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Abstract

Real-Time Interactive 3D Reconstruction of Indoor Environments With High Accuracy

Shakil Ahmed

3D registration of depth images has been studied extensively in the past. With emergence of low

cost RGB-D cameras, many applications have emerged. Yet, the quality of alignment has much to

improve. It remains a challenge to create a 3D model of the environment with high accuracy which

could be used for engineering applications. Moreover, challenging scenarios where features are

scarce, handling large areas as scene, enabling the user to freely roam around the scene for image

acquisition in a practical manner, guiding the user in taking better images and accomplishing all

of this with low cost RGB-D camera in real time is a subject which is yet to be improved. In this

thesis, we address all this challenges by designing and implementing a mobile system that rely on

markers. Our system detects and matches markers in real-time with very low CPU load. Moreover,

this mobile 3D reconstruction system is interactive which enables a user not only to move freely

while doing 3D reconstruction, but also makes the user aware of current status of 3D reconstruction

in real-time.
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Chapter 1

Introduction

A picture is worth a thousand words. From cavemen to modern architects, humans have always

been trying to describe objects through images. Describing objects through 3D images is even more

important as it enables us to represent objects as they are. Therefore, the applications concerning

3D images are broad. From computer aided design in engineering to computer assisted surgery

in health sector, the use of 3D representation is extensive. While some applications only need the

range image for visualization, others need detailed 3D model of the object or scene. To complete a

3D image of a scene or an object, multiple images are taken from various angles and then aligned

properly. For 3D model an extra step of reconstructing the surface is also required. This process

has resulted in a pipeline of 3D acquisition, 3D alignment and surface reconstruction. This thesis

focuses on the first two. 3D acquisition and alignment.

The nature of 3D acquisition depends on the application need. Sometimes we need detailed and

accurate geometry of an object for applications such as digitization of historic artifacts, industrial

design, etc. When we have such constraint on geometric data, 3D scanners are the better choice.

These triangulation-based scanners use laser light to measure the depth of a point in the scene. Upon

shining a laser beam, the camera looks for the spot where the laser hit. Depending on the distance

of the surface, the laser spot hits in unique location in the FOV of the camera. The laser emitter,

the camera and the point the laser hits, forms a triangle. The distance between the camera and the

laser emitter is known. Also, the angle of the laser beam and the angle of the camera corner is also
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known through the location of the laser spot in camera FOV. Therefore, the side formed by a point

on the surface and the camera can be calculated. Usually, these scanners are fixed in position and

can be place in indoor rooms. These scanners are great for scanning small and medium size objects.

But they are not suitable for other application where we need to scan large structures from greater

distance due to their design.

We need 3D model of large infrastructures or some part of them such as buildings, factories,

bridges, etc. for optimization of modification or maintenance applications. Accurate 3D model of

such structures saves engineers a lot of time and make their job efficient. 3D models allow them

to work in an interactive and collaborative manner. However, for many existing structures, the 3D

model was not created at their construction time. Moreover, updated 3D models are needed to

learn the current state of the structure especially critical ones. For these reasons these structures

are scanned frequently and afterwards analyzed. Analysing these 3D models requires comprehen-

sive details of the structure site. In such cases Lidar scanners are used to capture the current state

of the structure to determine if they need any maintenance and how to proceed such tasks. Lidar

sensor emits pulsed light waves into the environment. These light waves bounce off the objects and

return. The time is recorded for the travel of the light waves. As, the speed of the light is known,

the distance is calculated from the recorded time. Lidar sensors can emit such light waves millions

of times per second. As a result, it achieves a detailed and precise geometry of the surrounding

environment. To move these Lidar scanners a combination of ground robots or aerial drones can be

used to acquire data accurately in a synchronized fashion in real time. Usually, these commercial

projects are very expensive as it employs a combination of human, Lidar sensors and robots.

While researchers and enterprises using 3D scanners for a while, the demand for everyday use

of 3D scanning by ordinary individuals has increased in the past decade and only looks to increase

further. Unlike the uses of 3D scanners mentioned earlier, applications used by daily consumers

have different requirement for 3D scanners. These applications involve Augmented reality gaming

in indoors, various home improvement apps, recommendation apps for wearable apparels, physical
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activity recognition, gesture recognition, commercial uses in health care and in educational institu-

tions. These kinds of applications are often done in real time which requires moving and rotating

the scanners with ease. Also, the set up of the scanners must be easy and quick. Moreover, the

affordability of the scanners must be kept in mind because these applications are to be used by

masses. The above-mentioned scanners (3D scanners and Lidar) can not play this role. Therefore,

a new type of scanners has emerged. These scanners are termed as depth camera which is smaller

in size and thus can be moved and rotated by hand with ease, easy to set up and affordable to con-

sumers. While depth cameras are not suitable for taking detailed geometry of the scene unlike Lidar

or 3D scanners, it is well suited for everyday indoor use. In the past decade, enterprises came up

with various products. Such as Kinect from Microsoft, Tango from Google, RealSense from Intel,

etc. These products were built for consumers for daily use. Moreover, with time depth cameras are

becoming more accurate in taking geometry of the scene. To take advantage of this improvement

many small enterprises are trying out depth cameras instead of more expensive 3D scanner to see

if that can meet their need. One of the applications involve 3D scanning of indoor of buildings,

stations, drainage system, etc. for restoration, maintenance or documentation.

Many times, the place where the scanning takes place, is difficult to access (such as tunnels,

manholes, etc.). So, it is very inconvenient to go back and forth and scan the area again and again.

Therefore, it is very important that the survey is done accurately and efficiently in the first time.

An efficient reconstruction means that we will be able to reconstruct the scene with least number of

poses. But we also need enough number of poses from various angles and have enough overlapping

between them so that the reconstruction of the structures is accurate. A brute force approach would

be taking numerous numbers of pictures and hoping that we will end up with enough data. This kind

of approach makes the scanning process lengthy and accumulates enormous amount of data which

is hard to process. On the other hand, an accurate reconstruction requires that the poses taken during

the scanning contains accurate measurement. While using depth cameras which are cost friendly

options, they are not as accurate as other costly options like 3D scanner or Lidar. As we can move

around and rotate depth cameras very easily, the accuracy of the measurement also depends on the

human user or robot who is moving the camera. Moreover, sometimes it is hard to reconstruct the
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poses because there is a lack of texture or geometry in the environment. All these challenges make

3D scanning and registration difficult in indoors places such as rooms with not enough textures in

the wall.

In our work we addressed challenges mentioned above. We propose a robust solution to make

3D reconstruction process more efficient with a real time registration feedback system. Our method

enables the user to determine which poses are to keep and which are to discard during reconstruc-

tion. Our system is deployed on a freely moving mobile platform which makes it easier to recon-

struct the scene in real time while not being restricted within a certain area. This platform is smaller

in size, lightweight and fully equipped with all the devices necessary to take poses and compute the

reconstruction.

1.1 Contribution

In this thesis we made a 3D reconstruction system which is accurate in terms of visual but also

in terms measurements accuracy in the scene. We tackled these challenges in the following way:

• We developed a mobile platform to conduct real time 3D reconstruction in environments with

less features with the help of markers. This mobile platform consists of all the things a user

needs to complete 3D reconstruction onsite. To compare the robustness and accuracy of our

3D reconstruction system, we also have developed an offline marker-less 3D reconstruction

system. Comparing the result, we show that our system performs better in terms of accuracy

and robustness while being an online system deployed on low configuration computer.

• We experimented on the relationship of accuracy measurements in the scene with respect to

camera pose from different angle. We show that camera angle influences the measurements in

the scene. Based on our findings, we made our reconstruction system interactive which aids

the user to take optimal camera pose to acquire more accurate measurement of the scene.
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Chapter 2

Background

2.1 RGB-D Camera

This section introduces new Microsoft azure Kinect that was used in this project. We shortly

discuss its various features. Azure Kinect is equipped with one RGB-D camera, one ToF depth

camera, one embedded Inertial Measurement Unit (IMU) which includes both accelerometer and

a gyroscope and a microphone array. The device is recommended to operate in 10-25◦C. For 3d

reconstruction we only used RGB-D camera and depth camera. Therefore, we will only discuss

about these two features.

Figure 2.1: Kinect device
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2.1.1 RGB Camera

Table 2.1 illustrates different color camera configurations.

Table 2.1: RGB Camera Configurations (Microsoft, 2019).

Resolution Aspect Ration Frame Rate

3840×2160 16:9 0, 5, 15, 30

2560×1440 16:9 0, 5, 15, 30

1920×1080 16:9 0, 5, 15, 30

1280×3072 4:3 0, 5, 15

2048×1536 4:3 0, 5, 15, 30

2.1.2 Depth Camera

The depth camera uses time of flight principle for measuring depth. The camera project near

infrared spectrum unto the scene. It measures the time for the light to travel to the object and return

to the camera. From the time information we can easily get the distance as we already know the ve-

locity of light. From the measurements of distance, it generates a depth map. A depth map contains

the distances (z values) for each pixel in millimeters. We also get an IR image which is proportional

to the intensity of the light.

It has multiple modes of in terms of the ability to capture image as difference distances. Narrow

Field of View (NFOV) mode allows to capture objects from greater distance while having shorter

resolution while Wide Field of View (WFOV) are better for capturing images from shorter distances

but with wide field of view. The camera also has binning option. The depth camera also comes with

binning mode. Pixel binning is a way combining the regular pixels into a super pixel. Such that,

the pixels can now absorb more light and thus gives better picture quality. Kinect depth camera

offers 2×2 binning which means each pixel in binning mode can absorb four times the light than

6



Figure 2.2: Depth Map(left) and IR image (right)

the regular pixels and thus enabling it to measure from higher depth. But the natural drawback is, it

reduces the resolution of the image.

Table 2.2 illustrates different depth camera configurations.

