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Abstract

A submodular representation for hub network design problems with profits
and single assignments

Maryam Hemmati

Hub network design problems (HNDPs) lie at the heart of network design planning

in transportation and telecommunication systems. They constitute a challenging class of

optimization problems that focus on the design of a hub network. In this work, we study a

class of HNDPs, named hub network design problems with profits and single assignments,

which forces each node to be assigned to exactly one hub facility.

We propose three different combinatorial representations for maximizing the total profit

defined as the difference between the perceived revenues from routing a set of commodi-

ties minus the setup cost for designing a hub network, considering the single allocation

assumption. We investigate whether the objective function of each representation satisfies

the submodular property or not. One representation satisfies submodularity, and we use it

to present an approximation algorithm with polynomial running time. We obtain worst-

case bounds on the approximations’ quality and analyze some special cases where these

worst-case bounds are sharper.
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Chapter 1

Introduction

In the broad areas of facility location and network design, Hub-and-spoke refers to

a distribution architecture that has been widely used to route flows efficiently, especially

when the problem involves routing commodities or information between several origins

and destinations. The main feature of hub-and-spoke networks is in the transshipment,

consolidation and sorting points, called hub facilities, instead of establishing direct con-

nections for a large number of origins and destinations. Flows with the same origin but

different destinations are consolidated when routed to the hub sites. Then, the flow from

different origin but the same destination gets combined (i.e. consolidated, sorted, labelled,

and assembled) in the hubs and rerouted to their destination directly or possibly via another

hub. This reduces the total set-up cost, improves the handling of the commodities by cen-

tralizing the network and results in economies of scale due to the reduction of costs through

consolidation of flows.

Most Hub Location Problems HLPs belongs to the class of N P-hard problems. Their

fundamental difficulty originates from the interrelation between two levels of decisions.

The first level of decision is the location decisions that determine where to open hubs,

whereas the second level is the network design decisions that activate links in the network

and define paths for routing the commodities. In this work, we concentrate on discrete
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location decision; that is, a predefined set of possible sites to open hubs is given. It is mostly

assumed that Discrete HLPs are typically modelled using a graph (i.e., a set of nodes and

edges or arcs). More formality on the definitions will be provided in the following chapters.

The existing literature in this field focuses mainly on the classic version of HLPs called

Hub Node Location Problem (HNLP). In HNLPs, one can benefit from using links that are

commonly known as hub links or hub arcs between chosen hubs without incurring set-up

costs. Therefore, on HNLPs, hubs are fully interconnected. Moreover, when we assume

that each non-hub site must be connected to at least one hub, the final selection of hubs and

links defines a feasible solution in that all commodities may be routed in such a network.

However, in various applications, there are set-up costs for installing hub arcs (i.e.,

telecommunication or pipeline networks). Therefore, other variants within HLPs have been

developed. In particular, Hub Arc Location Problems (HALPs) neglect the assumption that

hubs are fully connected and incorporate the rest of the above assumptions with activating

hub arcs and the corresponding set-up costs of the both set of hub nodes and hub arcs. In

some cases, a cardinality constraint is enforced on the number of hub arcs that may be

opened. All these modifications make HALPs optimality conditions differ from HNLPs.

HLPs are applied the most in the network design planning of transportation and telecom-

munication industries. Depending on the applications and assumptions, the objectives of

HNLPs and HALPs aim to minimize the total cost or maximize the profit obtained by

serving demand nodes. In the maximization case, the profit considers not only the trans-

portation cost for serving (routing) flows, but it may consider additional set-up costs of

installing facilities like hub nodes and hub arcs. In some cases, it is possible to ignore the

set-up costs and reflect it by restricting the problem to serve all demands or ignore installing

a facility along with making benefits from the discount factor. Generally, these hypotheses

make the total costs of the network compensated by the total captured profit. However,

for some problems, there might be other factors on the decisions of the origin/destination
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(O/D) nodes and their associated commodities that significantly impact the operational

costs, which are not negligible.

Several applications stem from HLPS in transportation systems. These include pas-

senger transportation, airfreight, postal services, express package delivery, trucking and

shipping, public transportation, and rapid transit systems. Demand in these models appears

in the form of passengers or packages that go through hub nodes such as transit airports in

the airline industry. Hub arcs in such applications could be physical or non-physical links.

Examples of physical links include railways transportation, which could be associated set-

up costs for them; on the other hand, non-physical links appear in the airline industry or

maritime industry, and there is mostly no set-up cost related to these type of links. It is good

to mention that sometimes, access arcs may need the installation of physical links such as

installing fibre optic links in telecommunication networks. The economy of scale of con-

solidating flow through such a network is not only enabled from routing flows between hub

nodes but also between O/D nodes.

Applications of HLPs in telecommunication networks arise in the configuration and

design of various data networks. Demand usually corresponds to electronic data that needs

to be routed on physical links such as co-axial cables, fibre optic links, or non-physical

links (i.e. air) like satellite channels and microwaves. The hardware such as concentrators,

multiplexers and switches corresponds to hub facilities. The data transmission through

such a network resulted in economies of scale and increased network utilization. Large

set-up costs of hub nodes and communication links have given the motivation to apply

hub-and-spoke architecture in telecommunication networks.

Broadly speaking, there are different strategic decisions on how to route the flows be-

tween O/D nodes (i.e. how to allocate the nodes to the hubs). Each of the non-hub nodes

(i.e. spokes) might be allocated either to a single hub or multiple hubs. In some cases, we

might route a commodity from a path that results in gaining the maximum profit ( minimum
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cost). Therefore, there might be multiple options to link O/D nodes to the set of hub nodes

to route a specific commodity, which results in assigning each non-hub node to several hubs

(multiple allocations). On the other side, in some cases, there is a need to install physical

links between non-hub nodes and hubs, such as installing fibre optic links in telecommu-

nication networks, which incurs additional set-up cost. One might also aim to make the

handling and operation easier through the network with single allocation. Therefore, it is

more efficient to design the network in a way, so that are assigned each non-hub node of

the network to exactly one hub (single allocation).

In this work, we study a class of problems in hub location denoted as the Hub Net-

work Design Problem with Profits and Single Assignments (HNDPSA). The objective of

HNDPSA is to maximize the total profit by measuring the trade-off between the revenue

from serving a set of commodities and the total cost of designing the network. We propose

three representations for modelling the HNDPSA. In all representations, the strategic de-

cisions consist of (i) determining the nodes to open as hubs and which hub arcs should be

activated, and (ii) how to assign the nodes to the opened hub nodes with a single allocation

strategy (i.e., which path should be chosen to route a commodity) to maximize the objective

function.

We overview a property named ’submodularity’ of the objective function, which we

formally define in the next chapter. We aim to obtain a representation for the HNDPSA such

that the objective function satisfies submodularity. After finding counterexamples for two

different representations, we progressively reached a representation where the objective

function is submodular. We then propose a greedy heuristic algorithm to approximate the

optimal solution value. We focus on the mathematical insights and prove the proposed

algorithm runs in polynomial time. We show the quality of the approximation achieved by

the designed algorithm using theoretical aspects.

The contribution of this research is four-fold. First, we state three representations for the
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HNDPSA as the maximization of a set function subject to linear constraints. To the best of

our knowledge, this is the first work that studies HNDPSA using set functions. Second, we

prove the objective function of one of the representations satisfies submodularity. Third, we

use the submodular representation to obtain the worst-case performance results of a greedy

heuristic for the HNDPSA when the objective function is also non-decreasing. In par-

ticular, when the profit function is non-decreasing, we propose a (1− 1/e)-approximation

algorithm. HLPs mostly have been studied when the intermediate nodes between O/D pairs

are hub nodes. Fourth, we incorporate this assumption when considering O/D nodes are

hub nodes as well.

