
 

UAS Flight Path Planning and Collision Avoidance 

Based on Markov Decision Process 

 

Tong He 

 

A Thesis 

In 

The Department 

of 

Mechanical, Industrial & Aerospace Engineering 

 

 

Present in Partial Fulfillment of the Requirements  

for the Degree of 

Master of Applied Science (Mechanical Engineering) at 

Concordia University 
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Abstract 

 

UAS Flight Path Planning and Collision Avoidance Based on Markov Decision Process 

Tong He, MASc. 

Concordia University, 2020 

The growing interest and trend for deploying unmanned aircraft systems (UAS) in civil 

applications require robust traffic management approaches that can safely integrate the unmanned 

platforms into the airspace. Although there have been significant advances in autonomous 

navigation, especially in the ground vehicles domain, there are still challenges to address for 

navigation in a dynamic 3D environment that airspace presents. An integrated approach that 

facilitates semi-autonomous operations in dynamic environments and also allows for operators to 

stay in the loop for intervention may provide a workable and practical solution for safe UAS 

integration in the airspace. 

This thesis research proposes a new path planning method for UAS flying in a dynamic 3D 

environment shared by multiple aerial vehicles posing potential conflict risks. This capability is 

referred to as de-confliction in drone traffic management. It primarily targets applications such as 

UAM [1] where multiple flying manned and/or unmanned aircraft may be present. A new multi-

staged algorithm is designed that combines AFP method and Harmonic functions with AKF and 

MDP for dynamic path planning. It starts with the prediction of aircraft traffic density in the area 

and then generates the UAS flight path in a way to minimize the risk of encounters and potential 

conflicts. Hardware-in-the-loop simulations of the algorithm in various scenarios are presented, 

with an RGB-D camera and Pixhawk Autopilot to track the target. Numerical simulations show 

satisfactory results in various scenarios for path planning that considerably reduces the risk of 

conflict with other static and dynamic obstacles. A comparison with the potential field is provided 

that illustrates the robust and fast of the MDP algorithm. 
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Chapter 1 Introduction 
 

1.1 Background  

1.1.1 Unmanned Aerial Systems 

Unmanned Aerial Systems (UAS) is an unmanned aircraft that operates by using radio remote 

control equipment and on-board control devices. They typically include unmanned VTOL 

(Vertical Take-Off and Landing) vehicles, fixed-wing aircraft, multi-rotor aircraft, unmanned 

airship, unmanned parachute aircraft. In a broad sense, it can also include adjacent space vehicles 

(20-100 km airspace), such as stratospheric airships, high-altitude balloons, and solar-powered 

drones. From a certain point of view, unmanned aerial vehicles (UAVs) can be regarded as “aerial 

robots” that can accomplish complex flight and various other load tasks under similar to the way 

a robot or automated machinery behaves.  

According to different platform configurations, UAVs can be classified into three major 

platforms: fixed-wing UAVs, single rotor helicopters, and multi-rotor UAVs, while other small 

types of UAVs also include para-wing UAVs, flapping UAVs, and unmanned airships. Fixed-

wing UAVs are the main platform of military and most civil UAVs. An unmanned helicopter is 

the most flexible UAV platform, which can take off and hover in situ vertically. Multi-rotor 

(multi-axis) UAVs are the preferred platform for consumers and some civil USES. They are 

flexible between fixed wings and helicopters (taking off and landing requires thrust) but are 

simple to operate and are known for a low cost. 

1) Fixed-wing aircraft. As shown in Figure 1.1(a). 

 Unable to take off or land vertically, similar to an airplane. 

 It is more energy-efficient and takes longer to fly due to its lift wings. 

 Used for long-distance transport or detection missions. 
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 In addition to batteries, it can be powered by a fuel engine. 

2) Single rotor helicopters. As shown in Figure 1.1(b). 

 It can take off and land vertically 

 It can carry a variety of cargo and fly for a long time 

 In addition to batteries, it can be powered by a fuel engine. 

3) Multi-rotor UAVs. As shown in Figure 1.1(c). 

  Multi-rotor UAVs features high reliability and low maintenance cost. 

  It can take off and land vertically. 

  Its payload capacity and flight endurance are both compromised. 

 Be more flexible. 

     

 

Figure 1.1 Three major platforms: fixed-wing UAVs (a), Single rotor helicopters (b) and multi-rotor UAVs (c) 

 

According to different areas of applications, UAVs can be divided into three categories: 

military, civilian and consumer, with particular emphasis on the performance requirements of 

UAVs. 

1) Military UAV has higher requirements for sensitivity, flight height, speed and intelligence, 

and it is equipped with the highest technical level, including reconnaissance, bait, electronic 

countermeasures, communication relay, target aircraft and unmanned fighter aircraft.  

2) Civil UAV’s general requirements for speed, distance and ceiling are low. However, for 

the personnel training, comprehensive cost has higher requirements, so mature industrial 
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chain is needed to provide cheap components and support services. Currently, the civil 

UAV's biggest market is that the government provides public services, such as police, fire 

and weather, about 70% of the total demand, and we think the future UAV 's biggest 

potential market may be in civil. For example, new market demand may appear in 

agricultural plant protection, goods speed delivery, air wireless network, data acquisition, 

etc. 

3) Consumer UAV generally uses low-cost multi-rotor platforms for casual purposes such as 

aerial photography and games. 

The payload that a UAS carries is determined by the project requirements and limits of the 

platform. Digital RGB cameras are the leading sensor type, ranging from inexpensive GoPro 

cameras to high-end digital SLR cameras with quality lenses. There are also specialized sensors 

for agriculture, wetlands analysis, and environmental monitoring. These are multi-or 

hyperspectral sensors that allow the analysis of vegetation or wetlands through the use of remote-

sensing software. Many of these sensors are now small enough to be carried on either platform. 

An autopilot is a system used to control the trajectory of an aircraft, marine craft, or spacecraft 

without requiring constant manual control by a human operator. Autopilot does not replace human 

operators. Instead, autopilot assists the operator's control of the vehicle, allowing the operator to 

focus on broader aspects of operations (for example, monitoring the trajectory, weather, and on-

board systems). When present, autopilot is often used in conjunction with an auto throttle, a 

system for controlling the power delivered by the engines.  

Nowadays, UAV has been widely used in meteorological monitoring, land, and resources law 

enforcement, environmental protection, remote sensing aerial photography, earthquake relief, 

express delivery, and other fields. With the development of the Internet of Things, the application 

of UAV to the Internet of Things technology is increasing. In order to better control the flight of 

UAV, the application of various sensors plays a very important role. Building on its legacy of 

work in air traffic management for crewed aircraft, NASA is researching and developing a 

prototype UTM system that would provide airspace integration requirements for enabling safe, 

https://en.wikipedia.org/wiki/Autothrottle


4 

 

efficient low-altitude operations. While incorporating lessons learned from today's well-

established Air Traffic Management (ATM) system, which was a response that grew out of a mid-

air collision over the Grand Canyon in the early days of commercial aviation, the UTM system 

would enable automated safe and efficient low-altitude airspace operations by providing services 

such as airspace design, corridors, dynamic geofencing, severe weather, and wind avoidance, 

congestion management, terrain avoidance, route planning and re-routing, separation 

management, sequencing and spacing, and contingency management.. 

One of the main attributes of the UTM system is that it would not require human operators to 

monitor every vehicle continuously, as in the traditional ATM system. The system provides to 

human managers the data necessary to make strategic decisions related to initiation, continuation, 

and termination of airspace operations. This approach would ensure that only authenticated UAS 

could operate in the airspace. 

In Canada, Transport Canada has launched an RTM (RPAS Traffic Management) initiative and 

organized an action team (RTMAT) comprised of the regulator, Nav Canada, NRC, and various 

industry representatives. The RTMAT architecture and roadmap announced by TC in 2019 

identifies key services and performance levels for the full RTM roll out and plan a set of trials for 

rural and urban flight operations as well as airport security. The trials that will be selected through 

a proposal and committee review process are aimed to investigate the potentials and gap in the 

existing technologies to accommodate the services and also support the development of 

operational procedures. NRC has actively participated and contributed to the RTMAT meetings 

and discussions, effectively taking lead for assessments and gap analysis of the candidate RTM 

technologies and also a source of technical advice for upcoming trials. In RTMT 11 meeting in 

February 2020, we provided a high-level classification of the candidate technologies as potential 

solutions for some of the RTM Foundational and Primary services. While this preliminary 

assessment has been helpful to gain a common understanding of the technologies by the RTMAT 

members, there is a need for more detailed and careful assessment that can establish the base for 

the trials. 

. 
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1.2 Problem definition  

This research will focus on the path planning of multi-rotor commercial UAS in a dynamic, 

multi-vehicle environment. 

 Air traffic control and zoning play a big role in commercial UAS, which can pre-process the 

complex traffic regulations before taking the next action on UAVs. Effective traffic management 

could do more than less. 

In terms of pathing planning, there are currently a lot of classic and improved methods that 

have been implemented in the UAVs field, each method has its pros and cons according to the 

specific situation. Applying a feasible algorithm is prone to making the UAVs more efficiently. 

Therefore, it is vital to choose an appropriate methodology in a specific environment. In this 

research, the issues on path planning will be discussed under the dynamic, multi-vehicle 

environment, where there must be plenty of static and dynamic obstacles that cannot be pre-

detected. This problem arises with some issues about the real-time obstacle avoidance and object 

detection and tracking of UAS. 
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1.3 Motivation and contribution of this thesis 

In this research, tremendous efforts have been dedicated to the collision avoidance of UAVs and 

to improve the performance of autonomous navigation to further ensure the safety and reliability 

of UAVs. To address the above-mentioned problems, the research objectives are to implement a 

novel and adaptive UAV path planning algorithm for an urban environment that can handle 

multiple UAVs and unmolded obstacles in a dynamic environment and real-time collision 

avoidance using RGB-D sensor. 

The main contributions of this dissertation can be summarized as follows: 

1) AKF is developed for zoning the flight airspace with consideration of air traffic control. The 

developed method can predict the position and velocity of other intruders after several 

seconds before making the planning strategy. It can effectively improve the efficiency of 

strategic planning.  

2) 3D HPF is proposed for global path planning with consideration of pre-mapping. HPF can 

avoid the local minimum problem that exists in the traditional PF method by using the 

Laplace equation and harmonic function. 3D HPF makes use of the relation between P and 

G potential to achieve following the synthetic route. It can satisfy the combination of 

external control and elimination of the local minimum in the global path planning。 

3) MDP is proposed for the real-time obstacle avoidance without pre-information about the 

unknown intruders. This method makes full use of the reward system to get the max optimal 

reward action as the principle of the decision. It can effectively process the data from sensors 

and decide the best action to make collision avoidance. 

4) This dissertation proposes an algorithm on the combination of UAV path planning and 

vision-based real-time obstacle avoidance, and validate the effectiveness of the algorithm 

through simulation of virtual urban environment based on ROS and PX4 development 

platform. Most of the simulation results in this thesis are based on ROS / Gazebo and 

simulation software, and there is no real flight test due to Covid-19. 
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1.4 Organization of this thesis 

This thesis is structured in the following manner: 

 Chapter 2 mainly introduces the literature survey about global path planning and local 

collision avoidance for quadrotors. Moreover, some other preliminary pieces of knowledge, 

such as SLAM and object detection and tracking are also presented in this chapter. 

 

 Chapter 3 addresses the detailed description of the various hardware components and software 

used for the Multi-copter used in this thesis, such as ROS and GAZEBO. The movement 

principle is also illustrated in this chapter.  

 

 Chapter 4 illustrates the methods that are developed for generating the path and making 

obstacle avoidance by combining the computer vision algorithm. These methods could make 

the object detection/tracking, airspace zoning, path planning, and avoid obstacles in real-time, 

which are based on ROS/Gazebo and MATLAB/SIMULINK during the flight test simulation. 