Table 2.2: Depth Camera Configurations (Microsoft, 2019).

Mode Resolution Frame Rate Operating Range

NFOV unbinned 640×540 0, 5, 15, 30 0.5 - 3.86 m

NFOV 2×2 binned (SW) 320×288 0, 5, 15, 30 0.5 - 5.46 m

WFOV 2×2 binned 512×512 0, 5, 15, 30 0.25 - 2.88 m

WFOV unbinned 1024×1024 0, 5, 15 0.25 - 2.21 m

Where NFOV means Narrow field-of-view depth mode and WFOV means Wide field-of-view

depth mode.
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2.1.3 Measurement Error

In various conditions depth camera fails to give correct or valid depth values from some part of

the scene. When generating the depth map from IR image in the PC, all invalid depth values are

given the value 0.

• If the depth data was capture from an area which is outside of the scope of IR projected area

then the depth values, we will get from those part will not be valid.

• If the scene is illuminated with intensive projective light, then there is a possibility that the

scene may be saturated with IR light. In such cases, we may get invalid depth. On the other

hand, if the scene is very lowly illuminated, IR signal becomes weak to generate depth. It

also results in invalid depth.

• A common problem for ToF cameras is multi path detection. Kinect is no exception. Multi

path detection occurs when a pixel receives signal from multiple area of the scene. It results

in incorrect depth value.

2.2 Markers

Where there are not enough natural features, artificial or fiducial markers can be used to aide

the alignment of the poses taken during scanning. These fiducials are reliable and can be detected

with high accuracy compared to natural features. Also, the detection rate is real time. Additionally,

they can be automatically detected and localized in low resolution even from long range. Moreover,

due to the fact that they can generate unique features in different rotations, they are used in tons of

computer vision applications such as augmented reality, object recognition, object tracking, camera

calibration, SLAM, robot navigation, etc. where robustness and precision is much needed. Their

ability to generate unique markers enable alignment of poses taking during scanning robust and

accurate. Also, the ability to be detected automatically in real time aide in the real time alignment

of poses. Apart from that during experimentation they can act as ground truth and simplify the

development process. Any fiducial system must have unique pattern so that it distinguishes itself

from any other pattern present in the scene. Such patterns often include repeatable dots, circles or
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quadratic shapes. Each marker in the system should be distinguishable from each other too so that

they can be identified uniquely. For such a system to be feasible there should be enough number of

markers to meet the need of users. There are two main part in a fiducial system. In first part unique

patterns for each marker is encoded. Then the patterns are ready to be used in the scene. In the

second part, the patterns are identified in the scene while taking poses.

Most popular among fiducials are ARTag (Fiala, 2005), AprilTag (Olson, 2011)(Wang and Ol-

son, 2016), CALTag (Atcheson et al., 2010), etc. These tags have their advantages and weaknesses.

There are some criteria from which we can choose which type of fiducials we want. Namely, false

positive rate, minimal marker size, marker library size, immunity to lighting condition, immunity

to occlusion, speed performance. The false positive rate increases when there exists very similar

pattern to the fiducial maker in the scene and also the identification system is not robust. The rest of

the criteria contribute to false negative. Marker size plays a role when scanning from a distance. If

the marker size is too small then from distance, markers may not be detected. In challenging scenes

where objects are dynamic, occlusion of markers may occur. Therefore, ideal fiducial system should

be robust against partial occlusion. In general, most of the fiducials work better in ambient lighten-

ing. In case of projectile lightening, fiducials tend to give poor result. The above-mentioned fiducial

systems give real time identification of the markers. But for the other criteria, each of them dif-

fers. (Shabalina et al., 2018) have compared the occlusion aspect of ARTag, AprilTag and CALTag.

They demonstrated the size of the markers plays a crucial role in real life settings for identification

of marker from distance. In that case, AprilTag seemed to give better result. Also, AprilTag is an

open source library publicly available in C++. Which suits our purpose.

AprilTag is a bi-tonal fiducial. That means it only has black and white color. There are two

major aspect of designing AprilTag system. Detection or identification stage and encoding stage.

The first step of detection step is to detect line segments of quads. Gradient direction and magnitude

are calculated for each pixel and then enrolled all pixel in the same connected component with same

gradient direction and magnitude. This kind of gradient based clustering algorithm is sensitive to

noise therefore, a low pass filter is used. The edges of markers are large-scale features compared

to data inside the marker, so it does not result in loss of data. The direction of the line segments

is determined by the gradient direction. Which means part of the marker which was white is on
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Figure 2.3: An AprilTag Marker

the right side of the line segments and on the left side black parts of the marker. This helps in

detecting the quads in the next step. Because, the direction of the segments is already known, a

depth first search of depth four, is used to find all three four sides of a quad. In each step of finding

a quad, a line segment which already is not part of any other quad is chosen. Then, all the line

segment which are close by fulfilling a distance threshold and obey counter clockwise direction are

selected as candidates. After completing depth first search, we end up with a candidate quad. Final

step of detection is payload decoding. Each quad represents a bit. From the quads we get a vector

representing the marker. This vector is compared with all other markers possibly produced by the

same family of AprilTag fiducial system. To find the distances between vectors XOR operation is

used.

AprilTag employs lexicode system for encoding the markers or tags. In AprilTag a family of

markers consisting 36 bits having a minimum hamming distance of 10 is denoted by 36h10. To

reduce internal confusion in time of detection, the minimum hamming distance will have to be

maintained while markers are in different rotations. Four variation of rotation are considered. 0, 90,

180 and 270 degrees. To reduce false positive cases, a minimum number of 10 quads is considered

for any family of AprilTag. This number was selected through experimentation. The assumption is

that, complex pattern occurs less frequently in nature. So, the greater number of quads are present in

a marker, the more complex the pattern becomes. Encoding markers is computationally expensive,

but because it is done offline it is not an issue during scanning.
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2.3 Local Feature Extraction

Point clouds descriptors from feature points are used for various computer vision applications.

We can categorize 3D point cloud descriptors into two categories. Local descriptors and global

descriptors. Global descriptors encode the geometry of the whole point cloud. They are therefore

useful for object recognition, object classification, shape retrieval, etc. On the other hand, local

descriptors encode geometry of local spaces of the point cloud. Local descriptors can be used for

feature matching for registration of the point clouds, object recognition, etc. One of the simple ways

of creating these local descriptors is to calculate surface normals or curvature at the feature point.

These are local features because normals or curvatures at point are calculated based on their local

neighbours. Naturally, these descriptors depend on the size of the neighbourhood and susceptible to

noise. On the other hand, depending only one value (ex. normal or curvature) is not discriminating

enough to be a proper feature. Therefore, we need local descriptors which are robust to noisy data

and outliers, scale and rotation invariant, point cloud density invariant. (Hana et al., 2018) studied

various local descriptors in their work. They selected the descriptors based on citation, state of the

art performance and their usage in the research and industry. In their experimentation they calcu-

lated the accuracy and efficiency of the descriptors based on applying for object recognition. Upon

experimentation, they recommend some feature descriptors such as PFH, FPFH, SHOT, CSHOT,

etc. For our experiment we have selected FPFH(Rusu et al., 2009) and CSHOT (Tombari et al.,

2011).

2.3.1 FPFH

Fast Point Feature Histogram is a local descriptor ideal for 3D registration of point cloud. It tries

to describe geometric information of the local neighbourhood of a feature point by generalizing the

mean surface curvature around that point. First, surface normals are calculated for every point in

the point cloud using principal component analysis. Then for each point pj in the neighbourhood of

p, we follow these steps for every pair (p, pj):

• Either p or pj is chosen as source ps and the other one as target pt. The one who has the
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Figure 2.4: Neighbour edges of point p (Rusu, 2019a)

smaller angle between the line segment connecting these two points and its corresponding

normal is the source. The other one is the target.

• A Darboux frame is defined at ps. Let, ns and nt are the normals on ps and pt respectively. u

= ns, v = (pt - ps)× u and w = u× v

Figure 2.5: PFH Coordinate Frame(Rusu, 2019b)

• Three features are calculated for each pair of ps and pt. f1 = v ·nt, f2 = u · (pt−ps)/(||pt−

ps||) and f3 = arctan(w · nt, u · nt) .These three features is called Simplified Point Feature

(SPF).

• After calculating features (f1, f2, f3) for all of the pairs (p, pj), three feature ranges are

computed (ex: range(f1) = maximum(f1) - minimum(f1)) in the neighbourhood and then

divide each of these ranges into five subdivisions. Iterating for each pair, hash each of the

features (f1, f2, f3) into one of their own subdivisions or bins. Thus, we have five bins for

each feature and in total 15 bins for each point p. This geometric information is represented

with three histograms. Together these three histograms for each p is called Simplified Point

Feature Histogram (SPFH) of p.

• After calculating SPFH for p, SPFH for the each of the neighbours pj also calculated w.r.t
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their own neighbourhood. SPFH of each pj is weighted according to their distance from p.

• Finally these weighted SPFH are added to the SPFH of p. Combining both we get Fast Point

Feature Histogram (FPFH).

FPFH(p) = SPFH(p) +
1

k

k∑
i=1

1

wk
· SPFH(pk)

where number of neighbours of p is k and wk = ||p− pj || .

After getting FPFH for all feature points, the set of points with most discriminating features

pf are selected. We calculate the mean of the feature histograms and take the distance (Kullback-

Leibler divergence) between the mean histogram and histograms of each point p. These distances

are compared and only those points who have distance more than one standard deviation are se-

lected. This process is repeated for different neighbourhood radius. After this step, we have the

points which had unique features for different size of neighbourhood.

