the testbed by including all related information about user-

specifiec attacks.

• DatasetHelper: Appends dataset-related GridLab-D grouprecorder objects to the

GLM model file for dataset generation.

• ControllerHelper: Fills the Controller template with a dynamic dictionary of sub-

scriptions and publications according to the GLM model file.

• MarketHelper: If the Market capability is activated, this helper updates the template

federate with its subscriptions and publications.
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4.5.1 GLM Model File Processing

The parsing of the GLM model used within the testbed represents the most important part

of the testbed generation. This step is implemented by the GLMParser and is based on the

work of J. de Chalendar [53] and extended to meet the functional needs of the project.

The GLM format is similar to the structure found in XML documents with the syntax

of the C language, allowing, using regex, to retrieve the whole implemented topology in

order to transform it into a complex python object. Thus, it becomes possible to extract

each device from the network, and to perform logical operations such as retrieving the

node grandfathers used for topology visualization. Globally, the parsing of the model is

performed in the following way:

• Recovery of each device and connection lines, with all sub-properties, management

of multiple objects and dynamically assigned ID when the name field is not filled in.

• Recovery of parents and ancestors

• Dynamic creation of a readable topology in D3JSON format

• Creation of a tree representing the topology and dynamic addition of aggregators

according to the number of children implementing a smart meter or a PMU.

Figure 9 shows an example of a topology generated for the IEEE 13 Bus System model.

root is considered as the main aggregator.
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Figure 9: IEEE 13 Bus System generated topology tree with aggregators



4.5.2 Network Topology Generation

The second step in the testbed generation corresponds to the generation of a communication

architecture based on the power grid topology. We propose two modes: Wired and Wire-

less. Each mode follows a common placement logic for each network equipment which is

detailed in Figure 10.
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Each node of the electrical network is associated with a router, to which a PMU is

connected, implemented by the RTU object. Moreover, each meter or triplex_meter of the

GridLab-D model is associated to a smart meter within the OMNeT++ simulation. Because

a meter can be associated to one or more houses, the simulation can dynamically assign the

smart meter to each house to indicate if the smart meter is in charge of more than one

house, i.e. one building. The Control Center is always protected by a Firewall, and data is

routed through a set of routers connected in the same way as electrical nodes. Finally, all

communication (except Firewall-Control Center) uses the PPP protocol for data exchange.

4.5.2.1 Wired Topology

The wired topology is based exclusively on communication cables similar to Ethernet ca-

bles. Each communication line extends the DatarateChannel class of INET with a realistic

calculation of the d delay added during communications based on the distance between

each network node:

d = replaceUnit(lline/28,“s”)+{ f ixedLatency} (1)

Where replaceUnit converts the channel line lline distance to a temporal unit, and

{ f ixedLatency} is a user-settable fixed delay.

In the wired topology, nodes are dynamically placed by OMNeT++ without constraint

via the Mobility module. This type of network integrates the following equipment:

• server (Control Center): A centralized server that aggregate all monitored informa-

tion. It implements both Demand-Response, Synchrophasor and Dynamic Pricing

market capabilities.

• firewall (Stateless Firewall): A HookableDevice Iptable-based firewall connected to

the Control Center via a 10 Gigabytes Ethernet channel.

• scenarioManager (OMNeT++ scenario manager): It is a special object, not con-

nected to the communication network, whose role is to control the lifecycle of the

different devices in the network. This module can be parameterized by the user.

• configurator (Network configurator): The dynamic wired network topologies does

not rely on a network configuration file with IPv4 addresses. The con f igurator mod-

ule dynamically assign each device with an IPv4 address.
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• httpController (HTTP Controller): Dynamically assigns device URI for both smart

meters, OpenADR aggregator and Control Center.

• router (Router): Networking devices from the INET library.

• Meter, RTU, aggregator, Attacker, mainAggregator (Monitoring and end-user de-

vices): Devices that implement the custom HookableDevice class. The Attacker

is a special class implemented when the DDoS attack is used to generate messages

within the network.

4.5.2.2 Wireless Topology

The wireless topology is based on the simuLTE framework developed by the University

of Pisa, Italy [54]. It permits the advanced study of LTE and advanced LTE networks

(3GPP Release 8+). The dynamic Wireless mode of the Project Generator generates a

wireless topology with the antennas and the preservation of the real distances between

each node of the power network, as defined in the GLM file. Communications within the

LTE network use the GPRS Tunneling Protocol (GTP) User-Plane protocol via UDP and

X2 communications supports.

The placement of nodes with constrained link distance is a complex problem of the

graph theory (force-directed graph drawing). In the context of computer networks, it is

also important to ensure the following properties:

• Minimization of crossover between links;

• Enable an aesthetic rendering;

• Calculate an initial layout in a reasonable amount of time.

We chose to use the Kamada Kawai algorithm [55] for the generation of the first lay-

out, followed by ForceAtlas2 Layout algorithm [56], configured with 1000 iterations and

neutral gravity.

Thus, each node is assigned a position on the X and Y axis in real distances (meters).

The further generation of the topology follows the same logic as for the Wired topology.

Nevertheless, the houses are randomly placed around the antennas according to the radius

defined by the user. The equipment added to the Wired network are:
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• channelControl (LTE Channel Control): A realistic channel model with multiple

capabilities (path-loss, shadowing, inter-cell interference, etc.).

• routingRecorder (Routing Table recorder): A special recorder saving all

IPv4RoutingTable or Inter f aceTable changes of all routers and host.

• binder (LTE Binder): A global module that stores information about network devices

(i.e., reference to nodes).

• pgw (PGW Standard): A 4G LTE device that connects a 4G network to the internet

or Operator network.

• eNodeB (Antennas): 4G LTE antennas. Close antennas are connected through a X2

interface.

4.5.3 Project Parameters and Customization

Beyond the generation of the topology, the Project Generator will apply many changes

to the basic template, depending on the user’s settings. The Appendix B details all the

parameters managed by the user interface, as well as the possible customizations after the

testbed generation.

4.6 Testbed Walk-through

Once the testbed has been generated, it will combine many capabilities borrowed from the

simulators used, as well as contributions that we have made as part of this project. In this

Section, we detail each aspect of the testbed and motivate the different design choices.

4.6.1 Federates Synchronization

Each federate uses a core that implements various functions exported from HELICS to syn-

chronize. The Project Generator has the role of informing the co-simulation duration and

the timestep of each one. Thus, the main broker will be in charge of the synchronization of

all the federates and the information exchanges. Figure 11 shows an example of synchro-

nization when the co-simulation timestep is 0.1s and OMNeT++, the Attacker Federate and

the Visualizer synchronize every 0.2s.
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4.6.2 Attacker Federate

The Attacker federate is an implementation of an interactive command line program in

Python 3.7+. It has 2 threads and 2 processes:

• The CLIWorker implements dynamic updating of the interface display in relation to

the co-simulation environment, by rewriting the current time.

• The helicsWorker implements the attacker’s federate and communicates directly with

HELICS via its core.

• The Prompt class implemented in the main thread allows the user to enter commands

and get help.

It is dynamically synchronized to the testbed and offers a set of attacks generated by

the Project Generator. The attacks come from user parameters at the Attacker profile level,

from any attacks (hooks) used and from the power network, with default support for line

status to simulate physical attacks on power cables.

The Appendix C details the architecture of the federate.

The use of multiple processes and threads is driven by a need to perform multiple op-

erations on the terminal in real time. Indeed, the federate displays in real time the current

co-simulation time while updating subscriptions and publications, and let the user asyn-

chronously launch his or her commands. The atk command supports autocompletion, ex-

tending the federate to mimic a Meterpreter.

4.6.3 Controller Federate

We offer a modular implementation of the power grid control federate. This federate is

connected to both OMNeT++ and GridLab-D. It dynamically retrieves OMNeT++ pub-

lications aggregating the measurements of the different PMUs within the shared variable

"controller". Then, for each publication (here, the SWING buses and switches), it updates

the values following those currently stored in memory, from the received measurements

(e.g., the Voltage A value of the main SWING node). By default, the controller guaran-

tees a stable state by always sending the initial values present in the GLM file but can be

extended to let the user implement custom logic.

The algorithm 1 has a pseudocode of the federate. The do_action function is here

the function that the user can modify. He or she is not limited to this function and can
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use external code to perform further calculations, such as State Estimation, IDS, machine

learning, etc. The integration of an intermediate federate such as MATLAB is possible.

The do_action function receives as input the current co-simulation time, as well as a

dictionary linking each node of the power grid with the associated measurement and can

change the stored publication values based on the internal logic.

Algorithm 1: Controller federate base code

Input: helics_publication array, values array, timestep, cosimulation duration;

Result: Power Grid CSV file (measurements values)

for t in linspace(0 seconds int(seconds{timestep})) do
while granted time < current_time do

Call HELICS Request Time function;

end
Update publications and subscriptions;

Parse all received data from OMNeT++;

Call the do_action function;

Update publications and publish values to the cosimulation environment;

Write useful timestamped information in the CSV file;

end
Exit the Federate executing mode before silently terminate the program;

In addition, it is possible to modify the do_action function to simulate a malicious code

that would perform a malicious action on the power grid.

The integration of machine learning techniques within this customizable function there-

fore allows to simulate the online deployment of machine learning models and their incre-

mental learning. Thus, the user can (1) simulate the use of pre-trained models using datasets

generated by the testbed from previous co-simulations, prior to their direct deployment

with a co-simulation or (2) directly integrate Machine Learning models and implement

incremental learning.

4.6.4 Market Federate

The Market Federate is based on the same algorithm as presented before. However, instead

of processing PMU-related data, it processes JSON-formatted strings of aggregated real

bid requests sent by the Houses controllers to the auction object. The specific algorithm
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for the Market federate is shown below. This federates retrieve values from the OMNeT++

market publication.

The do_action function receives as input the current co-simulation time, as well as the

market aggregated and up-to-date bids, the market statistics and outputs the fixed price.

Here, the clearing price is set via the Federate since the auction object, previously set

in FIXED_PRICE mode, will guarantee that the clearing price used corresponds to the

current fixed price, here published by the Market federate.

Algorithm 2: Market federate base code

Input: helics_publication array, values array, timestep, cosimulation duration;

Result: Market CSV file (Time, Total Load, Number of Buyers, Mean Load, Total

price asked, Cleared price))

for t in linspace(0 seconds int(seconds{timestep})) do
while granted time < current_time do

Call HELICS Request Time function;

end
Update publications and subscriptions;

Parse all received data from OMNeT++ and compute the market statistics;

Call the do_action function;

Update publications and publish values to the cosimulation environment;

Write useful timestamped information in the CSV file;

end
Exit the Federate executing mode before silently terminate the program;

Figure 12 summarizes the functioning of the Market Federate, with the illustration of

the impact of the communication network on the calculation of the clearing price.
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4.6.5 OMNeT++ Federate

Within OMNeT++, in order to guarantee a decent support of the capacities of a smart grid,

we have developed various specific equipments. Each device is summarized in the Figure

below, and in this Section we present the different aspects of each device.