 

 Chapter 5 presents the test and simulation result on each algorithm in different scenarios, and 

the combination of all algorithms for urban simulation test.  

 

 Chapter 6 presents the conclusions of the conducted research works and summarizes several 

predominant ideas for the future development of the dissertation’s outcomes. 
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Chapter 2 Literature Survey 
 

2.1 Motion planning 

Motion planning [2] is a computational problem to find a sequence of valid configurations that 

moves the object from the source to the destination. The goal of a general-purpose planning 

problem is to come up with a sequence of actions that accomplish a given goal. The Motion 

Planning Problem is more specifically concerned with coming up with plans to move a robot from 

one location to another. To get it from Point A to Point B. In many cases, this boils down to a 

kind of geometry problem. Where the goal is to guide the robot through a particular trajectory 

that avoids all the obstacles that we know about in the environment. This basic approach can be 

applied to a wide variety of robotic systems including the quadrotors system.. 

Over the last decade, several studies were reported concerning path planning in unknown 

environments with dynamic or unexpected obstacles. Various methodologies have been proposed 

for UAV path planning and collision avoidance [3]. Traditionally, path planning has been 

conducted at the two levels of (c.f. [4]: i) global and strategic collision avoidance, and ii) local or 

tactical collision avoidance. The former utilizes a priori known information and the map of the 

environment to produce a connected path from the start to the goal location in the environment. 

The latter is performed by using sensor data to adapt to the changes to the environment 

representation, e.g., due to new obstacles appearing or un-modeled aircraft presence in the area 

[5]. Common approaches in the literature for global path planning include search-based 

algorithms, e.g., Dijkstra or A* algorithm [6]-[7]. More recently, sampling-based algorithms such 

as Rapidly-exploring Random Trees (RRT) [8]-[9] and Probabilistic Roadmap Method (PRM) 

[10] have been widely used. RRT algorithm is a sampling-based path planning algorithm, which 

is commonly used in mobile robot path planning. It is suitable for solving path planning problems 

under high-dimensional space and complex constraints. The basic ideas include searching 

forward to the target point by a step in the way of generating random points, effectively avoiding 

obstacles, avoiding the path falling into a local minimum, and converging to the target point 

quickly. RRT is a fast algorithm but cannot guarantee asymptotic optimality [11]. Lee et al. 

Proposed the RRT * algorithm based on the spline curve (SRRT *) to solve the UAV path 
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planning problem with nonholonomic constraints in the 3D environment. The algorithm expands 

the random tree through the B-spline curve. It can realize dynamic programming and also can 

check the geometric collision of the robot in the tree expansion stage. The SRRT * algorithm can 

generate smooth and optimal cost paths for UAVs. The overall RRT does not need to model the 

system, and there is no need to geometrically divide the search area. The coverage in the search 

space is high, and the search range is wide. Also, and the unknown area can be rediscovered. But 

at the same time, there is also a problem that the computational load of the algorithm is too large 

to find the path in narrow space. To improve the efficiency of the RRT algorithm, various methods 

have been proposed including potential function planner [12], density avoided sampling [13], and 

variations of those [14]-[18]. Rapidly Exploring Random Tree Star (RRT*) [19] is one of the 

recent sampling-based algorithms proposed as an extension to RRT, which iteratively generates 

and optimizes the path as the number of sampling increases. The algorithms mentioned above 

have their advantages and disadvantages according to the different situations. In this thesis, the 

algorithm is capable of safely navigating the UAS platform in a dynamic environment while other 

UAVs are also sharing the airspace. 

PRM is a graph-based search method [10]. It converts a continuous space into a discrete space 

and then uses a search algorithm such as A * to find a path on the route map to improve search 

efficiency. This method can find a solution with relatively few random sampling points. For most 

problems, relatively few samples are enough to cover most of the feasible space, and the 

probability of finding a path is 1 (As the number of samples increases, P (Find a path) Index tends 

to 1). When there are too few sampling points or the distribution is unreasonable, the PRM 

algorithm is incomplete, but with the increase of the number of points used, it can also reach 

completeness. Therefore, PRM is probabilistically complete and not optimal. PRM method can 

effectively solve the path planning problem in high-dimensional space and complex constraints, 

but this is based on enough sample points and reasonable step size, and as the dimension increases, 

the amount of calculation also increases.  

A* is a path on the graph plane with multiple nodes to find the lowest passing cost [6]. It is also 

a heuristic search algorithm. Heuristic search is a search in the state space for each search position 

Evaluate to get the best position, and then search from this position to the target. This can omit a 
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large number of unnecessary search paths and improve efficiency. The A* could find an Optimal 

path, but it takes a long time to do the calculation of the cost function. Also, the number of nodes 

will take a great effect on the speed of the process. In some specific situations, 3D path planning 

is required, in terms of exponential increase when adding one more dimension, A* is more suitable 

for the 2D environment. Potential Field is to create the gravitational field and repulsive field [24], 

in which the target point produces gravitation on the object and guides the object toward its 

movement (this is somewhat similar to the heuristic function h in the A* algorithm). Obstacles 

produce a repulsive force on objects to prevent them from colliding. The resultant force of an 

object at each point on the path is equal to the sum of all repulsive and gravitational forces at this 

point. The computational load of this Potential Field is small, to improve the operational efficiency 

of trajectory planning. However, there is a regional minimum value in the implementation process 

of this method, which makes the UAV unable to judge the next trajectory. At the same time, when 

it is close to the obstacle, the repulsion force is very large, so it is impossible to judge the magnitude 

and direction of the attraction force. 

 

2.2 Real-time obstacle avoidance 

2.2.1 Artificial Potential Filed 

The local path planning methods employ sensor readings to react to the environment changes, 

and they can also be effective for GPS-denied navigation, where the global reference to the 

positioning system may not be available. The most common sensors used for obstacle avoidance 

and detection are Electro-Optical (E/O), Laser, Li-DAR, and in some cases radar (e.g., Ecodyne 

radar [20] and TrueView radar [21]). Optical sensors such as 3D depth camera (or RGB-D sensors) 

have been recently used in several works for 3D environment mapping and localization. They are 

capable of producing RGB-D (Red Green Blue-Depth) image that is augmented by the depth data 

at each pixel and hence can be used for localization. Jia Hu et al. [22] use a  RealSense𝑇𝑀 camera 

and Blob analysis to binarize and segment the image in order to obtain the foreground and 

background and then detect the connected area to get the Blob block, which performs well in 

simulation. In [23], the researchers also use the image-based visual servoing by comparing the 
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real-time obstacle definition windows to make avoidance. Stereo camera or RGB-D camera is used 

for getting the image features.  

Khatib formulated the concept of Artificial Potential Field (APF) [24] for local obstacle 

avoidance in 1985. It combines attractive and repulsive potential fields that represent the goal and 

obstacles positions, respectively. APF methods are applied to local path planning due to the local 

minima problem which can render global path planning incomplete in a general environment [25], 

[26]. However, some variants of APF can be used for global planning. HPF, for example, as an 

alternative to model the force fields in AFP have been used in several research works, including 

the pioneering work of C. I. Connolly [27] in 1993, and more recently in [28]-[32] and [33]. As 

another example of APF variant, the advanced fuzzy potential field method (AFPFM) is proposed 

by Park et al. [34]. The authors combined Takagi–Sugen (TS) Fuzzy inference [35] with AFP to 

avoid the local minima problem.   

HPF method is a novel method based on harmonic functions, to overcomes the limitations of 

potential field methods. The most important trait of HPF method is that they are free from local 

minima. HPF method uses harmonic functions and boundary value conditions to solve the local 

minima problem. To build an artificial potential, we use harmonic function, which should satisfy 

Laplace equation. It should not have local extrema in a space free from singularities, and it should 

have second order derivatives. The solution of Laplace equation is also known as the mobile robot 

velocity potential. A harmonic function should also satisfy principle of superposition and 

principle of maxima and minima. These principles indicate that the harmonic function has its 

extremes only on the boundary, so it does not have local maxima/minima inside the boundary. 

Hence, it is convenient for us to define boundary conditions for all obstacles and goal. In this 

research Newman boundary conditions have been used. The Newman boundary condition states 

that the boundary of all obstacles will be assigned with the maximum value in the region and the 

boundary of goal position has the minimum value in the region. By defining the boundary 

conditions in this format, the potential field is harmonic field with only global minimum 

represented by goal position. 
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2.2.2 Markov Decision Process 

More recently, many researchers have considered the MDP [61] for solving the collision 

avoidance problem. For example, Temizier et al. [26] have formulated the problem in an MDP 

framework with the sensors that localization formulation for the intruder aircraft and provided a 

collision-avoidance policy that balances the original flight path deviations with the probability of 

a collision given the positional uncertainty of the intruder. MDP is a discrete-

time stochastic control process. It provides a mathematical framework for modeling decision-

making in situations where the outcomes are partly random and partly under the control of a 

decision-maker. MDPs are useful for studying optimization problems solved via dynamic 

programming and reinforcement learning. At each time step, the process is in some state, and the 

decision-maker may choose any action that is available in the state. The process responds at the 

next time step by randomly moving into a new state and giving the decision-maker a 

corresponding reward. The probability that the process moves into its new state is influenced by 

the chosen action. Specifically, it is given by the state transition function. Thus, the next state 

depends on the current state and the decision maker's action. In other words, the state transitions 

of an MDP satisfy the Markov property. MDP are an extension of Markov chains. The difference 

is the addition of actions (allowing choice) and rewards (giving motivation). Conversely, if only 

one action exists for each state (e.g. "wait") and all rewards are the same (e.g. "zero"), a MDP 

reduces to a Markov chain. 

In this work we adapt a MDP formulation for dynamic path planning problem in urban 

environments.  

 

2.3 Simultaneous Localization and Mapping 

Simultaneous Localization and Mapping (SLAM) is an important area that transcends various 

fields, particularly for real-time obstacle avoidance and path planning. The concept of localization 

deals with the question of where the object is located, while the concept of mapping is to visualize 

the environment surrounding the object. There are some difficulties in finding ways or methods to 

solve [36], including the feasibility of locating an object in the unknown surroundings and the 

https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Discrete-time
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Optimal_control_theory
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Randomness#In_mathematics
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_chain
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capability of mapping the environment as well as simultaneously getting the location, which has 

been tried to solve [35] by many researchers.  

Andrew Davison's Mono-SLAM [36] applies EKF-SLAM based on the Laser Ranger-Finder 

into Single camera SLAM in the traditional robotics field. The algorithm is more complete, and 

the key improvement lies in increasing the computing speed through replacing invariant Feature 

Matching. PTAM [38,39] separates tracking and mapping into two separate threads, which not 

only does not affect the real-time experience of tracking, but also makes it easy to use BA in the 

mapping thread to improve accuracy. The ORB-SLAM [40] algorithm basically follows the 

framework of PTAM and adds in all the modules that have been validated in recent years to make 

an all-purpose system with high stability and accuracy that can be used in various scenarios such 

as indoor/outdoor and small-scale/large-scale. When the traditional EKF-based SLAM [41] does 

IMU fusion, it is similar to the Mono-SLAM mentioned above. Generally speaking, the state vector 

at each moment will save the current pose, velocity, and 3D Map points coordinates, etc. (IMU 

bias is generally added in IMU fusion). And IMU is used to predict step, and then the observation 

error of 3D Map points is used in the image frame to do update step. The motivation of MSCKF 

[42] is that every update step of EKF is observed in a single-frame frame based on 3D Map points. 