2.3.2 CSHOT

CSHOT is a feature descriptor designed for surface matching combining both geometric and

texture information. It is an intersection between histogram and signature-based descriptor for 3D

point cloud. Signature based descriptors are highly descriptive because of their spatially localized

information. Usually, this kind of approach describe a neighbourhood or support by defining an

invariant local reference frame and computes geometric properties on each of the points of some

subset of the neighbourhood. On the other hand, histogram descriptors try to encode local geometry

in a aggregated fashion by quantizing geometric measurements which also requires definition of a

local reference frame or reference axis, thus loosing some description of organized local geometry

while gaining robustness. SHOT descriptors combines signatures and histogram approach by first

defining a scale and rotation invariant local reference frame which is also unique compared to its

local neighbourhood. These are the steps to compute the local reference frame for a neighbourhood

of points pi, i = 1, ..., k within a radius of R around the point p.

• We compute the normals for all the points in the point cloud by Total Least Square (TLS)
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method. First, we compute the weighted co-variance matrix M for k points in the neighbour-

hood by making point p as the origin.

M =
1∑

i:di≤R
(R− di)

∑
i:di≤R

(R− di)(pi − p)(pi − p)T

where di is the distance between pi and p.

• We apply Eigen Value Decomposition (EVD) on co-variance matrix M. Thus, we obtain three

orthogonal eigen vectors. These eigen vectors will denote the three axes of the local reference

frame.

• the axes are re-oriented with respect to the direction of most of the vectors of the neighbour-

hood. This reference frame is unique w.r.t the neighbourhood and rotation invariant.

Figure 2.6: Signature Structure (Tombari et al., 2010)

For computing the descriptor of the neighbourhood first local histograms are generated for each

of subdivision of the neighbourhood. The subdivisions are created based on the volume and co-

sine between the normal of the point and reference axis. The volume part is divided by elevation

angle, azimuth angle and for the radial distance from the feature point. For getting the cosine for

each point in a local histogram, the dot product between the normal on of that point and the surface

normal is taken. Using the cosine as feature has two advantage. First is, it is efficient to compute.

Second one is because of the nature of cosine function, the points having normals as the same direc-

tion as the surface normal are grouped in the same bin. But as the difference increases, the points

are binned in different bins. It enables the local histograms to contain fine geometric information
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while there is high curvature, while for smooth planar surface region, there is not much diversity

in binning. Therefore, the histogram correctly captures the geometric architecture of the local sub-

division. Lastly, to avoid the boundary effect, quadrilinear interpolation is used. That is, for each

dimension of binning, parameter 1− d is used for interpolation where d is the bin distance for each

dimension of bin. Thus, resulting in a weighted histogram. Finally, to avoid the differences due to

having point density difference in different poses, histograms are normalized.

2.4 Iterative Closest Point

Iterative Closest Point (ICP) (Besl and McKay, 1992) algorithm is heavily used when it comes

to align 3D or 2D poses. Given two point sets P = p1, p2, ..., pm and Q = q1, q2, ..., qn with

correspondence C = i, j where i = 1...n and j = 1...m, we need to find the 6 DOF transformation

in other words rotation R and translation T between P and Q such that:

E(R, T ) =
∑

(i,j)∈C

||qi − (R× pj + T )||2

where E(R, T ) is the error function. There are many variant of ICP is available. But the basics

steps are as follows:
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Algorithm 1: ICP

error →∞;

while error > threshold do

Determine corresponding points;

Compute Rotation R and Translation T;

Apply R and T to the source point cloud;

newError = E(R, T );

if newError = error then

break;

end

error → newError

end

Determining the correspondence points is the most challenging step in ICP. This step is also the

most uncertain. Due to the difficulty of finding correspondence many approaches have developed.

The first task is to select the points to be used for correspondences. Trivial approach would be to

use all the points. But to minimize the error and make the algorithm more efficient we could select

a subset of all points. Few criteria are:

• Uniform sub-sampling (Rusinkiewicz and Levoy, 2001) where the picked points are uni-

formly distributed in the sample and have equal constant weights.

• random sub-sampling (Masuda and Yokoya, 1995) randomly selects multiple sets of inlier

points. It takes the best inlier set which give least error at each iteration. It is a very easy

implementation of narrowing the subset of points.

• feature-based sampling is efficient and have higher probability of success when the scene

contains good geometry or textures.

After selecting the points, we must determine the respective closest points in the target point set.

There are many ways we can define what constitutes closeness between two points. Such as distance

approach where correspondence is measures on based on the Euclidean distance between the points,
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normal shooting approach (Chen and Medioni, 1992) where a normal is shot from source point and

the intersected point in the target is chosen as correspondence, close compatible point approach

where points have a constraint of having similar color, curvature, features, etc. In our work we have

chosen the feature-based approach for sub-sampling of the data and for choosing closeness between

points we have chosen compatible point approach as we use feature already. The next step is to

determine the transformation matrix between two-point clouds.

2.4.1 Computing Transformation Matrix

To determine the translation, we use the following steps:

• We translate two-point clouds to the origin of a common coordinate system. First, we calcu-

late the centroids µP for point set P and µQ for point set Q.

µP =
1

|C|
∑

(i,j)∈C

Pj ;µQ =
1

|C|
∑

(i,j)∈C

Qi

After that we subtract each centroid from their respective point sets and obtain new translated

points sets P
′

and Q
′
.

P
′

= {pj − µP };Q
′

= {qi − µQ}

After getting the translation, we use Kabsch algorithm for finding the rotation which minimizes

root mean square error between two-point sets. We take the following steps.

• The co-variance matrix of P
′

and Q
′

are created.

H =
∑

(i,j)∈C

q
′
i × p

′
j

• We calculate Singular Value Decomposition (SVD) of co-variance matrix H.

H = UΣV T
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• We obtain the rotation matrix R as

R = V ×


1 0 0

0 1 0

0 0 d

× UT

where d = det(V × UT )
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Chapter 3

Related Works

3.1 Measurement Error with Depth Cameras

Measurement error from depth cameras can be systematic or non-systematic. Systematic error

is inherent to a camera and depends on its sensors. On the other hand, non-systematic error occurs

during image acquisition due to different circumstances of the environment. Where systematic error

is specific to a device, non-systematic errors are generalized. Depth cameras measure depth using IR

sensors which emits IR signal to the scene. These scanners use either structured light patterns which

uses triangulation, or the time signal took to return to the sensor. Either way, the angle signal hits an

object matter. In case of triangulation method, (Turk and Levoy, 1994) reasoned that if the signal hits

the objects in the scene in grazing angle then, the sensors see the structured light pattern stretched

out. This causes discrepancies in depth measurement which adds uncertainty on the accuracy of

the depth measurement depending on the viewing angle. (Naik et al., 2011) investigated different

environmental effects on depth measurement using ToF cameras. They experimented reflection

and refraction properties of emitted IR light hitting objects in different angels. On the other hand,

(Khoshelham, 2011) investigated depth error of Kinect due to the distance of the sensor from the

scene and the orientation of the surface toward the sensor. In their experiment, they noted that

while object surface is oriented at grazing or large incidence angle, a maximum difference of 3cm

occurred for 80% of the points pair while data from Kinect was compared with a laser scanner.

(Des Bouvrie, 2011) in their work experimented Kinect 2 depth error based on distance from the
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objects, viewing angle with respect to the objects, objects with mirroring properties, etc. They

measured the average error between the actual measurement and measurement from Kinect 2. In

their work, a large discrepancy in depth measurement was found while taking image from greater

distance. They also experimented depth measurement based on viewing angle. While there was

some discrepancy in that case but compared to distance experiment it was lower. Although, their

experiment shows depth error on large incidence angle, they only computed average error, but did

not mention the fluctuation of the depth measurements taken in different frames while images taken

in different view angels. (Dal Mutto et al., 2012) experimented on depth measurement of Kinect

and usability of Kinect data for different computer vision tasks. In their experiments, they found the

poor performance of Kinect devices with tilted surfaces. In that case, many depth data were missing

in tilted surfaces.

3.2 3D Reconstruction of Scene

In the past decade 3D reconstruction of the indoor scene and objects using RGB-D camera

has been extensively studied. Different techniques have so far been used to acquire robust re-

construction. Depending on the scene, primarily two types of reconstruction techniques emerged.

Reconstruction with prior knowledge and without prior knowledge.

3.2.1 Reconstruction Based On Prior Knowledge

Sometimes 3D reconstruction is done keeping a scene in mind. For example, 3D reconstruction

of a factory setting, merging indoor and outdoor modeling of a site, residential household, etc. Such

cases, where much priority is given on the quality of the reconstruction of a scene while losing some

generality, using prior knowledge proves to improve the quality of reconstruction. (Son et al., 2015)

worked on the highly accurate 3D reconstruction of as-build industrial equipment. In their work

they try to model the industrial equipment from 3D point cloud acquired from laser scan. They

also use three kind of prior knowledge such as scene knowledge, geometric knowledge and topo-

logical knowledge. From scene knowledge they know which equipment are present in the scene.

After having the equipment list, 3D dimension of these are acquired as geometric knowledge from
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database. The topological knowledge describes adjacency relationship among objects. The 3D re-

construction of instrumentation starts with the segmentation of parts that represent the intersections

of the pipelines. Each segment is analysed with respect to their shape and different kind of features

are used for different segments. For example, curvature is used as features for pipelines as they are

cylindrical in shape.

While some methods depended on the materials presented in the scene, other ones make use

of prior knowledge such as assuming the scene was taken in a man-made world which conforms

to Manhattan World. As presented in the work of (Coughlan and Yuille, 1999), Manhattan World

assumption states that all surfaces in the world are aligned with three dominant direction for example

X, Y and Z axes. Using this assumption many later works have tried to estimate the positions of

surface walls of the room. The first assumption is that, the scene resides in a Manhattan World

and thus the room is cuboid, in other word it has four bounding walls. which means every side

of the room can be represented by four corners, again assuming these corners originates from four

vanishing points. There have been many works done such as Rother and Carlsson (2001) to find the

pose of the camera given the camera parameters and four vanishing points residing in a reference

plane visible from all views. This work was further advanced by (Liu et al., 2015) where they

proposed a method which enables a 3D virtual tour of apartments. After calculating camera pose

through the above-mentioned techniques and assumption, they use the floorplan of the apartments.