Each device implements a succession of applications distributed over the different lay-

ers of the OSI model. Most of the implemented devices embed applications on the Appli-

cation layer, although Hooks are directly implemented on top of the Physical layer.
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Figure 13: OMNeT++ implemented devices overview



4.6.5.1 HELICS Capability

There is no HELICS module for OMNeT++. It is however possible to use shared libraries

to connect the federate to the co-simulation. To do this, we implement a HELICSHel per,

shared by all the devices of the simulation (singleton) which proposes a set of methods

allowing the devices to stay up to date. Thus, we detail the different roles that each device

plays in co-simulation:

• Control Center: manages the global synchronization of the OMneT++ federate by

scheduling self-messages at the same frequency as the co-simulation timestep and by

requesting co-simulation time from the broker.

• Smart Meter: retrieves on a user-defined time basis the values related to Demand-

Response and dynamic pricing using self-messages. Dynamically retrieves the list of

local publications and subscriptions.

• PMU: this equipment is synchronized with the frequency defined by the user. It

dynamically retrieves via HELICSHel per the list of local publications and subscrip-

tions.

Finally, HELICSHel per proposes a conversion between the relative co-simulation time

and the global timestamp as defined during project generation.

4.6.5.2 Control Center

The Control Center implements a TCP device with HTTP capability based on the OM-

NeT++ cSimpleModule and deriving the Hel perBase class giving it access to the different

applications implemented in the device. The applications implemented in the Control Cen-

ter are the following:

• ControlCenter: Receives OpenADR messages before retransmitting them to the ap-

plication being loaded. Also manages the equipment lifecycle, sending Dynamic

Pricing data to the federate Market, and maintains synchronization of the entire net-

work with HELICS.

• VTN2b: This application implements the OpenADR Virtual terminal Node 2.0b,
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based on the Htt pBrowser INET class. The VTN2b serves as a sending applica-

tion within the context of the OpenADR protocol and allows here to send the con-

figuration frames to the different smart-meters at the beginning of the user-defined

OpenADR protocol life cycle.

• VEN2b: The Virtual End Node 2.0b of the CC serves as a main, centralized server

for the OpenADR-protocol and receives, processes and manages all HTTP messages

sent from the Smart Meters and Aggregators.

• PDCC: The Phasor Data Concentrator (Control Center) is the main aggregation point

where all PMU messages are processed before being sent to the co-simulation envi-

ronment. It parses each message in order to extract all the information from it.

4.6.5.3 Firewall

The firewall in an ad-hoc implementation of the Linux ip-table stateless firewall. Thus, we

permit studies of more advanced filtering or detection methods, since the source code of

this firewall is contained within the project.

The role of this equipment is to perform an action on each incoming message (from the

Control Center to the network and vice versa), in order to drop, f orward or accept, based

on the rules we have defined in the 4.5.3 Section. The global structure of this equipment

can be found within the Figure 14. The PacketDissector class within a custom, recursive

function parses all packets chunks and extracts the information before applying the optional

rules.
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Figure 14: Firewall architecture overview
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4.6.5.4 Aggregators

Aggregators are placed dynamically during the project generation process. These are com-

mon to the OpenADR and Synchrophasor protocols, since both protocols use the concept

of an intermediate data aggregator. Each aggregator implements the following applications:

• Aggregator: The application is similar to ControlCenter, and serves here as an

HTTP server for receiving OpenADR messages.

• VTN2b & VEN2b: Both Virtual End and Terminal Nodes 2.0b are implemented.

Here, the application is configured to act as an aggregator and will correctly forward

or aggregate openADR HTTP packets.

• PDC: The Phasor Data Concentrator aggregates all PMU messages that arrived dur-

ing the PDC time window and send one or many aggregated messages to the Control

Center, depending on the number of aggregated messages.

• PDCServ: The Phasor Data Concentrator Server is the destination of PMU devices

and forwards all PMU messages to the PDC application.

4.6.5.5 PMUs

PMUs are monitoring devices that implements the C37-244-2013 Synchrophasor protocol

specifications. The PMUs implement a T cpBasicClientApp TCP client class that we ex-

tend and derive the Hel perBase class, which allows each PMU to dynamically retrieve the

name of the subscriptions to which it is attached, based on the locally known device index.

Each PMU acts dynamically according to the global or local configuration, defined during

project generation. It is able to dynamically know if it has received local configurations.

During the co-simulation, each PMU is kept in a state of synchronization and will

perform periodic measurements thanks to the use of self-messages. During each iteration,

the device will retrieve each value from HELICS for the following metrics: voltage_A,

voltage_B, voltage_C, measured_angle_A, measured_angle_B, measured_angle_C,

measured_ f requency, measured_ f requency_A, measured_ f requency_B,

measured_ f requency_C. The voltage magnitude is computed as:

Mi =
√

voltagei.real2 + voltagei.imag2 (2)
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Then, we apply a truncated ([−5%;+5%]) noise to the frequency as well as the phase

angle, if the noise capability is activated:

• Phase angle: A random number between −1 and 1 is generated via the C++ gen-

erator de f ault_random_engine and the standard normal_distribution class with the

parameters defined by the user. If the value is higher than |0.05|, we set it to ±0.05.

Then, we apply the angle noise such that:

randi = truncatedRandomNumber() ∈ [−0.05;0.05]

Angle′i = Anglei +360∗ randi (3)

Where randi is the random number, Angle′i the noisy angle measurement and Anglei

the initial, perfect measurement.

• Frequency: In the same way, we apply a noise relative to the base frequency (60),

which we truncate if it exceeds 5% of frequency 60 (i.e. ±3). Thus, we perform the

following calculations:

randi = truncatedRandomNumber() ∈ [−3;3]

Frequency′i = Frequencyi + randi (4)

Where randi is the random number, Frequency′i the noisy frequency measurement

and Frequencyi the initial, perfect measurement.

Finally, each measurement is sent via a GenericAppPMU message we have defined

with the following fields:

• timestamp (simtime_t): The Synchrophasor timestamp (measurement time);

• measurements (double): All measured values presented above;

• scheduledTime (double) Initial message sending time used for subsequent attacks

targeting synchronization;

• nodeName (string): Associated Node name used internally.
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4.6.5.6 Smart Meters

The Smart Meters implement two capabilities: Demand Response via the OpenADR pro-

tocol, and routing of Dynamic Pricing messages from GridLab-D. Each smart meter im-

plements two main functions:

• MeasureEnergy: The measure_energy function dynamically measures all user-defined

parameters related to the House and Meter objects of the GridLab-D federate. It also

uses both VTN2b and VEN2b classes to create and send OpenADR XML messages

through an HTTP connexion. We support the noise capability by adding a realive

noise to all measured values, with the dynamic computation of the con f idence field

of OpenADR messages.

• HVACbids: The Dynamic pricing capability is implemented for HVAC controllers.

The Smart Meter object will detect any change in the gridLab-D-published last bid

price and quantity sent and will generate a new bid message if it detects any change.

We can, this way, simulate the bid message exchanges within OMNeT++ and directly

study the effects of network events on the dynamic pricing market. The bid messages

are sent via the VTN2b application as HTTP messages using the JSON format.

4.6.5.7 Protocols

In this Section, we detail the implementation of the OpenADR and Synchrophasor proto-

cols.

The OpenADR protocol is based on the OpenADr 2.0b specifications and uses two

modules: OpenADRHel per to generate payloads (EiRequestEvent,EiCreateReport,

DistributeEvent,U pdateReport,Response) and XMLHel per, which provides a set of meth-

ods for editing payloads in XML format to generate valid and complete messages. The two

modules VTN2b and VEN2b are shared by the Smart Meters, Aggregators and Control

Center, and are dynamically accessible from the main modules of each device. We im-

plement this protocol by means of a state machine defining the messages to be sent or the

responses to be made. The role of each device is dynamically known according to the mes-

sages received. The exchanges use the HTTP implementation proposed by INET, although

we have modified the structure of the HTTP messages to include the scheduledTime, nec-

essary for the proper simulation of certain attacks aimed at desynchronization.
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We also provide support for the serialization of HTTP messages, which is used when

the PCAP mode is activated. OMNeT++ then generates a PCAP dump file representing the

communication exchanges in a valid way. Each type of HTTP message is thus correctly

serialized and respects the real structure of HTTP messages (header bytes and payload).

The Synchrophasor protocol implements the C37-244-2013 specification. Within this

protocol, we do not implement the frame configuration, and we focus exclusively on send-

ing messages unilaterally from the PMUs to the Control Center. The structure of each

message is correctly represented via a dynamic serializer, with the CRC calculation, the

writing of each measured value, the timestamp and the name of the equipment.

4.6.6 GridLab-D Federate

As described above, we dynamically add capabilities to the GLM models loaded within the

Project Generator. Thus, we dynamically add the DELTAMODE capability and various

recorders that we detail in this Section.

4.6.6.1 Deltamode

The DELTAMODE is a capability proposed by GridLab-D to simulate the system with a

resolution lower than one second. This mode is particularly interesting for the study of

dynamic models powered by generators, or to validate the co-simulation of protocols such

as Synchrophasor where the sending frequency is expressed in milliseconds. The Project

Generator will thus define the following parameters:

• simulation_mode: Set to DELTA.

• deltamode_timestep (ms): The federate timestep according to the co-simulation

timestep (in ms).

• enable_subsecond_models (boolean): Enables deltamode for the powerflow mod-

ule.

• deltamode_iteration_limit (integer): The iteration limit when using DELTAMODE.

4.6.6.2 Recorders

As part of the generation of output files, we dynamically add recorders within the various

GridLab-D objects considered. Thus, we add the recorders defined in Appendix E.
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During co-simulation, and according to user-defined interval and recording time param-

eters, text files in CSV format are generated for each simulated object.

4.6.7 Visualizer Federate

In order to propose a complete modular and dynamic visualization of the co-simulation,

we have opted for a web page visualization. It displays, via the D3JS library, of the elec-

trical and communication networks, the whole being synchronized in real time with the

co-simulation environment. The viewer also allows the user to dynamically change the

co-simulation speed, to pause it, to view the status of each network node and to use the

different profiles to access or not to access the information. Figure 15 shows the architec-

ture of the Visualization federate. In this Section we explain how the federate works on the

back end and front-end side.
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Co-simulation environment:

GridLab-D: publishes directly
power-system information 

using its Helics Core.

OMNeT++: Added a new hook
specific to the CC that sends

to Helics all incoming and 
outgoing packets during each

simulation timestep. Three
new publications from
OMNeT++: serverIn, 

serverOut and 
Nodes2IpAdresses.

