
Meta-Learning for Cancer Phenotype Prediction from Gene Expression

Data

Mandana Samiei

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science (Computer Science)

Concordia University

Montréal, Québec, Canada

January 2020

c© Mandana Samiei, 2020

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Mandana Samiei

Entitled: Meta-Learning for Cancer Phenotype Prediction from

Gene Expression Data

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Chair

Dr. Aiman Hanna

Examiner

Dr. Adam Krzyzak

Examiner

Dr. Andrew Delong

Supervisor

Dr. Thomas Fevens

Approved
Dr. Lata Narayanan, Chair of Department

January 21, 2020

Dr. Amir Asif,

Dean, Gina Cody School of Engineering and Computer

Science

Abstract

Meta-Learning for Cancer Phenotype Prediction from Gene Expression Data

Mandana Samiei

Deep learning has become an essential element in various applications of technology over the

past decades. Deep neural networks are now reaching performance on par with, or even beyond,

human-level on a broad range of tasks. However, there are still several concerns and deficiencies

that make these models impractical for some real-world applications. One of the important issues

comes from a data-efficiency perspective. Most of the deep learning techniques need a large number

of training samples in order to achieve a high performance on a given problem. This procedure is far

from human general intelligence. Humans are good at learning from a few number of samples and

quickly adapting to new tasks. In this work, we leverage the meta-learning framework in which the

model can learn new tasks by developing prior knowledge over past experiences. For this purpose,

we propose a Meta-Dataset that contains 174 genomics and clinical tasks. Furthermore, we suggest

a meta-model under the few-shot learning regime that can learn new genomics tasks. Finally, a

comparison between the performance of the meta-learner and the performance of other classical

baselines is also presented.

iii

Acknowledgments

This work would have not been possible without the support of my supervisor, Dr. Thomas Fevens,

who tirelessly worked to provide me with countless opportunities to learn and grow as a researcher.

In the moments when I needed help and when I was stressed, he always supported me and gave

me incredible advice, which were always great motivations to keep me going. It might happen

during graduate studies to be disappointed and lost in your goals. It may happen to be suspicious

of what you have done so far. But during all these moments, you should keep moving forward,

and keep working for your ambitions. In tough times, you should seek advice from your supervisor

and other researchers, such as Ph.D. students who have also been on a similar path in the past.

I would also like to extend my gratitude to Joseph Paul Cohen who I worked with during my

collaboration with Mila. He provided many insightful comments and feedback for me.

Also, I would like to thank Yoshua Bengio, the director of Mila, who allowed me to work in an

excellent environment, and for sharing his perspectives on developing human general intelligence.

I would like to thank my colleagues and fellow lab mates at Concordia who were always heart-

warming supporters to me. Thanks to Mehrzad Mortazavi, Laya Rafiee and Justin Whatley.

Furthermore, I would like to offer a special thanks to my friends and all the people at Mila who

have helped me during this collaboration. Thank you all for your unwavering support, patience,

and encouragement. Thanks to Basile Dura and Tristan Deleu for all the helpful discussions and

brainstorming. Also thanks to Clément Jumel, Paul Bertin, Tobias Würfl, Geneviève Boucher,

Hannah Akbarzadeh, Stanislas Le Guisquet and Raphaël Limbourg .

Last but not least, I’m so grateful for my family for their unconditional kindness and support

throughout the whole journey. Of course, none of this would have been possible without them.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Meta-learning and Few-shot Learning . 1