To reconstruct a whole apartment after reconstructing individual rooms, they rely on floor plans to

extract information about doors, windows, etc. to stitch together the rooms into whole apartment.

To calculate the relative pose of the room with respect to the apartment, they formulate this problem

as inference in Markov Random Field to predict the layout of each room and its relative pose within

the full apartment. Later on this work extended by (Wang et al., 2015) to find the camera pose given

a particular 2D image of some part of shopping mall. Along with other prior knowledge mentioned

before, they utilized texts mainly the name of the shops rather than shape present in the image.

While these model-based reconstruction techniques utilize geometric information and prior

knowledge to calculate camera pose with respect to the scene, SLAM or Structure from Motion

techniques use multi-view relationship to calculate camera pose and as a result reconstruct 3D map.

However, SLAM or Structure from Motion often suffer from drift error accumulated in each step of
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calculating camera pose and 3D map simultaneously. To address this problem, many solutions were

proposed by utilizing prior knowledge of the scenes. (Tamaazousti et al., 2011) proposed a solution

to calculate camera pose in a partially known environment. They combined geometric information

from the known model of the scene with the SLAM process. The main idea is to use a combination

of two error functions in the local bundle adjustment process. One error function was re-projection

error function. Along with minimizing re-projection error, they added another constrained or error

function based on the geometry of the known environment. This added constrained is actually a

planar constraint which exploits the fact that a 3D point on a plane has only two degree of freedom

and therefore this point can move only on its associated plane. Later on, (Melbouci et al., 2016)

incorporated depth data in the bundle adjustment process to improve this method using RGB-D

cameras.

3.2.2 Reconstruction Without Prior Knowledge

As prior knowledge is often not available when conducting reconstruction of scenes, it is done

without any prior knowledge. A common approach was attempted through multi-view stereo tech-

nique. This technique has several variations. In terms of photo consistency measure, (De Bonet

and Viola, 1999; Seitz and Dyer, 1999) tried to reduce the projection error through the variance

of the projected pixels from the scene. Where others have tried window approach of minimizing

the squared sum error of particular size of window (Faugeras and Keriven, 1997; Jin et al., 2003).

Another problem with stereo is occlusion which happens due to not knowing if a point is visible in

a pose. To avoid that ordering or uniqueness constraints were used by (Bobick and Intille, 1999;

Ishikawa and Geiger, 1998), implemented by dynamic programming. This method could not solve

occlusion when scene has narrow holes or foreground objects are thin. Later, (Sun et al., 2005)

improved this problem by symmetric stereo matching modeling using visibility constraint instead.

But such techniques lacks robustness and accuracy(Kim and Woo, 2005). Specially, the depth error

is larger compared to that of the laser scanner or ToF cameras.

Use of laser scanner for 3D reconstruction is also not new. Most of the experiments regarding

laser scanner were done in lab environment before 2000. One of the notable works was done by
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(Beraldin et al., 1997) of National Research Council of Canada, where they developed a prototype

laser range camera specifically to scan medium to large object and successfully demonstrated the

high accuracy of measurement by laser cameras. In 2000, famous digital Michelangelo Project

(Levoy et al., 2000) used a combination of both triangulation and time of flight-based laser scanner,

as well as digital still camera to acquire images of various statues in a non laboratory environment.

After 2010, the evolution of time of flight camera permitted to scan small to medium size objects

with a single handheld RGB-D camera despite issues with noise and inaccuracy in depth measure-

ment. Notably, in 2011 (Newcombe et al., 2011) used a single Kinect to scan indoor objects and

3D reconstruct them simultaneously. They developed KinectFusion, a framework for online 3D

reconstruction of the indoor scene using depth data for registration rather than RGB data. Their

GPU based implementation made the processing very fast. Instead of using feature points, authors

used all the 3D points in order to register two scans of inputs. The frame rate of capturing is very

high. Therefore, they were able to use a point-plane metric based ICP on all the available 3D points

captured in current frame to register current scan with globally aligned scene. The surface of the

globally aligned scene is stored implicitly through weighted Truncated Signed Distance Function

(TSDF) which was ray casted to predict the surface. The weights, TSDF values corresponding each

3D point sample was stored in a 3D voxel grid. This work can compute a up to dated surface regis-

tration on real time. While KinectFusion works well up-to midsize rooms, it faces issues with lack

of GPU memory while trying to scan large size rooms. Another problem with KinectFusion is that

it cannot recover from a misaligned registration. Furthermore, it does not provide solution for drift

errors which occurs while scanning large size scenes. Later on, (Whelan et al., 2012) in their work

named Kintinuous, addressed the problem of large-scale reconstruction by using memory consum-

ing TSDF structure only for newer scanning region while keeping rest of the globally aligned scene

as triangular mesh also known as moving volume method. The issue with GPU memory was further

improved by (Nießner et al., 2013) by introducing voxel hashing which managed to avoid empty

spaces in voxel grid containing TSDF values. Some work also has been done in trying to address the

loop closure problem with fast registration of the poses. But these works highly depends on the dis-

tinctive nature of the features and a certain threshold of overlapping of consecutive poses to maintain
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moving volume technique(Whelan et al., 2013). As finding distinctive features is difficult if a sys-

tem only relies on depth data, others have combined color data with depth data and created a hybrid

system. (Henry et al., 2012) used both depth and color data for 3D reconstruction. They improved

the accuracy of bundle adjustment by computing re-projection error for frame-to-frame alignment

RANSAC which performed better than Euclidean-space RANSAC. They also incorporated scene

information through object recognition from bag of visual words techniques which results in better

loop closure. To make 3D reconstruction process less computation heavy, they use sparse bundle

adjustment. Through such steps, they achieved almost real time reconstruction performance. Al-

though they did not take account cases where depth information was not present. Later on, other

works improved this specific case by ignoring depth data and using color data instead (Wang et al.,

2014). While this work handled repetitive pattern and partially the depth data but failed to make the

system online and also did not address how to handle noisy depth data. However, (Dai et al., 2017)

managed to address the issue of drift error with reconstructing larger size room with global pose

optimisation working parallel with online reconstruction while using same techniques for surface

representation, volume fusion, pose estimation as (Nießner et al., 2013). Traditional SLAM systems

consist of optimization, odometry estimation, raycasting and map fusion modules. So far traditional

techniques to compute these modules have been non-differentiable. A differential system consists of

equations which are differentiable or in other words all of them have partial derivatives at any point.

A system must be differentiable in order to apply backpropagation technique which is a crucial step

in supervised machine learning algorithms. Recently, (Jatavallabhula et al., 2019) proposed fully

differentiable alternative SLAM system that operates on three kind of traditional fusion methods

such as voxels, surfels and pointclouds. This differential SLAM system opens the door for gradient

based learning for SLAM.

3.2.3 Reconstruction With Markers

Markers have been used for scene reconstruction in various manners. Early works involve using

markers in conjunction with natural features present in the scene to make reconstruction more ro-

bust. (Klopschitz and Schmalstieg, 2007) attempted a large-scale indoor scene reconstruction using

both natural features and fiducials markers from structure from motion point of view. They placed
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markers in the scene and recorded a video of the scene. From each frame features are tracked to se-

lect views for reconstruction. Amongst those selected frames makers are detected and triangulated

to get 3d position. (DeGol et al., 2018) improved this work by implementing incremental structure

from motion in large scale. They chose indoor scenes with variety of texture and in some cases

lacks in texture. They first developed a system without using fiducial markers and show their sys-

tem is as good as concurrent state of the art systems. After that they use fiducial markers to improve

3d reconstruction. They show that using markers help with reconstructing scenes with less natural

features present. It helps with ordering of frames for structure from motion. Also, the performance

of bundle adjustment is enhanced when using marker position for optimizing the camera poses.

Markers are also used in various robotics applications. In SLAM problems, one of the critical steps

for localization is data association between landmarks. Getting the correct correspondence between

two frames becomes challenging if landmarks do not have distinctive features or if the environment

is dynamic. To address such challenges, (Lim and Lee, 2009) used fiducial markers as landmarks

in their EKF based SLAM. They show the estimated value for the movement of the robot was close

to the predicted movement. Furthermore, (Neunert et al., 2016) expanded on that idea by adding

IMU sensor for dynamic SLAM system which also leverages fiducial makers AprilTag for not only

to compute 3D position of the landmark but also the pose estimation. Although adding IMU sensor

created more uncertainty in the system, using AprilTag made their system more robust than other

contemporary methods. Later, (Munoz-Salinas et al., 2019) expanded on this work by handling

pose ambiguity calculating camera orientation using fiducial markers. They also added bundle ad-

justment process using fiducial markers positions. For solely 3D reconstruction of indoor scenes,

recently (Madeira et al., 2020) used fiducial markers for pose estimation. They used RGB-D camera

Google Tango for capturing scenes. Although they used RGB-D data for creating the scene model,

they only used color frame for pose estimation as they deemed depth data very noisy and unreliable.

Also, their system works in offline, framing the pose estimation as optimization problem. They use

camera pose estimation acquired from Google Tango framework as initial guess for relative camera

orientation parameters for successive frames and use 3D position of the markers as data point for

optimization.
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Chapter 4

System Methodology

In this section we will discuss about our proposed methodology. We developed a marker based

real time 3D registration and reconstruction system. To make this system mobile and easy to man-

age, we build a hardware platform setup fitted in a small box so that user can easily move around

the scene, acquire pose and align them online. We also developed a feature based offline registra-

tion system to compare the results with our marker-based system. First, we discuss about camera

calibration and then dive into both systems.