Python Flask server with
Socket.IO
Routes:

Route @/data/power
Route @/data/cyber

Route @/streamPower
Route @/streamCyber

Commands:
Socketio.on(‘pause-resume’)

Socketio.on(‘speed’)

Python Federate

Web-based
visualizer

(Javascript)

Graphs: D3JS
Charts: PlotlyJS

Helics core
(Python)

Publishes

Sync

Control commands

JSON Topology

Publishes

New dynamically-generated JSON and 
CSV for the cyber network: this is used by 

the visualizer to know the list of device
and their placement.

Figure 15: Visualizer architecture overview
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Displays co-simulated time in 
realtime with relative time

Displays the current model 
file name

Pause/Resume co-simulation
button

Scroll bar to dynamically
change the simulation speed. 
Minimum will be real-time 

speed (1 simulated second = 1 
real second)

Figure 16: Visualizer control bar

4.6.7.1 Server

The server is developed in python and implements a Flask server with Socket.IO and

Server-Sent-Events to permit bi-directional communication between server and client. The

role of the server is to send the co-simulation topology (power and cyber) to the front-end,

to route the data from the co-simulation into different silos which will then be displayed

on the front-end side and to control the co-simulation speed and its pausing. The Figure 15

shows the list of existing routes for the different data.

4.6.7.2 Client

The client is developed in JavaScript and communicates with the server automatically. It

displays a co-simulation control bar, shown in the Figure 16. In addition, the topology of

the electrical and computer networks is displayed. For the electrical topology, the visualizer

implements the visualization of real-time curves via the PlotlyJS library and internal pop-

ups. On the cyber topology side, the federate displays in a user-readable fashion the last

packets exchanged for each device on the network. To guarantee optimal performance, the

viewer bases the storage of its data on ring buffers of user-definable size, so as not to cause

memory leakage or excessive consumption. The Viewer displays, for each device in the

communication network, their IP address for each network interface.

An example of the visualizer web page is shown in Figure 17.
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Figure 17: Visualizer example view for the IEEE 13 Bus System
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4.7 Attacks and Hooks

Now that we have defined in detail the different aspects of co-simulation, we discuss in this

Section the implementation of attacks. Their effects will be validated in the Chapter 5.

4.7.0.1 Hooks Overview

We implement the different attacks in the form of hooks, i.e. intermediate applications that

are dynamically added by the Project Generator on top of the physical layer (i.e. on top

of the network interfaces) in order to modify, drop, delay or replay messages. Each hook

can then be concatenated to another one, to form a sequence of hooks, distinctively for

incoming and outgoing messages. The capability implemented here enables the advanced

study of complex, single-point, multiple-point, single-time and multiple-time cyber-attacks

and their combinations. The user can apply one given hook to one specific device, a set of

devices (using a filter) or all devices.

The ability to add hooks has been made possible through the implementation of a HPPP

(Hookable Point-To-Point) derived network interface, coupled with updated equipment to

integrate this new interface (HookableDevice). The concrete addition of the hooks is done

during the project generation by the Project Generator, according to the user parameters.

The Figure 18 presents a simplified view of the hook sequence principle within the

network architecture of the different devices. The Figure 13 presents the devices that have

this hook capability. Routers have also been modified to integrate this capability.
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Data Link layer

. . .

Hppp[0]

Hppp[1]

Hppp[N]

(Virtual) Hook layer Network layer

Upper layer
Node modules 

(IP, ICMP, 
etc.)

Number of device interfaces: N
Number of Hook (incoming packets): I
Number of Hook (outgoing packets): O

: incoming packets
: outgoing packets

Is 
incoming 
message?

Is 
outgoing 
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Incoming
Hook 0
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Hook 1

Incoming
Hook I

. . .

NO
NO

Outgoing
Hook O

Outgoing
Hook 1

Incoming
Hook 0

. . 
.

YES

Figure 18: Hook sequences implementation overview
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Each hook can be set up in the following modes of operation:

• Permanent: The hook will be activated during the whole co-simulation;

• Live: The hook is manually launched and configured by the user using the Attacker

Federate;

• Single-time: The hook starts at the specified time and lasts after a given duration;

• Multiple-time: The hook starts at the specified time, lasts after a given duration and

is repeated after a given waiting time window.

In the field of co-simulation, the study of attacks is based on the understanding of their

impacts to study the primary or secondary effects induced by a malicious action on the

system. For example, it is not necessary to fully simulate attacks, but to focus on the

effects: an attack aimed at increasing network latency by saturating communication lines

can be simulated more simply by adding latency. However, it is still interesting to actually

simulate attacks such as DDoS, where the order of packets within network congestion has

a direct impact on the attack results.

The following subsections present the different hooks implemented, as well as the abil-

ity to include malicious code.

4.7.0.2 Packet Dropping

Hook name Packet Dropping

Hook target Availability

Description
Packet Dropping is an attack designed to simulate the effects of
an attacker preventing messages on the computer network, thereby
jeopardizing the availability property.

Hook Properties
Dropping_Probability
Dropping_Type (ALL, SYNCHROPHASOR, DYNAMIC PRIC-
ING, OPENADR)

This hook also has a statistics measurement function, and records the number of pack-

ets, number of bits, average throughput and packets per second. Figure 19 shows a logical

view of the operation of this hook. Packet dropping is done via the public methods of the

cPacket under consideration.
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Objective: based on a user-supplied
probability, drop packets that goes

through the network interface. 

Is 
permanent 
hook mode 
enabled?

Is live 
hook mode 
enabled?

Send the packet to 
upper/lower layer

Is repeat 
mode 

enabled?

YES

NO

NO

Update local 
HELICS 
subscriptions

YES

Can the hook
execute at 

current time?

YESYES/NO
Is the 

message will
be dropped, 
based on the 
probability?

YES Drop the 
packet

NO

Arriving packet 
(incoming or 

outgoing)

Figure 19: Packet dropping hook

4.7.0.3 Replay Attack

Hook name Replay attack

Hook target Integrity

Description
The replay attack is carried out in three phases: recording, wait-
ing and replay. The hook allows the recording and replay of Syn-
chrophasor, OpenADR or Dynamic Pricing messages.

Hook Properties
Start_Recording_Time
Replay_Duration
Replay_A f ter

The Replay Attack hook implements a message modification mechanism. Since the

protocol used is TCP, some constraints apply such as the Sequence Number which must

correspond to the receiver window. To overcome this problem, the hook does not actually

replay the messages but stores them in vectors in order to replay them in the same order

during the replay period. When an incoming (or outgoing) packet arrives during the replay

time, the Hook will replace its content with the previously recorded one. As a result, the

Sequence Number is kept, the packet is accepted by the receiver, and the CRC is recalcu-

lated after updating the payload of the message, via the PacketDissector. This hook also

has the ability to record statistics during co-simulation. The statistics are then accessible in
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Objective: Record, save, then replay 
incoming or outgoing packets.

Is 
permanent 
hook mode 
enabled?

Is live 
hook mode 
enabled?

Send the packet to 
upper/lower layer

Is repeat 
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NO
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YES

Can the hook
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future 
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(using the 
OMNeT++ 
scheduler)Arriving packet 

(incoming or 
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Replay the previously saved
packet according to the 
current time and offset

NO

Figure 20: Replay attack hook

the OMNeT++ output vec file, readable via the Network Simulator IDE.

4.7.0.4 Packet Delayer

Hook name Packet Delayer attack

Hook target Availability

Description
The Packet delayer attack provides the ability to add a fixed or ran-
dom delay to increase the time between its sending and its reception
by the initial recipient.

Hook Properties

Fixed_Delay_mode or Random_Delay_Mode
Fixed_Delay
Random_Delay_Mean
Random_Delay_Std

This hook performs a scheduling action on the considered messages, i.e. the mes-

sages are rescheduled in the future using OMNeT++’s scheduleAt method. The Figure 21

presents a logical view of the operation of this hook. Both Uni f orm and Gamma random

distributions are supported here, although the user can implement his or her own random

distribution.
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Objective: Delay packet using a fixed
offset or a random number. Used to 

simulate attack effects or 
communication instabilities.

Is 
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hook mode 
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hook mode 
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upper/lower layer

Is repeat 
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enabled?

YES

NO
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HELICS 
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YES
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execute at 
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YES/NO

Is fixed_delay
enabled?

NO

Arriving 
packet 

(incoming 
or 

outgoing)

Schedule the current
message to be sent at 
t = currentTime + 
fixed_delay.

Schedule the current
message to be sent at 
t = currentTime + 
random_delay
Where
random_delay
follows a random
distribution.

YES

NO

Is the packet 
a self 

message ? YES
Send the packet as a 

self_message for future 
sending

Figure 21: Delayer attack hook

4.7.0.5 DoS/DDoS

The DoS/DDoS attack is a special hook implemented at the application level of the OSI

model. It implements a special hardware derived from the INET ApplicationBase class

and uses the UDP protocol, thus performing UDP flood attack. The attack is fully config-

urable, and also implement the modification of the IP address of the sender and the receiver

with the name of existing network in the system, enabling advanced simulation of network

congestion between specific points. This malicious equipment can also be connected to any

location on the network and several such devices can be placed within the same network.

Hook name DoS/DDoS Attack

Hook target Availability

Description

Malicious equipment connected to a router sends large amounts of
data over the network, causing network congestion and blocking the
availability of messages from PMUs or Demand Response/Dynamic
Pricing.

Hook Properties

Packet_Size (Bytes)
Sending_Delay (µs)
Target_Device
Targetted_Port
Source_Device
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Objective: Add a bit error in the 
packet to simulate the bit flipping
attack in encrypted networks, or 

changing the PMU measurements to 
allow False data injection attack.

Arriving packet 
(incoming or 
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YES

NO

YES/NO
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Figure 22: Integrity attack hook

4.7.0.6 Integrity Attack

Integrity attack is a major threat to Smart Grids, as it is the basis for advanced attacks such

as FDIA, which can lead the system into a dangerous state. We implement a generic in-

tegrity attack for the Synchrophasor protocol and more generally the principle of BitError

invalidating any MAC or CRC code and causing a rejection of the message by the receiver.

For the Synchrophasor protocol, since this attack modifies the payload of the initial mes-

sage, it also updates the CRC used by recalculating it. Details are shown in Figure 22.

Hook name Integrity Attack

Hook target Integrity, availability

Description
An attacker succeeds in modifying the content of the exchanged
messages in order to hide an action on the system or to deceive the
State Estimator.

Hook Properties

Bit_Error_Mode or Synchrophasor_Mode
False_Angle_A,B,C
False_Magnitude_A,B,C
False_Frequency_A,B,C
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Objective: Simulate en attacker that
gains acces to a given node in the 
communication network and start 

record packets.
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Figure 23: Eveasdropping attack hook

4.7.0.7 Eavesdropping

The eavesdropping attack sets up a passive attacker listening to the network at a given point.