1.2 Phenotype Prediction Problem . 2

1.3 Contributions of this Thesis . 3

1.4 Outline . 4

2 Background 6

2.1 Biological Context . 6

2.1.1 Introduction . 6

2.1.2 Motivations . 6

2.1.3 Genomics Basic Concepts . 7

2.1.4 Gene Expression Data . 10

2.2 Machine Learning Context . 12

2.2.1 Introduction . 12

2.2.2 Supervised Learning Tasks . 12

2.2.3 Semi-supervised Learning Tasks . 14

2.2.4 Unsupervised Learning Tasks . 14

2.3 Optimization and Evaluation . 14

2.3.1 Gradient Optimization . 15

2.3.2 Gradient Descent . 16

2.4 Baselines Introduction . 17

2.4.1 K-Nearest Neighbor Classifier . 17

2.4.2 Logistic Regression . 17

v

2.4.3 Multilayer perceptrons (MLP) and Deep Neural Networks 19

2.5 The Development of Deep Learning . 20

2.6 From Deep Learning to Meta Learning . 22

3 Meta-learning 23

3.1 Introduction . 23

3.2 Applications of Meta-Learning . 24

3.3 Meta-Learning Vs. Multitask Learning, Transfer Learning, and Domain Adaptation 24

3.3.1 Multitask Learning . 25

3.3.2 Transfer Learning . 25

3.3.3 Domain Adaptation . 26

3.4 Meta-Learning Algorithms . 27

3.4.1 Gradient-Based Meta-Learning . 28

3.4.2 Metric-Based Meta-Learning . 28

3.5 Mathematical Formulation . 32

3.5.1 Meta-Dataset and Meta-Parameters . 32

3.5.2 Adaptation to a New Task . 34

3.6 Meta-learner Selection Choice . 36

4 Learning Cancer Phenotypes Using Meta-learning 37

4.1 Introduction . 37

4.2 Motivations . 38

4.3 Dataset . 38

4.3.1 Types of Cancers Selected for Study . 39

4.3.2 Genomics and Clinical Attributes Selected for Study 43

4.4 Task Definition . 45

4.5 Related Works . 46

4.6 Torchmeta Library for Gene Expression Data . 46

4.7 Data-Loaders for Few-Shot Learning . 47

4.8 Experimental Setup and Technical Details . 48

4.8.1 Evaluation Strategy . 50

4.8.2 Training Prototypical Networks . 50

4.8.3 Simple Mode Setup . 52

4.8.4 Complex Mode Setup . 58

4.9 Results . 58

vi

4.10 Conclusion . 61

5 Conclusion and Future Work 62

5.1 Future Work . 63

5.1.1 Meta-Learning Sensitivity to Task Distributional Changes 63

5.1.2 Task Specification . 63

5.1.3 Task Distribution Diversity Quantification 63

5.1.4 Similarity Metric Definition . 64

5.1.5 The Role of Memory in Meta-Learning . 64

Bibliography 71

vii

List of Figures

1 Task definition process. 4

2 From genome to DNA, genome is located inside the nucleus and it includes 23 pairs

of chromosomes. The figure is inspired from [5]. 8

3 DNA building blocks showing how nitrogenous bases are paired together. 9

4 This figure shows the procedure of transcription and translation. Protein-coding

genes are transcribed to mRNA first, then translated to proteins. RNA-coding

genes are transcribed to a functional non-coding RNA [4]. 10

5 Gene expression data matrix where n and m are the number of genes and samples

respectively and wij is miRNA abundance. 11

6 An overview of gene expression data matrix from different cancer studies and their

corresponding phenotype. 11

7 Gradient descent optimization procedure, conceptual representation of the gradient,

initial weight, learning step and derivative of cost. 16

8 An example of a multilayer perceptron with 3 input features. 18

9 A sigmoid function. 19

10 A visual representation of a neural network with 3 layers, a single hidden layer with

h hidden units, input x ∈ Rm and output y ∈ Rt. 20

11 Visual representation of meta-learning framework where training tasks are different

but coming from the same source domain, aims at learning a model generalizes to

new tasks which are still from the same source domain. The image is inspired from

R. Aljundi.[11]. 25

12 Visual representation of multitask learning framework where training and test tasks

are coming from the same distribution. The image is inspired from [11]. 26

13 Visual representation of transfer learning setting. Inspired by [11]. 26

14 Visual representation of domain adaptation where source and target tasks are the

same but drawn from different data distribution. Inspired by [11]. 27

viii

15 Visual representation of embedding learning where f and g are train and test embed-

ding functions and s is the similarity metric. The image is illustrated by inspiration

from [61]. 29

16 Prototypical networks in the few-shot learning framework. Few-shot prototypes vk

are computed as the mean of embedded train examples for each class. The distances

from class 1 and 2, are d1 and d2 respectively, since d2 < d1, x
test is classified as

class 2. The figure is illustrated by inspiration from [56]. 30

17 Prototypical networks algorithm from J. Snell’s work [56]. N is the number of

examples in the training set, K is the number of classes in the training set. RAN-

DOMSAMPLE(S,N) denotes a set of N elements chosen uniformly at random from

support set S, without replacement. 31

18 Conceptual representation of inductive biases for a binary classification task on

images. Ji in the figure denotes an optimization track that leads the model to the

right hypothesis space. 33

19 Visual representation of meta-learning phase to learn a prior knowledge over hy-

pothesis space through θ and adaption phase when the model learns a new task

through θ′. 35

20 Few-shot classification results on Meta-dataset [59] using models trained on ILSVRC-

2012. The image is credited to [59]. 36

21 A visual representation of the training pipeline. 51

22 The average loss and accuracy for event prediction using 18 tasks in the meta train

set. 53

23 The average train loss and accuracy for gender prediction using 16 tasks in the

meta-train set. 54

24 The average train loss and accuracy for oct embedded prediction using 12 tasks in

the meta-train set. 55

25 The average train loss and accuracy for histological type prediction using 4 tasks in

meta train set. 56

26 The average train loss and accuracy for colon polyps presence prediction using 1

task in the meta-train set. 57

27 Prototypical Network performance on the defined genomics tasks. 58

ix

List of Tables

1 Definition to the basics of genomics if we consider our genome profile similar to a

book. 8

2 The results of hyperparameter search, learning rate sets to 1e-3 when tweaking the

architecture. Also, when tuning the learning rate, the neural network has 2 layers

with 128 and 64 hidden nodes in each layer respectively. 49

3 The accuracy of event prediction tasks across models. ProtoNet has been trained

on 18 different cancers and tested on 5 new ones. 53

4 The accuracy of gender prediction tasks across models. The meta-learner has been

trained on 16 different cancers and tested on 5 new cancers. 54

5 The accuracy of oct embedded prediction tasks across models. In ProtoNet, the

model has been trained on 12 different cancer types and tested on 4 new ones. . . . 55

6 The accuracy of histological type prediction tasks across models. In the prototypical

network, the model has been trained on 4 different cancers and tested on a new cancer. 56

7 The accuracy of colon polyps presence prediction task across models. In the pro-

totypical network, the model has been trained on COAD cancer and tested on

COADREAD. 57

8 Few-shot classification results on Meta-test set tasks using classical models and

meta-learner trained on Meta-training set tasks only using 5 samples. The evalua-

tion metric is accuracy and it has been provided in an ascending order. 59

9 Accuracy and 95% confidence interval of models over multiple trials. 59

x

Chapter 1

Introduction

In this chapter, I give a brief introduction to my thesis. First of all, I introduce the meta-learning

and few-shot learning techniques. Secondly, I describe the importance of phenotype prediction

problem using gene expression data. Thirdly, the contributions of this thesis are explained. Finally,

I present the outline of this thesis.