4.1 Camera Calibration and Mapping from Depth to Color Camera

Using provided API by Kinect, we extract the intrinsic parameters of color camera and Depth

camera. We also extract camera reference frame transformation matrix Tdc from depth to color.

We create the point cloud from depth data by un-projecting pixel from depth image using intrinsic

parameters of depth camera 4.1. Although we have used Kinect API for that purpose, same thing

can be achieved using OpenCV un-project function given camera intrinsic which is open source.

Before, taking any images, we precomputed a lookup table by storing x and y scale factors for every

pixel of depth map by un-projecting the depth pixels assuming the depth as 1.0 and saved the table.

While taking images, we just multiply these scale factors with depth to get the 3d coordinate in

depth camera to finally get point cloud. This well-known technique makes generating point cloud

very efficient.

26



Table 4.1: Depth Camera parameters

Parameter Names Value
Principle Point on X-axis(Cx) 315.45

Principle Point on Y-axis(Cy) 327.292

Focal Length on X-axis(fx) 505.198

Focal Length on Y-axis(fy) 505.12

radial distortion coefficient(k1) 4.16775

radial distortion coefficient(k2) 2.51986

radial distortion coefficient(k3) 0.123716

radial distortion coefficient(k4) 4.50163

radial distortion coefficient(k5) 3.88686

radial distortion coefficient(k6) 0.668598

tangential distortion coefficient(p1) -8.32685e-05

tangential distortion coefficient(p2) 5.65498e-05
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We use these parameters to map from a 3D point Pd = (Xd, Yd, Zd) of depth camera to pixel

coordinate (r, c) of color camera. We first transform Pd to the reference frame of color camera

Pc = (Xc, Yc, Zc).


Xc

Yc

Zc

 = Tdc ×


Xd

Yd

Zd



X
′
c =

Xc

Zc

Y
′
c =

Yc
Zc

To tackle radial distortion and tangential distortion we undergo additional calculation.

X
′′
c = X

′
c ×

1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6
+ 2p1X

′
cY

′
c + p2(r

2 + 2X
′2
c )

Y
′′
c = Y

′
c ×

1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6
+ p1(r

2 + 2Y
′2
c ) + 2p2X

′
cY

′
c

r2 = X
′2
c + Yc

′2

where k1, k2, k3, k4, k5, k6 are radial distortion coefficient, p1, p2 are tangential distortion coef-

ficient. Finally, we project X
′′
c and Y

′′
c to image plane in pixel coordinates.

r = fx ×X
′′
c + cx

c = fy × Y
′′
c + cy

where fx and fy are focal lengths, cx and cy are principle point.

After calibration we have got the following values for the intrinsic parameters of the camera and

transformation matrix Tdc. The units are in millimeter.
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Table 4.2: RGB Camera parameters

Parameter Names Value
Principle Point on X-axis(Cx) 638.063

Principle Point on Y-axis(Cy) 370.472

Focal Length on X-axis(fx) 605.601

Focal Length on Y-axis(fy) 605.547

radial distortion coefficient(k1) 0.91605

radial distortion coefficient(k2) -3.06841

radial distortion coefficient(k3) 1.67757

radial distortion coefficient(k4) 0.793718

radial distortion coefficient(k5) -2.90741

radial distortion coefficient(k6) 1.6145

tangential distortion coefficient(p1) 0.0004797

tangential distortion coefficient(p2) 0.000103107

Tdc =

R
T

 =



0.99999 −0.00434887 0.00109698

0.00442275 0.99678 0.0800661

−0.000745252 −0.0800701 0.996789

−32.0152 −2.47191 3.68335


The intrinsic parameters of color camera are given in Table 4.2

As azure Kinect SDK is currently only fully available in windows, having these intrinsic and

extrinsic parameters, we are enabled to make our framework platform work for any operating sys-

tem. Also, given intrinsic parameters and extrinsic parameters of color camera and depth camera,

our framework can work with any RGB-D camera available in the market.
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4.2 Kinect 3D Measurement Error

The systematic error due to sensor is low in case of Azure Kinect which is less than 11 mm

+ 0.1% of the distance from object without multi-path interference. Also, Azure Kinect comes

with multiple depth image resolution and each depth resolution has its own recommended distance

range from objects (Microsoft, 2019). We followed the recommended distance range while image

acquisition. Apart from systematic error, environmental factors also influence depth measurement

in case of RGB-D cameras as we discussed in 3.1 such as distance from objects, light intensity in

the environment and view angle of camera with respect to the object. In case of distance, we did

not notice meaningful depth error. Also, we conducted experiments in indoor rooms where there

is not much fluctuation of light. Therefore, we did not observe any depth error due to difference

in light intensity either. However, while conducting experimentation we observed, depending on

the rotation of the camera with respect to the scene, the error in depth measurement was different.

Therefore, we conducted an experiment of 3D measurement error for rotation of the camera with

respect to the scene.

4.2.1 3D Error With Rotation

In this experiment, we explore how rotation of camera with respect to the object to be scanned

effect the three-dimensional measurement. For this experiment we use two AprilTag markers. We

attach them on the wall vertically aligned and keep some distance in between as seen as in Fig:

4.1. The green line in the middle of the box is the line we are measuring. But first we take the

measurement by tape. From the tape measurement the length of the line is 50 cm which is the

ground truth.
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Figure 4.1: 3D error measurement setup

Figure 4.2: 3D error measurement setup (camera angels). Images taken within green angles results
in less depth uncertainty while within red area measurement is very uncertain

Afterwards, we take the measurement of the line by taking the difference of the centre points

of two markers obtained from Kinect RGB-D images. We rotate the camera with 15◦interval from

15◦to 165◦in anti-clockwise direction at 2 meters as shown in Fig: 4.2. That is, at 90◦rotation

negative z-axis of camera and normals on the surface of the scene have no angular difference.
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At each rotation we take 500 images. From the 500 images of each rotation, we calculate the

distribution of the measurements by calculating average and standard deviation. The average of the

measurements at each rotation usually converges after 200 to 300 frames.

Table 4.3: Rotation Measurement Error(Original Length = 50 cm)

Angle Length(cm) Standard Deviation(cm)

15◦ 49.55 0.24

30◦ 50.42 0.21

45◦ 50.45 0.14

60◦ 50.31 0.07

75◦ 50.50 0.07

90◦ 50.54 0.06

105◦ 50.55 0.06

120◦ 50.31 0.08

135◦ 50.55 0.11

150◦ 51.05 0.19

165◦ 50.55 0.25
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From table 4.3, we can see measurement differences from various rotation angle. The exper-

iment shows, at both 60◦and 120◦we got the closest measurement from the ground truth. Also,

angles between 60◦and 120◦shows to have better accuracy in terms of average. The lowest ac-

curacy was observed at 15◦and 150◦rotation. Although practically there seems not to be much

difference in average measurement, in general except for 15◦rotation, Kinect always overestimate

the measurement.

Figure 4.3: 3D error measurement at 30◦rotation

In terms of Standard Deviation, it seems to increase as we deviate further from 90◦. The highest

measurements were observed at 15◦rotation and at 165◦rotation. Outside of the range of 60◦- 120◦,

the standard deviation doubles. That means the measurement is uncertain outside of 60◦- 120◦range.

Our finding matches with the conventional understanding of ToF cameras. As range data obtained
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from ToF cameras have bigger uncertainty when obtained at grazing angles. Therefore, readings

from such angles are avoided as suggested by (Turk and Levoy, 1994) and (Naik et al., 2011). From

these observations, we can conclude that better measurement consistency can be expected while

acquiring images within 60◦to 120◦range.

4.3 Feature Based 3D Registration

We study the feasibility of 3D scene reconstruction including cases those lack in texture and

geometry. First, we conduct feature-based registration which is done offline so that this system is

not constrained by time or hardware. In the next sub section, we give an overview of our system.

4.3.1 Overview

The first step of this process is to calibrate the camera and get depth to RGB camera transforma-

tion matrix. This part is same as the steps described in 4.1. For the image acquisition, we focused

on two scenarios. The first scenario included a scene with plenty of features. That means the scene

contains fair amount of texture and geometry so that feature-based algorithm would be able to 3D

register the scene with better accuracy. In the second scenario, the scene includes an office space

which lacks in texture and geometric diversity. To get a global registration the first stage is to get

an accurate pair wise registration between two-point clouds. If the pair wise registration has high

accuracy, the global registration becomes easier. Here are the steps we followed to complete the

pair wise registration between two-point clouds.
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Figure 4.4: Feature based pair wise 3D image registration

4.3.2 Key Point Detection and Feature Descriptors

To use all the points in the point cloud for registration is expensive. Moreover, some points are

noise, and some are not accurate. Therefore, not all points are in good position to be used as fea-

tures. So, determining which points have potentials to be good features is an important step. These

useful points are called key points. We used SIFT key point detector (Lowe, 1999) in RGB data and

then projected those points in 3D to be used to compute 3D feature descriptors.
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(a)

(b)

Figure 4.5: SIFT Key-point Detection

We chose Fast Point Feature Histogram (FPFH) (Rusu et al., 2009) and Color Signature of

Histograms of OrienTations(CSHOT) (Tombari et al., 2011) as feature descriptors. Both descriptors

are scale and rotation invariant. As CSHOT utilize both texture and geometry, we used CSHOT in

scenes where both texture and geometry were present. However, we noticed in cases where only

geometry was present and texture was lacking, FPFH gave better registration result. The reason

CSHOT was giving poor result in texture less scenes are because, CSHOT is depends on texture as

much as geometry. Therefore, in texture-less scenes it finds far less feature point correspondences.