He is then able to obtain basic information about the message (if the communications are

encrypted) or even the entire data if the confidentiality property is not ensured. In this

project, we do not simulate encryption, but we distinguish the information known to an

attacker according to the hook’s mode of operation. If the encryption is virtually enabled,

then the attacker will only have access to a part of the information, such as the packet size,

the port used, etc. If encryption is not enabled, the attacker will be able to see all the data.

This hook thus generates various text files in real time that can be displayed directly in a

terminal.

Hook name Eavesdropping attack

Hook target Confidentiality

Description A passive attacker listen and record packets.

Hook Properties Break_Encryption

The Figure 23 shows a logical view of how this hook works.
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4.7.0.8 Desynchronization

The Desynchronization attack simulates a GPS spoofing attack. PMUs in smart grids are

synchronized in real time thanks to the temporal broadcast emitted by a GPS. When an at-

tacker attempts to modify the signal to desynchronize the GPS, the PMU makes a measure-

ment error, since the Synchrophasor is timestamped at all points. Each PMU periodically

sends different measurements: Frequency, Phase Angle, and Magnitude. When the mes-

sages are received, the Control Center will be able to reconstruct a sinusoidal signal based

on the magnitude, phase angle, and time contained in the message. This hook aims to mod-

ify the time contained in the message in order to alter the sinusoidal signal reconstructed

by the Control Center. Details are shown in Figure 24.

The Control Center, knowing the magnitude m, the timestamp ts, and the phase angle

p, calculates the Synchrophasor s using this calculation:

s = m∗ cos(ts + p) (5)

Thus, a change in ts will result in a shift of the sinusoid to the left or to the right. This

hook allows the modification of ts via a fixed or random time offset terror, via a random

generation based on the normal distribution:

serror = m∗ cos(ts + terror + p) (6)

Hook name Desynchronization attack (GPS spoofing)

Hook target Integrity

Description
An attacker alter the PMU synchronization by spoofing the GPS
signal.

Hook Properties Fixed_Time_O f f set
Random_Time_Mean
Random_Time_Std

4.7.0.9 Dynamic Pricing

The Dynamic Pricing attack simulates an attacker modifying the bid prices sent by con-

trollers, thus coming close to an integrity attack. The details of this attack are described in

the Figure 25.
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Objective: Desynchronize PMU 
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Figure 24: Desynchronization attack hook
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Figure 25: Dynamic Pricing attack hook
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Hook name Dynamic Pricing attack

Hook target Integrity

Description
An attacker alter the Dynamic Pricing messages Bid Price and
Quantity.

Hook Properties
Bid_Price
Bid_Quantity

4.7.0.10 Statistics

This hook does not implement an attack, but generates CSV files representing various use-

ful statistics on the network at a given point:

• Mean latency

• Bits per second

• Packets per second

• Bytes per second

• Bytes per recording interval

• Packets per recording interval

CSV files are dynamically written in the root folder of the OMNeT++ federate.

4.7.0.11 Malicious Code

The malicious code attack is not implemented directly in this project, but can be emulated

via the previously described function, do_action, letting the user simulate the logic of his

choice within the federates controller. The implementation of the Malicious Code is at the

user’s expense and will allow him to simply study the effects of malicious code that would

send false commands.
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Chapter 5

Testbed Dataset Generation, Validation
and Scenarios

This Section validate the current implementation of ASGARDS-H. We first detail the

Dataset generation process, then we highlight the Testbed capabilities by validating nu-

merous aspects permitted by our co-simulation approach.

5.1 Dataset Generation

Dataset generation is the main objective of our project. In order to allow the advanced

study of cyber-physical attacks using machine learning techniques, we exploit the different

capabilities of the simulators in order to co-simulate a system in the most realistic way

possible.

In the context of real systems, all the information accessible from the Control Center

comes from the communication network, i.e. from all the protocols used for monitoring

and various applications such as Dynamic Pricing or Demand Response. Within the context

of co-simulation, we obtain direct information from the electrical and computer network,

enabling us to refine the quality of the dataset by offering a set of data that is not altered by

the communication network or by possible attacks. Moreover, co-simulation is interested in

the mutual effects between simulators, enabling the visualization of the concrete impacts of

cyber-attacks on the power grid, modifying the state of the global system and visible from

the Control Center.

The generation of our dataset is mainly based on one or more PCAP (Wireshark) files,
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containing all the network exchanges between the Control Center and the rest of the net-

work. We also propose the generation of annex files. Finally, we detail the dataset genera-

tion process.

5.1.1 PCAP Generation

The INET framework supports serializers that transforms simulated messages without bi-

nary structure into a payload defined byte by byte and respecting the specifications of real

protocols. Thus, the PCAP file generation contains a realistic set of communications in

binary format and recognized by third party tools such as Wireshark [57].

The PCAP capability is supported by the Project Generator, which will dynamically

define the PcapRecorders that will be used by the Control Center, via the useWireshark

parameter:

* * . s e r v e r . numPcapRecorders = { u s e W i r e s h a r k }

* * . s e r v e r . p c a p R e c o r d e r [ 0 ] . p c a p F i l e = " r e s / s e r v e r e t h . pcap "

* * . s e r v e r . p c a p R e c o r d e r [ 0 ] . pcapLinkType = 1

* * . s e r v e r . p c a p R e c o r d e r [ 0 ] . moduleNamePat te rns = " e t h [ * ] "

* * . s e r v e r . p c a p R e c o r d e r [ 1 ] . p c a p F i l e = " r e s / s e r v e r h p p p . pcap "

* * . s e r v e r . p c a p R e c o r d e r [ 1 ] . pcapLinkType = 204

* * . s e r v e r . p c a p R e c o r d e r [ 1 ] . moduleNamePat te rns = " hppp [ * ] "

Since the Control Center communicates both via PPP and Ethernet depending on the

operating mode, two types of PCAP files will be generated: the first one, for each eth

interface, and the second one, for each hppp interface, our PPP interface that we have

modified to allow the integration of hooks.

The list of serializers that we have added or modified to INET and simuLT E are present

in the following list:

• HttpBaseMessage

• HttpRequestMessage

• HttpReplyMessage

• CustomHttpRequestMessage

• CustomHttpReplyMessage
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• GtpUserMsg

• IcmpHeader

• IcmpEchoRequest

• IcmpEchoReply

• GenericAppPMU

When the eavesdropping hook is used, the Project Generator dynamically adds the

generation of PCAP files for each of the devices affected by the attack.

5.1.2 Statistics and Power System

By default, OMNeT++ generates a file in vec format that contains all the data related to the

simulation. This format is shared by all the system’s equipment, in particular the equipment

related to the 4G LTE of simuLT E, which we have extended with the integration of hooks

compatible with the generation of statistics. This file defines three types of data: scalar,

vector and histogram. The following options are defined by the project generator to allow

the complete generation of this statistics file:

* * . v e c t o r − r e c o r d i n g = t r u e

o u t p u t − s c a l a r − f i l e = ${ r e s u l t d i r } / ${comp} _$ { r e p e t i t i o n } . s c a

o u t p u t − v e c t o r − f i l e = ${ r e s u l t d i r } / ${comp} _$ { r e p e t i t i o n } . vec

seed − s e t = ${ r e p e t i t i o n }

Moreover, thanks to the use of recorders within GridLab-D, we generate a set of text

files, timestamped in CSV format, which contain all the information defined in the Ap-

pendix E.

Finally, the use of the statistics hook allows the generation of CSV files containing

useful metrics to improve the visualization of the system.

5.1.3 Standardized Dataset Extraction and Generation

The generation of the dataset is done in several steps.
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5.1.3.1 PCAP File Conversion

The PCAP format being binary, we have implemented a mechanism to convert PCAP files

to a readable CSV format. This conversion uses tshark, the command-line module of

Wireshark. Packet by packet, we extract each useful information with the support of the

different implemented protocols, using regex.

We thus generate a unique CSV file containing the columns as defined in Appendix D.

This process is performed at least once for the main PCAP file and is also executed for

each of the generated PCAP files (eavesdropping attack).

5.1.3.2 Power System and Statistics File Extraction

In a second step, the dataset generator will automatically extract all useful files from the

co-simulation:

• CSV power grid files: All recorder-generated output files from GridLab-D are ex-

tracted and moved to the dataset folder;

• OMNeT++ vec file The OMNeT++ statistics vec file is also moved to the dataset

folder;

• Statistics Generated statistics file from the Control Center or Statistics hooks are

moved to the dataset folder.

5.2 Testbed Validation

We validate our testbed with 13 case studies using the different hooks implemented in

different networks. We simplify the validation process using a simplified electrical model,

defined in Figure 26.
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Node001
SWING

nominal_voltage 2401.7771;

Diesel_dg
rotor_speed_convergence 0.0001;

Rated_V 4160.0;
Exciter_type SEXS; //voltage 

control
Governor_type DEGOV1; //maintain 

frequency

Node002
nominal_voltage 2401.7771;

load
constant_power_A 4000.0+3000.0j; 
constant_power_B 5000.0+2000.0j;
constant_power_C 4200.0+3500.0j; 

house
ZIPload, Water heater, HVAC 

system

Figure 26: Small power system implemented for the testbed validation
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The IEEE 13 Bus System network that we have modified is equipped with 16 houses

equipped with ZIP load, Water heaters and HVAC systems.