The remainder of this thesis is organized as follows. In Chapter 2, we present the

main features and assumptions of HNDPSA and review the most relevant literature to the

HLPs and submodularity. In Chapter 3, we propose three representations for which we

either provide counterexamples for disproving submodularity or mathematically prove it.

Chapter 4, we provide a polynomial-time greedy heuristic, study its complexity, and present

its theoretical worst-case bound. Finally, in Chapter 5, we present the research conclusions

and provide directions for future studies.
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Chapter 2

Preliminaries and Literature Review

In this chapter, we start by introducing the basic features of HLPs, including their as-

sumptions, properties, and widely employed objectives. We also introduce the mathemat-

ical definition of a submodular function with a brief literature review. Then, we focus on

the literature review of HLPs along with the single allocation HLPs.

2.1 Features and assumptions

The primary recognizing features of HLPs can be outlined as follows:

I. Demand is associated with flows between O/D pairs.

II. The intermediate nodes on the O/D path should be hub facilities that act as trans-

shipment and consolidation points.

III. The objective of HPLs could be cost-based (or service-based), which relies on the

scope of the concrete application (locating hubs and selecting links of routing flows).

IV. Routing through hubs results in a benefit.

We denote the discount factor parameter by α (0 ≤ α ≤ 1), which is used to represent

reduced unit flow costs on hub arcs due to economies of scale. Each O/D path’s length

determines the unit flow cost between its O/D nodes. Therefore, each O/D path may contain
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a collection leg from the non-hub origin to the first hub, possibly a transfer leg between

hubs, and a distribution leg from the last hub to the non-hub destination. Note that not all

O/D paths contain a transfer leg and might be connected through one hub node.

Four common assumptions underline most HLPs:

1. Flows have to be routed through hub nodes, which could be either one hub or, at

most, two hubs.

2. For routing each flow, the distance should satisfy the triangle inequality.

3. The O/D nodes of a given flow could be either a hub node or a non-hub node.

4. The discount factor α for the arcs connecting hubs should be constant regardless of

the amount of flow routed on each hub arc.

The above assumptions describe the structure of O/D paths. We should note that in

HNLPs, the set-up cost of installing hub arcs is equal to zero, and this results in a complete

subgraph on the set of hub nodes with no extra cost. A consequence of the assumption of

1 is that the direct linking between two non-hub nodes is not allowed. However, two nodes

may be linked directly if at least one of them is a hub node. Therefore, in the solution

network, commodities pass through at most three types of arcs, access arcs, hub arcs

and bridge arcs. Access arcs connect non-hub nodes to hub nodes. Both hub arcs and

bridge arcs connect two hub nodes. However, hub arcs have an associated set-up cost and,

therefore, benefits from a discount factor α that results in economies of scale. In contrast,

bridge arcs connect two hub nodes without having a reduced unit flow cost parameter α.

Although the discount factor α reduces the unit transportation cost between two hub nodes,

in some cases of HALPs, activating a hub arc is much more costly than saving from the

discount of applying α. Therefore, for those cases, routing through a bridge arc is more

beneficial than paying the set-up cost of activating a hub arc. As a result, in HNLPs, each

O/D path includes no intermediate hub, a single intermediate hub node and no intermediate

hub arc, two hub nodes, and a single intermediate hub arc. Whereas in HALPs, each O/D
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path may include no intermediate hub nodes, single hub nodes and no intermediate hub arcs

or two intermediate hub nodes. An intermediate arc between these hubs could be either a

hub arc or an access arcs. Note that if O/D nodes are hubs, the arcs between them and the

intermediate hub nodes (or the direct arc between them) could be either hub arcs or access

arcs.

There are three possible allocation strategies for assigning non-hub nodes to the se-

lected hubs: multiple assignments, single assignment, and r-allocation. In the multiple

assignments strategy, we first select the hub nodes, and then we find the shortest path con-

necting each O/D pair. This may result in assigning non-hub nodes to more than one hub.

This pattern simplifies the routing decision and creates flexibility in designing the hub net-

work. However, it may significantly increase network design costs since we might activate

many access links. Hence, multiple assignments are more applicable when there is no set-

up cost for access links such as air freight and passenger travels, public transportation, and

rapid transit systems. There are no physical links in these cases, or there may exist physical

infrastructure (i.e., road or highway); therefore, there would be no set-up cost for access

arcs.

O/D nodes must be linked to exactly one hub node in the single assignment strategy,

which makes the problem more challenging. Commodities with the same origin (or desti-

nation) must be routed via the same access arcs. Thus, in the single assignment version,

we either need to install physical links (access arcs) such as installing fibre optic links in

telecommunication or attempting to take care of the operation through the network.

The r-allocation problem is a cross-over that takes advantage of both single assignment

and multiple assignment strategies. In this case, each non-hub node can be connected to at

most r hub nodes. It has more flexibility for choosing the cheaper path and, at the same

time, it controls the number of opened access arcs in the designing of the network.
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2.2 Submodular set functions

Submodularity is a property of set functions. We present a brief review of combinatorial

optimization problems and the definition of submodular set functions. Then we present a

brief literature review on submodular functions.

Definition 2.1. (see Nemhauser and Wolsey, 1988) Let N = {1, ..., n} be a finite set and

let c = (c1, ..., cn) be an n-dimension vector. For F ⊆ N , define c(F ) =
∑

j∈F cj . Suppose

we are given a collection of subsets F on N . A combinatorial optimization problem is

max{c(F ) : F ∈ F}. (1)

The concept of submodularity in a discrete space is close to that of convexity in the con-

tinuous space. Accordingly, Frank et al. (1982) results show a polynomial-time algorithm

exists to find the minimum of a submodular function. Surprisingly, a submodular function

somewhere also acts similar to concave functions (see Lovász, 1983). In continuous space,

one way to maximize a concave function ( minimize a convex function ) or approximate the

maximum value of the function is to use the gradient vector of the function as the ascent

(decent) direction. The derivative of a function f shows the slope of the tangent line. In the

case of a concave function, this slope decreases when the input of the function increases.

Here submodularity is deeply akin to concavity. If f : R −→ R is a concave function,

then f ′(x) is non-increasing for x ∈ R. Accordingly, we want to evaluate the sensitivity to

change of a discrete function. Let ∂zS(j) = z(S ∪ {j}) − z(S) for j ∈ N is defining the

discrete derivative for the function z (see Stobbe and Krause, 2010). Then, z is submodular

if for each S ⊆ T ⊆ N and j ∈ N \ T , the following is satisfied ∂zS(j) ≥ ∂zT (j), which

means the discrete derivative should be non-increasing.

Supermodularity is the inverse of submodularity and is similar to convexity in the sense

that the derivative of the function is nondecreasing. Thus, for a supermodular function, the
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discrete derivative should be nondecreasing (see Fujishige, 1984).

Now we present the definition of a submodular function (see Nemhauser et al., 1978).

Definition 2.2. LetN be a finite set and z : 2N → R be a real-valued function. The function

z is submodular if it satisfies z(S) + z(T ) ≥ z(S ∪ T ) + z(S ∩ T ) for all S, T ⊆ N .

In what follows, we denote the discrete derivative via ρj(S) = z(S ∪ {j}) − z(S)

for j ∈ N , which is also known as the incremental value for a submodular function. The

following lemma provides another equivalent inequality for the definition of submodularity

via the concept of discrete derivative.

Lemma 2.1. (see Nemhauser et al., 1978) The following statements are equivalent and

define a submodular set function.

(a) z(S) + z(T ) ≥ z(S ∪ T ) + z(S ∩ T ), ∀S, T ⊆ N .

(b) ρi(S) = z(S ∪{i})− z(S) ≥ z(T ∪{i})− z(T ) = ρi(T ), ∀S ⊂ T ⊂ N , i ∈ N \T

Lemma 2.1 part (b) shows that the increments of adding a single element to a smaller

subset are more than adding the same element to a larger set. Grötschel et al. (1981)

provided a polynomial-time algorithm to minimize a submodular function, whereas maxi-

mizing a submodular function is in the class of N P-hard problems.