After feature matching, we got very few point correspondences in case of CSHOT which was not

good enough to align two-point clouds as shown in Fig: 4.6.
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Figure 4.6: poor performance of CSHOT descriptors in texture-less scene

On the other hand, FPFH only rely on geometric information. Therefore, distance between two

feature points in terms of feature description histogram is less in case of FPFH while matching two

feature points. From Fig: 4.7 we can see that FPFH succeeds while CSHOT fails in case of scenes

with less texture.
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Figure 4.7: Successful alignment of point clouds with less texture using FPFH descriptors

4.3.3 Pair Wise and Global Registration

After computing the feature descriptors, we find the correspondence between the features. The

correspondence estimation operation is quadratic as we have to compute the match between every

possible pair of points between two set of key points. Because, both of these descriptors are repre-

sented by histograms, we represent each histogram as vector and compute the correspondence score

by a dot product between the histograms. After getting the correspondence score, we select a pair

(a, b) if not only a has the best score with b but also, b has the best score with a.

After feature estimation, we remove some of the pairs based on Random Sample Consensus

(RANSAC) algorithm. That is, we model the remaining feature point in target point cloud (reference

point cloud) and try to detect inliers and outliers in the source point cloud (the cloud which will be

transformed) based on that model. After the rejection of outliers, we select the remaining feature

points and use to compute transformation matrix using Singular Value Decomposition (SVD). Then
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the source cloud is transformed and then we compute the error between feature points the source

and target point cloud and take their average. if the average error is below the threshold of 10mm

then we stop the iteration, otherwise we start the next iteration. From the next iteration, we add

another outlier rejection method based on the distance.

After completing all the pair wise registration, we again employ ICP for global registration.

This time we change the error metric to global error.

4.4 Marker Based Real Time 3D Registration

We have developed a real time 3D registration tool with feedback during taking pose for better

alignment and accuracy on low cost platform. The flowchart 4.8 shows the steps.

Figure 4.8: Marker Based Registration pipeline

4.4.1 Platform Setup

Our goal is to make this system online and mobile. The online part mostly involves software

side where the mobile part is about hardware. To process the computation, we have used a mini PC
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stick from Intel with 4 GB RAM, DDR3 atom processor and 64 GB HDD. To power both the mini

PC and Kinect we have used 27,000 mAh battery power bank. Also, for displaying the alignment

process and let user to interact with GUI, we have used a 6 inch by 4-inch touch display. The

platform setup can be viewed from Fig: 4.9, Fig: 4.10 and Fig: 4.11.

Figure 4.9: Platform Setup Front View
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Figure 4.10: Platform Setup Top View

Figure 4.11: Platform Setup Side View
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4.4.2 Image Acquisition

Both depth and color cameras are synchronized so that that both images are received at the

same time. But the reference frame and resolution of two cameras are different. Therefore, the

images need to be aligned. The transformation between depth and color camera frame are known

previously as it is provided by the vendor. We created RGB-D point cloud by aligning depth image

w.r.t the color image. As Kinect is sensitive to projective light and performs better in environment

with ambient light, it was made sure the place has enough lights without sudden changes. There

is multiple mode of taking depth image is available in Kinect. We choose NFOV un-binned mode

with resolution 640× 540 (Table 2.2) as it maintains balance between resolution and depth range.

Figure 4.12: RGB image taken from Kinect

4.4.3 Marker Detection and Projection to 3D

AprilTag is a visual fiducial which works in 2D images. From the 2D image we detect the

AprilTag markers in the scene. To detect the markers, we have used the library provided by the

author of AprilTag (Wang and Olson, 2016). As AprilTag is rotation invariant, we can uniquely

identify each corners of a tag. Thus, we select four corners of each tag as our feature points.

But as we are doing the registration with 3D point clouds, we need to get the corresponding 3D
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Figure 4.13: Depth image taken from Kinect

Figure 4.14: Image of Corresponding Point Cloud from 4.1 and 4.2
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Figure 4.15: AprilTag marker detection in 2d
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point of the 2D marker points(pixels). But as the resolution of depth and color camera are different,

not all the color pixel will have its corresponding depth point present in the point cloud. Therefore,

we interpolate the corresponding 3D point in point cloud. First step is to 3D reconstruct our point

cloud thus converting it to triangular meshes. As our point cloud is organized, we pick points from

neighbouring pixels as candidate mesh neighbours. But because, some points may be invalid due to

sensor error, we check if those points are valid first. After that we check the distance of neighbour

points from interest point whether the distance is less that the distance threshold which is 3cm. We

also check angles of the triangle. We do not accept less than 15◦ angle between two sides. Finally,

we remove all the points which does not belong to any faces.

4.4.4 Projection of 2D Point to 3D

We take the following steps to project from 2D pixel point of color camera to 3D point in Depth

camera:

• After creating mesh from organized point cloud, we project 3D meshes into 2D meshes where

in 2D mesh, vertices are pixel points in color image. While doing so, we make sure the pixels

of color images have same index in 2D point vertices as 3D points have in 3D point vertices.

We have talked about the mapping 3D point to 2D pixel of color image in 4.1 .

• After creating 2D mesh, we employ a Hash Mapping algorithm and thus create a n × n grid

where four corners of the grid represent four extremes of the 2D points in the 2D mesh. Each

cell of the grid contains a bucket of 2D faces. While hashing a 2D face into a bucket, we

determine the four extremes of the face and hash that face into all the buckets covering the

range set by those four extremes.

• While each hash operation has constant time complexity, the average complexity for total

insertion operation for each face is θ(B) where B is the average number of buckets on which

each face is hashed. On the other hand, search operation is O(F) where F is the average

number of faces in each bucket. That means, if the number of buckets is low then our insertion

cost decreases and search operation increases. On the other hand, if it is higher then insertion
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Figure 4.16: AprilTag marker detection in 3d
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operation increases and search operation decreases. Because, the number of markers is very

sparse compared to the number of points present in the images, naturally insertion operation

is much costlier compared to search and retrieval operation. Due to this reason we make the

size of each bucket large so that insertion operation takes less time. In other words, we keep

size of n low.

• For the search query, we hash each marker and find its corresponding bucket in the grid. We

extract all the faces from the grid and check which face the marker belongs to.

• After getting a match, we compute the barycentric coordinate of the pixel point with respect

to the 2D face it belongs to.

• Using this barycentric coordinate and corresponding 3D face, we finally interpolate the 3D

point in the point cloud.

4.4.5 Normal Computation

While using markers (AprilTag) for 3D registration normals are not needed. But, to give live

feedback to the user helping to align the camera in a better orientation, normals are calculated in

real time. To achieve the efficiency, we created the point cloud as organized set of points. Therefore,

unlike unorganized point cloud we can search for neighbouring points by taking account their pixel

position with respect to the pixel position of the interest point.

We use an average based surface normal method (Holzer et al., 2012), where we smoothen

surface based on depth of the point and change of depth with respect to its neighbours. Because

points with larger depth has worse noise to signal ratio, the smoothing window is larger for points

with larger depth. On the contrary, points with lower depth value has lower smoothing window. To

smoothen surface efficiently, we use integral image to compute the average of the window faster.

Finally, we take cross-product of the neighbouring four points to get the surface normal. Tough

this method is not highly accurate near object border; it is highly efficient achieving our real time

normal computation goal. After calculating the normals, we calculate the angle between the camera

z axis and the normals of the surface. We take average of the normals from the middle part of the
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Figure 4.17: Surface normals calculated on real time (Point Cloud)

cloud, middle 540 × 440 of 640 × 540 as measurement within middle part of points has less error

than the side ones.

4.4.6 Pose Selection

We provide visual aid to user to help them to choose camera pose wisely. We have designed a

GUI to facilitate this purpose. The GUI is made with QT framework (Fig: 4.18). This GUI consists

of four panels. Upper left panel contains options for the user to add a frame to reconstruction

process, remove a frame from the scene and save current reconstructed model. The rest of the

panels are used for giving visual aid to the user. At upper right panel, user sees a color frame of

the current pose of the scene. Markers which are successfully projected into the point cloud is

shown with yellow, blue, green and red square block at their four corners. Each little square block

represents a feature point. If the marker is visible in the RGB frame but not in-depth frame, we

cannot use that marker. User recognizes such markers by observing a large red block in the middle

of the marker. If the current pose is optimum with respect to the presence of markers in the scene
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Figure 4.18: Graphical User Interface for Visual Aid

Figure 4.19: Screen turns green if there are markers in the scene and camera pose is within optimum
position with respect to the scene (RGB image)
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and around 75% of points orientations with respected to the camera are within the optimal angle

range of 60◦to 120◦, this panel turns green (Fig: 4.19). This is a signal to user that the current frame

is a good fit for the reconstruction. We have arrived at this hyper-parameter (suitable camera pose)

by the experiment done in sec: 4.2.1. At lower right panel we show a point cloud demonstrating real

time surface normals (Fig: 4.17). Upon taking visual aid, user can select the pose. After selection,

updated global scene immediately appears on the screen at the lower left panel. Moreover, if the

user does not like new scene, they can choose to delete the last frame and continue from there.

4.4.7 Global Alignment

After user adds a new frame, we calculate the 3D correspondence of markers in the current

scene. We check which of these markers are already in the global scene. The calculation for the

correspondence for each pair of marker happens in constant time O (1), as each marker has a unique

id and we compute the 3d position of each 2d marker at the time of taking the pose. We find the

correspondence with common markers in global scene and using the algorithm mentioned in 2.4.1,

we compute the transformation matrix of the current pose with respect to the global scene and align

it with the global scene. Also, we add new markers which were not previously in the global scene.

4.5 Implementation Details

The programming language used for both systems was C++. For image acquisition (depth and

color image), Kinect API was used. Also, to generate the 3D point cloud Kinect API used. In case

of marker-based system, to detect AprilTag, we used AprilTag library available from the author’s

website. As the program is online, to make it efficient multi threading was used. There are three

main thread. One is to acquire images with a frame rate of 30 milliseconds. Second thread was used

to detect the markers in the image and aligning the image globally. The third, thread was used for

interacting with aligned images and the current images in the GUI. For multi threading and GUI,

QT framework was used. For visualization in the GUI, PCL was used. Since, there is no official

release available for using PCL with QT, we had to build it ourselves. Apart from that, rest of the

coding was done by us. We tried to make marker-based system as independent as possible. Given,
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Table 4.4: Summary of API and Libraries used in our systems

API / Library Version
Azure Kinect 1.4

OpenCV 4.1.1

QT 5.13

PCL 1.10

camera intrinsic, extrinsic and depth table users can use this system with other RGB-D cameras also.