All the scenarios studied are described in the Figure 27. We highlight the co-simulation

results using visualization Python scripts that display several Control Center-monitored

values such as the Magnitude, Frequency of Phase Angle. The scenarios we detail in this

Section are based on these visualizations. We will present, for each study, the most charac-

teristic results that allow us to validate each of the testbed’s capabilities.
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# Model name Duration Network 
speed Specific configuration

0 Small_system 60 sec 50MBps No recording noise

1 Small_system 60 sec 50MBps Recording noise (mean=0.001, std=0.0005). Parameters used by other scenarios.

2 Small_system 60 sec 1MBps DDoS on router[1] starts at t=30s, lasts 10s

3 Small_system 60 sec 1MBps Packet dropping attack (all PMUs) (probability: 0.91)  starts at t=25s, lasts 10s

4 Small_system 60 sec 1MBps GridLab-D manual fault starts at t=30s

5 Small_system 60 sec 1MBps Replay attack starts at t=1s, record 10s and replays after 20 seconds

6 Small_system 60 sec 1MBps Desynchronization attack on RTU[1] (fixed +1.200s) starts at t=25s, lasts 10 seconds

7 Small_system 60 sec 1MBps Integrity attack on RTU[1] (aA: 20.02; aB: 15.02; aC: 0.02; fA: 61; fB: 58; fC: 63: f:61) starts at 
t=25s, lasts 10 seconds

8 IEEE 13 Bus 
System 60 sec 1MBps Malicious code (Controller), multiplies the input voltages by 2 between t=10s and t=20s

9 Small_system 60 sec 1MBps Packet delayer attack on RTU[0] (mean=0, std=1.5) starts at t=25s, lasts 10 seconds

10 Small_system 60 sec 1MBps

Packet delayer attack on RTU[0] (mean=0, std=1.5) starts at t=15s, lasts 7 seconds; Integrity attack on 
RTU[1] (aA: 20.02; aB: 15.02; aC: 0.02; fA: 61; fB: 58; fC: 63: f:61) starts at t=30s, lasts 7 seconds
Desynchronization attack on RTU[1] (fixed +1.200s) starts at t=25s, lasts 15 seconds; Packet dropping
attack (all PMUs) (probability: 0.2) starts at t=52s, lasts 3s

11 IEEE 13 Bus 
System v2 2 h 50MBps No Synchrophasor/OpenADR;

12 IEEE 13 Bus 
System v2 2 h 50MBps No Synchrophasor/OpenADR; Dynamic pricing attack on Meter[4] (bidP: 20; bidQty: 12.345) and 

Meter[13] (bidP: 0.5; bidQty: 50) starts at t=1000s, lasts 1700s

13 IEEE 13 Bus 
System v2 2 h 50MBps

No Synchrophasor/OpenADR; Dynamic pricing attack on Meter[4] (bidP: 20; bidQty: 12.345) and 
Meter[13] (bidP: 0.5; bidQty: 50) starts at t=1000s, lasts 1700s
Packet delayer attack on Meter[10] (mean=0s, std=0.5s), starts at t=1200, lasts 800s
Packet dropping attack (all PMUs) (probability: 0.91) starts at t=1200s, lasts 800s

Figure 27: Validation scenarios



5.2.1 Validation 1: Perfect System

In this scenario, we validate the testbed co-simulation under normal, transient to steady

states. No noise is added, and the results are shown in Figure 28. We can see the effect

of the Diesel Generator start-up on the measured Magnitude and Synchrophasor measure-

ments. The frequency, shown in Figure 29, highlight the dynamics of the system before

entering in its steady-state, around a measured Frequency of 59.965.
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Figure 28: Scenario 1 validation results (Angle A)
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Figure 28: Scenario 1 validation results (Magnitude A)
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Figure 29: Scenario 1 frequency validation results
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5.2.2 Validation 2: Noisy System

In this second scenario, we validate the integration of noise on the measurements. Figure

30 highlights the measurement difference with the previous scenario. Measurements here

are noisy and follow the parameters defined by the user, i.e. a noise of average 0.001 and a

variance of 0.0005 for the frequency. This noise follows a uniform distribution with known

parameters, which can be used by any machine learning algorithms to correctly extract the

correct information from these noisy curves.
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Figure 30: Scenario 2 validation results (Angle A)
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Figure 30: Scenario 2 validation results (Magnitude A)
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5.2.3 Validation 3: DDoS Study

Here we study the implementation and impact of the DDoS Hook. In this scenario, a single

device is added and connected to the router[1] (node002). The attack starts at t = 30s and

lasts 10 seconds. The initial parameters of the attack are used, i.e. 100 bytes sent every

10µs, from the RTU [1] to the server on port 1,000.

The results, shown in Figure 31, show the effects of the attack on the Synchrophasors

monitoring. Similar results can be observed for the other curves (Magnitude, Frequency). It

can be noted that at the beginning of the attack, a few messages are correctly received by the

Control Center but that very quickly the number of messages is considerably reduced. Since

the messages are delayed on the network, most of them will be dropped by the aggregator,

although some messages manage to be accepted, like the message received at t = 32.5s. For

a few more seconds after the end of the attack, we can notice that the network congestion

is such that it continues to slow down the network for 6 seconds.
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DDoS 
attack

Network 
congestion

Figure 31: Scenario 3 validation results
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5.2.4 Validation 4: Packet Dropping Study

The second validated attack is Packet Dropping. We study the impact of a loss of messages

that may be due to network instability or an active attack. Figure 32 shows the impact of

this attack which, within a TCP network, causes a multiple sending of the same packet,

since the TCP ACK has not been received. Since the attack here is permanent and random,

the packets returned will or will not drop again.
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Packet dropping attack

Figure 32: Scenario 4 validation results
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5.2.5 Validation 5: Power Grid Faults

The fifth scenario implements a manual fault in the Federate GridLab-D. This fault cuts

the overhead line between node001 and node002, causing an iteration error in the federate,

characteristic of a system crash. Figure 33 shows two phases: the first one causing a reset

of the monitored values, and the second one, after a few seconds, showing the absence of

data caused by the system crash.
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Manual 
fault, line 
is OPEN

Power 
system 
crash

Figure 33: Scenario 5 validation results (Magnitude A)
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Power 
system 
crash

Figure 33: Scenario 5 validation results (Angle C)
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5.2.6 Validation 6: Replay Attack Study

We study the replay attack at the level of the Synchrophasor protocol. This attack tries to

replay the Synchrophasor stream sent in the first seconds of the co-simulation after t = 20s

delay. As shown in Figure 34, the magnitude is clearly visible and different from the

Synchrophasor of node001 between t = 31s and t = 41s.

5.2.7 Validation 7: Desynchronization Attack Study

The desynchronization attack alters the Synchrophasor signal perceived by the Control

Center. In this scenario, we apply an arbitrary fixed error of t = 1200ms to study the impact

of this error on the Synchrophasor signal. Figure 35 shows a clear shift to the left of the

signal from node002 during the attack period.

5.2.8 Validation 8: Integrity Attack Study

The integrity attack is validated by means of a fixed value injected into the PMUs for a

short period of time. The effects of this attack are in fact directly visible on the curves, as

shown in Figure 36.
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time

Replay
time

Figure 34: Scenario 6 validation results

Desynchronization

Figure 35: Scenario 7 validation results
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Figure 36: Scenario 8 validation results
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5.2.9 Validation 9: Malicious Code Study

We propose in the context of our project a simple implementation of a Power Grid Con-

troller performing a malicious action consisting in doubling the nominal voltage of the

electrical system. This example is arbitrary and aims at validating the correlation between

the actions of this federate and the effects visible in return by the Control Center. Figure

37 shows the impact of this attack on the IEEE 13 Bus System.
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Doubled
magnitude

Figure 37: Scenario 9 validation results (Magnitude A)
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Doubled
magnitude

Figure 37: Scenario 9 validation results (Angle A)
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5.2.10 Validation 10: Packet Delayer Attack Study

The Packet Delayer is here validated in the same way as the packet dropping attack. Here,

the packets will be rejected by the aggregators or, if the delay is sufficient, will be accepted

in a later time window than the one initially targeted. Thus, Figure 38 shows the effect of

the attack where many messages are rejected and some are accepted with a visible shift to

the right with respect to the node002 curve.

5.2.11 Validation 11: Multiple Attacks Study

This scenario aims at validating the proper functioning of the Hook Sequences. Here,

different attacks specified in the Figure 27 are co-simulated: Packet Delaying, Integrity

Attack, Desynchronization attack and Packet Dropping attack. Figure 39 shows the results

obtained with the parameters used.

5.2.12 Validation 12: Dynamic Pricing Study

The study of attacks on Dynamic pricing shows the impact of attacks on the communication

network on the level of clearing price negotiation by the different entities of the power grid.

Here, PMUs and Demand-Response are disabled, in order to allow a fast co-simulation of

higher simulation durations. Here 6,900s are co-simulated, i.e. 1 hour and 55 minutes.

The Market Federate is enabled and generates curves at the end of the co-simulation repre-

senting the following metrics: (1) Cleared price, (2) Mean load, (3) Number of buyers, (4)

Total price asked, (5) Total load. For this first scenario, we implement a power consumption

of HVAC systems that varies greatly on a few minutes basis, allowing us to obtain concrete

effects for a simulation of moderate duration.

Here, and for the other Dynamic Pricing-related scenarios, the Market Federate imple-

ments an arbitrary logic that we have developed to study the impact of clearing price on

the power consumption of HVAC systems, given the configuration of the deadband ther-

mostats. This federate charge $0.0379 (pricePerKW ) for every kiloWatt (kW ) below 3000

and $0.0385 (priceperKWAbove) for every kW above:

clearing_price = pricePerKW ∗3000+(total_load−3000)∗ priceperKWAbove (7)

Where total_load is the total load from all controllers during the actual market.
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Figure 38: Scenario 10 validation results

Integrity attack
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Figure 39: Scenario 11 validation results
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For the IEEE 13 Bus System equipped with 14 controllers, Figure 40 presents the results

obtained for four metrics.
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Figure 40: Scenario 12 validation results
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5.2.13 Validation 13: Dynamic Pricing Attack Study

This second study validates the hook aimed at the integrity of messages exchanged during

Dynamic Pricing. The attack fixes the value in terms of price and quantity. The curves

presented in Figure 41 show an increase in the cleared price between t = 1,200s and t =

3,000s.
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Figure 41: Scenario 13 validation results
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5.2.14 Validation 14: Multiple Attacks and Dynamic Pricing Study

Finally, we study the impact of attacks related to network communication (Packet Delay-

ing, Packet Dropping) in order to measure the impact of these attacks on the cleared price

determined by the Market federate. We can see in Figure 42 that the number of customers

drops from 14 to 9 during the packet dropping attack, causing a decrease followed by an

increase in the clearing price due to the use of the Dynamic Pricing Attack. Finally, the

total asking price will be directly impacted by the attacks.
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Figure 42: Scenario 14 validation results
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5.3 Results

In this Section, we co-simulate the (modified) IEEE 13 Bus System using our proposed

framework. We first detail the different parameters and capabilities of the co-simulator

involved, then we analyze the results. Finally, we highlight the advances introduced by our

project, compared to the various existing co-simulation platforms.

5.3.1 Testbed Configuration

We use the graphical interface of the Project Generator for the generation of a new dataset

of the IEEE 13 Bus System. The parameters are summarized in the Appendix F.

This scenario aims to study the behavior of the system under communication attacks but

also allows to measure the impact of some attacks on the power grid. To do this, we have

implemented a non-realistic Grid Controller whose operation is detailed in the algorithm 3.

In addition, all federates outside the Market Controller are activated here.

In order to visually compare the impact of different attacks launched manually during

co-simulation via the Federate Attacker, we ran the testbed a first time with the above-

mentioned parameters. The second time, we added a manual attack at t = 73.1s targeting

the message integrity of RTU [9], setting the frequency to 40. The attack is then stopped at

t = 138.9s.
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Algorithm 3: Power Grid federate custom function use case

Input: Pre-processed data with PMU-related measurements, the current time;

Result: Updates the Power Grid Controller publications

Computes the mean frequency meanFrequency from all PMU measurements;

if Number of PMU-received messages > 0 then
Update the bus SWING voltage such that

voltageA|B|C = (base_value∗meanFrequency)/60.0;

Where base_value is the stored or default associated value computed by the

Project Generator;

if meanFrequency >= 61 then
Open the Capacitor2 switches A, B and C;

else
Close the Capacitor2 switches A, B and C;

end

end
Return the updated publication values;

5.3.2 Testbed Execution

During this execution, we used a machine running Linux Mint 19.3. The machine is

equipped with 32Gb of RAM memory, and data writing is done in real time on a NVMe

disk. Each federate run in the same environment and the federates GridLab-D, OMNeT++,

Visualizer, Power Grid Federate and Attacker are used. The co-simulated 15 minutes are

executed at maximum speed via the speed setting in the Visualizer Federate and are paused

at various times to take screenshots or launch attacks.