1.1 Meta-learning and Few-shot Learning

There is a close connection between Meta-learning and Few-shot learning. Few-shot learning in-

cludes algorithms that are used for learning to predict a task using only a handful of samples. In

other words, these tasks are learned under a small-data regime. One of the well-known algorithm

to solve these problems is Prototypical Networks [56]. In which the classifier generalizes to new

unseen classes during the training phase using only a few samples.

Meta-learning [14, 12, 22, 27, 49, 54] is a mechanism which can be used for automating human

decisions such as parameter tuning, algorithm designing and automatically revisiting and opti-

mizing those decisions dynamically in the light of new experience obtained during learning [6].

Another application is transferring knowledge between multiple related tasks. Meta-learning may

reduce the efforts for designing domain-specific learning algorithms, and lead to more robust and

general learning architectures. Apart from practical applications, research on meta-learning algo-

rithms may also lead to new insights into human learning [32]. In this work, we are interested in a

specific form of meta-learning called Model-Agnostic Meta-Learning for Fast Adaptation of Deep

Networks (MAML) [22]. Meta-learning in this context is often addressed as a framework rather

than an algorithm, as proposed by Chelsea Finn [22], “it is compatible with any model trained

1

with gradient descent and applicable to a variety of different learning problems, including classi-

fication, regression, and reinforcement learning”. Meta-learning includes two optimization steps.

First is a slow learning process that extracts a general transferable knowledge across all defined

tasks, this guides the second process which is a faster learning scheme and extracts task-specific

information. Meta-learning is one of the methods to approach few-shot learning problems where

the dataset is small. However, it is not only specific to few-shot learning settings. This is a broad

research direction that is worth exploring. In this work, I’m particularly interested in improving

data efficiency, meaning how meta-learning proceeds using a lower amount of data as opposed to

the original deep learning framework. More technical detail on Meta-learning is given in Chapter 3.

The words small data regime and few-shot learning setting are used interchangeably in this thesis.

Although meta-learning gives interesting perspectives on the future of artificial intelligence, I have

to direct your attention to the fact that current algorithms have not shown significant success on

industrial applications and at this stage still remain a challenging research problem. Nevertheless,

I believe that a better comprehension of existing methods and failure cases will help us bridge this

gap faster.

1.2 Phenotype Prediction Problem

The term “phenotype” refers to the observable physical properties of an organism; these constitute

the organism’s appearance, development, and behavior. Examples of phenotypes include height,

skin type, and hair color. Phenotypes also include biochemical and physiological properties that

can be measured in laboratories, such as levels of hormones or blood type [1]. In this thesis, we are

predicting cancer-specific phenotypes using gene expression data. The input of each task is gene

expression data (miRNA abundances) and the output is the value/label of a phenotype. Microarray

gene-expression profile has generally been used to predict cancer outcomes [45]. Gene-expression

data provide a molecular signature to doctors and medical team allowing them to facilitate the

subsequent clinical management of patients [34]. General studies of gene expression data help

doctors to speed up the diagnosis and prognosis of cancer. This is becoming a necessity in cancer

research, as it can improve the treatments of patients based on the severity of cancer. Predicting

a phenotype from gene expression data is an important task in genomics decision making as in

cancer prognosis and diagnosis [25]. Often, some of these phenotypes are related to each other

under a particular cancer study. Most current research in the literature seeks to develop techniques

and methods for predicting one particular clinical outcome. This approach is far from the reality

of medical decision making in which you have to consider several factors simultaneously [26]. In

2

this work, we define each phenotype as a task for the model to learn based on the gene-expression

profile of cancer patients. The model is trained using a few samples from each phenotype and

eventually predict a new task. Deep learning models are often trained on a huge amount of ex-

amples of a particular task and then tested on the same type of samples (i.e. from the same data

distribution). In the current literature of deep learning, we have seen intelligent systems perform-

ing well on detecting a specific phenotype such as gender, height [37], skin color, etc. [39], but this

needs training the models on a large dataset and they are still not acquiring high performance on

new tasks. Even though there are popular works published on multi-task learning mechanisms as

in [13], the samples are used during test time are coming from the same tasks as those ones the

model trained on. Therefore, we need more powerful tools to approach this issue.

It is also worth mentioning that there are some variability and systematic biases in gene-expression

data. Usually, these biases are results of the technology and measuring mechanisms. For example,

much research has been done to remove artifacts and spatial correlations in DNA microarray data

[33, 57].

1.3 Contributions of this Thesis

In this assay, we are focusing on the small-data scenario due to data availability and privacy

concerns in healthcare applications specifically cancer diagnosis. The amount of available data in

different areas and applications is varying. For instance, doctors and physicians might have access

to only a few samples for some rare diseases and cancers. Furthermore, there are many rules and

regulations for data acquisition depending on the research domain. By using meta-learning [14, 54],

we can improve data efficiency [63]. I have to mention that data efficiency and privacy criteria

can also be addressed through other transfer learning approaches. We are particularly interested

in transferring knowledge under a few-shot learning regime. In this thesis, the goal is to learn a

model for phenotypes prediction of a given cancer from gene-expression data using a few samples.