It would be good if the observation effect could be based on its observation in multiple frames (a 

little similar to the idea of local Bundle adjustment). Therefore, the performance of MSCKF is 

improved by the steps given as follows: the predict step is similar to EKF, but the update step is 

delayed until a 3D Map point is observed in multiple frames for calculation. Before the update, 

each frame is received, and the state vector is simply expanded and added to the pose estimate of 

the current frame. The idea is similar to the local bundle adjustment (or Sliding Window 

Smoothing), but in update Step, it was equivalent to optimizing the pose and 3D map point based 

on multiple observations. This thesis will not focus on using the SLAM part as an auxiliary part in 

an unknown environment. 

In order to meet some real-time limitations, a closed-loop detection only uses a limited number 

of labeled points, and can access the labeled points of the entire map when needed. When the 

number of positioning points in the map makes the time to find a positioning match exceed a 

certain threshold, RTAB-MAP transfers the positioning points that are unlikely to form a closed 

loop in WM (Working Memory) to LTM (Long-Term Memory). In this way, these transferred 

position points will not participate in the calculation of the next closed-loop detection. When a 
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closed loop is detected, its lead positioning point can be retrieved from the LTM and put into the 

WM for future closed loop detection. 

Since the positioning points in the LTM do not participate in closed-loop detection, it is very 

important to choose which fixed points in the WM are transferred to the LTM. The idea of RTAB-

map is shown as follows. It is assumed that the more frequently visited anchor points are easier to 

form a closed loop than other anchor points. The number of consecutive visits of such an anchor 

point can be used to measure its weight for easily forming a closed loop. When it is necessary to 

transfer the anchor point from the WM to the LTM, the anchor point with the lowest weight is 

preferentially selected. If there are more anchor points with the lowest weight, the one with the 

longest storage time is preferred. STM (Short-Term Memory) is used to observe the similarity of 

consecutive images in time, and update the weight of the anchor point accordingly. WM is used to 

detect the closed-loop hypothesis of the positioning point in space. The closed-loop detection of 

RTAB-MAP does not use the positioning points in the STM, because in most cases, the last 

obtained positioning point is mostly similar to its nearest positioning point. The storage size T of 

the STM depends on the speed of the robot and the frequency of acquisition of the positioning 

points. When the number of positioning points reaches t, the positioning points with the longest 

storage time in the STM are moved to the WM. 

   RTAB-Map uses discrete Bayesian filters to estimate the probability of forming a closed loop, 

and compares the new anchor point with the anchor point stored in WM. When it is found that 

there is a high probability of forming a closed loop between the new and old anchor points, a closed 

loop is detected, and the new and old anchor points are linked together. There are two key steps, 

one is "retrieving". For the anchor point with the highest probability of forming a closed loop, it 

takes leading anchor points that are not in the WM, and then takes it out of the LTM and put it 

back into the WM. The second step is called "transfer". When the processing time of the closed-

loop detection exceeds the threshold, the positioning point with the lowest weight and the longest 

storage time will be transferred to the LTM. And the number of transferred positioning points 

depends on the number of anchor points stored by WM in the loop. 

RTAB aims to provide a time - and scale-independent, appearance-based positioning and 

composition solution for online closed-loop detection in large environments. In order to meet 

some real-time constraints, closed-loop detection can only use a limited number of registration 

points, and can access the registration points of the whole map when needed. When the number 
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of registration points in the local map matches a certain threshold value, RTAB will transfer some 

registration points which have low probability to be a closed loop from WM to LTM. 

 

 

Figure 2.1 RTAB-Map ROS sensor placement. 

 

The required inputs are: TF, which is used to define the position of the sensor relative to the 

robot base; an odometer from any source (can be 3DoF or 6DoF); one of the camera inputs (one 

or more RGB-D images, or binocular Stereo image) with corresponding calibration message. The 

optional inputs are: 2D laser radar scan, or 3D laser point cloud. Then, all messages from these 

inputs are synchronized and passed to the graph-SLAM algorithm.  

The UAV’s trajectory needs to be estimated and the correct map needs to be built. There are 

many ways to express the maps, such as feature point maps, grid maps, topological maps, etc. The 

map format we use is mainly a point cloud map. In the program, we splice the point cloud 

according to the optimized posture, and finally form a map. This approach is very simple, but has 

some obvious flaws: 

 The map format is not compact. 

Point cloud maps are usually very large, so a PCD file will also be very large. A 640×480 

image will produce 300,000 space points, requiring a lot of storage space. Even after some 

filtering, the PCD file is very large. The point cloud map provides a lot of unnecessary details. 

We are not particularly concerned about these folds and shadows on the carpet. Putting them 

on the map is a waste of space. 

 The way to deal with overlap is not good enough. 

When constructing a point cloud, we directly put together according to the estimated pose. 

When there is an error in the pose, it will cause obvious overlap of the map. For example, a 
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computer screen has become two, and the original boundary has become a polygon. The 

treatment of overlapping areas should be better. 

 Difficult to navigate 

The point cloud map cannot show whether the area is accessible or not, which cannot give a 

concrete information for the navigation. 

 

Octo-map [43] is designed for this purpose, it can compress and update the map gracefully, and 

the resolution is adjustable. It stores maps in the form of an octree, which saves a lot of space 

compared to point clouds. The map created by Octo-map looks like this: (from left to right is a 

different resolution) 

 

Figure 2.2 By limiting the depth of a query, multiple resolutions of the same map can be obtained at any time. 

Occupied voxels are displayed in resolutions 0.08m, 0.64m, and 1.28m. 

 

Due to the octree, its ground image is composed of many small squares (much like mine-craft). 

When the resolution is high, the square is small; when the resolution is low, the square is large. 

Each square represents the probability that the square is occupied. Therefore, one can query a 

certain block or point "whether it can pass" to achieve different levels of navigation. In short, lower 

resolutions are used when the environment space is larger, while higher resolutions can be used 

for more elaborate navigation. 

An octree, that is, a tree with eight child nodes: 
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Figure 2.3 The model of resolution square (left) and the structure of the Octree (right) 

The actual data structure is that a tree root continuously expands downwards and is divided into 

eight branches each time until the leaves. The leaf node represents the highest resolution. For 

example, if the resolution is set to 0.01m, then each leaf is a small square of 1cm square. Each 

small square has a number describing whether it is occupied. In the simplest case, it can be 

represented by two numbers from 0 to 1 (too simple to use). Usually a floating-point number 

between 0 and 1 is used to indicate its probability of being occupied. 0.5 means undetermined, the 

greater the probability of being occupied, and vice versa. Since it is an octree, all eight children of 

a node have a certain probability of being occupied or not occupied. 

When using the benefits of the tree structure: when the child nodes of a node are "occupied" or 

"not occupied" or "undetermined", one can cut it off. In other words, if there is no need to further 

describe the finer structure (child node), one only need a thick square (parent node) information. 

This can save a lot of storage space. The occupancy probability of the father node in the octree can 

be calculated according to the value of the child node. The simple way is to take the average or 

maximum. If the octree is rendered according to the probability of occupancy, the uncertain 

squares are rendered transparent, and the occupied rendering is determined to be opaque, 

 

Figure 2.4 The Odometry and the virtual mapping of Octo-map 
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2.4 Object detection based on Convolutional Neural Networks (CNN) 

Convolutional neural network is an efficient recognition method developed in recent years. In 

the 1960s, Hubel and Wiesel found that the unique network structure of the neurons used for local 

sensitivity and directional selection in the cat's cerebral cortex can effectively reduce the 

complexity of the feedback Neural Network, and then put forward the Convolutional Neural 

Networks (CNN). At present, CNN has become one of the research hotspots in many scientific 

fields, especially in the field of pattern classification. Since this network avoids the complicated 

pre-processing of images and it can directly input the original images, it has been widely used. 

The new recognizer proposed by K. Ukushima [44] in 1980 is the first implementation network 

of the convolutional neural network. Subsequently, more researchers improved the network. 

Among them, the representative research result is "improved cognitive machine" proposed by 

Alexander and Taylor, which combines the advantages of various improvement methods and 

avoids time-consuming error back propagation. 

Generally speaking, the basic structure of CNN consists of two layers. The first is the feature 

extraction layer, in which the input of each neuron is connected to the local receiving domain of 

the previous layer and the local features are extracted. Once the local feature is extracted, the 

location relationship between it and other features is also determined. The second is the feature 

mapping layer. Each computing layer of the network is composed of multiple feature mappings, 

and each feature mapping is a plane on which the weights of all neurons are equal. The sigmoid 

function with small influence kernel is used as the activation function of the convolutional 

network in the feature map structure, which makes the feature map have displacement invariance. 

In addition, the number of network free parameters is reduced because the neurons on a mapping 

surface share weight. Each convolutional layer in a convolutional neural network is followed by 

a computing layer for local average and quadratic extraction. This unique two-time feature 

extraction structure reduces the feature resolution. CNN is mainly used to identify two-

dimensional graphics with displacement, scaling and other forms of distortion invariance. Since 

the feature detection layer of CNN learns through training data, it avoids feature extraction when 

using CNN and learns implicitly from training data. Moreover, because the weights of neurons 

on the same feature mapping surface are the same, the network can learn in parallel, which is also 

a big advantage of convolutional network over the network with neurons connected to each other. 
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Convolution weights of neural network with its local Shared special structure in terms of speech 

recognition and image processing has its unique superiority, its layout is closer to real biological 

neural networks, a weight sharing reduces the complexity of the network, especially the 

multidimensional network input vector image can directly input this feature to avoid the data in 

the process of feature extraction and classification the complexity of the reconstruction. 

 

Real-time object detection and tracking are important and challenging tasks in many computer 

vision applications such as video surveillance and UAV navigation. Object detection involves 

detecting the object in a sequence of videos and is the process of locating an object or multiple 

objects using either a static or dynamic camera. In [45], Qiang Ling et.al, developed a feedback-

based object detection algorithm. It adopts a dual-layer updating model to update the background 

and segment the foreground with an adaptive threshold method and object tracking is treated as 

an object matching algorithm. A piece of structured labeling information in the partial least square 

analysis algorithm for simultaneous object tracking and segmentation was proposed in [46]. This 

algorithm allows for novel structured labeling constraints to be placed directly on the tracked 

object to provide useful contour constraint to alleviate the drawback of the online-learning-based 

tracking method is their sensitivity to drift, i.e, they gradually adapt to non-targets. In [47], Jianxin 

Wu et al proposed a real-time and accurate object detection framework called C 4 which detects 

the object based on their contour information using a cascade classifier and the CENTRIST visual 

descriptor. A major contribution of their work is to fast object detection. It involves no image 

preprocessing or feature vector normalization, and only requires O (1) steps to test an image patch. 

At present, artificial intelligence is the core and focus of next-generation information 

technology, and computer vision plays an irreplaceable role. Especially in related fields such as 

obstacle avoidance and object tracking. Before 2014, target detection usually used a more 

traditional method, to find a way to generate some candidate boxes, then to extract the features 

of each box, and finally to confirm whether this box is the target object through a classifier. There 

are many ways to generate candidate frames. For example, different sizes of preselection boxes 

can be used to slide in the picture, or like the Selective Search [48] algorithm, some candidate 

boxes can be generated based on the texture of the picture itself. However, since 2014, with the 

development of deep learning related technologies, new models have emerged, which can achieve 

end-to-end training and detection networks, and the effect has been significantly improved 
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compared with traditional methods. The development of target detection is shown in the figure 

below: 

 

 

Figure 2.5 Milestones in generic object detection. 

  

In 2015, Redmon J et al. proposed the YOLO network, which is characterized by combining 

the candidate box generation and classification regression into one step. The feature map is 

divided into 7x7 cells during prediction, and each cell is predicted, which greatly reduces the 

calculation complexity. It can accelerate the speed of target detection, frame rate up to 45 fps! 