OMNeT++ Federates, GridLab-D and Power Grid Federate write the outputs of the

co-simulation in real time.

Figure 43 shows the Visualizer Federate display for the GLM model used. The sec-

ond image shows the ability to display detailed information for each communicating or

electrical node.
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Figure 43: Use case: Visualizer view



Figure 44: Use case: Attacker view

Live attacks are launched manually via the federate attacker. The Figure 44 presents a

concrete view of how this federate works, showing the various interactions we had with it

during the co-simulation, via a basic terminal.

Finally, this co-simulation integrates the dynamic placement mechanism of the com-

munication devices via the Project Generator. The Figure 45 shows an overview of the

OMNeT++ network, and the Figure 46 the Firewall Hook system, as the latter implements

different Hooks.

5.3.3 Dataset Generation and Results

After the full execution of this testbed, we extract different results using python scripts for

curve plotting and statistics retrieval. First, we generate the different files that will be used

as dataset, using the Dataset Generator. The statistics for the extracted data are presented

in the Appendix G. Thus, we generate a file for each device that has been listened to by the

attacker, as well as the Control Center, by default.

The Dataset generator also retrieves files from GridLab-D containing direct and un-

noised values from the power grid. Among these files are 39 files for the houses, 16 files

for the nodes, one file for the switch, 16 files for each of the triplex_meters and 15 files for

the triplex_nodes.
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Figure 45: Use case: OMNeT++ topology
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ClientServer.firewall[0].hppp[0]

outputHook[0] inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[1]inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[0]inputHook[1]inputHook[0]inputHook[2]

ppp

rate: 10Gbps
sent: 0, rcvd: 0

queue: 0, drop: 0

Figure 46: Use case: Firewall architecture

The vec statistics file from OMNeT++ has been generated for this co-simulation and

weighs 1.3Gb. This file contains all the statistics from all implemented devices from INET ,

simuLT E OMNeT++, as well as the hooks.

We study the communication network statistics generated by the statistics hook from

the firewall point of view. The results, presented in Figure 47, show the expected correlation

between the attacks, the network latency, the number of packets exchanged, and the total

size of messages passing through this device. Latency here represents the latency added by

network congestion, router capacity and possible attacks.

We can notice the periodic variation of the network latency every 60s, caused by the

attack 2 repeating itself throughout the co-simulation, causing some packets to be refused

by the Phasor Data Concentrator, and others to be accepted, when they arrive at a new

time window. Thus, these messages will impact the latency seen by the firewall. Two

latency and communication peaks can also be isolated. Between t = 519.017401s and

t = 559.997847s, then between t = 599.019114s and t = 614.799273s, the Control Center

enters a saturated state, as shown in Figures 48 and 49 from two generated Wireshark files,

where the Destination unreachable error indicates that the port 1000 is not implemented
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by the system, generating even more communication, as expected. At this time, the Ope-

nADR protocol also starts, and smart meters communicate HTTP messages that will further

worsen network congestion.
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Figure 47: Communication network statistics from the use case
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Figure 48: Control Center under DDoS attack
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Figure 49: Intermediate router with Attacker-generad DDoS messages
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Finally, we study the state of the power grid following the various attacks via the Syn-

chrophasor protocol from OMNeT++, the Power Grid Controller implemented here, and

the graphs generated by the Dataset Generator. Figure 50 shows both co-simulations re-

sults: the state of the system without attacks via the Attacker Federate, and the evolution of

the system following these attacks. Both implement the permanent, one-time or repeated

attacks from the Project Generator-defined scenario.

Figure 51 shows the different impacts of the attacks on the Control Center Power Grid

State monitoring. We first illustrate the impact of the Packet Delayer hook on commu-

nications, causing a decrease in the number of messages received by the Control Center.

Then, the Frequency B sub-figure illustrates the variations of the measured frequency in

the system, with emphasis on the impact of the FDI attack on the values monitored by the

RTU [9]. The desynchronization attack, despite the presence of noise, shows a variation

in the period of the sine function. The sub-figure on Frequency A illustrates the impact

of the DDoS attack on a system before more bandwidth than during our validation. Here,

the DDoS attack impacts the correct exchange of TCP messages and the reception of the

associated TCP ACKs, causing the TCP protocol to send the same message again until it

receives the TCP ACK. Finally, the last sub-figure shows the impact, also visible in the

Figure 50, of the FDIA launched from the Attacker federate. It also shows the impact of

the Replay attack.

5.3.4 Comparison of Results with Existing Co-simulation Testbeds

In this Section, we compare the capabilities of our co-simulation with those of other co-

simulators, in particular the last two most advanced solutions GridAttackSim and SCADA

SIM. We thus show that our project allows a more realistic and in-depth study of complex

scenarios, while allowing a large customization and dataset generation.

The Figure 52 presents a comparison of the capabilities of the three solutions GridAt-

tackSim, SCADASIM and ASGARDS-H considering the objectives of our initial project.

Overall, our project offers complete solutions that meet all the objectives. We did not

include performance metrics, since GridAttackSim is not published as an open-source

project.

Our project first allows a more advanced configuration of the system, making it more

realistic. As GridAttackSim does not provide a configuration method for co-simulation

scenarios, it is difficult for us, without having access to the source code, to measure the
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Figure 50: Use case: Power grid states comparison with and without FDIA
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Figure 51: Use case: Attacks impacts on the monitored Power grid state
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level of customization of the project. Moreover, despite the generation of some metrics

from GridLab-D in the case of GridAttackSim or the statistics generated by OMNeT++

by default in the case of SCADASIM, we propose a complete support of the generation of

co-simulation data from each federate, with the implementation of serializers and statistics

via the statistics hook. Finally, the support of advanced options for co-simulation realism

in SCADASIM and GridAttackSim is limited, as illustrated with the absence of the built-in

Machine Learning integration feature.

Finally, our platform proposes itself as a credible alternative for the co-simulation of

Smart Grids with the future implementation of 5G networks, see [29].
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GridAttackSim (2019) SCADASIM (2019) ASGARDS-H (2020)

SG capabilities Demand Response, Dynamic Pricing Modbus, SCADA System

Passive Demand-Response, 
Synchrophasors, Dynamic Pricing, 
Standard Device communication 

capabilities

Dataset generation
No, but generates data that are used to draw curves at 

the end of the simulation
Not implemented, but OMNeT++ can 

be extended to output PCAP files
Yes (*.pcap, *.csv); Serializers; Statistics

Advanced UI
Limited. Does allow for co-simulation configuration but 

is limited to application, attack category and attack
type (single) parameters

No. Users have access to the OMNeT++ 
IDE

Yes (Project Generator, Visualizer)

Completness of co-
simulation

Basic network simulator models, with UDP, Carrier 
Sense Multiple Access and one data aggregator; no 

details about real implemented protocols

Good completeness with a real 
Modbus protocol integration; 

advanced attack scenarios 

Wired, Wireless modes; realistic
generated topology, full exploitation of 

communication parameters from
OMNeT++; advanced control of co-

simulation via the Visualizer, Attacker, 
and Controllers federates

Quick integration of 
new power grid

models

Not implemented, Three models are proposed, but no 
mechanism or documentation regarding the integration

of new ones
Not implemented Yes (Project Generator module)

Multiple attacks
studies

The project allows for multiple CPA studies (one by 
one) but the authors did not claim the implementation 

of multiple attacks or advanced configuration
Yes, but not dynamically generated

Yes (Attacks sequences at the OSI Link 
layer with advanced configuration)

Fault capability Not implemented Yes Yes (Project Generator, GridLab-D)

Quick ML integration
capability

Not considered Not considered Yes (Controllers)

Figure 52: Comparison of co-simulation testbed capabilities against our initial objectives
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Chapter 6

Discussions and Future Works

In this Section, we discuss the limitations of our project as well as future improvements.

We developed this project with scalability in mind, that is, at any point in the develop-

ment process, to enable and document methods to easily extend the contributions made by

ASGARDS-H. As a result, we have focused a lot of effort on the software architecture and

user documentation of the project, while ensuring the initial objectives. However, many

of the Smart Grids protocols and associated applications are not yet implemented. In the

future, this project can be extended in the following ways:

• Protocols: OMNeT++ implements the msg format that can be used to integrate ex-

isting protocols by specifying the exchanges message formats. These messages are

associated with Data Serializers and Deserializers. It is then possible to integrate new

protocols either by reimplementing the communication logic within OMNeT++, or

by directly integrating the source code of these protocols, as SCADASIM has done

with the Modbus protocol.

• Control Center: The Control Center implements individual applications (Demand-

Response, Dynamic Pricing, Synchrophasor). In the case of Demand-Response, the

current implementation of the OpenADR protocol is complete but the Control Center

does not take any action on the power grid to adapt consumption in real time. This

capability can be implemented via the Project Generator and may allow to extend the

capabilities of the Control Center. Furthermore, the CC does not implement SCADA

systems, since these systems can be implemented directly within the different con-

trollers.

142



• Network topology: Both types of topologies are generated following a logical and

unchanging scheme depending on the electrical model considered. The topology for

the same model can vary according to the placement of nodes and user parameters,

but the use of other types of topologies is not directly possible. For this reason,

we propose a simple method to extend the list of topologies and to implement new

logics, with no limit in number.

• 5G: The simu5G project is currently being developed as a successor to simuLTE and

will be made public in the year 2020. The integration of this project, proposed as an

extension of OMNeT++, can be simply integrated within our platform, allowing the

co-simulation of smart grids within an end-to-end 5G context.

• Electrical vehicles, software-defined networks: The advantage offered by OM-

NeT++ today lies in its modularity and the large number of modules that allow its

functionalities to be extended. We suggest the use and integration of third-party

modules for the study of specific scenarios.

• SG residential applications: The level of detail in OMNeT++ allows to set up large

scenarios where many protocols interact. For example, ASGARS-H can be extended

to include advanced scenarios such as Smart Home, Smart EV charging, and more.

• Controllers, BDD, SE: We proposed a customizable implementation of the con-

trollers in Python to allow the user to implement his own logic. It will then become

interesting to propose a modular implementation of systems such as the Bad Data

Detector or the State Estimator combined with specific actions of the controller to

allow a more advanced co-simulation and the study of attacks such as the FDIA.