Maximization of a submodular set function has started to be attractive for researchers

with the seminal work of Nemhauser et al. (1978), where they maximize a combinatorial

representation for the k-median location problem to approximate an optimal solution us-

ing greedy heuristics and LP-relaxations. Nemhauser et al. (1978) presented a worst-case

performance result for the specific structured greedy algorithm for a nondecreasing sub-

modular function z, and they obtained a sharper bound when z(∅) = 0. They show their

results for k-median location problem as an example that we explain below.

Let N be the set of facilities and I be the set of customers. Consider a non-negative

matrix C|I|×|N | = (cij) such that i ∈ I and j ∈ N . For each nonempty S ⊆ N , let
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z(S) =
∑

i∈I maxj∈S cij , be the objective function and z(∅) = 0. The problem is to find

an S such that S ≤ K and K is an integer (K ≤ n) such that z(S) is maximum; i.e.,

max
S⊆N
{z(S) : |S| ≤ K, z(S) is submodular}. (2)

The proposed greedy heuristic in Nemhauser et al. (1978) firstly solves the problem for

K = 1 and then iterates on the K and approximates the value of the z. When cardinality

of S reaches to an integer p (|S| = p), and while the number of opened facilities does not

violate the cardinality constraint, the iteration p+ 1 is determined by adding an element j∗

to S (if possible) such that z(S ∪ {j∗}) = maxj /∈S z(S ∪ j) and z(S ∪ j∗) ≥ z(S), which

results in the following bound:

value of greedy approximation
value of the optimal solution

≥ 1− (
K − 1

K
)
K

≥ e− 1

e
(3)

Later Nemhauser and Wolsey (1981) proposed a cutting plane method and a branch-and-

bound algorithm to obtain the optimal solution while maximizing a submodular function of

p-Median Problems (p-MPs). Wolsey (1982) analyzed a greedy algorithm for the submod-

ular set covering problem. Fujito (2000) minimized a linear function subject to nondecreas-

ing submodular constraints. Later, Sviridenko (2004) studied the maximization problem of

a non-negative submodular set function subject to a knapsack constraint and obtained the

same worst-case bound in which the solution achieved by an algorithm is at most 1 − 1
e

times of the optimal solution. For the problem of maximizing a monotone submodular

function subject to an arbitrary matroid, Calinescu et al. (2011) presented a randomized

algorithm with worst-case bound. Kulik et al. (2009, 2013) provided a non-exact algo-

rithm for maximizing a nondecreasing and non-negative submodular function subjected to

multiple linear and knapsack constraints. Contreras and Fernández (2014) studied the min-

imization of a supermodular function subject to two cardinality constraints for HLPs with
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multiple allocations. Ljubić and Moreno (2018) proposed a solution for a family of com-

petitive facility location problems by combining two cutting plane methods, which include

outer-approximation cuts and submodular cuts. Ortiz-Astorquiza et al. (2017) provided

a combinatorial representation for the multi-level facility location problem that satisfies

submodularity, then Ortiz-Astorquiza et al. (2019) proposed a mixed-integer programming

formulation and an exact algorithm based on a Benders reformulation to compare the qual-

ity of the bound of the submodular representation. Recall that there might be different

combinatorial representations for an optimization problem, some may satisfy submodular-

ity, and some may not. Therefore, we should note that submodularity is a property of a

function of a representation of a given problem. Some of the first papers developed a solu-

tion method for Multi-level Uncapacitated Facility Location Problem (MUFLP) using the

representations of Ro and Tcha (1984) and Tcha and Lee (1984). However, submodularity

was proved just for single level of UFLP by Nemhauser et al. (1978). It was assumed sub-

modularity extends directly from the single level cases to multi-level cases. Later, Barros

and Labbé (1994) provided a counter-example that shows the corresponding representation

of MUFLP does not satisfy submodularity. However, Ortiz-Astorquiza et al. (2015) pro-

posed another ground set and combinatorial representation that satisfies the submodularity

for MUFLP.

We study the submodularity property over different combinatorial representations (Def-

inition 2.1) for the HNDPSA. We prove the submodularity of the objective functions con-

sidering the following definitions and lemmas (Nemhauser et al., 1978; Ortiz-Astorquiza

et al., 2015, see);

Definition 2.3. Let N be a finite set and z a real-valued function on the subsets of N .

(a) z is submodular if ρi(S) ≥ ρi(T ), ∀ S ⊆ T ⊆ N and i ∈ N \ T

(b) z is non-decreasing if ρi(S) ≥ 0, ∀ S ⊆ N and i ∈ N .

Lemma 2.2. Let dj be the weight of j ∈ N . Then, the linear set function f(S) =

12



−
∑

j∈S dj is submodular function.

Lemma 2.3. A positive linear combination of submodular functions is submodular.

2.3 A review on HLPs

The interest for studying HLPs has grown with the seminal work of O’Kelly (1986) for

models in a continuous space. Later, O’Kelly (1987) provided a quadratic integer model,

and, Campbell (1994) proposed the first mixed-integer linear programming formulation for

HLPs. For the last three decades, HLPs have been widely used to solve different problems

in numerous industries. One of the first papers by O’Kelly and Lao (1991) formulated

HLPs for an air freight network. Jaillet et al. (1996) proposed a formulation for capaci-

tated airline networks. Ernst and Krishnamoorthy (1996) involved hub location for postal

delivery systems. Yaman and Carello (2005) studied HLPs in telecommunication and com-

puter systems. Nickel et al. (2001) and Maheo et al. (2019) considered HLPs in public

transportation.

Most of the papers on HLPs focuses on the discrete space. For studying HLPs in the

continuous space, we refer the reader to O’Kelly (1986), Aykin (1988), O’Kelly and Miller

(1991), Klincewicz (1998), Wieberneit (2008), Campbell (1990, 2013), and Mahmassani

et al. (2013).

HLPs are closely similar to Facility Location Problems (FLPs). As a result, HLPs

have also been studied as: p-hub median problems, analogous to a p-median in the FLPs,

which is when the number p of hubs to be located is given, and the goal is to minimize

the average distance from non-hub nodes t those p facilities (Campbell, 1996; Ernst and

Krishnamoorthy, 1998a; Garcı́a et al., 2012);

p-hub center problems, similar to the p-center problems in FLPs, which is to select

exactly p hubs and allocate non-hub nodes to the determined hubs in a way to minimize the
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longest distance between non-hub nodes and hub nodes(Campbell, 1994; Kara and Tansel,

2000; Ernst et al., 2009);

In Hub covering problems, like the covering problem in FLPs, the number of hubs

(facilities) is not predetermined, and the goal is to minimize the total cost of the opening

hub and transportation such that each O/D pair should be served (Kara and Tansel, 2003;

Calık et al., 2009).

All these problems can be classified into capacitated and uncapacitated problems anal-

ogous to FLPs. The capacity limitations could be on the cardinality of hub nodes (Ernst

and Krishnamoorthy, 1999) or hub arcs (Labbé and Yaman, 2004; Campbell et al., 2005

a,b). Depending on the application, there may exist other assumptions for HLPs such as

hub congestion (Elhedhli and Hu, 2005), stochasticity (Contreras et al., 2011a), (Rostami

et al., 2018), and timing considerations (Kara and Tansel, 2001), (Alumur et al., 2012).

A detailed review of HLPs, their classification, and solution approaches can be found

in the following surveys. O’Kelly and Miller (1994) and Campbell (1994c) gave one of the

first surveys for HLPs that classifies basic models and topological structures for network

design. Klincewicz (1998) presented a survey HLPs for telecommunication, and Bryan

and O’kelly (1999) provided a review for the use of HLP in air transportation networks.