The most common evaluation metric that is used in object recognition tasks is 'mAP', which 

stands for 'mean average precision'. It is a number from 0 to 100 and higher values are typically 

better, but its value is different from the accuracy metric in classification. After a lapse of one 

year, Redmon J once again proposed YOLOv2. Compared with the previous generation, the mAP 

on the VOC2007 test set is increased from 67.4% to 78.6%. However, because a cell is only 

responsible for predicting an object, facing the goal of overlap. The recognition result is not good 

enough. Finally, in April 2018, the author released the third version of YOLOv3.The mAP-50 on 

the COCO dataset was increased from 44.0% of YOLOv2 to 57.9%. Compared with RetinaNet 

[49] with 61.1% mAP, RetinaNet has an input size of 500. In the case of ×500, the detection speed 

is about 98 ms/frame, while YOLOv3 has a detection speed of 29 ms/frame when the input size 

is 416×416. 
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Figure 2.6 The mAP and cost time of different training Methods 

 

Darknet-53 is comparable to the most advanced classifiers in accuracy, and it has fewer 

floating-point operations and the fastest calculation speed. Compared with ReseNet-101, the 

speed of Darknet-53 network is 1.5 of times that of the former; although ReseNet-152 and its 

performance are similar, but it takes more than 2 times of time. In this thesis, the UAV model has 

been trained based on Yolov3 Darknet53 weight. 100 databases have been trained for the 

detection. 

 

 

2.5 Summary 

In this chapter, a literature survey on global path planning and real-time collision avoidance 

combine with sensor fusion has been carried out.  In the path planning section, plenty of global 

and local collision avoidance are been demonstrated, which has their cons and pros. Such as HPF 

can combine with the control, but the local minimum is the main issue in this method. Also, PRM 

and RRT have been mentioned, which have best optima and fast speed respectively, but they are 

all in sample-based, which means the branch and point are created randomly so that cannot 

combine with control. The computer vision part includes object detection tracking and SLAM, 

these algorithms could help collision avoidance more effectively. 
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Chapter 3 Integrate System Description 
 

This chapter presents an overview of the different parts of the drone system used for the 

simulations of this research. This includes the multi-copter, the software and the necessary 

communication protocols. 

 

3.1 The Multi-copter 

3.1.1 Basic structure 

For this thesis, a quadrotor simulation model was chosen. The quadrotor is a 3D Iris Quadrotor 

model, which has many virtual parameters, fixed-pith propellers, 850kv brush-less motors, 

SimonK Electronic Speed Controllers (ESC), aluminum arms, a power distribution board and 

GPS. The quadrotor is powered by a Hyperion 3s 4000mAh 25C battery. The quadrotor is shown 

in Figure 3.1. 

Herein, the quadrotor is chosen to fly in Quadrotor X- configuration. The other alternative is 

+- configuration. These configurations are shown in Figure 3.2, where the blue and green arrows 

indicate rotor configuration.  

 

Figure 3.1 Quadrotor Firmware based on PX4 Platform 
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Figure 3.2 The two possible Multi-copter configurations, X-configuration to the left 

and +-configuration to the right. Green indicate clockwise direction of the 

rotors, while blue indicate counter-clockwise direction. 

 

3.1.2 Movement principle 

The X-shape quadrotor mathematical modeling of dynamical systems can be presented as: 
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Where 𝜙, 𝜃, 𝜑 are the rotation angle (counterclockwise) of the fuselage around the Y-axis, X-axis 

and Z-axis, 𝐼𝑥, 𝐼𝑦, 𝐼𝑧 are the moment of inertia of the fuselage in three directions, 𝐽𝑟 is the moment 

of inertia, 𝐾1, …𝐾6 are the air resistance coefficient,  𝑙 is the arm length from the motor to the 

center of mass, M is the mass of the body and g is the gravitational acceleration. 
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Then the X-shape control input can be defined as: 

{
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                                               (4-2) 

Where 𝛺𝟏, 𝛺𝟐, 𝛺𝟑, 𝛺𝟒 are the speeds of the four motors respectively, 𝑏, 𝑑 are the force to torque 

scaling factors respectively. 

Hovering 

As each motor rotates with its propeller, it generates an upward lift force and a counter-torque 

force in the opposite direction. When the counter-torque force generated by the two diagonal 

shafts (motor 1+2 VS motor 3+4) is equal to each other, the system stability is guaranteed. At the 

same time, the combined lift from the four motors is just enough to cancel out the plane's own 

gravity, and the plane hovers. 

 

Figure 3.3 The rotation state of the four motors when hovering 

 

Vertical motion 

It is ensured that the reversing torques cancel each other and the total lifting force is increased 

so that it is greater than gravity, and the body can rise vertically. If the total lifting force is 

decreased to the level less than gravity, the body can fall vertically. 
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Figure 3.4 The rotation state of the four motors when doing Vertical movement 

Pitch motion (forward and backward motion) 

At the same time, the speeds of motors 1 and 3 are reduced and, the speeds of motors 2 and 4 

are increased, so the aircraft will be bent forward. The total lift in the forward position is not 

vertical, but forward with the plane. This will produce a component going forward in the 

horizontal direction. In this position, the plane moves forward with this horizontal force. Similarly, 

if we increase the motors speed of 2 and 4 and decrease the motor speeds of 1 and 3, the plane 

will lean back. The total lifting force in the case of rearward also rearward, creating a component 

of the horizontal rearward force. In this position, the plane will move backward with this 

horizontal force. 

 

Figure 3.5 The rotation state of the four motors when doing Pitch motion 

Rolling motion (side motion) 

The principle is similar to pitching motion. If one increases the speeds of motors 1 and 4 and 

decreases the speeds of motors 2 and 3, and the plane will roll to the right. If one leans to the right, 
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the plane will move to the right. If one increases the speeds of motors 2 and 3 and decreases the 

speed of motors 1 and 4, and the plane will roll to the left. If one leans to the left, the plane will 

move to the left. 

 

Figure 3.6 The rotation state of the four motors when doing Rolling motion 

 

The flight control and method 

 

Pixhawk [50] is the world's most famous open-source flight control hardware launched by 

manufacturer 3DR. It is a UAV control system, running PX4 and APM environment. Pixhawk is 

known for its powerful functions and reliable performance. The open-source of its hardware has 

enabled many hardware manufacturers to join the ranks of manufacturing Pixhawk. The Pixhawk 

has an Atmel ATMEGA2560 chip for processing, and an Atmel ATMEGA32U-2 chip for USB-

functions. 

 

The Pixhawk includes an Inertial Measurement Unit (IMU) with the following: 

 • InvenSense MPU-6000, 3-axis Gyro / 3-axis Accelerometer 

 • Honeywell HMC5883L-TR 3-axis Digital Compass 

 • Measurement Specialties MS5611-01BA03 Barometric Pressure Sensor 
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Figure 3.7 Pixhawk hardware 

An inertial navigation module composed of a 3-axis gyroscope and a 3-axis acceleration 

sensor is installed on the four axes. The flight control has the information of the current attitude, 

acceleration, and angular velocity of the aircraft according to the data returned by these sensors. 

The flight control calculates and evaluates the deviation between the current attitude and the target 

attitude through algorithms, and then outputs the action correction of the four motors through 

these deviations. 

In other words, the pilot simply tells the flight control what he wants to do with the four-axis 

motion, and the flight control combines the sensor information to split the pilot's commands into 

four motors. 

 

 

Figure 3.8 Flight control and execution process 
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3.2 Payload 

The payload is the carrying capacity of a quadrotor. This could be upgrading the camera to a 

dual thermal and RGB imaging system, adding LiDAR technology, sticking on a GPS system, or 

increasing the number of sensors in order to process more data simultaneously. In this dissertation, 

the payload is about 3000g. 

3.2.1 Raspberry Pi 

Raspberry Pi 4 Model B [51] is the latest product in the popular Raspberry Pi range of 

computers. It offers ground-breaking increases in processor speed, multimedia performance, 

memory, and connectivity compared to the prior-generation Raspberry Pi 3 Model B+, while 

retaining backwards compatibility and similar power consumption. Some of its most important 

properties are listed in Table3.1 

 

Table 3.1 The configuration of Raspberry Pi 

Overview Raspberry Pi 4 

CPU 

Processor Type 

RAM 

1.5GHz Quad Core 

Cortex-A72 (ARM v8) 

4GB - CPU 

Physical Attributes  

Size 

Weight 

8.5cm × 5.6cm × 3cm 

82g 

Interfacing  

Display Port 

Power 

Storage 

Ethernet 

HDMI 

5V DC via USB-C 

SD Card - Ethernet Wi-Fi 

RJ45 and Wi-Fi 

Environment  

Operating Temperature 

Humidity 

Operating temperature 0–50ºC 

N/A 
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Figure 3.9 Raspberry Pi board 

3.2.2 Realsense D435i 

The Intel® RealSense™ D435i [52] places an IMU into our cutting-edge stereo depth camera. 

With an Intel module and vision processor in a small form factor, the D435i 

is a powerful complete package which can be paired with customizable software for a depth 

camera that is capable of understanding its own movement. which gives a field of view of 

86° × 57° (±3°) with a frame rate of Up to 90 fps. This camera can be seen in Figure 3.10 

 

Figure 3.10 RealSense D435i Camera 
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3.3 Software  

3.3.1 PX4 

The PX4 is a complete open source autopilot system capable of controlling angular rotations and 

altitude and performing programmed GPS missions with waypoints. It is an open source flight 

control software for drones and other unmanned vehicles. The project provides a flexible set of 

tools for the drone developers to share technologies to create tailored solutions for drone 

applications. PX4 provides a standard to deliver drone hardware support and software stack, 

allowing an ecosystem to build and maintain hardware and software in a scalable way. 

 

3.3.2 Ubuntu 

Ubuntu is an open source operating system based on the Linux kernel. It is one of the most popular 

Linux distributions, and therefore it has the advantage of being frequently updated and having 

support for many different USB-components such as frame grabbers and different GPS devices. 

Ubuntu is also widely used for platforms such as the ROS, resulting in a variety of distributions 

that are optimized with respect to the ARM architecture. All of these factors make 

Ubuntu an ideal operation system for the ROS. 

3.3.3 Computer vision 

OpenCV 

Intel Open Computer Vision Library, referred to as OpenCV, is a function library mainly aimed 

at real-time computer vision. The library is open-source and cross-platform, and receives frequent 

updates from its large user base. In this thesis OpenCV can be implemented in object detection 

and object tracking. 

Yolo  

YOLO (You Only Look Once) is a state-of-the-art (2019) technique to detect objects within 

images. One of its advantages is that it's extremely fast compared to other techniques, which 

makes it suitable for using it with video feeds at high frame rates (with a fast Nvidia GPU). YOLO 
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applies a single neural network to the full image. This network divides the image into regions and 

predicts bounding boxes and probabilities for each region. These bounding boxes are weighted 

by the predicted probabilities.  

 

3.3.4 ROS GAZEBO RVIZ 

The Robot Operating System (ROS) is a flexible framework for writing robot software. It is a 

collection of tools, libraries, and conventions that aim to simplify the task of creating complex 

and robust robot behavior across a wide variety of robotic platforms. In this project, there are two 

simulation software (GAZEBO and RVIZ) based on ROS being implemented, GAZEBO is a 3D 

environment simulation software, which can load the sim-env and the flight model. RVIZ is a 

topic publishing software, which can also show the model in vision by using the urdf file. 

 

3.3.5 MATLAB/SIMULINK 

Simulink is a simulation and model-based design environment for dynamic and embedded 

systems, integrated with MATLAB. Simulink, also developed by MathWorks, is a data flow 

graphical programming language tool for modelling, simulating and analyzing multi-domain 

dynamic systems. It is basically a graphical block diagramming tool with customizable set of 

block libraries. It allows you to incorporate MATLAB algorithms into models as well as export 

the simulation results into MATLAB for further analysis.  In this thesis, the construction of PID 

controller is based on the SIMULIINK and also the trajectory generation source from MATLAB 

calculation. 