We define a collection of genomics tasks derived from the publicly available data hub called The

Cancer Genome Atlas Program (TCGA). The input data is an individual expression levels (mRNA

abundances) of every one of our 20,000 protein-coding genes. The tasks are phenotype prediction

based on these expressions. We believe those tasks could be good proxy tasks to develop methods

that can work on a few samples of gene expression data. The defined tasks cover a wide range

of phenotypes including predicting tumor tissue site, white cell count, cancer histological type,

family history of cancer, gender, and a few others which we explain later in Chapter 4. Each task

3

represents an independent dataset associated with a phenotype and a cancer study. We propose a

pipeline in which we use a model called Prototypical Network (ProtoNet)[56] which can learn new

tasks using only a handful of training samples and compare its performance to logistic regression, k-

nearest neighbor and a fine-tuned neural network. We implement ProtoNet [56] in a meta-learning

framework similar to MAML [22]. Although ProtoNet implementation is already available at Jake

Snell’s repository [8], we implement it from scratch in order to leverage the MAML framework [22]

and apply multiple meta-learning algorithms on our meta-dataset. Furthermore, we aim to use our

dataloader written for the TCGA dataset. Below, a big picture of the task definition procedure is

given. More information is provided in Chapter 4.

Figure 1: Task definition process.

1.4 Outline

This thesis is structured as follows. Chapter 2 is presenting a supplementary section on the biology

and related assays that are optional for interested readers. Later in this chapter in section 2.2,

we introduce the fundamentals of machine learning and deep learning by discussing a supervised

learning framework, optimization and evaluation methods, and a description of classical machine

learning models applied in this thesis. Then, we provide a brief introduction to deep learning and

4

its link to meta-learning. In Chapter 3, a mathematical formulation of meta-learning, a couple of

famous algorithms in this framework, and the challenges of meta-learner selection choice are pre-

sented. Chapter 4 explains the dataset and the task definition protocol. Later, we present Torch-

meta dataloader for gene expression data, experimental and training setup, evaluation method, as

well as a comparison of models’ performances across different genomics tasks. Chapter 5 concludes

this thesis and discusses some future work and research directions.

5

Chapter 2

Background

2.1 Biological Context

In this chapter, I will give a review of the basics of biology required to follow the work described

in the following chapters.

2.1.1 Introduction

Genomics data is of great value as they can be used in many important applications such as detect-

ing cancers, customizing disease treatments, predicting clinical attributes that can help doctors

to improve their analysis and also helping researchers to discover patterns in these attributes for

particular cancers. Most researchers develop new methods for one particular clinical task at a

time. As an example, we can name survival prediction [65] or tumor cell type classification [42].

This approach is far from the reality of clinical decision making in which you have to consider

several clinical variables simultaneously that is often performed by physicians and clinical teams.

In some cases, those prediction tasks are associated with each other.

2.1.2 Motivations

Advances in human genome research are opening the door to many useful applications. Cancer

diagnostics is an active field of research. Personalized medicine and targeted therapies derived

from an individual genome profile, have both impacted the way patients get treated these days

[44], hoping for more efficient treatments that save time and money for the patients. By knowing

about various phenotypes using patients’ genome profiles, we can achieve a more reliable outcome

of cancer prediction. To solve complex clinical problems, it can be more promising to consider

6

underlying inter-related tasks within them. Additionally, in some cases, these tasks have small

datasets. By considering a few-shot learning setting, we can leverage the samples from a collection

of tasks and construct a transferable knowledge over previously seen problems. This ability of

versatility is a key aspect of intelligence as articulated in [15]. This idea has been developed in

several applications of robotics and image recognition/classification as in [22, 21, 59]. In this work

we would like to expand this hypothesis to phenotype prediction problem.

2.1.3 Genomics Basic Concepts

In this section, I will explain a brief overview of common terminologies in biology. Most of the

material that has been explained in the chapter is based on Genome-Quebec Tutorials [5].

Cells are the smallest units of life. In all living beings, cells share common abilities such as

nutrition, adaptation, response, and reproduction. A cell interacts with its environment, but it

can also adapt to it by modifying its physiology or behavior when changes occur. It also relates

to its environment by responding to the various stimuli it encounters. The cell nucleus is the

largest part of the cell. The nucleus holds most of the DNA (deoxyribonucleic acid) in the shape

of chromosomes and the mechanism needed for its decoding and replication. The genome, located

in the nucleus of each cell, is divided into 23 pairs of chromosomes. Each chromosome is coiled

and compacted so that it fits inside the nucleus. If it is unwinded, a long strand of DNA will be

obtained. Genes are stretches of DNA. Most biological traits are inherited from many different

genes and theirs interactions with environment. Some of these traits are visible, such as eye color

or skin color, and some are not, such as blood type. DNA is a molecule found in all living beings

and carries the genetic information needed for the organism to develop and function. The range

of lengths of human protein-coding genes, is from 100bp (base pair) to 1Mbp.