Campbell et al. (2001) again investigated HLPs and brought a comprehensive survey that

concludes locating hubs is a crucial decision in HLPs. Alumur and Kara (2008) prepared

a survey on the progress of HLPs in the literature and classified the works based on their

assumptions. Campbell and O’Kelly (2012) again provided a survey investigating new

approaches and directions of HLP. Farahani et al. (2013) studied several classes of HLPs

and reviewed their solution methods. Contreras and O’Kelly (2019) wrote about a con-

cise overview of the main developments and most recent trends in hub location research.

Also, they talked about the most successful integer programming formulations and efficient

algorithms for HLPs.
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Now, we provide a brief review of the single allocation version of HLPs. O’Kelly

(1992) proposed the first mathematical model for the uncapacitated single allocation hub

location problem (USAHLP) as a quadratic integer programming formulation. Campbell

(1994) presented the first mixed-integer linear program for the single allocation p-hub me-

dian problem (SAPHMP), minimizing the total flow costs between all pairs of nodes subject

to the given number p of the hub. Skorin-Kapov et al. (1996) and Ernst and Krishnamoor-

thy (1996) proposed a path based Mixed-Integer Linear Programming (MILP) formulation

for the USAHLP. Ernst and Krishnamoorthy (1999) studied the capacitated single allo-

cation hub location problem (CSAHLP). Contreras et al. (2009) obtained a tight upper and

lower bounds for capacitated hub location problem with a single assignment (CLPSA) by

applying the Lagrangian and relaxation method. Contreras et al. (2011b) solve CLPSA

via a branch-and-price algorithm for Ernst and Krishnamoorthy (1999) formulation using

the bounds achieved from Lagrangian relaxation method in Contreras et al. (2009). Cor-

reia et al. (2010) extended Ernst and Krishnamoorthy (1999) formulation for CSAHLP by

adding hub capacities to the set of decision variables. Rostami et al. (2018) provided a

new linearization of the quadratic formulation for hub location problem with single allo-

cation. Meier and Clausen (2018) solved instances with up to 200 nodes taken from the

Australian Post (AP) data set using the mentioned linearization for both the capacitated and

uncapacitated versions of the SAHLP. For multiple allocation version of HLPs, we refer the

interested readers to Campbell (1996) and Ernst and Krishnamoorthy (1998b).

Many works have also proposed several heuristics algorithms to solve single allocation

HLPs due to their intrinsic difficulty. O’Kelly (1987) showed that USAHLP is N P-hard,

and developed two enumeration-based heuristics. In the first heuristic, each non-hub is

allocated to its nearest hub. In the second one, each non-hub gets linked to one of the

first two nearest hubs. Klincewicz (1992) proposed a tabu search heuristic and a random-

ize greedy heuristic for single allocation HLPs. Skorin-Kapov and Skorin-Kapov (1994)
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propose tabu search heuristic for the Uncapacitated Single Allocation p-Hub Median Prob-

lem (USApHMP). Ernst and Krishnamoorthy (1996) presented a new linear programming

(LP) formulation for the problem, proposed simulated annealing heuristic to obtain upper

bounds for the problem, and then applied the branch-and-bound method to obtain the exact

solution. Campbell (1996) developed two greedy exchange heuristics and proved that solv-

ing multiple allocations p-hub median problem provides a lower bound for the single allo-

cation SAPHMP. Abdinnour-Helm (2001) provided abound for USApHMP via simulated

annealing method. Chen (2007) improved the bound for USAHLP by providing a hybrid

heuristic based on the simulated annealing method. Silva and Cunha (2017) proposed an

efficient multistart tabu search heuristic and a two-stage integrated tabu search heuristic,

respectively, to solve USAHLP. Calık et al. (2009) provides a tabu search heuristic for the

single allocation hub covering problems for incomplete hub networks. Jabalameli et al.

(2012) proposed an efficient simulated annealing-based heuristic to solve a single alloca-

tion hub covering problems. Saboury et al. (2013) developed two-hybrid heuristics which

incorporate a Variable Neighborhood Search (VNS) algorithm into the framework of simu-

lated annealing and tabu search for solving hub location problem for a complete backbone

graph. Abyazi-Sani and Ghanbari (2016) improved the existing bound via an efficient tabu

search-based heuristic for solving the USAHLP. Later, Silva and Cunha (2017) developed

another tabu search heuristic for the uncapacitated single allocation p-hub covering prob-

lem. Dai et al. (2017) proposed a heuristic algorithm called the general contraction method

(GCM) to solve large-scale instances of the single allocation HLPs. Ghaffarinasab et al.

(2018) developed Simulated annealing based algorithms to solve both single and multiple

allocations p-hub maximal covering problems. Lüer-Villagra et al. (2019) reformulated

single allocation p-hub median problem as a general piecewise-linear function and solved

it with a metaheuristic.
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Chapter 3

Problem Representation

In this chapter, we first present fundamental definitions and assumptions that we use

throughout our study of HNDPSA. Then, we propose three different combinatorial repre-

sentations for HNDPSAs. For the first two representations, we provide counterexamples to

disprove the submodularity of the objective functions. For the last one, we directly prove

that the objective function is submodular.

3.1 Fundamentals

Let G = (N,E) be a complete undirected graph without loops, where N is the set

of nodes, and E is the set of edges. We define K as a set of commodities, where each

commodity k ∈ K is defined as a pair of nodes (i.e., k = {i, j}), and a positive amount of

flow Wk that needs to be routed between the endpoints of commodity k. Also, let dij ≥ 0

be the distance or transportation cost, from node i to node j. From here on, we will assume

that d is a distance function, and therefore is non-negative, symmetric (dij = dji ∀i, j ∈ N ),

and satisfies the triangle inequality.

Moreover, for each node i ∈ N , we define fi to be a fixed set-up cost that is paid for

installing a hub at node i. Similarly, for each e ∈ E, ge denotes the fixed set-up cost of
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activating a hub edge. Hub edges e = {m,n} ∈ E have a unit flow cost of αdmn. Recall

that 0 ≤ α ≤ 1 represents a discount factor to account for economies of scale. We should

note that flows have directions, but we work over an undirected graph.

For a given path p of G, let lp be the number of nodes in p. From now on, we refer to

lp as the length of path p. Also, r-length path is a path of length r. For each commodity

k ∈ K, let pk := i −→ m1 −→ ... −→ mlpk−2 −→ j be a directed path with origin i and

destination j and passing through hub nodes m1,m2, ...mlp−2. In this study, we focus on a

set of paths, denoted as P , that have the following characteristics. Each path is divided in

three legs: a collection leg, a transfer leg and a distribution leg. The collection and transfer

legs may contain either no edges or exactly one access edge. The transfer leg is composed

only of hub nodes and may contain a combination of hub and bridge edges with at most

lp − 2 edges between the first and the last hub nodes.

Figure 3.1 shows all possible path configurations for routing commodity k. Black

squares represent the set of hub nodes and black circles correspond to the set of non-hub

nodes.

Figure 3.1: The set of possible paths for routing a commodity

In a feasible solution of the HNDPSA, besides the set of hub nodes, we have a set of

access edges A, a set of hub edges H , and a set of the bridge edges B. Recall that a bridge
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edge is an edge between two hub nodes without benefiting from a discount factor α. For

commodity k, let Cpk be the unit transportation cost for routing k through pk, and Tk be the

total revenue received from serving the demand of commodity k. For routing commodity

k, we define the profit as hk = Tk −WkCpk . We assume that commodities cannot be split

through different paths. Therefore, not every commodity must be served.

Now, we propose three different combinatorial representations for the HNDPSA, namely:

an access edge-based representation, a star-based representation, and a path-based repre-

sentation. For the first two representations, we construct counterexamples that show that

the corresponding objective function does not satisfy the submodular property. Note that

in disproving submodularity to simplifying the counterexamples for both of access edge-

base and star-based representations, we consider the set-up cost for hub edges as zero and

we neglect the cardinality constraint for hub edges, which is a particular case of the most

general version. The set of constraints includes the single assignment rule and the cardi-

nality constraint on the number of hub nodes based on the previous paragraph. For the

third representation, we prove submodularity of the corresponding objective function using

Definition 1 and Lemma 2.1. The set of constraints includes the single assignment rule and

opening at most p hub nodes and q hub edges (q ≤ p(p− 1)/2).