 

3.4 Communication Protocols 

MAVlink [53] protocol is a higher-level open source communication protocol based on serial 

port communication. It is mainly used in the communication of micro aerial vehicle. MAVlink 

provides rules for sending and receiving data frequently used in communications between small 
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aircraft and ground stations (or other aircraft) and adds a checksum function. It is used for 

communication between an PX4, and the Ground Control Station. Figure 3.11 describes the 

communication between PX4 on SILT with QC and API by using MAVlink. 

 

 

Figure 3.11 MAVlink Communication Protocols 

 

3. 5 Summary 

This chapter mainly describes the design structure of the quadrotor, X-type and the four Rotor 

to achieve operational guidelines through positive and negative rotating speeds, and meanwhile 

introduces in detail the rotor system, flight control, Raspberry Pi, Realsense D435i camera and 

other hardware systems, simulation platform, Computer Vision software and communication 

protocol needed for simulation. 
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Chapter 4 Research methodologies 
In this chapter, we will present the developed methodologies on AKF, HPF and MDP. Figure 

4.1 shows the whole process consisting of each algorithm that plays a role in the autonomous 

navigation. 

 

Figure 4.1 Overview of Control Algorithm 

4.1 Path planning and collision avoidance  

A new method is proposed for path planning in a dynamically changing environment. It 

particularly targets safe integration of UAS in an airspace that is shared by other flying aircraft 

amid ground-based static and dynamic obstacles. Such an environment is common in an urban 

air mobility (UAM) application where several UAS platforms and other manned aircraft may also 

operate. The proposed method on the one hand adopts HPF with APF for global planning, and on 

the other hand, applies AKF prediction scheme with MDP for collision avoidance. The harmonic 

field formulation helps avoid the local minimum issue, and the MDP governs the flight path and 

direction selection to minimize the probability of encountering dynamic flying obstacles. We 

have conducted hardware-in-the-loop simulations of the proposed algorithm using 

MATLAB/Simulink and ROS gazebo environment Pixhawk and D435i hardware.  

The following sub-sections explain the adopted methods of each section of the algorithm in 

greater details. 
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4.1.1 Adaptive Kalman Filter 

The AKF is a recursive filter that can estimate the internal states of a linear system from the 

noisy measurements. In this thesis, the AKF is used to predict the discrete states of the UAVs and 

facilitate dynamic path planning [54]-[57]. By predicting the location of existing UAVs at several 

future instances, we can segment the environment based on the level of traffic density expected at 

each segment. This step will attempt to reduce the likelihood of an encounter with other UAVs in 

the area and the time and effort required to execute local collision avoidance. 

Considering that UAV in a 3Dspace, the state vector 𝑥𝑡 of a UAV can be expressed as follows: 

𝑥𝑡 =

[
 
 
 
 
 
𝑥
𝑦
𝑧
𝑣𝑥
𝑣𝑦
𝑣𝑧]
 
 
 
 
 

                                                                          (4-1) 

Accordingly, for the relationship between position and velocity, one has 

𝑝𝑡 = 𝑝𝑡−1 + 𝑣𝑡−1 × ∆𝑡 +
1

2
𝑢𝑡 × ∆𝑡

2                                           (4-2) 

𝑣𝑡 = 𝑣𝑡−1 + 𝑢𝑡 × ∆                                                       (4-3) 

Where 𝑢𝑡 is the acceleration of the UAV. 

We can write (4-6) and (4-7) in the following matrix format: 

 

[
𝑝𝑡
𝑣𝑡
] = [

1 ∆𝑡
0 1

] [
𝑝𝑡−1
𝑣𝑡−1

] + [∆𝑡
2 2⁄
∆𝑡

] 𝑢𝑡                                      (4-4) 

and define 𝐹𝑡 as the state transition matrix and 𝐵𝑡 the control matrix, as below 

𝐹𝑡 = [
1 ∆𝑡
0 1

]                                                                    (4-5) 

𝐵𝑡 = [
∆𝑡2 2⁄
∆𝑡

]                                                                  (4-6) 

The prediction equation of AKF can now be written as: 

�̂�𝑡|𝑡−1
− = 𝐹𝑡�̂�𝑡−1|t−1 + 𝐵𝑡𝑢𝑡−1                                                   (4-7) 

Considering the uncertainty in the observations, the state prediction equation will be: 

Σ𝑡|𝑡−1
− = 𝐹Σ𝑡−1|t−1𝐹

𝑇 + 𝐵�̅�𝑡−1𝐵
𝑇                                           (4-8) 

Σ𝑡|𝑡−1
− = 𝐹Σ𝑡−1|t−1𝐹

𝑇 + 𝑄                                                  (4-9) 
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Where Σ𝑡−1 is covariance matrix at 𝑡 − 1 moment, and 𝑄 is the noise covariance matrix 

Then by combining two Gaussian distributions, Kalman gain 𝐾𝑡 can be set: 

𝐾𝑡 = Σ𝑡|𝑡−1
− 𝐻𝑇(𝐻Σ𝑡|𝑡−1

− 𝐻𝑇 + �̅�𝑡−1)
−1
                                              (4-10) 

𝐾𝑡 = Σ𝑡|𝑡−1
− 𝐻𝑇(𝐻Σ𝑡|𝑡−1

− 𝐻𝑇 + 𝑅)
−1

                                   (4-11) 

Where 𝐻 is the transfer matrix and 𝑅 is the observation covariance matrix. 

 

The relation between observations and predictions is presented as: 

𝑌𝑡 = 𝐻�̂�𝑡|t−1 + 𝑣                                                  (4-12) 

𝜀𝑡 = 𝑌𝑡 − 𝐻�̂�𝑡|t−1                                                       (4-13) 

Where 𝑌𝑡 is the observation value from sensor and 𝑣 is the observation noise. 

Finally, the covariance and state variables are updated as: 

�̂�𝑡|𝑡 = �̂�𝑡|𝑡−1
− + 𝐾𝑡𝜀𝑡                                                      (4-14) 

Σ𝑡|𝑡 = (𝐼 − 𝐾𝑡𝐻)Σ𝑡𝑡−1
−                                              (4-15) 

The locations of the UAVs in the area at a number of future steps can be predicted by the AKF. 

Here the updates of R and Q matrix are shown: 

�̅�𝑡 = (1 − 𝑑𝑡−1)�̅�𝑡−1 + 𝑑𝑡−1(𝐾𝑡𝜀𝑡𝜀𝑡
𝑇𝐾𝑡

𝑇 + Σ𝑡|𝑡 − 𝐹𝑡Σ𝑡−1|𝑡−1𝐹𝑡
𝑇)            (4-16) 

 

�̅�𝑡 = (1 − 𝑑𝑡−1)�̅�𝑡−1 + 𝑑𝑡−1(𝜀𝑡𝜀𝑡
𝑇 − 𝐻Σ𝑡|𝑡−1𝐻

𝑇)                            (4-17) 

Where 𝑑𝑡 =
1−𝑏

1−𝑏𝑡+1
 0 < 𝑏 < 1. 

Assuming that there are k number of intruders in the environment, the positions of them are 

defined as: 

�̂�𝑡(𝑚) = �̂�𝑡(𝑚)
− + 𝐾𝑡(𝑚)(𝑌𝑡(𝑚) − 𝐻�̂�𝑡(𝑚)

− )                                     (4-18) 

For the simulations of this thesis and without loss of generality the number of future steps is 

set at 15 and the transfer matrix 𝐻 is defined accordingly. Using this prediction method, we can 

define multiple zones inside the environment according to the different number of UAVs 

predicted to occupy each at any given instant. 

To simplify the simulation, we divide the environment map into four equal area zones 

𝑍𝑜𝑛𝑒𝑛 (𝑛 = 1，2，3，4 ) on the 2D plane with the four coordinates of (x_ln,y_ln,x_hn,y_hn), 

where x_ln is the lower coordinate of the lower vertices of the zone n and x_hn is the high 
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coordinate of the higher vertices of zone n. 

We track the position of intruders �̂�𝑡(𝑚) inside the environment and zones to identity sparse 

and dense zones according to the following criteria. We designate zones with low number of 

intruder drones (N = 0,1) as sparse and then zones with higher numbers as dense. 

{
             𝑍𝑜𝑛𝑒𝑠𝑝𝑎𝑟𝑠𝑒               (𝑁 = 1)

           𝑍𝑜𝑛𝑒𝑑𝑒𝑛𝑠𝑒                 (𝑁 > 1)
                                               (4-19) 

Where N is the number of the drone in the 𝑍𝑜𝑛𝑒𝑠 after the set number of future steps (15s). 

 

4.1.2 Harmonic Potential Field 

HPF is used for global path planning. Mathematically, they are the solutions to the Laplace’s 

equation (below) that can be used to avoid the local minima problem of APF method. 

∇2𝑓 = 0                                                                (4-20) 

Where ∇2 is called Laplace operator applied to a potential filed 𝑓.  In the context of fluid low, for 

example, 𝑓 can be understood as representing a potential that is inviscid, incompressible and 

irrotational. The HPF must satisfy the Laplace’s equation, below, 

∇2𝑃 =
𝜕2𝑃

𝜕𝑋2
+

𝜕2𝑃

𝜕𝑌2
+
𝜕2𝑃

𝜕𝑍2
                                                  (4-21) 

 𝑃 = 𝑃(𝑋, 𝑌, 𝑍)                                                       (4-22) 

in a 3D environment with x, y, z axes. 

In the thesis, since our boundary conditions are approximately spherical, we convert 

rectangular coordinates to spherical coordinates.  

{

𝑋 = 𝑟 sin𝜑 cos 𝜃
𝑌 = 𝑟 sin𝜑 sin 𝜃
𝑍 = 𝑟 cos𝜑

                                                      (4-23) 

Where r is the Radius of the spherical boundary and 𝜃, 𝜑 are the angle rotated by Z axis in X-Y 

plane and angle with Z axis respectively. Substituting formula (4-27) into formula (4-25) yields: 

 

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑃

𝜕𝑟
) +

1

𝑟2 sin𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑃

𝜕𝜃
) +

1

𝑟2 sin𝜃2
𝜕2𝑃

𝜕𝜑2
= 0                 (4-24) 

 

In order to solve the Laplace formula, we use the method of separating variables to solve and 
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(4-26) can be expressed as in the form: 

𝑃(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑)                                              (4-25) 

Then putting (4-29) into (4-28), we get two equations 

𝑟2
𝑑2𝑅

𝑑𝑟
+ 2𝑟

𝑑𝑅

𝑑𝑟
− 𝑙(𝑙 + 1)𝑅 = 0                                         (4-26) 

1

sin𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑌

𝜕𝜃
) +

1

sin𝜃2
𝜕2𝑌

𝜕𝜑2
+ 𝑙(𝑙 + 1)𝑌 = 0                            (4-27) 

Where l is a constant ∈ 𝑁. 

Regarding R is an Euler equation, one needs to replace the variables to solve the equation. 

Hence, a new equation is acquired. 