A DNA molecule is shaped like a long twisted ladder, which is why it is often referred to as a

double helix. The building components of the DNA molecule are pairs of nitrogenous bases facing

one another. There are four different nitrogenous bases: adenine (A), thymine (T), cytosine (C)

and guanine (G). When forming the DNA block, A always pairs with T and C always pairs with

G. The order of the nitrogenous bases (ACCATTCGCT...) is what determines DNAs instruction,

also known as the genetic code. DNA is associated with different proteins and found in the nucleus

of the cell. Figure 2 present a good visualization of above-mentioned concepts including DNA,

chromosome and nucleus. 1

1All the images in this work have been drawn by the author using https://www.draw.io/ unless otherwise is
mentioned.

7

Figure 2: From genome to DNA, genome is located inside the nucleus and it includes 23 pairs of

chromosomes. The figure is inspired from [5].

Terminology Definition

Genome Profile Similar to an instruction manual that contains the specific traits

of individual and their body’s functioning mode.

Chromosome The genome is divided into 23 pairs of chromosomes that

we inherit from our biological parents.

Genes Genes are like the sentences in the book of our genome.

DNA DNA, is written with an alphabet of 4 letters

(A,T,C,G) that combine to form all the words in the book.

Mutation A mutation is similar to an alteration that can

disrupt the development or functioning of the body.

Table 1: Definition to the basics of genomics if we consider our genome profile similar to a book.

2.1.3.1 Transcription and Translation

In order to read the encoded information in a gene’s DNA and produce the protein it specifies, two

steps are required. First, a copy of an RNA should be created from gene’s DNA as a template for

producing a protein. This copy, called a messenger RNA (mRNA) molecule. The mRNA acts as

an intermediate between the DNA gene and its final protein product. It leaves nucleus and enters

cytoplasm where it guides the synthesis of the protein. This process, is called transcription.

8

Figure 3: DNA building blocks showing how nitrogenous bases are paired together.

Second, that mRNA molecules are translated to protein. This step, is called translation. There

are two types of genes that are participating to these processes. Protein-coding and RNA-coding

genes. RNA-coding genes are parts of an organism’s DNA that do not encode proteins. However,

these genes must still go through transcription step but are not translated into proteins. Figure 4,

distinguish these differences. In translation step, a sequence of mRNA molecules is translated to a

sequence of amino acids during protein synthesis. In the cell cytoplasm, ribosomes are responsible

for this process. They read the sequence of mRNAs in groups of three nucleotides at a time, in

units called codons, to assemble the protein. The genetic code describes the relationship between

the sequence of base pairs (nucleotides) in a gene and the corresponding amino acid sequence. The

genetic code is the set of rules used by living cells to translate information encoded within genetic

material such as DNA, RNA and Necleotide [4].

2.1.3.2 Genome Sequencing

Genome sequencing is the process of decoding DNA to its bases. In this procedure, the order of

DNA nucleotide, or bases, in a genome (i.e. As, Cs, Gs, and Ts) are specified. The human genome

is made up of over 3 billion of these genetic letters.

9

Figure 4: This figure shows the procedure of transcription and translation. Protein-coding genes

are transcribed to mRNA first, then translated to proteins. RNA-coding genes are transcribed to

a functional non-coding RNA [4].

2.1.4 Gene Expression Data

The process of producing a biologically functional molecule of either RNA or protein is called

gene expression, and the resulting molecule is called a gene product. According to [20], gene

expression measurement is achieved by quantifying levels of the gene product, which is often a

protein. Understanding the level of gene expression in a cell, tissue or organism can provide

valuable information such as determining cancer susceptibility. Using DNA chips (also known as

DNA microarrays) and other biological engineering techniques, we can measure the expression level

of a large number (possibly all) of genes belonging to a given organism. Roughly speaking, the

gene expression data or DNA microarray data are conceptually a gene-sample/condition matrix,

where each row corresponds to one gene, and each column corresponds to one sample or condition.

Each element in the matrix is a real number and records the expression level of a gene under a

specific condition [24]. The gene expression level is inferred by measuring the abundance of mRNA

copied from each gene.

10

Figure 5: Gene expression data matrix where n and m are the number of genes and samples

respectively and wij is miRNA abundance.

Figure 6: An overview of gene expression data matrix from different cancer studies and their

corresponding phenotype.

11

2.2 Machine Learning Context

In this section, the basics of machine learning will be reviewed. This background is required

to follow the next chapters. This does not serve as a full review of machine learning nor deep

learning. Should the reader be interested in a thorough review of machine learning and deep

learning concepts the Deep Learning book [23] is an excellent resource.

2.2.1 Introduction

Machine learning is the study of computer algorithm that can learn and improve from a set

of experiences. Machine learning algorithms builds a mathematical model from observations or

training data and makes prediction on given examples (i.e test data) in future without being

explicitly programmed to do so. Machine learning algorithms are applied in a broad range of

applications, such as text classification, computer vision, language modelling, language translation,

search engines and many others. Machine learning is closely related to statistics, linear algebra and

mathematical optimization. Having knowledge on these mentioned fields is required to understand

the basis of machine learning algorithms. Furthermore, machine learning is a valuable tool for

several fields of research such as, computer vision, natural language processing, computational

biology, neuroscience and computational psychology.

Machine learning tasks can be boiled down to a couple of categories of tasks in terms of availability

and labeled data. Supervised learning, semi-supervised, unsupervised learning, and reinforcement

learning tasks. I will be focusing on explaining supervised to unsupervised learning distinctions.

Reinforcement learning is out of the scope of this work, if the reader is interested in knowing more,

Richard Sutton and Andrew Barto’s book [58] is highly recommended.