3.2 An access edge-based representation

Consider the undirected graph G = (N,E). Let U = N ∪E be a finite set that includes

both the set of nodes N and the set of edges E of graph G. For each nonempty subset

(S,Q) ⊆ U , where S ⊆ N and Q ⊆ E, we assume that S corresponds to the set of hub

nodes and Q corresponds to the set of access edges. Let S = N \ S be the set of non-hub

nodes. For each node i ∈ N , let Ri(Q) := {e = {i, j} ∈ Q} be the set of adjacent

edges in Q to node i. Moreover, let Qs = {i ∈ S : ∃e = {i, j} ∈ Q} be the set of hub

endpoints of Q. We define a set of all feasible paths for routing commodity k = {i, j}
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such as Pk := {pk = i −→ m −→ n −→ j : (m,n) ∈ S × S, if i ∈ S, then {i,m} ∈

Q, if j ∈ S, then {n, j} ∈ Q}. Here we assume that the path pk := i −→ m −→ n −→ j

is not necessarily a simple path. Recall that a simple path contains a sequence of disjoint

nodes. For example, Figure 3.2 shows that in pk = i(= m) −→ m −→ n −→ j, i and m

are not disjoint.

(a) node i and m are not dis-

joint

Figure 3.2: i(= m) −→ m −→ n −→ j is not a simple path.

We define cpk := CpkWk as the total transportation cost of commodity k where com-

modity k is routed through path pk. Consider the following definitions for the cost func-

tions:

f(S,Q) = −
∑
i∈S

fi (1)

ck(S,Q) =


min
pk∈Pk

cpk Pk 6= ∅

∞ otherwise.

(2)

In particular, for a nonempty set of nodes S ⊆ N , f(S,Q) corresponds to the total set-

up cost of hub nodes and for the set of access edges Q ⊆ E, ck(S,Q) represents the

transportation cost of commodity k ∈ K.

Recall that hk = Tk − cpk denotes the profit of routing commodity k. Let Tk(S,Q) be

the amount of revenue from hub end-points of the given set Q. Consequently, we define
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h(S,Q) =
∑

k∈K Tk(S,Q)−
∑

k∈K ck(S,Q). Therefore, we want to maximize

z(S,Q) = h(S,Q) + f(S,Q) (3)

Moreover, for a given subset M ⊆ N , we define the cut of M as δ(M) := {{i, j}; i ∈

M, j ∈ N \M}.

The HNDPSA can be represented as the problem of finding a set of hub nodes S ⊆ N

and the set of access edges Q ⊆ E such that z(S,Q) is maximized, i.e.,

max
(S,Q)⊆U

{z(S,Q) : |S| ≤ p, Qs = S, |Ri(Q)| = 1 ∀i ∈ S, Q ⊆ δ(S)} (4)

The first constraint guarantees that the cardinality of S is less than p (p ≤ |N |). The second

constraint states that the set of hub endpoints of Q is equal to the set of hub nodes S. The

third set of constraints guarantees that each non-hub node i ∈ S is connected to exactly one

hub node. The last constraint states that the set of access edges is in the cut of set S, or in

other words, the chosen edges in set Q have one endpoint in S and the other one in S.

Now we construct a counter example which shows that the objective function z does

not satisfy submodularity.

Example 1. Assume that we want to route commodity k = {i, j}. Consider the set of

hub nodes and access edge (S,Q) and (T,R) shown in Figure 3.3 such that S ⊆ T and

Q ⊆ R. Consider the set-up cost of hub nodes for S and S ∪ {j} is equal to
∑

i∈S fi = 5

and
∑

i∈S∪{j} fi = 6. Moreover, the set-up cost of hub nodes for T and T ∪ {j} is equal to∑
i∈T fi = 11 and

∑
i∈T∪{j} fi = 10 and assume that α = 0.5. Let Tk = 8 for each k ∈ K.

Here we are adding a hub node j as an single element to both sets (S,Q) and (T,R).

(S,Q) ∪ {j} and (T,R) ∪ {j} are also shown in Figure 3.3. Therefore, ρj(S,Q) =

z((S,Q) ∪ {j}) − z(S,Q) = (8 − 6 − 6) − (8 − 10 − 5) and ρj(T,R) = z((T,R) ∪

{j})− z(T,R) = (8− 2− 11)− (8− 10− 10). Note that in each network of Figure 3.3,
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we choose the minimum cost path between i and j. ρj(S,Q) = 3 ≤ ρj(T,R) = 7 and it is

in contradiction with the definition of submodularity.

(a) (S,Q), (S,Q) ∪ {j}

(b) (T,R), (T,R) ∪ {j}

Figure 3.3: A counterexample for the access edge-based representation.

3.3 A star-based representation

Now, we propose the star-based representation for the HNDPSA. A star is a particular

case of a tree with n nodes where a single node has degree n − 1 called root and n − 1

nodes with degree 1 called ends. Figure 3.4 shows a star with 7 nodes.

(a)

Figure 3.4: A star with 7 nodes

Again consider the undirected graphG = (N,E). We denote the set of all stars over the
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graphG by S that takes its nodes and edges fromG. Moreover, letU = N∪S be the ground

set. For each nonempty subset (T,Q) ⊆ U (Note that for different representations, we

might use the same letters for defining different sets.), we assume that T ⊆ N corresponds

to set of hub nodes and Q ⊆ S. For s ∈ Q ⊆ S, let Rs(Q) be the root of star s and

R(Q) =
⋃
s∈Q

Rs(Q). Furthermore, let Es(Q) be the set of ends of star s ∈ Q and E(Q) =⋃
s∈Q

Es(Q). We define a set of all feasible paths for routing commodity k = {i, j} such as

Pk := {pk = i −→ m −→ n −→ j : (m,n) ∈ R(Q) × R(Q)}. Let f(T,Q) = −
∑
i∈T

fi

denotes the set-up cost for the set of hub nodes, and recall that cpk = CpkWk. Let

ck(T,Q) =


min
pk∈Pk

cpk Pk 6= ∅

∞ otherwise

(5)

denotes the transportation cost for commodity k. As in the access edge-based representa-

tion we define h(T,Q) =
∑

k∈K Tk(T,Q)−
∑

k∈K ck(T,Q) such that Tk(T,Q) denote the

amount of revenue gained from routing flows through hub roots of the subset of stars T .

We define the objective function over the subset (T,Q) ⊆ U as follows.

z(T,Q) = h(T,Q) + f(T,Q) (6)

Then, the HNDPSA can be represented as the problem of finding the set of hub nodes

T ⊆ N and the set of stars Q ⊆ S to maximize z(S,R), i.e.,

max
(T,Q)⊆U

{z(T,Q) : |T | ≤ p, |δ(i)| = 1 ∀i ∈ E(Q) \ E(Q) ∩R(Q), T = R(Q)} (7)

The first constraint restricts the cardinality of T to at most p (p ≤ |N |) nodes. The second

set of constraints guarantees the single allocation assumption. Recall that for any given
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subset of M ⊆ N , δ(M) = {{i, j}; i ∈M, j ∈ N \M} is the cut of set M . Therefore, the

second set of constraints ensures that the number of incidence edges of end nodes of each

star, which is not a root in any other stars is exactly one. The last constraint states that the

set of chosen hub nodes is equal to the set of roots of chosen stars.

The following counter example proves that the objective function of the star set based

representation does not satisfy submodularity. We will show that for commodity k =

{i, j} and (T,Q) ⊆ (T ′, Q′), the inequality ρ(T,Q) ≥ ρ(T ′, Q′) over the function z is not

satisfied.