In order to guarantee support over the project time frame, our documentation aims to

explain all aspects of the project, both theoretical and practical, in order to minimize the

steep learning curve that ASGARDS-H represents.

A second area of improvement is the visualizer. Our implementation allows a real-time

display of both systems, with some controls related to co-simulation. More specifically, we

allow the addition of functionalities for the control of these networks, and this improve-

ment would go hand in hand with the addition of an advanced system such as SCADA or

BDD/SE.
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Finally, we suggest that this project, at least its architecture, serve as a basis for the

development of a complete and advanced software for the co-simulation of smart grids and

5G. We believe that this modular approach allows (1) an easier contribution to the research

community, (2) the development of a solution of interest to both industry and academia,

and (3) a more advanced implementation than the similar projects we have studied in this

thesis.
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Chapter 7

Conclusion

In this thesis, multiple aspects of co-simulation, smart grids and cyber-physical attacks

were studied. Today, co-simulation is proposed as an advanced method for the systematic

and safe study of complex cyber-physical systems. The objectives are multiple: to train

personnel, to study or even discover new attacks, to develop solutions for education, to

develop new techniques for detecting and mitigating attacks, etc. Numerous projects have

been proposed, either by academia or industry, or often through collaborations between the

two, and each of them has made its own contributions to address the many issues facing

smart grids today. However, these projects are struggling to implement mechanisms that

are sufficiently complete or modular to allow the realistic study of cyber-physical systems.

In addition, cyber-physical attacks are poorly implemented. I believe that the electrical,

network and physical cyber-security communities must work together more than ever, with

the implementation of complete training courses using this type of co-simulation tools in

order to train engineers, researchers, students or technicians to develop their ability to un-

derstand the issues, the risks and to act to develop even more complete and secure systems

in the future. This thesis objective was to implement a co-simulation testbed for advanced

cyber physical attack studies and dataset generation in the context of the Smart Grid, with

Situational Awareness consideration, realism and modularity. This testbed must be easily

usable by the other users for the rest of the project and must allow the quick integration

or use of machine learning techniques. The recent integration of these machine learning

techniques for the detection and mitigation of CPA requires new tools for the study and

generation of realistic data. I believe that I have provided a complete solution that will

be used in the future for advanced scenario study and the development of innovative ML
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techniques that can work in the real world. I do not consider ASGARDS-H as the most

complete solution today compared to proprietary solutions such as OpalRT, but I believe

that ASGARDS-H brings new ways to implement smart grids co-simulations, and will

prove its usefulness in future co-simulations studies. I first implemented a co-simulation

platform integrating HELICS, OMNeT++ and GridLab-D. This platform then acquired a

modular dimension when it was included in a larger project, named ASGARDS-H, allow-

ing advanced generation of co-simulation testbeds, dataset generation and advanced study

of multifaceted scenarios (power grid faults, manual cyber attacks, manual physical attacks,

configurable cyber-physical attacks, weather, network events). The use of the project has

shown a wide variety of co-simulation possibilities, and the validation of each aspect has

allowed us to study complete scenarios and generate our first datasets. We were then able

to compare our project to similar projects such as GridAttackSim and SCADASIM, and

showed the strengths as well as the limitations of ASGARDS-H. For the future, I hope that

this platform will be able to meet the expectations of machine learning integration. Also,

I wish to see this project fully exploited: many capabilities are frequently added within

the integrated simulators, which leaves the user the possibility to extend this project as he

wishes. ASGARS-H is now specifically developed for smart grids, but will offer an inter-

esting architecture for other systems. This project will be used and improved as part of the

Ericsson GAIA program in Montreal.
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Appendix A

Natively implemented power grid model
files

Object class name Recorder properties
IEEE 13 Bus System v1 Topology 15 nodes, 9 overhead lines, 2

underground lines

Houses 16 houses equipped with ZIP

load, Water heaters and HVAC

systems

Power solver method Newton-Raphson (NR)

Weather file WA-Yakima

Model spcifications 13-bus feeder (from PES,

Power system Analysis,

Computing and Economics

Committee)

Additional parameters DELTAMODE-compatible

IEEE 13 bus system v2 Added capabilities Dynamic price market con-

trolled by an Auction object,

HVAC controllers
DistributionSim B2 G 1 Nodes 31 nodes, 33 overhead lines,

18 underground lines
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Table 7 continued from previous page
Object class name Recorder properties

Houses 497 houses with Water heater,

lighting, occupancy and plugs

and HVAC controllers
Power solver method Newton-Raphson (NR)

Weather file AZ-Phoenix

Model specifications FY11 Department of Energy

taxonomy feeder test case

(2016)

Additional parameters DELTAMODE-compatible

DistributionSim B2 G 1v2 Added capabilities Fixed HVAC loads and Dy-

namic Price Market validation
Two Communities Nodes 21 nodes, 30 triplex nodes,

47 overhead lines, 11 under-

ground lines

Houses 30 houses with HVAC, Water

heater and HVAC controllers
Power solver method Newton-Raphson (NR)

Weather file Wa-Yakima

Model specifications Two houses community model

file from the usnistgov GitHub

repository

Additional parameters DELTAMODE-compatible

Two Communities v2 Added capabilities Fixed HVAC loads and Dy-

namic Price Market validation
small testing Topology 2 nodes, 1 overhead line

Houses 1 house with HVAC and Water

heater
Power solver method Newton-Raphson (NR)

Weather file N/A

Model specifications Custom model file for quick

validation or long time co-

simulation studies
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Table 7 continued from previous page
Object class name Recorder properties

Additional parameters DELTAMODE-compatible
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Appendix B

Project Generator parameters

• fileDialog.fileUrl (stringURI): The absolute path in the file system of the chosen

GLM file. If the latter has additional files (weather, schedules), all the files must be

placed in the GLM folder of the main folder of the project generator.

• seed.value (integer): Used for reproducibility of results. This seed is used when the

user wants to study its system in a more random way.

• threads.value (integer): For compatible GLM models, one can speed-up the co-

simulation speed by specifying the number of worker threads to be more than one.

• fileDialogTMY3.fileUrl (stringURI): If the user needs to simulate a specific weather,

he or she can specify the file to use here. Note that the file must be place under the

GLM folder.

• outputRecorder.checked (boolean): By enabling this parameter, user enables the

recorder module in the GLM file to export CSV file(s) of the considered simulation.

• gLatMean.value (double): The global OMNeT++ communications fixed latency.

This parameter is proposed as a scaling parameter for the study of more unstable

systems.

• commDataRate1.value & commDataRate.currentIndex (double): The speed of com-

munication is expressed here in bps,kbps,Mbps,T bps.

• connType.currentIndex (list): Let the user choose between Wired and Wireless

modes.
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• useGUI.checked (boolean) is an option to enable or disable the OMNeT++ GUI

during the simulation. If this checkbox is unchecked, a CLI version of the OMNeT++

federate will be launched.

• useViz.checked (boolean) is an option to enable the Visualizer federate. For long-

time studies, the visualizer federate may slow-down the simulator speed.

• wireshark.checked (boolean): This parameter will enable or disable the generation

of PCAP file from the server.

• ueDist.value (boolean): an option to change the generated distance radius of RTUs

and smart meters from their Antenna.

• pMULatency.value (double): Represents the delay at the beginning of the simulation

before the RTUs starts to send their data.

• pDCLatency.value (double): The PDC latency represents the delay at the beginning

of the simulation before the concentrator starts to aggregate data.

• pMUFrequency.value & pDCFrequency.value (double): Represent the frequency

of messages sent by both PMUs to the PDCs or server and the PDCs to the server.

The default value is representative of a typical SCADA system.

• pDCWaitTime.value (double): The waiting duration or time window to aggregate

PMUs/RTUs messages before sending them to the Control Center (server).

• errorMeasurementMean.value & errorMeasurementStd.value & errorFMeasure-
mentMean.value & errorFMeasurementStd.value (double): Frequency-specific and

Phase Angle-specific added noise (mean and standard deviation) using the normal

distribution.

• ccURI.text (string): URL used by the meters using the OpenADR protocol to con-

nect to the Control Center. This will impact PCAP output files.

• openADRStartDelay.value (double): Start delay of the OpenADR protocol. This

parameter is shared among aggregators, Control Center and Smart Meters.

• openADRaggDuration.value (double): OpenADR aggregators aggregation time win-

dow.
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• openADRsendingAggfrequency.value (double): Frequency of OpenADR aggregated

sending of messages.

• openADRsendingMeterfrequency.value (double): OpenADR smart meter sending

frequency.

• openADRsendingMeteringMean.value (double): relative mean noise

added to the measurements.

• openADRsendingMeteringStd.value (double): relative standard deviation noise added

to the measurements.

• adrNoisy.checked (boolean): Enables or disables the noisy measurements for the

OpenADR protocol.

• packetDrop.checked (boolean): Activates the global packet dropping capability us-

ing the globalDROPProbability parameter. Used to simulate unstable networks.

• globalDROPProbability.value (double): Global probability to drop a message dur-

ing the co-simulation.

• firewall.text (string): The firewall configuration uses iptables-like grammar to con-

figure the firewall. Available filters are:

- -A to append one or more rules to the end of the rule-chain.

- -P to set the policy for the built-in (non user-defined) chain to the given target.

- FORWARD|INPUT|OUTPUT are filters: INPUT (for packets destined to local

sockets), FORWARD (for packets being routed through the box), and OUTPUT (for

locally generated packets).

- -p (protocol) is a filter to select specific protocols, such as SYNCHROPHASOR,

OpenADR, TCP, UDP, IP, etc.

- -d (ip/mask) is a filter to select specific range of ipv4 address (or specific ipv4

address).

- -j (rule) is mandatory and represents the rule for all packets that are considered

with the previous filters used.
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• profiles (matrixo f boolean): A 3xN matrix of all available co-simulation publications

from all federates for each profile (Operator, Defender and Attacker). Affects the

PCAP generation and the Visualizer federate.

• datasetLimit.value (integer): Defines the GridLab-D recording limit time.

• datasetInterval.value (double): Defines the GridLab-D recording interval.

• datasetStatistics.checked (boolean): Enables the recording of the co-simulation statis-

tic related datasets.

• outputFaults.checked (boolean): By enabling this option, the project generator will

add a reliability object to the GLM file to output interesting metrics from an end-user

point of view.

• metricsOfInterest.text (string) are indicators that represents indices used in the reli-

ability analysis of a distribution system.

• customerGroup.text (string) is a filter for selecting a group of users with conditions.

• maxEventLength.value & metricInterval.value & reportInterval.value (double) are

straightforward timing configuration for the metrics.

• listOfEvents (array): A list of user-configurable formatted GridLab-D events. This

array is dynamically generated.

- Event type : Auto or Manual. When using Auto mode, the event will follow a

random distribution and then can occur zero, one or multiple times.

- Fault type : GridLab-D provides a lot of possible events with the eventgen mod-

ule. Check the documentation for more details.