2.2.2 Supervised Learning Tasks

Supervised learning problems can be seen as tasks where the objective is to make a prediction

based on the corresponding input data. Generally speaking, the objective is to build models such

that for similar input, it makes similar predictions in the hopes of being able to make a correct

prediction for a new sample. In other words, supervised learning problems aim to learn a mapping

function from the input data to the associated label or output Y = f(X).

12

2.2.2.1 Classification

A classification task consists of making a prediction regarding which class or group a given input

associates with. Tasks including predicting if an image displays a cat or a dog, or classifying digits,

or even facial recognition are all examples of classification tasks. Datasets used for classification

tasks consist of the input samples as well as a corresponding label for each of the data samples.

To design a classification algorithm, it is often required to know the possible labels or classes that

the input samples may represent. Besides, we have to define an objective function to improve the

model’s prediction by minimizing the error. In a binary classification task when there are only two

classes, we may predict the probability of each example belonging to the first class. In the case

of multiple-class classification, we predict a probability for the example belonging to each of the

classes. Under the maximum likelihood framework, the error between two probability distributions

is measured using cross-entropy. Therefore, we often use the cross-entropy loss between the label

distribution of the training samples and the model’s probabilistic prediction.

Given training dataDtrain = (x(1), y(1)), ..., (x(i), y(i)), ..., (x(N), y(N)), where x ∈ Rd (d is input space

dimension), y ∈ {1, 2, ..., C} and fθ(x
(i)) = [P (y(i) = 1|x(i)), P (y(i) = 2|x(i)), ..., P (y(i) = C|x(i))]

The global cross-entropy objective can be defined as:

L(fθ(x
(i)), y(i)) = −

C∑
j=1

1{y(i)=j}logfθ(x
(i))j (1)

2.2.2.2 Regression

Similarly to classification, regression tasks can be seen as predicting a value for a given input.

In regression, instead of selecting a possible category to associate a given sample, the goal is to

estimate a real value. In other words, regression algorithms attempt to build a mapping function

(f) from the input variable to a numerical or continuous output variable. A trivial example to

understand the concept better is to consider estimating the value of a house. A real estate agent

acts similarly to a machine learning model in a regression task. Given all the information about

the characteristics of a house and its neighborhood, it attempts to determine a good price for

the house to be listed on the market. The dataset in regression is similar to classification, but

instead, a real value is associated with each of the data samples. The loss function is often the

mean-square error (MSE), as it allows for computing losses between real numbers. Given training

data Dtrain = (x(1), y(1)), ..., (x(i), y(i)), ..., (x(N), y(N)), where x ∈ Rd (d is input space dimension),

y ∈ R and fθ(x
(i)) = ŷ(i).

13

The MSE objective is as following:

L(fθ(x
(i)), y(i)) =

1

2

(
y(i) − fθ(x(i))

)2
(2)

2.2.3 Semi-supervised Learning Tasks

In semi-supervised learning setting, a small amount of labeled data with a large amount of un-

labeled data are often used for training. In general, labeled data is employed to help identifying

the specific assortment of samples in the data. Then, the algorithm is trained on unlabeled data

to define the region of those categories and might even find new types of data that have not been

specified in the human-labeled input. Similarly to a supervised learning framework, a set of L

examples x1, ..., xL ∈ X with corresponding labels y1, ..., yL has been given. In addition, there are

U unlabeled samples xL+1, ..., xL+U . The semi-supervised method attempts to make use of this

combined information to tackle the classification task that could be achieved either by discarding

the unlabeled data and doing supervised learning or by dropping the labels and doing unsupervised

learning. The goal is to infer the correct mapping from X to Y.

2.2.4 Unsupervised Learning Tasks

An unsupervised machine learning algorithm makes use of input data without any labels. In other

words, no supervision will be provided to the program (learner) when it makes the right prediction

or when it makes a mistake. Unsupervised learning focuses on the actual data itself rather than

its relationship with a corresponding label or output. There is a broad range of unsupervised

learning tasks, however; most of them aim to estimate the underlying distribution of the input

data. Generally speaking, an important distinction between supervised and unsupervised learning

methods is the absence of labels. Unsupervised learning often works well to discover new patterns

in a dataset and to cluster the data into several categories based on several features. Popular

methods are clustering, density estimation, and generative models. I do not provide more detail

about the mentioned techniques as it’s not the focus of this work. In the following sections, I give

a brief introduction to the machine learning models I used in this project.

2.3 Optimization and Evaluation

To solve the previously mentioned machine learning tasks, an optimization framework of the prob-

lem has to be formulated. Once that is achieved, some algorithms can be used to maximize or

14

minimize the objective. Machines learn by optimizing an objective function. It’s a technique to

evaluate how well an algorithm models the given data. If the prediction is far from the actual

result, the loss function will punish the model by adjusting the model parameters. With the help

of some optimization function, the loss function learns to reduce the error in predictions. Given

a function f with parameters θ and a training dataset Dtrain, the global objective J(θ) can be

written as follows:

J(θ) =
1

|Dtrain|

|Dtrain|∑
i=1

L(fθ(x
(i)), y(i)) (3)

In the optimization procedure, what we want to achieve is to find the parameters θ that minimize

J(θ), the empirical risk over the training data. The solution to the optimization problem can be

defined as follows:

θ∗ = argmin
θ

J(θ)

Due to the complexity of many machine learning tasks, the above-mentioned loss function is not

easily tractable. This means solving the optimization problem is analytically close to impossible.