Example 2. Assume that we have a graph with five nodes and we want to route commodity

k = {i, j}. Consider the set of hub nodes and stars (T,Q) and (T ′, Q′) shown in Figure

3.5 such that (T,Q) ⊆ (T ′, Q′). We assume that the set-up cost of hub nodes for T and

T ∪ {R{s}} is
∑

j∈T fj = 5 and
∑

j∈T∪{R({s})} fj = 10. Moreover, the set-up cost of hub

nodes for T ′ and T ′ ∪ {R{s}} is
∑

j∈T ′ fj = 10 and
∑

j∈T ′∪{R({s})} fj = 15. We assume

that the amount of revenue of routing commodity k is Tk = 8.

We add star s that is shown in Figure 3.5, which is a single root with zero ends, to both

set (T,Q) and (T ′, Q′), and consider α = 0.5. Now we calculate the value of ρ by adding

star s.

ρs(T,Q) = (8− 3− 10)− (8− 4− 9) = 0 (8)

ρs(T
′, Q′) = (8− 1− 15)− (8− 3− 14) = 1 (9)

Here we have ρs(T,Q) = 0 ≤ ρs(T
′, Q′) = 1 which is in contradiction with the definition

of submodularity.
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(a) (T,Q) (b) s (c) (T,Q) ∪ {s}

(d) (T ′, Q′) (e) s (f) (T,Q′) ∪ {s}

Figure 3.5: A counterexample for the star-based representation.

3.4 A path-based representation

In this section, we propose path-based representation for the HNDPSA. Consider the

graph G = (N,E). Let P be the set of feasible paths in G, excluding the paths with edges

between non-hub nodes. Let S ⊆ N be a set of hub nodes, S ′ ⊆ N be a set of activated

non-hub nodes, H ⊆ E be a set of hub edges, A ⊆ E be a set of access edges, and R ⊆ P

be a set of paths. Also, let U = N ∪ E ∪ P be a finite set that defines the ground set such

that any subset of U is of the form of (S, S ′, H,A,R) ⊆ U . Note that here since we serve

just the most profitable commodities, there could be some nodes in the original graph that

are neither in the set S, nor in the S ′.

Let Rk ⊆ P be the subset of paths for commodity k ∈ K such that R =
|K|⋃
k=1

Rk. We

denote the set of nodes of the paths in R by N(R), and the set of edges of R by E(R). In

addition, let Ns(R) be the set of hub nodes and Ns′(R) be the set of non-hub nodes in the

paths of R. Likewise, let Eh(R) be the set of hub edges, and Ea(R) be the set of access

edges of paths in R. We define f and g as the set-up cost functions of the set of selected
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nodes and the set of selected edges, respectively as follows:

f(S, S ′) = −
∑
j∈S

fj −
∑
j∈Q

f
′

j , (10)

g(H,A) = −
∑
e∈H

ge −
∑
e∈A

g
′

e. (11)

Also, we define h as the the profit function associated with serving commodities k ∈ K as:

h(R) =
∑
k∈K

hk(R) =
∑
k∈K

(
max
pk∈Rk

{Tk −WkCpk}
)+

, (12)

where (x)+ = max {x, 0}. Moreover, we define the total profit as

z(S, S ′, H,A,R) = h(R) + g(H,A) + f(S, S ′), (13)

where we consider that z(∅) = 0.

The HNDPSA can now be stated as the problem of selecting a set of nodes, edges and

paths (S,H,A,R) ⊆ U such that z(S,H,A,R) is maximum, i.e.,

max
(S,S′,H,A,R)⊆U

{z(S, S ′, H,A,R) : |S| ≤ p, |H| ≤ q,Ns(R) = S,Ns′(R) = S ′,

Eh(R) = H,Ea(R) = A, S ∩ S ′ = ∅, H ∩ A = ∅, |δ({i})| = 1, ∀i ∈ S ′}.
(14)

This is the path-based combinatorial representation for the HNDPSA. The first two con-

straints ensure that the cardinality constraints on the set of hub nodes and hub edges. The

third, fourth, fifth and sixth constraints guarantee that the set of selected hub nodes, non-

hub nodes, hub edges, and access edges should be exactly the same with the nodes and

edges of the chosen paths R, respectively. The last set of constraints guarantees that for

each non-hub node i ∈ S ′, we select exactly one access edge incident to i. We note that

these constraints only affect the selected non-hub nodes since we are maximizing the profit
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and we are not forced to serve all commodities.

3.4.1 Submodular properties of HNDPSA for the path-based repre-

sentation

Now, we prove that the objective function of the proposed path-based representation

satisfies the submodularity property.

Proposition 3.1. (Submodularity of the objective function)

(a) h(R) is submodular and non-decreasing.

(b) z(S, S ′, H,A,R) is submodular.

Proof. (a) Let (S, S ′, H,A,R) ⊆ (T, T ′, L,B,Q) ⊆ U , with S ⊆ T ⊆ N , S ′ ⊆ T ′ ⊆ N ,

H ⊆ L ⊆ E, A ⊆ B ⊆ E, R ⊆ Q ⊆ T . Without loss of generality, we assume that

q ∈ T \Q is a path with endpoints of an arbitrary commodity k = {i, j}. For Rk 6= ∅:

hk(Rk ∪ {q})− hk(Rk) = max
pk∈Rk∪{q}

hpk − max
pk∈Rk

hpk

= max{0, hq − max
pk∈Rk

hpk}

≥ max{0, hq − max
pk∈Qk

hpk}

= max
pk∈Qk∪{q}

hpk − max
pk∈Qk

hpk

= hk(Qk ∪ {q})− hk(Qk)

(15)

where the inequality follows from maxpk∈Rk hp ≤ maxpk∈Qk hp. Moreover, the inequality

maxp∈Q hp −maxp∈R hp ≥ 0 ∀Q ⊆ T shows that hk is non-decreasing.

As a consequence of Lemma 2.3, with taking the summation overall commodities, we

obtain that h(R) is a submodular and non-decreasing function.

(b) Consider again the sets S, T , H and L. By adding node i ∈ N \ T to set S, and
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edge e′ ∈ E \ L to set H , we have:

−
∑

j∈S∪{i}

fj +
∑
j∈S

fj (16)

= −fi ≥ −fi

= −
∑

j∈T∪{i}

fj +
∑
j∈T

fj

−
∑

e∈H∪{e′}

ge +
∑
e∈H

ge (17)

= −ge′ ≥ −ge′

= −
∑

e∈L∪{e′}

ge +
∑
e∈L

ge

With the similar proof f ′j and g′e are submodular over S ′ ⊆ T ′ ⊆ N and A ⊆ B ⊆ E .

Therefore, according to Lemma 2.2 f and g satisfy submodularity over (S, S ′, H,A,R) ⊆

(T, T ′, L,B,Q) ⊆ U . Then, we have zero difference in the value of the function if we

add a single element from the sets T or E, and finally for the function g, we can have a

difference in the value of the g by just adding an element from set E. As a result, by lemma

2.3, z is a submodular function over the set U .
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Chapter 4

Worst-Case Bounds for a Greedy

Heuristic

In this section, we propose a greedy heuristic for the HNDPSA based on the represen-

tation 14 with considering all the set-up cost functions equal to zero. Moreover, we provide

the time complexity of the greedy algorithm and present the worst-case bounds.

4.1 A Greedy Heuristic for the path-based representation

of HNDPSA

Let q ∈ P andMq = q∪Ns(q)∪Eh(q)∪Ns′(q)∪Ea(q) ⊆ U . The following proposition

states that we can evaluate a submodular function’s decremental value by adding a subset

to the solution set rather than a single element (see Ortiz-Astorquiza et al., 2017).

Proposition 4.1. For (S, S ′, H,A,R) ⊆ (T, T ′, L,B,Q) ⊆ U and any subset M ⊆ U \

(T, T ′, L,B,Q), ρM(S, S ′, H,A,R) ≥ ρM(T, T ′, L,B,Q).