 

𝑟 = 𝑒𝑡 , 𝑡 = 𝑙𝑛𝑟                                                             (4-28) 

𝑑2𝑅

𝑑𝑡2
+
𝑑𝑅

𝑑𝑡
− 𝑙(𝑙 + 1)𝑅 = 0                                                  (4-29) 

𝑅(𝑟) = 𝐶𝑟𝑙 + 𝐷
1

𝑟𝑙+1
                                                       (4-30) 

Where C and D are constants  ∈ 𝑅. The parameter separation of Y can be solved as, 

𝑌(𝜃, 𝜑) = 𝛹(𝜑)𝛩(𝜃)                                                      (4-31) 

Combining (4-31) with (4-25), we get 

𝛹(𝜑) = 𝐴 cos 𝑛𝜑 + 𝐵 sin 𝑛𝜑                                              (4-32) 

Where A, B, n are constants ∈ 𝑅. According to Legendre Polynomial, the other equation can be 

defined as, 

𝑝𝑙(𝑥) =
1

21𝑙!
(
𝑑

𝑑𝑥
)
𝑙
(𝑥2 − 1)𝑙                                               (4-33) 

𝛩(𝜃) = (1 − 𝑥2)
𝑚

2𝑝𝑙
𝑚(𝑥)                                                 (4-34) 

Where x = cos 𝜃 and m  ∈ 𝑁. In the end, putting 𝑅(𝑟), 𝛹(𝜑) , 𝛩(𝜃) into (4-24), one has 

𝑃(𝑟, 𝜑, 𝜃) = 𝑅(𝑟), 𝛹(𝜑) , 𝛩(𝜃)                                           (4-35) 

𝑃(𝑟, 𝜑, 𝜃) =  ∑ ∑𝑟𝑖[𝐴𝑙
𝑚 cos 𝑛𝜑 + 𝐵𝑙

𝑚 sin 𝑛𝜑]

𝑚

𝑙=𝑚

∞

𝑚=0

𝑝𝑙
𝑚(cos 𝜃)

+ ∑ ∑
1

𝑟𝑖+1
[𝐶𝑙

𝑚 cos 𝑛𝜑 + 𝐷𝑙
𝑚 sin 𝑛𝜑]

𝑚

𝑙=𝑚

∞

𝑚=0

𝑝𝑙
𝑚(cos 𝜃) 

(4-36) 

To guide the UAV towards the goal and avoid obstacle collision, a potential field algorithm is 
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used. The goal is to use a standard attractive force that varies linearly with distance. The linear 

relationship ends at a threshold distance. The value of  𝑔𝑡ℎ𝑟𝑒𝑠ℎ is set by user heuristically based 

on the tolerable limit for getting close to the obstacle. Beyond this threshold, the attractive force 

stays constant in magnitude to prevent high attractive forces. Together, the attractive force 𝑮 is: 

𝐺 = {
𝜉(𝑠𝑔𝑜𝑎𝑙 − 𝑠𝑠𝑡𝑎𝑟𝑡)                      𝑖𝑓‖𝑠𝑔𝑜𝑎𝑙 − 𝑠𝑠𝑡𝑎𝑟𝑡‖ ≤ 𝑔𝑡ℎ𝑟𝑒𝑠ℎ

𝜉𝑔𝑡ℎ𝑟𝑒𝑠ℎ
𝑠𝑔𝑜𝑎𝑙−𝑠𝑠𝑡𝑎𝑟𝑡

‖𝑠𝑔𝑜𝑎𝑙−𝑠𝑠𝑡𝑎𝑟𝑡‖
       𝑖𝑓‖𝑠𝑔𝑜𝑎𝑙 − 𝑠𝑠𝑡𝑎𝑟𝑡‖ > 𝑔𝑡ℎ𝑟𝑒𝑠ℎ

               (4-37) 

Where 𝜉 > 0 is a scaling constant, 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝕽
𝟑 is the current location and 𝑠𝑔𝑜𝑎𝑙 is the goal location.  

 

Implement Newman boundary conditions 

Newman boundary conditions is applied in this method. Given a continuous function f on a 

smooth closed surface Γ, look for the function 𝑃(𝑟, 𝜑, 𝜃): In the interior of Γ, Ω is a harmonic 

function, which is continuous on (Γ+ Ω), and the normal guide number exists at any point on Γ 

and is equal to the known function F, which is, 

𝜕𝑢

𝜕𝑛
|Γ = 𝐹                                                                   (4-38) 

Numerically, the 3-D Laplace’s equation can be solved by using the Separation of Variables, 

and the Newman boundary condition: 

        {

∇2𝑃 = 0
𝜕𝑃

𝜕𝑛
|Γ = 0

𝜕𝐺

𝜕𝑛
|Γ = 0

                                                                (4-39) 

For boundary conditions the gradient of the obstacles and the border of the map are equal to 

zero.  At the start point, the boundary value is equal to 1, and the end point is 0. 

4.1.3 Markov Decision Process 

MDP is applied for obstacle avoidance and relies on an onboard depth sensor (RealSense𝑇𝑀 

camera is used for simulations of this work). When the 3D camera receives the depth information 

from an intruder aircraft, then the relative position away from own ship is computed. The 

algorithm could detect the intruder whether go through into the safety area. 

There are five parameters in MDP 〈𝑆 𝐴 𝑃 𝑅 𝛾〉 representing state, action, state transfer 

probability, reward, and discount, respectively. 𝑃 and 𝑅 are corresponding with specific action: 

𝑃𝑠𝑠′
𝑎 = 𝑃[𝑆𝑡+1 = 𝑠

′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                                  (4-40) 
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𝑅𝑠
𝑎 = 𝐸[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                                           (4-41) 

Where 𝑃𝑠𝑠′
𝑎  and 𝑅𝑠

𝑎  represent the probability from 𝑠 to 𝑠′  and the reward after taking action 𝑎 

respectively. 

Then we need to define a policy to determine which action should be taken. 

𝜋(𝑎|𝑠) = 𝑃(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠)                                                 (4-42) 

So, the 𝜋(𝑎|𝑠) is the probability of action at state s. 

When given a MDP and a policy  〈𝑆 𝑃𝜋 𝑅𝜋 𝐴 𝛾〉, one makes the reward satisfying two 

equations: 

𝑃𝑠𝑠′
𝜋 = ∑ 𝜋(𝑎|𝑠)𝑎∈𝐴 𝑃𝑠𝑠′

𝑎                                                     (4-43) 

 𝑅𝑠
𝜋 = ∑ 𝜋(𝑎|𝑠)𝑎∈𝐴 𝑅𝑠

𝑎                                                        (4-44) 

Then the state value function and action value function can be defined as: 

𝑣𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠) (𝑅𝑠
𝑎 + 𝛾∑ 𝑃𝑠𝑠′

𝑎
𝑠′ 𝑣𝜋(𝑠

′))𝑎∈𝐴                                  (4-45) 

𝑞𝜋(𝑠, 𝑎) = 𝑅𝑠
𝑎 + 𝛾∑ 𝑃𝑠𝑠′

𝑎
𝑠′∈𝑆 ∑ 𝜋(𝑎′|𝑠′)𝑎′∈𝐴 𝑞𝜋(𝑠

′, 𝑎′)                   (4-46) 

One can define the optimal function with (4-49) and (4-50) as following: 

𝑣∗(𝑠) = 𝑚𝑎𝑥𝑎𝑅𝑠
𝑎 + 𝛾∑ 𝑃𝑠𝑠′

𝑎
𝑠′ 𝑣∗(𝑠

′)                                      (4-47) 

𝑞∗(𝑠, 𝑎) = 𝑅𝑠
𝑎 + 𝛾∑ 𝑃𝑠𝑠′

𝑎
𝑠′∈𝑆 𝑚𝑎𝑥𝑎′𝑞𝜋(𝑠

′, 𝑎′)                             (4-48) 

The next state of the drone from KF can be obtained as: 

𝑝𝑡+1 = [
𝑥
𝑦
𝑧
]                                                                (4-49) 

Then we set the obstacle reward 𝑅𝑜𝑏𝑠 a negative value and goal reward 𝑅𝑔𝑜𝑎𝑙 a positive value. 

𝑅 = {

𝑅𝑜𝑏𝑠 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑅𝑔𝑜𝑎𝑙 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑅𝑓𝑟𝑒𝑒 = 𝑍𝑒𝑟𝑜       
                                                (4-50) 

The action set (18 direction) can be defined as below: 

𝐴 = {𝑎𝑛 𝑎𝑠 𝑎𝑒 𝑎𝑤 𝑎𝑛−𝑒 𝑎𝑛−𝑤 𝑎𝑠−𝑒 𝑎𝑠−𝑤 …}                (4-51) 

Where 𝑛, 𝑠, 𝑒, 𝑤 represent geographical North, South, East, and West respectively. 

When the collision is predicted to occur at 𝑡𝑘+1, MDP is applied to select the next action at 

time 𝑡𝑘. 

To apply the MDP for the obstacle avoidance, first a local small grid map 𝑛 × 𝑛, is considered 

around the UAS current location and the reward 𝑅 is associated with the grid points.    Then 
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according to equations (4-44) and (4-45), one can get a set of state reward value matrix (𝑛 × 𝑛). 

𝑉𝑖𝑗 = (

𝑣𝑖𝑗 ⋯ 𝑣𝑖𝑛
⋮ ⋱ ⋮
𝑣𝑛𝑗 ⋯ 𝑣𝑛𝑛

)                                                       (4-52) 

According to equation (4-46), the maximum of 𝑉𝑖𝑗 will determine the policy 𝜋(𝐴|𝑝), and the 

policy is to decide which direction the drone should take. 

𝜋(𝐴|𝑝) = (

𝜋𝑖𝑗 ⋯ 𝜋𝑖𝑛
⋮ ⋱ ⋮
𝜋𝑛𝑗 ⋯ 𝜋𝑛𝑛

)                                                  (4-53) 

Then one transfers the policy to the state, and the drone will make an avoidance. This method 

also fits for multi-drone scenario. 

 

Below, the pseudocode of the algorithm is presented: 

Table 4.1 Run AKF to make airspace zoning 

1: Initialize map and intruder location 

2: For each intruder 

3:  Get the state (Velocity and Position) information 

4: Predict the location in next several seconds 

5: Return the prediction 

6: Create a count node 

7: If count node > threshold 

8:   Dense Zone 

9: Else Sparse Zone 

 

Table 4.2 Run HPF to make path planning 

1: Initialize G field  

2:  Start =1, goal = 0, grad_n = 0 at all boundaries 

3: Initialize P field  

4: Obstacle boundaries = 1, map boundaries = 0 

5: While follow the path 

6: If G = 1 Change the direction 

7:  If gradP * gradG >0 

8: break 

9: If P < P_thresh 

10: Follow contour of G  

11: Else  

12: Follow contour of P 
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Table 4.3 Run MDP to avoid obstacles in real time 

1: Initialized the RGB-D camera 

2: Compute the relative position with the intruders 

3: Define the discount factor and reward rule 

4: While intruder invade safety range 

5: Divide the grid map 

6: Calculate the sum of rewards and the policy 

7: Decide the action 
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4.2 Architecture and hardware in the loop simulation 

4.2.1 Hardware loop 

As illustrated in Figure 4.8, the simulation software interfaces with a Pixhawk autopilot, 

RealSense𝑇𝑀 D435i camera and Raspberry Pi 4 via MAVLINK, and is also integrated with the 

PX4 Firmware dynamic model and platform. 

 

Figure 4.2 Hardware-in-the loop simulation 

Further, OpenCV median tracker [58] is implemented for tracking the object in this research. 

For the planned simulations the object is first detected and tracked by using the RealSense𝑇𝑀 

435i depth camera, then Raspberry Pi transfers the depth signal to the motion command to the 

Robot Operating System (ROS) and the Pixhawk, and then the simulation’s codes are generated 

and rendered in Gazebo. 
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4.2.2 Real-time PID control loop 

In this research, plenty of virtual simulations of flight tests are based on the PID controller, as 

shown in Figure 4.3 Firstly, the path planning algorithm is used to generate the path. Once the 

path has been created, we set up a stack protection mechanism for the UAV, which compares the 

GPS information with the path information in real-time. When the position error is larger than 

the built-in threshold of the system, the control system carries out stack protection and stops 

supplying the value of the next target point until the threshold value is less than the built-in 

threshold of the system. Then the PID is used to control the x, y, and z positions of the drone. PID 

is a model-free control, while an adaptive control method that does not need a process model. It 

is capable of effectively controlling the position of the drone, and the effective parameters of the 

PID (P)=0.5，Integral (I)=0.3，Derivative (D)=0.3 are tuned by using the trial and error method. 