Machine learning models usually do not minimize/maximize the true loss over the training data.

In fact, the mathematical formulation is a surrogate loss that is easily tractable as in many cases

when the real objective is not. For instance, the goal in a classification task is to minimize the

miss-classification error on those samples that have not been seen by the model, i.e. generalization

error. However, for the gradient optimization algorithms to work, the mathematical formulation

has to be continuous and differentiable, where the generalization error may not be. If the loss is

difficult to optimize, we use iterative techniques.

2.3.1 Gradient Optimization

Since many of the loss functions used in optimizing machine learning tasks are complex, instead of

finding the analytical solution, the iterative methods can be used. In the case when the objective

function is analytically solvable, the optimization procedure will find the regions that ∇θJ(θ) = 0,

where the gradients of the objective function with regards to the parameters θ are zero. An

alternative to bypass this is to consider an iterative solution such as gradient descent or ascent.

15

Figure 7: Gradient descent optimization procedure, conceptual representation of the gradient,

initial weight, learning step and derivative of cost.

2.3.2 Gradient Descent

To find the optimum weights that minimize the objective function, we use an optimization algo-

rithm called Gradient Descent. The gradient descent procedure can be interpreted as going down a

hill, where we do not know the actual route down. According to Fig 7, a heuristic way to go down-

hill would be by looking for the angle of the hill at each step and take a step in that direction. If

the hill is convex such that there are no valleys to restrict access to the bottom point, this approach

is guaranteed to allow to reach the bottom of the hill. The direction of the hill will be computed

by the gradient ∇θJ(θ). Usually, this gradient is computed based on the whole dataset which is

called batch(or standard) gradient descent. Unlike batch gradient descent, stochastic(or incremen-

tal) gradient descent(SGD) converges much faster, since it updates the weights more frequently.

However, SGD tries to find optimums by iteration from a single randomly selected training exam-

ple, the error is typically more noisy than in standard gradient descent. Also, to reduce the risk of

getting stuck in local minima during the optimization process, instead of computing the gradient

with respect to the full train set, noisy estimates of the gradients can be measured by picking a

random subset of the dataset. This method is called minibatch stochastic gradient descent that is

a compromise between computing the true gradient and the gradient at a single example, it has

the advantages of faster and smoother convergence.

16

Algorithm 1 Minibatch Stochastic Gradient Descent

1: Given fθ is a continuous and differentiable model

2: Choose an initial vector for θ and learning rate η.

3: Initial m as the size of minibatch

4: while Not Convergence do

5: Randomly select m data samples from the training set

6: θ ← θ − η 1
m

∑m
i=1∇θL(fθ(x

(i)), y(i))

7: end While

2.4 Baselines Introduction

Here, I describe the machine learning and deep learning models that I used in this work. I start

with more simple baselines such as k-nearest neighbor and logistic regression. Then I extend this

to deep neural networks and meta-learning models.

2.4.1 K-Nearest Neighbor Classifier

The k-nearest neighbors’ algorithm (KNN) is a supervised classification algorithm. To label a new

example, the model considers the K nearest labeled samples to the query point. Then the model

assigns the majority of k neighbors’ labels to the query sample. This is the simplest form of KNN.

2.4.2 Logistic Regression

Logistic Regression (LR) is a transformation of linear regression using the sigmoid function. The

logistic function also called the sigmoid function. One of the main issues in classification tasks

occurs when the algorithm is not converging in the weight’s update, while training. This often

happens when the classes are not linearly separable. Logistic regression is a simple method but still

powerful enough for classification tasks. LR uses a similar representation as in linear regression.

To understand better where the sigmoid function is coming from, I will explain the odd ratio and

the logit function in the following paragraphs [50]. The odds ratio is one important concept to

understand in order to grasp the idea of Logistic Regression. The odds ratio is the probability

that a certain event will occur. It can be written as follows where P stands for the probability of

17

Figure 8: An example of a multilayer perceptron with 3 input features.

the event we want to predict.

OddsRatio =
P

1− P
(4)

Derived from this we can define the logit function as in equation 5. The logit function takes

input values in the range of [0, 1] and transforms them to values over the entire real-number range

[−∞,∞].

logit(P) = log
P

1− P
(5)

We use the logit function to express the linear relationship between features and the log-odds.

logit(P (y = 1|x)) = W0X0 + ...+WmXm =
∑
i

(WiXi) = W TX (6)

Where P (y = 1|x) is the conditional probability that a particular sample belongs to class 1 given

its features x. However, we care about the inverse of the logit function and is called the sigmoid

function. The motivation is to predict the probability that a particular sample belongs to class 1

given its features x.

The sigmoid function is:

φ(z) =
1

1 + e−z
(7)

Where z is the linear combination of weights and sample features and can be calculated as follows.

Also, you can find an example of such a network in figure 8.

z = wTx = w0 + w1x1 + ...+ wmxm (8)

As we can see from figure 9, φ(z) approaches to 1 when z goes to infinity and approaches to 0 if

z tends to minus infinity. According to 8, the logistic regression model puts a sigmoid function

18

Figure 9: A sigmoid function.

as the last layer of the network which results in a probability distribution over samples given its

features and its weights w.

2.4.3 Multilayer perceptrons (MLP) and Deep Neural Networks

2.4.3.1 Perceptron

A perceptron is a linear classifier that divides the input space into separating categories with a

straight line. Input is usually a feature vector x multiplied by weight w and added to a bias:

y = w∗x+b. A single layer perceptron is only capable of linear classification as it does not include

multiple layers to model a feature hierarchy.