Let (St, S ′t, H t, At, Rt) be the solution at iteration t such that St is a set of hub nodes,

S ′t is a set of non-hub nodes, H t is a set of hub edges, At is a set of access edges, Rt is a
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set of paths.

The idea of algorithm 1 is to select a subset of commodities to be served that gives the

most profit. To do so, we choose a feasible path q and its corresponding subset Mq that

gives the maximum improvement at each iteration. We then add Mq to the solution set.

Note that we must respect the capacity of the network (at most p hub nodes an q hub edges)

on the number of hub nodes at each iteration.

Algorithm 1 Greedy Heuristic for the HNDPSA

Set (S, S′, H,A,R)0 ← ∅, Mq
0 ← ∅, U0 = (N0, E0, P 0) ← U , S′ ← ∅, A ← ∅, ρ0 ← 0

and t← 1
while t ≤ |K| do

Select qt ⊆ P t−1 such that ρMq
t = maxMq∈U t−1 ρMq(S, S

′, H,A,R)t−1, Ns(q
t) /∈ S′ and

Eh(q
t) /∈ A.

Set ρt−1 ← ρMq
t

if ρt−1 ≤ 0 then
Stop with (S, S′, H,A,R)t−1 as the greedy solution

else
Set S′ ← Ns′(q

t) and A← Ea(q
∗)

(S, S′, H,A,R)t ← (S, S′, H,A,R)t−1 ∪Mq
t

U t ← U t−1 \ {qt}
end if

for i ∈ N(qt) such that i ∈ S′ do
for e ∈ E such that i ∈ e do

if e /∈ E(qt) then
U t ← U t \ e

end if
end for

end for
t← t+ 1

end while
Set (S, S′, H,A,R)t as the greedy solution.
STOP

Moreover, if a node is selected as a hub (non-hub), we keep it as a hub (non-hub) during

all the remaining iterations. Also, we handle the single assignment assumption such that

for the non-hub nodes of the chosen path qt at iteration t, we remove all their adjacent

edges in the original graph G except Ea(qt). We continue iterating until either we cannot
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further improve the solution or we serve all commodities. After choosing the best path at

each iteration, we update the hub nodes, non-hubs nodes, hub edges, and access edges at

each iteration. Our greedy algorithm is summarized in Algorithm 1.

Proposition 4.2. The complexity of Algorithm 1 is O(|K|2|N |2).

Proof. The set Mq
t at iteration t can be found efficiently by solving the series of longest-

path problems on an auxiliary acyclic directed graph for each commodity k = {i, j} ∈ K

that is not served yet. We define auxiliary directed acyclic graphs Gk(Vk, Ek) as a multi-

layer graph for U t−1 = (N t−1, Et−1, P t−1) at iteration t for commodity k as follows.

For constructing Gk(Vk, Ek), we define the first layer as node i and the last layer as

node j. If any node of the original graph G is not in the set S ′t−1, we copy it twice between

i, j as two intermediate layers of hub nodes since we might pass through more than one

hub node for routing a commodity (see Figure 4.1.).

Assume that the amount of each commodity is equal to one (i.e., Wk = 1).For each

e ∈ Ek we define the weight as follows. From i to the node {h1m}nm=1 of the first layer, we

have wih1m = −dih1m . From {h1m}nm=1 of the first layer to {h2m′}nm′=1 of the second layer

we have wh1mh2m′ = −αdh1mh2m′ . And finally, from {h2m}nm=1 of the second layer to j, we

have wh2mj = −dh2mj . We should note that having an arc between two nodes of the same

layer is forbidden. The output of Gk(Vk, Ek) is shown in the Figure 4.1.

Figure 4.1: Gk(Vk, Ek) designed for serving commodity k={i,j}
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We consider the following restrictions in designing Gk(Vk, Ek).

I: if either i or j are already in the set S ′t−1, we draw an arc just between them and their

associated hubs ( Figure 4.1, part (a)).

II: if the cardinality of the set of opened hubs has reached p− 1, we draw arcs from the

first intermediate layer of hubs just to the ones in the second layers, which already are in

the set S ( Figure 4.1, part (b)).

III: if the cardinality of the set of opened hub arcs has reached q between two interme-

diate layers, we will draw nodes that already in S and hub arcs between them in H( Figure

4.1, part (c)).

Note that case II and case III are considered to avoid violating cardinality constraints

on the hub nodes and hub edges. This operation is taking O(|K||N |2) for each commodity

since for each auxiliary graph, we enumerate at most O(|N |) number of nodes and at most,

O(|N |2) number of arcs for the set of commodities with cardinality |K|. We then chose

the best path qt and its corresponding subset Mq
t via solving a series of the longest path

problem for auxiliary graphs using topological ordering algorithm in O(|N |2) time. Then,

we store the best path for serving each commodity in a set, and a the end, we choose the

commodity among this set that gives the most profit. We do this at most for |K| iterations.

Therefore, the Algorithm 1 runs in O(|K|2|N |2).

Figure 4.2 shows graph Gk(Vk, Ek) for three different cases I, II and III that can happen

for commodity k = {i, j}. Note that in the case I, the origin and the destination nodes are

already in the set S ′. In the case II, we show the intermediate hub layers that are already in

S by orange and the ones that can be opened in the current iteration with blue. We do not

draw any arc from the blue nodes to the blue nodes (i.e., we cannot open two new hubs).

For the case III, we should not open a new hub arc, and we use the ones that are already

opened and we just draw their associated hub nodes.
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(a) I (b) II (c) III

Figure 4.2: Gk(Vk, Ek) for commodity k={i,j} with restrictions.

4.2 A worst-case bound for the greedy heuristic

Here we present a worst-case bound for Algorithm 1 using the following propositions.

(see Nemhauser et al., 1978).

Let zG denote the value of the solution constructed by the greedy heuristic.

zG = z(∅) + ρ0 + ...+ ρt−1 t ≤ |K|. (1)

Let z∗ be the value of an optimal solution to problem 14. We may assume t ≥ 1 to exclude

the trivial problem with z∗ = zG = z(∅).

Let C(θ) be the class of submodular set functions satisfying ρMq(S, S
′, H,A,R) ≥ −θ,

for all (S, S ′, H,A,R) ⊂ U and Mq ∈ U \ (S, S ′, H,A,R).

Proposition 4.3. For all (S, S ′, H,A,R), (T, T ′, L,B,Q) ⊆ U withNs(R) = S,Ns′(R) =

S ′, Ea(R) = A, Eh(R) = H , and Ns(Q) = P , Ns′(Q) = T ′, Ea(Q) = B, Eh(Q) = L.

Then

z(T, T ′, L,B,Q) ≤ z(S, S ′, H,A,R) +
∑
q∈Q\R

ρMq(S, S
′, H,A,R) + |Q \R|θ. (2)
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Proof. Let (S, S ′, H,A,R), (T, T ′, L,B,Q) ⊆ U with |R \Q| = α and |Q \ R| = β such

that Ns(R) = S, Ns′(R) = S ′, Ea(R) = A and Eh(R) = H , and also Ns(Q) = P ,

Ns′(Q) = T ′, Ea(Q) = B and Eh(Q) = L. Consider the set Mq with q ∈ Q \ R and

similarly for q′ ∈ R \Q consider Mq′ , as defined before. Then

z((S, S ′, H,A,R) ∪ (T, T ′, L,B,Q))− z(S, S ′, H,A,R) = (3)

z((S, S ′, H,A,R) ∪Mq1)− z(S, S ′, H,A,R)

+ z((S, S ′, H,A,R) ∪Mq1 ∪Mq2)− z((S, S ′, H,A,R) ∪Mq1) + ...