 

Figure 4.3 PID controller 

 

 



44 

 

Figure 4.4 simple block diagram of the PID control system 

 

 

Here there is a simple test to validate the PID controller: 

In Figure 4.4, the drone will fly around the cube, the red arrow represents the direction and 

the simplified path of the drone, 

 

Figure 4.5 The reference simulation flying a square path 

 

 

Figure 4.6 The reference path 
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Figure 4.7 The output path processed by PID controller 

 

 

Figure 4.8 The output path processed by PID controller in 2D 

 

 

Figure 4.5 describes the reference path that the drone should follow, and Figure 4.6 show the 

raw path in X, Y, Z direction respectively after implementing the PID Controller, also Figure 

4.7 gives a clear view of the path. 
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4.3 Summary 

This chapter illustrates how to achieve autonomous navigation by using mathematical methods. 

Moreover, the function of each approach in the whole navigation system is described, such as the 

AKF estimates the states of the known intruders, 3D HPF generates the desired trajectory, and 

MDP makes real-time collision avoidance.  Besides, the block diagram and some instructions of 

the simulation of Hardware-in-the-loop and PID controller loop are provided. 
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Chapter 5 Simulations and Experiments 

 

The proposed motion planning algorithm is illustrated and evaluated through a series of test 

cases by simulations. First, one test case is shown for one stage of the algorithm separately, and 

then a combined case is presented. The fourth and last scenario integrates the three stages of the 

algorithms i.e., AKF, HPF, and MDP in a case that resembles the UAM application. For a better 

demonstration of tracking the performance of the algorithm, the simulation scenarios are arranged 

to follow the pseudocode sections, and hence we will first start with the AKF section, the HPF, 

and finally the MDP. As mentioned before, the last scenario is a combined case that tests the 

entire algorithm. 

5.1 Case 1: Computer vision 

5.1.1 Object Detection 

Object detection and tracking are vital for UAVs to make obstacle avoidance, especially 

working in an unknown environment. In this case, the simulation about the computer vision is all 

based on a PX4 platform equipped with a RealSense D435i camera. Also, the Yolov3 Darknet 

53. Conv .74 pre-trained weights on 100 databases are implemented. GPU OPENCV and CUDA 

have been chosen for accelerating the training speed. The configuration and the parameters are 

shown here: 
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Figure 5.1 The Pre-trained weight model of Yolov3 Darknet 53. Conv .74 

Table 5.1 The configurations of pre-set up value 

Parameters Value 

Input Dimension 4164163 

momentum 0.9 

saturation 1.5 

Learning rate 0.001 

batch 64 

subdivisions 16 

activation linear 

 

Eventually, through 1000 times iterations and 64000 images for training, the training loss 

makes regression. The training batch and subdivisions outputs have been illustrated in the 

following table. 

Table 5.2 The training batch output 

Batch Output  

Iteration times 1000 

Total Loss 0.127639 

Average Loss 0.110730 

Learning rate 0.001 

Batch time 9.428663 

Total Training Images 64000 
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Table 5.3 The subdivisions batch output 

Subdivisions output  

Region Avg IOU 56.98% 

Class 0.999018 

Obj 0.989786 

No. Obj 0.000793 

Count 14 

 

In the above tables, the average loss reaches at 0.110730, which is good for 100 databases 

training, also the value of class arrives at 0.999019 close to 1, which means this training model 

could recognize the test image and classify the character almost 100 percent. 

 

In Figure 5.2, there are a truck and a plant in front of own ship. At this time, the yolo weights 

are applied to detect the object. Yolo weights are trained by Darknet firmware which could 

recognize 80 classes in the real world.  

 

Figure 5.2 Object detection by using standard yolo weights 

 

Figure 5.3 illustrates that own VOC datasets are trained based on Yolov3 Darknet 53. Conv .74 

shown in Figure 5.1. During this training, 100 images about PX4 SILT are treated as the input, 

then the input-goes through the Yolov3 weights, generating a new weight in the end.  The result 

can be shown in Figure 5.3. 
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Figure 5.3 Object detection by using own VOC weights 

 

5.1.2 Object tracking 

OPENCV has plenty of object tracking algorithms, and each tracking method has own pros 

and cons, the following table show the characteristic of each approach. 

 

Table 5.4 OpenCV trackers description/Pros and cons 

Algorithms  Description/Pros and Cons 

BOOSTING Tracker Based on the same algorithm used to power the machine learning 

behind Haar cascades (AdaBoost), but like Haar cascades, is over a 

decade old. This tracker is slow and doesn’t work very well. 

Interesting only for legacy reasons and comparing other algorithms. 

MIL Tracker Better accuracy than BOOSTING tracker but does a poor job of 

reporting failure.  

KCF Tracker Kernelized Correlation Filters. Faster than BOOSTING and MIL. 

Similar to MIL and KCF, does not handle full occlusion well 

CSRT Tracker Discriminative Correlation Filter (with Channel and Spatial 

Reliability). Tends to be more accurate than KCF but slightly slower. 

MedianFlow Tracker 

 

 

TLD Tracker 

MOSSE Tracker 

 

GOTURN Tracker 

Does a nice job reporting failures; however, if there is too large of a 

jump in motion, such as fast-moving objects, or objects that change 

quickly in their appearance, the model will fail. 

The TLD tracker was incredibly prone to false-positives. 

Very, very fast. Not as accurate as CSRT or KCF but a good choice 

if you need pure speed. 

The only deep learning-based object detector included in OpenCV. 

It requires additional model files to run (will not be covered in this 

post). My initial experiments showed it was a bit of a pain to use even 

though it reportedly handles viewing changes well  
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According to the comparison of the tracking test from the real camera and the simulation cam, 

it turns out MedianFlow Tracker performs better than other trackers in the virtual environment. 

During the real-world tracking test, the CSRT tracker works better than others do. In this thesis, 

the MedianFlow Tracker and CSRT tracker are implemented in the simulation. 

 

 

Figure 5.4 Object tracking by using MedianFlow Tracker (FPS: 9.54) 

 

 

Figure 5.5 Object tracking by using MedianFlow Tracker (FPS: 5.77) 

 

Figure 5.4 and Figure 5.5 show the tracking results when the intruder is moving. It is noticed 

that, the tracking is stable and fast. One drawback is that FPS may drop when it enables high 

speed. 
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5.2 Implementing RTAB-Octomap to build the environment 

Using RTAB-map's powerful feature extraction function and Odometry, the combination with 

Octo-map can simplify the environment, reduce the amount of calculation of the point cloud map, 

speed up the drone's scanning speed of the map, thus help the drone to complete the task more 

efficiently. Figure 5.6 shows the drone turning on the camera at the starting position to model the 

environment 

 

Table 5.5 RTAB-Map Default parameters 

 

 

 

Figure 5.6 The partial Octo-mapping of the virtual world 

 

In Figure 5.7, the left image is the 3D Octo-map and the right are the Odometry Feature image 

by using the RTAB algorithm. 
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Figure 5.7 Octo-mapping image (left), Odometry Feature extraction image (right) at beginning point 

 

Figure 5.8 Octo-mapping image (left), Odometry Feature extraction image (right) at end point 

 

Figure 5.9 describes the whole map construction after the RTAB-Octo-map algorithm. which 

shows a very clear and precise view about the surroundings. 
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Figure 5.9 The whole view of RTAB-Octo-map world 

 

 

Figure 5.10 The whole view of RTAB-Octo-map world 

 

Figure 5.10 is the image that is combined with the Odometry information based on the points 

clouds of the image feature. Through the above simulation, we can conclude that when the UAV 
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maintains a certain flight speed, this algorithm can quickly and effectively sketch the map of its 

environment and retain Odometry information at the same time, so as to achieve SLAM better. 

 

5.3 Adaptive Kalman Filter  

AKF is an efficient autoregressive method. It can estimate the state of the dynamic system in 

many uncertain situations. It is a powerful and versatile tool to filter out the noise and estimate 

the states. Before moving forward on to the next step, there are some simple position and velocity 

prediction simulations to test the AKF Assuming there is a drone with Uniform speed and uniform 

acceleration respectively, through the prediction of the AKF, the following results are obtained. 

 

Figure 5.11 The position estimation results uniformly motion 
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Figure 5.12 The velocity estimation results uniformly motion 

 

Figure 5.13 The position estimation results in uniformly accelerated motion 
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Figure 5.14 The velocity estimation results in uniformly accelerated motion 

 

From the above figures, it can be seen that whether the motion is uniform motion or uniformly 

accelerated motion, the AKF has some increased deviation at the beginning of prediction. When 

time goes by, the accuracy of the model improves and the original can be well fitted in the case of 

noise interference. 

In this research, the AKF is implemented to zone the airspace. Moreover, the real states of the 

intruders will be published from a database platform and by using an AKF to zone the sparse space 

for their own ship. This stage is concerned with efficient path planning based on a prior known 

representation of the environment. The AKF is employed to predict the pose of other flying UAVs 

sharing the same airspace. Those UAVs are termed intruders here and the objective is to minimize 

a conflict between the multiple UAVs (the subject of the path planning). The estimated position 

(yellow circle) of each intruder after 15s is shown in Fig. 5.15 and using this data the airspace can 

be segmented into different zones that exhibit sparse, and dense traffic presence, as illustrated in 

the figure. According to the density of intruders, two kinds of zones are designated (the red square 

is the Dense zone and the blue is the sparse area in Fig. 5.15). In the Dense zone, the number of 

intruders equal or are more than 2. The output of this algorithm, in particular, will also be used for 

planning path across the environment and zones, as it will be illustrated in Scenarios 3 and 4.   
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As demonstrated here, the KF formulation allows us to define different zones that will guide 

global path planning in a way to avoid potentially denser traffic, and hence higher chances of 

separation. 

 

Figure 5.15 Implementing strategy planning through AKF 
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5.4 Harmonic Potential Field 

This section uses the HPF to represent the environment. As explained in Section II. A HPF 

with Newman boundary condition is developed for the environment with the known location of 

start and goal points and the obstacle boundaries. The 3-D Laplace equation can be solved with 

the separation parameter method to generate a continuous field over the designated environment. 

Following the potential field gradient, a trajectory can be generated from the starting point (high 

potential field) along the edge of the obstacle to the endpoint (low potential field).  

However, calculating a single Harmonic field for the entire environment may pose numerical 

challenges and complexities. To avoid this, the researchers [33] utilize separate Harmonic 

functions to represent obstacles individually. In this way, each object can be added or subtracted 

separately to the environment with a minimum effort. It was demonstrated that by following a 

direct trajectory towards the goal point while it can generate a connected path and avoid obstacles 

while following the iso-potential elliptical contours around each obstacle, where a distance 

threshold to the objects is passed. 

Figure 5.16 demonstrates the iso-potential contours in 3-D around each obstacle in the 

environment and Figure 5.17 illustrates the connected path from a start point to the goal. 

 

Figure 5.16 The contour of obstacle 
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Figure 5.17 The 3D trajectory based on HPF representation in MATLAB 

 

Figure 5.18 The simulation of flight path under HPF in Gazebo 

The second case will show the partial paths in each individual point in Figure 5.20, in this case 

the ability of continuous path generating and planning can be fully illustrated.   
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Figure 5.19 The distribution of obstacles in Gazebo 

 

In Figure 5.20, the contour function is used to build the contour of the obstacles. At the same 

time, ten 3D points are located on the map. In this step, the HPF is implemented in two points. 

Thus, 9 partial paths can be generated in Figures 5.20-5.23. The simulation of the flight path 

under HPF in Gazebo is shown in Figure 5.24. 