For the feature-based system, we used Kinect API and PCL. Here is the summary of the libraries

used in both of our system in Table: 4.4
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Chapter 5

Result And Analysis

In this section we discuss about the registration of point clouds obtained from two of our devel-

oped systems, real time marker-based registration and features based offline registration. We show

our 3D reconstruction results through various scenarios and compare both systems through empiri-

cal means and visualization.

5.1 Dataset

For the experiments we acquired images from two rooms. One room is a laboratory situated

at Concordia University and the other one is a bedroom from a residential apartment. These two

rooms provide different kinds of geometry and texture which is useful to test both of our system.

On the other hand, the common thing about these two rooms is that, among the four walls, one is

lacking in both texture and geometry.
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(a) (b)

(c) (d)

Figure 5.1: Laboratory environment

The laboratory is an almost a square room. The dimension of the room was measured by a tape.

The length of this room is 6600 mm and width are 6510 mm. It mostly contains one whiteboard, one

doll of giraffe, computers, monitors, chairs, tables, cameras, camera tripods and light stands. Most

of the objects in the laboratory is of rectangular shape. Therefore, there are not enough diversity in

terms of geometry. Also, most of the objects are either white or black in color. So, there is not much

texture present in the environment either. From 5.1, we can see in (c) that this side of the room lacks

in geometry and specially texture. One positive aspect of the laboratory though there is no variance

of lighting in the environment which is very helpful while acquiring images with RGB-D cameras

like Kinect.
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(a) (b)

(c) (d)

Figure 5.2: Residential environment

The residential room is rectangular. Its width is very short, about four meters which makes it

difficult to take images with Kinect from suitable distance as Kinect has a depth range. The bedroom

contrasts the laboratory in terms of texture and geometry. It contains one table, one chair, one bed,

desktop, monitor and other household objects. There is verity of color present in this dataset and

the geometry also is diverse. One problem of this dataset is though, one of the wall (b) in 5.2 lacks

in texture and geometry.

5.2 Marker Based Real Time Registration

Marker based registration pipeline is an online system with feedback system to aide user in

registration process. The feedback process was discussed in methodology. Now, we talk about the

image acquisition results. In case of detecting markers in depth image, result was very accurate

while acquiring images from forward (within thee range 60◦- 120◦with respect to the image plane)

as shown in Fig: 5.4 with average error being only 1.2 mm. The total error is calculated by summing
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up the distance between a corresponding marker pair. Then total error is divided by the number of

markers available in the scene.

(a) (b)

Figure 5.3: Image acquisition within 60◦- 120◦. Green marks on tag means all the points were
successfully projected to depth image from color image.

On the other hand, images taken outside of the range (60◦- 120◦) was difficult to attain all the

markers.

(a) (b)

Figure 5.4: Image acquisition outside the range60◦- 120◦. Yellow marks on tag means three of the
points out of four were successfully projected to depth image from color image. While red marks
mean two or less points out of four could not be projected to depth image.

Even though some of the markers points could not be detected in RGB-D image, we still could

register images without any difficulty as shown in fig: 5.5
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(a)

(b)

Figure 5.5: Successful registration with very few marker point in a corner case scenario

Moreover, due to high robustness of the markers, they are very reliable. Which enables not

only to use very few markers but also register the images with least amount of overlap as shown

in Fig:5.6 and Fig:5.7. We were able to register half of the lab room with only two tags with high

accuracy.
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Figure 5.6: Highly accurate registration with least amount of overlapping with only two tags (side
view)

Figure 5.7: Highly accurate registration with least amount of overlapping with only two tags (top
view)

The lowest number of AprilTag that would be needed to register the lab room with the resolution
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of Kinect would be 3. We experimented if our system can achieve such result. To test this we used

only three AprilTag on three walls of the lab room. We placed each AprilTag at the middle of the

room. One wall was left blank. From Fig:5.8, we can see that walls (a), (b) and (c) has one AprilTag

each and (d) does not have any.

(a) (b)

(c) (d)

Figure 5.8: Laboratory Room Registration With Three AprilTag

During experimentation, we observed we could successfully register the entire room with only

three AprilTag while only taking four poses as shown in Fig: 5.9 and Fig: 5.10
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Figure 5.9: Global registration of the lab room with three AprilTag (side view)
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Figure 5.10: Global registration of the lab room with three AprilTag (top view)

Although, the registration was successful, we can observe that the point cloud is sparse, and the

alignment is not perfect. To obtain a dense point cloud and to test our system can handle plenty of

markers we placed 26 AprilTag in the lab room again and recommenced the experimentation. We

took total 10 poses. Finally, even after the closing loop while taking images, our system produces

no noticeable drift error as shown in Fig: 5.11. Although we have noticed while in all the previous

alignments the average errors remained below 4 mm, at the last alignment of loop closing the aver-

age error increases to 7 mm for last pair as shown in graph 5.13 .But this error still too small to have

any noticeable impact. Therefore, this system does not need any post processing to close the loop.
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Also, compared to the previous alignments with only three AprilTag, this point cloud is denser as

shown in Fig: 5.12.

Figure 5.11: Dense Global Registration of the Lab Room (top view)
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Figure 5.12: Dense Global Registration of the Lab Room (side view)

Figure 5.13: Average Correspondence Error for each poses
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We also ran same experiment in the residential room. Because this room is much smaller com-

pared to laboratory room, we placed 12 AprilTag and took 8 poses and acquired similar result as in

Fig: 5.14 and Fig: 5.15. Also, the pattern of average correspondence is similar that is, while most

of the average errors are below 5, the error for last errors increases to around 8 mm as shown in Fig:

5.16. We saw a slight increase in error in this case. We attribute this error to the lighting condition

of the room which was not perfect for AprilTag.

Figure 5.14: Aligned poses during capturing images
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Figure 5.15: Global registration of the residential room (top view)
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Figure 5.16: Average Correspondence Error for each poses taken in residential environment

5.3 Feature Based Registration

We showcase the registration result of feature-based system and its accuracy on scenes with fair

number of features and low number of features. For image acquisition, at first, we took images

without markers. We took images of the environment where features are scarce. Then, we tried

pairwise registration on the images. We show that registration does not work well on such places.

For example on laboratory dataset, at 9 degree rotation difference, we were capable of registering

images in most of the cases but, the pair wise registration of images with scarce features gives poor

result for (c) part of Fig: 5.1.
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Figure 5.17: Incorrect pairwise registration at 9 Degree of difference having less features

From Fig: 5.17, the red rectangular area denotes that the pairs did not align well.
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Figure 5.18: Pairwise registration two images at 9 degree of rotation difference with AprilTag

To demonstrate the failure of registration is only due to the lack of features, we used AprilTag

in the same environment and could successfully register the same pose as in Fig: 5.18. Although,

we used AprilTag to aid in registration process in this experiment, we did not use them as mark-

ers rather they just act as if they were natural feature present in the environment. Of course, same

feature-based pipeline is used for both cases. From the images we can see that, while enough fea-

tures are present, this pipeline works well in case of pair wise registration.
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Figure 5.19: Pairwise registration at 6 degree of rotation with low features (pose 30-31)

Figure 5.20: Pairwise registration two images from middle of the scene (pose 17-18)

However, at 6◦of overlap, we were able to do pairwise registration without AprilTag even when
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there is a lack of features in the scene as can be seen in 5.19 and 5.20.Therefore, we maintained

6◦of rotational difference between two consecutive poses and for the entire room we took 60 poses.

Figure 5.21: ICP iterations for 5.19 and 5.20

Although the point correspondences are slightly more erroneous and it takes more iteration to

successfully register in case of scene with low feature than fair amount of features as can be seen in

5.21. However, in terms of visual there is no apparent difference.

Corner cases are particularly challenging while doing registration due to images taken from

angles which are not optimal for accurate measurement, it does work well in these kind of scenario

too (5.22 - 5.29).
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Figure 5.22: Registration of images taken from first corner(side) of the scene

Figure 5.23: Registration of images taken from first corner(Top) of the scene
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Figure 5.24: Registration of images taken from second corner(Side) of the scene

Figure 5.25: Registration of images taken from second corner(Top) of the scene
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Figure 5.26: Registration of images taken from third corner(Side) of the scene
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Figure 5.27: Registration of images taken from third corner(Top) of the scene
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Figure 5.28: Registration of images taken from fourth corner(Side) of the scene

Figure 5.29: Registration of images taken from fourth corner(Top) of the scene

While we have achieved accurate pair wise registration, there are still some small errors remain.
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In time of global registration these errors add up and create drift as shown in 5.30 .