+ z((S, S ′, H,A,R) ∪Mq1 ∪Mq2 ∪ ... ∪Mqα)− z((S, S ′, H,A,R) ∪Mq1 ∪Mq2∪

... ∪Mqα−1) =
α∑
i=1

ρMqi
((S, S ′, H,A,R) ∪Mq1 ∪Mq2 ∪ ... ∪Mqi−1

)

≤
α∑
t=1

ρMqt
(S, S ′, H,A,R) =

∑
q∈Q\R

ρMq(S, S
′, H,A,R),

which shows

z((S, S ′, H,A,R) ∪ (T, T ′, L,B,Q))− z(S, S ′, H,A,R) ≤ (4)∑
q∈Q\R

ρMq(S, S
′, H,A,R)

and we obtain similarly

z((S, S ′, H,A,R) ∪ (T, T ′, L,B,Q))− z(T, T ′, L,B,Q) ≥ (5)∑
q′∈R\Q

ρMq′
((T, T ′, L,B,Q) ∪ (S, S ′, H,A,R) \Mq′).
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Subtracting the above inequalities results in the following:

z(T, T ′, L,B,Q) ≤ z(S, S ′, H,A,R) +
∑
q∈Q\R

ρMq(S, S
′, H,A,R) (6)

−
∑

q′∈R\Q

ρMq′
((T, T ′, L,B,Q) ∪ (S, S ′, H,A,R) \Mq′).

Then,

z(T, T ′, L,B,Q) ≤ z(S, S ′, H,A,R) +
∑
q∈Q\R

ρMqz(S, S
′, H,A,R) + βθ (7)

for ρ ≥ −θ.

Proposition 4.4. Suppose z ∈ C(θ), θ ≥ 0, and the greedy heuristic stops after k∗ itera-

tions, then the corresponding {ρi}k
∗−1
i=0 satisfy

z∗ ≤ z(∅) +
t−1∑
i=0

ρi + |K|ρt + tθ, t = 0, ..., k∗ − 1 (8)

and also

z∗ ≤ z(∅) +
k∗−1∑
i=0

ρi + k∗θ, if k∗ < |K| (9)

Proof. From 4.3 we have

z(T, T ′, L,B,Q) ≤ z(S, S ′, H,A,R) +
∑
q∈Q\R

ρMq(S, S
′, H,A,R) + |R \Q|θ. (10)

Let (T, T ′, L,B,Q) be the optimal solution set of the problem 14 and (S, S ′, H,A,R) be

the set (S, S ′, H,A,R)t constructed in t-th iteration of the greedy heuristic. We can show

z∗ = z(T, T ′, L,B,Q), ρMq(S, S
′, H,A,R) ≤ ρt, ρt ≥ 0, (11)
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|(S, S ′, H,A,R)t − (T, T ′, L,B,Q)| ≤ t, θ ≥ 0, (12)

|(T, T ′, L,B,Q)− (S, S ′, H,A,R)
t| ≤ |K|,

and

z(S, S ′, H,A,R)
t
= z(∅) +

t−1∑
i=0

ρi, (13)

we obtain

z∗ ≤ z(∅) +
t−1∑
i=0

ρi + |K|ρt + tθ t = 0, ..., k∗ − 1 (14)

If k∗ ≤ |K|, taking (S, S ′, H,A,R) = (S, S ′, H,A,R)k
∗ yields

z∗ ≤ z(∅) +
k∗−1∑
i=0

ρi + k∗θ (15)

as ρk∗ ≤ 0

Proposition 4.5. For nondecreasing z, if the greedy heuristic is applied to problem 14, and

the greedy heuristic stops after k∗ < |K| steps, the greedy solution is optimal.

Proof. The proof is trivial.

Proposition 4.6. By applying greedy heuristic to problem 14, we obtain

z∗ − zG

z∗ − z(∅)
≤ |K| − 1

|K|
(16)

Proof. For t = 0, the inequality 8 yields z − z(∅) ≤ |K|ρ0 ≤ |K|(zG − z(∅)) or, equiva-

lently,
z∗ − zG

z∗ − z(∅)
≤ |K| − 1

|K|
(17)
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Nemhauser et al. (1978) also proved that it is possible to make the bound of Proposition

4.6 tighter only for very large values θ.

Proposition 4.7. If the greedy heuristic terminates after t∗ iterations, then

z∗ − zG

z∗ − z(∅) + |K|θ
≤ t∗

|K|

(
|K| − 1

|K|

)t∗
≤
(
|K| − 1

|K|

)|K|
≤ 1

e
(18)

and considering z(∅)=0

z∗ − zG

z∗ + |K|θ
≤ t∗

|K|

(
|K| − 1

|K|

)t∗
≤
(
|K| − 1

|K|

)|K|
≤ 1

e
(19)

1−
(
|K| − 1

|K|

)|K|
≥ e− 1

e
(20)

According to the bound Nemhauser et al. (1978) proved for the k-median problem, they

achieved the value of the worst-case bound on the ground set they defined for the problem.

The following proposition shows that we can provide a submodular representation for HN-

SPSA defined on the set of commodities K as the ground set since we achieved the bound

over this set’s cardinality.

Proposition 4.8. (see Nemhauser et al., 1978) A submodular function v on a set of subset

of E is given. Let {Qj}, j ∈ N be a collection of subsets of E. If

(a) v is nondecreasing or

(b) The {Qj} are disjoint,

Then z(S) = v(
⋃
j∈S Qj) is a submodular set function on the set of subset of N.

According to proposition 4.8, let {Qk}, k ∈ K denote the set of paths between the

endpoint of commodity k. We already proved that the function z is non-decreasing when

the total set-up costs are considered zero (i.e. h is non-decreasing). Using Proposition 4.8

we can show a function v(S) := z(
⋃
k∈S Qk), S ⊆ K is a submodular function on the set

of subsets of K.

37



Proposition 4.8 clarifies that we can have a submodular presentation for HNDPSA con-

sidering the set of commodities K as a ground set. Recalling Nemhauser et al. (1978),

the cardinality of commodities will help us for the theoretical bound we are finding for the

proposed greedy heuristics.
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Chapter 5

Conclusion

This thesis addressed an important class of problems in hub facility location called hub

network design problem with profits and single assignments (HNDPSA). It contributed to

the current literature by providing combinatorial representation for HNDPSA for the first

time and proving whether the objective function satisfies the submodular property. These

contributions show the power of combinatorial optimization problems and submodular

property to cover the different classes of both facility location and hub location problems.

Also, the potential of obtaining the theoretical worst-case bound over a greedy heuristic

algorithm to approximate the optimal solution motivated us to study HNDPSA.

In Chapter 2, we addressed the basic definitions and assumptions of HNDPSA. We

first presented the basic assumptions that hold throughout the thesis. We discussed three

different versions of the hub location problems: single allocation, multiple allocation and

r-allocation assumptions that can be hold for HLPs. We also pointed out the differences and

similarities between them. We then brought the definition of the combinatorial optimization

problem and submodular property with its fundamental features. We reviewed the main

references related to submodularity. Then, we provided a brief review of the HLPs and

single allocation assumption over it.
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In Chapter 3, we introduced fundamental definitions along with three different com-

binatorial representations for HNDPSA. We provided counterexamples that showed the

objective function of the first two representations did not satisfy submodularity. We proved

that the objective function of the third representation satisfied the submodularity property.

Finally, in Chapter 4, we provided a greedy heuristic algorithm to approximate the

optimal solution based on the third representation. We obtained the worst-case performance

results for the algorithm by considering set-up cost functions equal to zero. We also proved

that the algorithm runs in polynomial time, and we proposed an approximation ratio. We

presented a sharper bound by considering zero value for the objective function when the

solution set is empty.

Beyond the contributions mentioned, our results have a strong potential for extension

and more investigation, such as providing the mixed-integer formulation of HNDPSA based

on this combinatorial representation. Another important step towards the field’s growth is

to compare our greedy heuristic results with the optimal solution by running experiments

to see the quality of the approximation and the power of the theoretical bound.
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