- Filter (auto mode): GridLab-D filter used in Auto mode to determine the targeted

module(s).

- max_outage_length : Maximum duration in seconds of an event.

- max_simultaneous : The maximum number of events that can occur at the same

time. Set -1 for infinity.
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- failure_dist : The random distribution that the event follows. E.g. following an

exponential distribution will involve more events at the beginning of the simulation

and less at the end of the simulation.

- Manual event configuration (manual mode): user editable text to specify the

starting and ending time of the event.

- restoration_dist : The random distribution followed by the reliability module for

the restoration after the event.

• listOfAttacks (array): A list of user-defined attacks or hooks. This array is dynami-

cally generated. Available attacks include PacketDropping, Replayattack,

Packetdelayer, DoS/DDoS, Integrityattack, Eavesdropping, Desynchronization,

Dynamicpricing, Statistics.

• popup.listOfSpecificConfiguration (array): Users can, in addition to global steady-

state parameters, configure one by one all OMNeT++ devices and apply specific

OpenADR, Synchrophasor, Aggregation or Communication options.

• displayLogs.checked (boolean): A UI-specific parameter to manage the outpout con-

sole.

• simStartTime.text (timestamp): The starting date of the co-simulation.

• simEnd.text (timestamp): The co-simulation end time. The total co-simulation du-

ration is dynamically computed from the start and end timestamps.

• timeStep.value (double): The GridLab-D simulation timestep, if advanced studies

are needed.

• cotimeStep.value (double): The co-simulation timestep. This represents the mini-

mum valid timestamp for simulator synchronizations. For example, GridLab-D and

OMNeT++ will use this co-simulation value, while the Market federate will synchro-

nizes less frequently, according to the market duration.

• simSpeed.value (double): The default simulation speed, e.g. if the scenario requires

a real-time co-simulation.

• output.checked (boolean): Enables dataset capability for the testbed.
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• attacks.checked (boolean): Enables the Attacker Federate.

After generating the project, the user can manually configure the testbed with the fol-

lowing parameters:

• Controller federates code (Market and Power Grid), in order to change their be-

havior, add advanced features (State Estimation, Bad Data Detector, IDS), specific

attacks (Malicious code).

• Customize the OMNeT++ event file via the lifecycle configuration file to simulate

equipment faults within OMNeT++, disconnections etc.

• Add player files within the GridLab-D model to manually alter some aspects of the

co-simulation and activate the subsecond mode.
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Appendix C

Attacker Federate Architecture
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Appendix D

Dataset default columns

• Frame Number: The message frame number;

• Link Layer Protocol: PPP, eth, etc.;

• Epoch: The relative time the message was received or sent;

• Date: A complete timestamp according to the co-simulation dates;

• Frame Length: The packet size;

• Network layer Protocol: Either TCP or UDP;

• IPv4 Source Address;

• IPv4 Destination Address;

• Time To Live;

• Source Port;

• Destination Port;

• Flags: TCP or UDP flags of the message;

• Application Layer protocol: HTTP, Synchrophasor;

• RAW Data: AN hexadecimal view of the raw message data;

• Synchrophasor/OpenADR extracted Measurements/Text: N columns that con-

tains all extracted measurement values from known monitoring packets.
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Appendix E

Built-in ASGARDS-H GridLab-D
recorders

Object class name Recorder properties
load load_class, measured_voltage_AB.real, measured_voltage_BC.real, mea-

sured_voltage_CA.real, constant_power_A.real, constant_power_B.real,

constant_power_C.real, constant_current_A.real, constant_current_B.real, con-

stant_current_C.real, constant_impedance_A.real, constant_impedance_B.real,

constant_impedance_C.real, measured_power_A.real, mea-

sured_power_B.real, measured_power_C.real, measured_voltage_A.real, mea-

sured_voltage_B.real, measured_voltage_C.real, measured_voltage_AB.imag,

measured_voltage_BC.imag, measured_voltage_CA.imag, con-

stant_power_A.imag, constant_power_B.imag, constant_power_C.imag,

constant_current_A.imag, constant_current_B.imag, constant_current_C.imag,

constant_impedance_A.imag, constant_impedance_B.imag, con-

stant_impedance_C.imag, measured_power_A.imag, mea-

sured_power_B.imag, measured_power_C.imag, measured_voltage_A.imag,

measured_voltage_B.imag, measured_voltage_C.imag

house air_temperature, outdoor_temperature, thermostat_deadband, heating_demand,

cooling_demand, total_load, hvac_load
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Table 8 continued from previous page
Object class name Recorder properties
meter measured_voltage_A, measured_voltage_B, measured_voltage_C,

measured_current_A, measured_current_B, measured_current_C,

measured_power_A, measured_power_B, measured_power_C, mea-

sured_real_energy, measured_reactive_energy, measured_power, mea-

sured_demand, measured_real_power, measured_reactive_power, bill_day,

price, monthly_fee, monthly_bill, previous_monthly_bill, monthly_energy,

previous_monthly_energy, bill_mode, first_tier_price, second_tier_price,

third_tier_price, first_tier_energy, second_tier_energy, third_tier_energy

link voltage_A.real, voltage_B.real, voltage_C.real, voltage_AB.real, volt-

age_BC.real, voltage_CA.real, current_A.real, current_B.real, cur-

rent_C.real, measured_angle_A, measured_frequency_A, measured_angle_B,

measured_frequency_B, measured_angle_C, measured_frequency_C,

measured_frequency, power_A.real, power_B.real, power_C.real,

shunt_A.real, shunt_B.real, shunt_C.real, mean_repair_time, bustype,

maximum_voltage_error, busflags, voltage_A.imag, voltage_B.imag,

voltage_C.imag, voltage_AB.imag, voltage_BC.imag, voltage_CA.imag, cur-

rent_A.imag, current_B.imag, current_C.imag, power_A.imag, power_B.imag,

power_C.imag, shunt_A.imag, shunt_B.imag, shunt_C.imag

fuse status, mean_repair_time

triplex_meter mean_repair_time

triplex_node measured_real_energy, measured_reactive_energy, measured_power.real,

measured_demand, measured_real_power, measured_reactive_power,

indiv_measured_power_1.real, indiv_measured_power_2.real, in-

div_measured_power_N.real, measured_current_1.real, mea-

sured_current_2.real, measured_current_N.real, measured_voltage_1.real,

measured_voltage_2.real, measured_voltage_N.real, measured_power.imag,

indiv_measured_power_1.imag, indiv_measured_power_2.imag, in-

div_measured_power_N.imag, measured_current_1.imag, mea-

sured_current_2.imag, measured_current_N.imag, measured_voltage_1.imag,

measured_voltage_2.imag, measured_voltage_N.imag, bill_day, price,

monthly_fee, monthly_bill, previous_monthly_bill, monthly_energy, pre-

vious_monthly_energy, bill_mode, first_tier_price, second_tier_price,

third_tier_price, first_tier_energy, second_tier_energy, third_tier_energy
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Table 8 continued from previous page
Object class name Recorder properties
switch voltage_1.real, voltage_2.real, voltage_N.real, voltage_12.real, volt-

age_1N.real, voltage_2N.real, bustype, maximum_voltage_error, busflags,

voltage_1.imag, voltage_2.imag, voltage_N.imag, voltage_12.imag, volt-

age_1N.imag, voltage_2N.imag

triplex_load status

node measured_voltage_1.real, measured_voltage_2.real, measured_voltage_N.real,

measured_voltage_1.imag, measured_voltage_2.imag, mea-

sured_voltage_N.imag
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Appendix F

Testbed use case parameters

Model description IEEE 13 Bus System with Voltage players and residential module.

Hooks/Attacks statistics 12 hooks

Co-simulation timestep 100ms

Start / End time From 2020-01-01 12:00:00:000 to 2020-01-01 12:15:00:000

Dataset generation Yes (PCAP, Statistics, GridLab-D)

Communications 10Mbps Wireless (4G LTE)

Attack 1
Eavesdropping. From t = 60s to t = 180s, targets all routers incom-
ing/outgoing packets.

Attack 2
Packet delayer. From t = 60s for 60s (repeat mode every 60s). Im-
plements a fixed delay using the uniform random distribution (be-
tween 0s and 0.25s). Targets all PMUs with the filter router[1∗.

Attack 3
Packet delayer. Targets the firewall outgoing packets. Starts at
t = 300s, lasts 5s with a 5.01s fixed delay.

Attack 4 Integrity. targets all RTUs in live mode.

Attack 5

DDoS. Attacker targets (1) router[13], (2) router[8] and (3)
router[3]. (1) impersonate router[6] and attacks the server with a
10µs delay between two packet sending. (2) and (3) impersonate
router[11] and RTU [8] and attacks the server with a 07s delay be-
tween two packet sending. Attack starts at t = 600s and lasts 5s.

Hook 6 Statistics. From the Firewall point of view.

Attack 7
Desynchronization attack. Targets all PMUs with the filter
RTU [2∗. Attack starts at t = 500s with a fixed 200ms desychro-
nization and lasts 150s.

Attack 8
Replay attack. Targets RTU[5] outgoing packets and starts at t =
80s, recording 60s and replaying after 200s.

Attack 9 Packet dropping. Targets the firewall, live attack.

Lifecycle router[2] crashes at t = 50s and restarts at t = 60s.

Specific configuration RTU[0] sends its messages every 200ms.
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Appendix G

Generated datasets statistics

Device name Dataset number of packets and size
IEEE 13 Nodes 67,995 packets. 67,450,386-bytes long (67MB).

atk_router[0]_hppp 42,493 packets. 44,997,827-bytes long (45MB).

atk_router[1]_hppp 11,791 packets. 5,021,487-bytes long (5MB).

atk_router[2]_hppp 338,715 packets. 203,376,893-bytes long (203MB).

atk_router[3]_hppp 59,391 packets. 40,535,689-bytes long (41MB).

atk_router[4]_hppp 17,173 packets. 6,578,495-bytes long (7MB).

atk_router[5]_hppp 17,361 packets. 6,687,105-bytes long (7MB).

atk_router[6]_hppp 17,173 packets. 6,578,495-bytes long (7MB).

atk_router[7]_hppp 17,193 packets. 6,584,667-bytes long (7MB).

atk_router[8]_hppp 34,193 packets. 32,159,699-bytes long (32MB).

atk_router[9]_hppp 17,173 packets. 46,578,495-bytes long (7MB).

atk_router[10]_hppp 11,843 packets. 5,010,895-bytes long (5MB).

atk_router[11]_hppp 23,123 packets. 8,770,021-bytes long (9MB).

atk_router[12]_hppp 28,807 packets. 30,524,753-bytes long (31MB).

atk_router[13]_hppp 331,762 packets. 206,571,669-bytes long (207MB).

atk_router[14]_hppp 11,811 packets. 5,001,185-bytes long (5MB).
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