Figure 5.30: Drift after pair wise registration

Therefore, an ICP based global registration is also performed to reduce the drift error and close

the loop as in 5.31.
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Figure 5.31: ICP Global Registration

From the 60 poses that were aligned consecutively, we have noticed the average correspondence

errors for features remain mostly in the range of 10 to 20 mm. The lowest error was 7.2 mm and

the highest was 29.54. From Fig: 5.32 we can see that the last pose records highest amount of

error. This is due to the fact that, those three frames involves in closing the loop and thus have high

amount of error.
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Figure 5.32: Average correspondence error for each poses taken in laboratory room

We follow the same procedure in case of residential dataset too. After performing pair align-

ments and initial global alignment, we observe the drift error here too.
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Figure 5.33: Drift error in initial global alignment in residential dataset

Finally we perform global registration to remove drift error as shown in 5.34. The error patterns

as shown in Fig: 5.35 are same as poses taken in laboratory room. For most of the poses the average

correspondence error ranges from 10 to 15. But there are two peaks. The last peak is understandable

as they are used to close the lab. The poses responsible for middle peak are taken from the third

wall, image (c) in Fig: 5.2. We can see that these poses consist mainly a curtain of same dark

maroon color. Also, at the right corner there is windows which is closed by glass. As glasses are

reflective, that may also contribute to the error as TOF cameras are not accurate with glass objects.
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Figure 5.34: Global registration of residential dataset

Figure 5.35: Average correspondence error for each poses taken in residential room

79



5.4 Result Comparison

In comparison of the two systems that we have presented, marker-based registration system

showed more accuracy with least amount poses taken. Also, it is done online. While feature based

system also showed good alignment, it took 15 times more poses compared to sparse marker-based

registration and 10 times more compared to dense marker-based registration. It is important to note

we are not using any bundle adjustment process in case of marker-based method to attain efficient

online alignment in contrast to offline methods where bundle adjustment is a necessity. In case

of offline methods, many pictures are taken which in turn accumulates greater drift. But due to

bundle adjustment those drift errors can be corrected. On the contrary, drift errors impact badly in

case of online systems as bundle adjustment is not being used. Therefore, in case of online meth-

ods, our goal is to take a smaller number of images which in turn should accumulates less drift error.

Also, this system was aligned in offline mode which takes fair amount of time. It may seem

down-sampling can increase the speed. But there are two problems. One, down-sampling makes

the cloud UN-organized. When that happens, neighbouring pixels are not necessarily actually neigh-

bours of the points. But we need to find the nearest neighbours while calculating features, doing

ICP or using RANSAC. Finding nearest neighbours in unorganized point cloud is a costly opera-

tion. Two, heavily down-sampling decrease the quality of the features as feature calculation needs

nearest neighbours as due to down-sampling, the radius for neighbours must be increased compared

to prior to down-sampling. That makes the influence of farther points in calculating features greater

than before which contributes to feature ambiguity. Also, feature based system needs parameters

fine tuning. Depending on the point cloud, feature estimation radius, RANSAC rejection radius,

feature matching threshold, number of Iteration, etc. needs to be tuned in order to achieve a good

registration. On the other hand, our marker-based system is free from all of these problems.

To measure the accuracy of the alignment of both systems, we also measured the dimension of

the room from the globally aligned meshes of both systems. For marker-based system, the length

of the laboratory room was found to be 6616.90 mm and width was 6513.22 mm. This is very
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close from the actual length 6600 mm and width 6510 mm measured by tape. The error for width

measurement was only 3.22 mm over such distance and for the length the error was only 16.9

mm. On the other hand, for the feature-based system the width for the laboratory room was found

to be 6491.29 mm and length was 6512.16 mm. We can see that the readings are much lower

than the actual measurements. The error for features based system for the width is 18.71 mm and

length are 87.84 mm. The higher rate of error can be explained because, during global registration,

feature based system tries to adjust each frame to reduce the global errors. While doing so, it

may overcompensate the rotation. Even slight rotational change cause large error when measuring

two point from long distance. Comparing the error of both of this system, we can conclude that,

the marker-based system is much accurate and reliable and thus suitable for applications where

accuracy is very important.
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Chapter 6

Conclusion

In this thesis, we propose a method for an online marker-based 3D reconstruction system which

can aide users in 3D reconstruction process interactively. To enable the user to freely move around

we have developed a standalone platform. Using this platform, the user has no bound to be within

certain area. The platform includes all the things needed to perform online 3D reconstruction. We

have also conducted experiment to find the best camera rotation which is helpful to get accurate

measurement. Upon our findings, we have designed a Graphical User Interface to aide the user to

know which camera rotation they are taking the pose. So that the journey towards better accuracy

begins at the time of image acquisition. We also help the user to know the current state of markers in

the image in real time. We have tested our system in two different environments. One is a laboratory

room and the other one residential room. Both are different in terms of texture and shape present in

the room. Also, the size of these two environments are also different. To compare our marker-based

system, we also developed a marker less feature-based system and test that system also in these

two environments in the same conditions. Our experiments show that our marker-based system

performs at a higher accuracy in terms of alignment. Also, in terms of accuracy of measurement,

our system performs far better than the marker-less feature-based system. We have also shown that

our marker-based system not only outperforms feature-based system in terms of accuracy but also

in terms of number of poses required for 3D reconstruction. Not to mention, it achieves all of this

in real-time while being deployed in a very low-priced computer having low computation power.

82



6.1 Limitations

While we have tried our best to reduce the dependency on any library and make our system

available for any RGB-D camera, we must be dependent on the device manufacturer API for taking

images. Although, third party libraries like OpenNI, Freenect, etc. usually develops drivers for

RGB-D cameras available in the market, we have not yet heard of any news for Azure Kinect.

Apart from the acquisition part, we only depend on OpenCV and PCL which are open source and

universal.

6.2 Future Works

Currently our system depends on the user to acquire images which helps with the accuracy.

Future works may involve in making this process autonomous. That means the system may auto-

matically integrate new scene if did not see that part of the scene before. Another augmentation on

the interactive part of this system could be suggestion of incorporating some part of the scene which

could result in taking a smaller number of poses to fully reconstruct the scene. Moreover, volumet-

ric integration of point cloud can also be thought of as an improvement, although implementing that

in low configure PC would be hard. In addition to 3D reconstruction, other features such as real

time scene segmentation and 3D object detection can also be added.
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Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. (2013). Real-time 3d reconstruction at

scale using voxel hashing. ACM Transactions on Graphics (ToG), 32(6):1–11.

Olson, E. (2011). Apriltag: A robust and flexible visual fiducial system. 2011 IEEE International

Conference on Robotics and Automation, pages 3400–3407.

Rother, C. and Carlsson, S. (2001). Linear multi view reconstruction and camera recovery. Pro-

ceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, 1:42–50.

Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of the icp algorithm. Proceedings third

international conference on 3-D digital imaging and modeling, pages 145–152.

Rusu (2019a). Fast point feature histograms (fpfh) descriptors.

Rusu (2019b). Point feature histograms (pfh) descriptors.

Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (fpfh) for 3d registra-

tion. 2009 IEEE international conference on robotics and automation, pages 3212–3217.

Seitz, S. M. and Dyer, C. R. (1999). Photorealistic scene reconstruction by voxel coloring. Interna-

tional Journal of Computer Vision, 35(2):151–173.

Shabalina, K., Sagitov, A., Svinin, M., and Magid, E. (2018). Comparing fiducial markers perfor-

mance for a task of a humanoid robot self-calibration of manipulators: A pilot experimental

study. International Conference on Interactive Collaborative Robotics, pages 249–258.

Son, H., Kim, C., and Kim, C. (2015). 3d reconstruction of as-built industrial instrumentation

models from laser-scan data and a 3d cad database based on prior knowledge. Automation in

Construction, 49:193–200.

Sun, J., Li, Y., Kang, S. B., and Shum, H.-Y. (2005). Symmetric stereo matching for occlusion han-

dling. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

87



(CVPR’05), 2:399–406.

Tamaazousti, M., Gay-Bellile, V., Collette, S. N., Bourgeois, S., and Dhome, M. (2011). Non-

linear refinement of structure from motion reconstruction by taking advantage of a partial

knowledge of the environment. CVPR 2011, pages 3073–3080.

Tombari, F., Salti, S., and Di Stefano, L. (2010). Unique signatures of histograms for local surface

description. European conference on computer vision, pages 356–369.

Tombari, F., Salti, S., and Di Stefano, L. (2011). A combined texture-shape descriptor for enhanced

3d feature matching. 2011 18th IEEE international conference on image processing, pages

809–812.

Turk, G. and Levoy, M. (1994). Zippered polygon meshes from range images. Proceedings of the

21st annual conference on Computer graphics and interactive techniques, pages 311–318.

Wang, J. and Olson, E. (2016). Apriltag 2: Efficient and robust fiducial detection. 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 4193–4198.

Wang, K., Zhang, G., and Bao, H. (2014). Robust 3d reconstruction with an rgb-d camera. IEEE

Transactions on Image Processing, 23(11):4893–4906.

Wang, S., Fidler, S., and Urtasun, R. (2015). Lost shopping! monocular localization in large indoor

spaces. Proceedings of the IEEE International Conference on Computer Vision, pages 2695–

2703.

Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., and McDonald, J. (2012). Kintinu-

ous: Spatially extended kinectfusion.

Whelan, T., Kaess, M., Leonard, J. J., and McDonald, J. (2013). Deformation-based loop closure for

large scale dense rgb-d slam. 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 548–555.

88


	List of Figures
	List of Tables
	Introduction
	Contribution

	Background
	RGB-D Camera
	RGB Camera
	Depth Camera
	Measurement Error

	Markers
	Local Feature Extraction
	FPFH
	CSHOT

	Iterative Closest Point
	Computing Transformation Matrix


	Related Works
	Measurement Error with Depth Cameras
	3D Reconstruction of Scene
	Reconstruction Based On Prior Knowledge
	Reconstruction Without Prior Knowledge
	Reconstruction With Markers


	System Methodology
	Camera Calibration and Mapping from Depth to Color Camera
	Kinect 3D Measurement Error
	3D Error With Rotation

	Feature Based 3D Registration
	Overview
	Key Point Detection and Feature Descriptors
	Pair Wise and Global Registration

	Marker Based Real Time 3D Registration
	Platform Setup
	Image Acquisition
	Marker Detection and Projection to 3D
	Projection of 2D Point to 3D
	Normal Computation
	Pose Selection
	Global Alignment

	Implementation Details

	Result And Analysis
	Dataset
	Marker Based Real Time Registration
	Feature Based Registration
	Result Comparison

	Conclusion
	Limitations
	Future Works

	Bibliography