 

Figure 5.20 The contour map and sample point in MATLAB 
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Figure 5.21 The path of first two points after applying HPF in MATLAB 

 

Figure 5.22 The full path after applying HPF (2D view) in MATLAB 
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Figure 5.23 The full path after applying HPF (3D view) in MATLAB 

 

 

Figure 5.24 The simulation of flight path under HPF in Gazebo 
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5.5 MDP 

Real-Time avoidance is carried out based on MDP. Scenarios 1 and 2 are the simulations of 

known environments and obstacles. MDP can perform obstacle avoidance for unknown intruders 

which can let the policy to decide which action should be taken when a new obstacle is 

encountered and sensed. the camera is used to locate the relevant position between own ship and 

the intruders. For the simulations, as explained in Chapter 4, 18 states (directions) are considered. 

And also, the safety distance is 1.2m. To simplify the simulation, the center of one sparse area is 

selected as the target point randomly and the known intruder No.1 in Figure 5.25 is set as an 

unknown intruder in this case. In Figure 5.25, our ship (green box) reaches the center of the sparse 

area after the initial planning in Figure 5.26. At the same time, Intruder No.1 is approaching the 

own ship from east to west. When the RGB-D camera detects that the distance between the 

intruder and own ship is less than, the MDP policy will give a   command, which represents 

moving X=Y=Z=1meter position relative to the own ship coordinate. Figure 5.25 shows that the 

own ship is heading Southeast to avoid the intruder No.1 and then returns to the goal point. Figure 

5.26 represents MDP from another perspective in the 3D environment. As demonstrated in this 

stage, MDP is suitable for obstacle avoidance using an onboard sensor such as the RGB-D camera 

to obtain the position information of a dynamic unknown intruder relative to the own ship. 
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Figure 5.25 The simulation of MDP scenario in GAZEBO 

 

    

Figure 5.26 The moving state simulation of own ship in GAZEBO 

 

In this thesis, a comparison group between MDP and APF will be shown in the following table 

and figures. In this case, the simulations will be tested by 12 groups respectively, among which 6 

groups will be tested for a single intruder, 3 groups will be tested for two intruders, and the final 3 

Intruder 

Own ship  
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groups will be tested for three intruders. The safety distance can be defined as 1.5m. The intruder's 

location information is random in the 3D coordinate. The intruders will head to the own ship at a 

different speed. The simulations test the decision time and execution time of both MDP and AFP. 

Table 5.6 illustrates the result when there is one intruder towards to own ship. 

Table 5.6 MDP and APF response times in the case of an intruder 

Intruder = 1 Start Point Execution Time Decision Time Result 
MDP (3,0,3) 

(4,0,1) 

(3,3,3) 

(4,3,5) 

(-5,4,3) 

(-7,6,5) 

0.1275s 

0.2057s 

0.1865s 

0.2358s 

0.2854s 

0.2965s 
 

0.1275s 

0.2057s 

0.1865s 

0.2358s 

0.2854s 

0.2965s 

No collision 

No collision 

No collision 

No collision 

No collision 

No collision 

APF (3,0,3) 

(4,0,1) 

(3,3,3) 

(4,3,5) 

(-5,4,3) 

(-7,6,5) 

0.3328s 

0.3564s 

0.3512s 

0.3421s 

0.3358s 

0.3258s 

 

0.8759s 

1.0564s 

1.1258s 

1.3544s 

1.2593s 

1.1456s 

No collision 

No collision 

No collision 

No collision 

No collision 

No collision 

 

 

 

Figure 5.27 MDP and APF response times in the case of an intruder 

From Table 5.6 and the Figure 5.27, the collision avoidance speed of MDP is about 3 times 

faster than APF especially in decision time. In this case, there is no any collision happened when 
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the number of intruders is equal to one. The next table shows the outcome under the situation of 

two intruders. 

 

Table 5.7 MDP and APF response times in the case of two intruders 

Intruder = 2 Start Points Execution Time Decision Time Result 

MDP (3,0,3) (4,0,1) 

(5, -3,4) (6,2,2) 

(-5, -3,4) (6,4,2) 

0.2157s 

0.2578s 

0.2474s 

0.2517s 

0.2859s 

0.2958s 

No collision 

No collision 

No collision 

APF (3,0,3) (4,0,1) 

(5, -3,4) (6,2,2) 

(-5, -3,4) (6,4,2) 

0.3247s 

0.3689s 

0.3358s 

1.5894s 

1.8642s 

1.6841s 

No collision 

 collision 

No collision 

 

 

 

Figure 5.28 MDP and APF response times in the case of two intruders 

The Figure 5.28 shows that the speed of MDP still keeps faster than APF, which fluctuates 

around 0.5s, however, there is one case that the collision avoidance happened in the result, also 

the time consumes around 2s. 
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Table 5.8 MDP and APF response times in the case of three intruders 

Intruder = 3 Start Points Execution Time Decision Time Result 

MDP (3,0,3) (4,0,1) (7,6,2) 

(5, -3,4) (6,2,2) (5,0,7) 

(-5, -4,4)(6,1,2) (8,1,4) 

0.3158s 

0.2878s 

0.2157s 

0.3587s 

0.3721s 

0.3025s 

No collision 

No collision 

No collision 

APF (3,0,3) (4,0,1) (7,6,2) 

(5, -3,4) (6,2,2) (5,0,7) 

(-5, -4,4)(6,1,2) (8,1,4) 

0.3687s 

0.3457s 

0.3358s 

 

1.9265s 

2.1054s 

2.0258s 

 

No collision 

 collision 

 collision 

 

 

Figure 5.29 MDP and APF response times in the case of three intruders 

When the APF is faced with three intruders or more intruders, APF performs not well. On the 

one hand, the computing speed is reduced, and on the other hand, there is no time to dodge nearby 

intruders, thus causing collisions. 
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Figure 5.30 The average ET and DT of MDP and APF when increases with the number of intruders 

 

Figure 5.31 The average ET and DT of reaction time when increases with the number of intruders 

From the above simulation result, MDP responds two to three times faster than APF, and the 

obstacle avoidance speed of MDP changes slightly as the number of invaders increases without 

collisions. 
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5.6 Integrated simulation in urban area   

This simulation utilizes the combination of avoidance and path planning system in urban area 

which can be divided into 3 steps.  

Step 1: Adaptive Kalman Filter estimation  

Citysim [59] GAZEBO model and Iris [60] model are setup here for this simulation. The yellow 

circle represents own ship and the red are other UAVs in the area (known as intruders). According 

to Figure 5.32, AKF is used to estimate the position of the intruder.  As shown in Figure 5.33, the 

urban streets are divided into two types.  The blue block is Sparse zone, and the red one is Dense 

zone. 

 

Figure 5.32 The distribution of known intruders in the urban map 
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Figure 5.33 The distribution of sparse and dense zones 

 

Step 2: Global path planning based on HPF 

A point is chosen as goal (yellow point in Figure 5.38) in the urban map. Then the method 

referring to Scenario 2 makes global path planning by recognizing the Dense street (red zone) as 

the same with the other obstacle (e.g. house). 

 

Figure 5.34 (left) The contour construction of urban city in MATLAB, (right) The boundary field from 0 to 1 (top 

view) 
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Figure 5.35  (left) The contour construction of urban city in MATLAB, (right) The boundary field from 0 to 1 (3D 

view) 

 

Figure 5.36 Setting up the potential field of start point and end point 

 

Figure 5.37 Path generation in 3D 
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Figure 5.38 The trajectory based on HPF 

 

Step 3: Obstacle avoidance based on MDP 

For this step, an unknown intruder has been added in the figure which is located in center of 

intersection (to simplify the simulation, the intruder is in take-off state and stays at  𝑿 = 45𝒎,𝒀 =
45𝒎,𝒁 = 2𝒎 which is shown as purple plane in Figure 5.39). 
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Figure 5.39 Global path planning and strategy planning 

 

Figure 5.40 Iris model with RGB-D camera 

 

Figure 5.41 Own ship detects the unknown intruder 
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Figure 5.42 Depth map and object tracking from own ship 

 

Figure 5.43 Real-Time avoidance in Urban 
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Figure 5.44 Real-Time avoidance in Urban (top view) 

 

5.7 Discussion 

As shown in the simulation above, in the first scenario by using the AKF, the map is well divided 

into different areas, which greatly helps the drone to identify the busyness of the area. The second 

scenario shows that HPF can be very flexible to generate trajectories, and it is easy to implement 

the underlying control. Also, the MDP scenario is combined with the sensor to avoid dynamic 

obstacles. In the final scenario, the first step we use the AKF algorithm to predict the location of 

the city where the known intruder is located. Next, we used the HPF algorithm in the second step 

to model the entire block and make global path planning. Finally, we used the Markov decision 

algorithm to avoid obstacles in real-time for unknown intruders. 
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Chapter 6 Conclusions and future works 

6.1 Conclusions 

In this dissertation, several efficient-critical issues on reliable navigation of UAV are well 

studied, which include: 

 A comprehensive literature review on UAVs as well as their global path planning and real-

time collision avoidance approaches are provided. 

 AKF is proposed to sperate the sparse and dense zone for safe traffic regulations. Before taking 

off, the proposed AKF can zone the accessible areas according to predicting the number of 

intruders after several seconds. Compared with the traditional Kalman filter, AKP could 

update Prediction Covariance and Measurement Covariance adaptively, which could make the 

prediction more precise than the traditional method. The computation is running in the data 

platform. Once the GPS data from other intruders have been collected, the data platform will 

implement the AKF to zone the map and send the map to the global planner. The proposed 

scheme is validated under different faulty scenarios. The simulation results show that the 

proposed AKF achieves good estimation performance in zoning airspace. 

 Global path planning based on a 3D HPF is proposed to obtain a goal-attaining path that can 

combine with external control factors. HPF solves the local minimum problem that exists in 

the traditional Potential field method. Meanwhile, it can realize to build the potential fields 

artificially and combine with the Newman boundary condition. Moreover, the method in this 

thesis implements the relation between P and G field to achieve HPF in 3D. The simulation 

results from a quadrotor demonstrate the effectiveness and applicability of the proposed global 

path strategy. 

 A real-time collision avoidance strategy based on MDP combined with sensor fusion is 

proposed to accommodate the unknown intruders and danger. With the help of the Realsense 

camera, the quadrotor could obtain the relative position with the unknown intruders which 

makes full use of the reward system to get the max optimal reward action as the principle of 

the decision and also can process the data from sensors and decide the best action to make 
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collision avoidance. MDP is utilized as a decision-making tool to determine the next step for 

the UAS to avoid the obstacle. The demonstrated simulation shows the effectiveness and 

superiority of the MDP in local obstacle avoidance. 

 As demonstrated in the simulations, the algorithm is capable of safely navigating UAS 

platform in a dynamic environment while other UAVs are also sharing the airspace.  

6.2 Future works 

Following the current research in this dissertation, the following future directions are outlined: 

 Due to the COVID-19 and the limitation of calculation in the Raspberry board, the real flight 

test has not been implemented. The work can be developed by using NVIDIA TX2 powerful 

board. 

 The proposed AKP strategy in this dissertation has better performance in linear and 

uniformed movement than in nonlinear movement. To adapt the complex curves, the 

nonlinear predict model should be developed in the future works. 

 The proposed AKP strategy in this dissertation has better performance in linear and 

uniformed movement than in nonlinear movement. To adapt the complex curves, the 

nonlinear predict model should be developed in the future works. 

 The speed of object detection and tracking which are implemented on Raspberry PI-Board is 

very essential to do the real flight test, but the model that is trained in this thesis only have 

5-10 FPS value in the image. This can be improved by changing the convolutional frame to 

simplify image processing. 
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