2.4.3.2 Feedforward Neural Network and Multi-Layer Perceptron

A multilayer perceptron (MLP) is an artificial neural network (ANN). It has more than one percep-

tron. It includes an input layer to receive the data, an output layer that makes a prediction about

the input, and in the middle, an arbitrary number of hidden layers that are the computational

core of the MLPs.

MLPs are usually applied to supervised learning tasks. They are trained on a set of input and

output pairs and learn to model the correlation between those pairs. The training involved updating

the parameters, or the weights and biases of the model in order to minimize the loss.

Backpropagation is used to make these weight and bias adjustments with regard to the error.

19

Figure 10: A visual representation of a neural network with 3 layers, a single hidden layer with h

hidden units, input x ∈ Rm and output y ∈ Rt.

Feedforward networks such as MLPs are bidirectional; there is a constant back and forth adjust-

ments. In the forward pass, the signal moves from the input layer to the hidden layers then the

output layer. The prediction of the output layer is measured against the ground truth labels. In

the backward pass, by using backpropagation and the chain rule, partial derivatives of the loss

function are backpropagated through the MLP with regards to the weights and biases. The fact

of differentiation gives us an insight into the error. This can be done by any gradient-based op-

timization algorithm such as stochastic gradient descent. The network continues adjusting the

parameter until the error can not go lower. This state of the network is called convergence.

However, the word perceptron in MLPs can be a bit confusing as we do not want only linear neurons

in the networks. The goal is to learn the complex correlations between input and output space

to solve non-linear problems. Thus, the network is conventionally composed of one or multiple

hidden layers that connect the input and output layer. Now, this is where deep learning comes

into play.

2.5 The Development of Deep Learning

In principle, deep learning contributes to a set of methods and algorithms that benefit us to

parameterize deep neural network architectures. As you can see in figure 10, a deep neural network

comprises many hidden layers and parameters. The essential idea behind deep learning is to derive

20

high level features from the given dataset. Therefore, deep learning aims to solve the challenge

of the often slow feature engineering procedure and serves with parameterizing traditional neural

networks with many layers. Now, the main issue with deep neural networks is the vanishing

gradient problem. As we add more layers to the network, it becomes more difficult to update the

weights because the propagated signal becomes weaker and weaker. Since our network’s weights

might be off in the beginning because of random initialization, it can become almost impossible to

parameterize a deep neural network with backpropagation. This is one of the reasons that different

activation functions such as ReLU have been introduced to the community. I will cover a brief

description of a few common ones in the next section.

2.5.0.1 Non-Linearity and Activation Functions

The neural networks can be decomposed into two functions. Firstly, a linear combination of the

parameters, or weights and the input that gives h(x) =
∑d

i=1wi∗xi+b and a step function that gives

the final output f(x) = sgn(h(x)). Similarly, any function could be applied to h in order to get an

output. These functions that are denoted by “a”s in figure 10 are called non-linearity or activation

functions and are a key concept of allowing neural networks to become high capacity models.

Without the use of a non-linearity, the model can only represent linear relationships. Although

any function could be used as a non-linearity, given the use of gradient optimization, it is required

that it be differentiable almost everywhere. The ReLU [46], the sigmoid and hyperbolic tangent

(tanh) functions are the most common activation functions. They serve different purposes, ReLU

is often used as a hidden layer activation, while sigmoid can be used to provide a value between 0

and 1, as a probability. The hyperbolic tangent (tanh) function used to be a popular hidden layer

activation function, but it is mostly used now to force values between -1 and 1. Recently, ReLU

activation function has become the default function for all neural networks implementation as it

solved the gradient vanishing issue found in the sigmoid and hyperbolic tanget (tanh) functions.

It also allows models to learn faster and perform better. The vanishing gradient issue happens

when the error signal backpropagates through the network. If the network is deep enough, this

error signal from output layer can get to zero on it’s way back towards the input layer. This

attenuation procedure is called vanishing gradient problem, the reason behind is that when we

use chain rule to backpropagate the loss through the network, in every layer the error signal is

multiplied by the derivative of the activation function and as the derivative of sigmoid and tanh

are always near zero, this signal is getting weaker hence vanishing. The units in the linear region

of the sigmoid does not attenuate the error signal that much but in general it can be problematic

in deep networks. That’s why ReLU is often used in neural network. The derivative of RelU is

21

zero if input is negative, otherwise equals to one. The other reason that makes ReLU a favorable

choice, is it’s sparsity effect. They result in highly sparse neural nets and sparsity means efficient

and reliable performance.

In essence, we can think of deep learning as algorithms for automatic feature engineering, or we

could simply consider them as feature extractors, which help us to expedite the learning process

in neural networks with many layers.

In the context of image classification tasks, convolutional neural networks (ConvNets) are good

examples of deep learning models. The convolutional layer acts as a feature extractor to the fully

connected neural network. We intend to extract the valuable features from the images by using

the convolution, and we aim at making the features scale and translation invariant by deploying

the pooling layers.

2.6 From Deep Learning to Meta Learning

Given that, deep learning has become an essential element in various applications of technology

over the past decade and we all agreed on a general recipe shared between training deep models.

First, acquire a large number of samples for the given task, and then optimize a surrogate loss

function with gradient descent methods as a learning paradigm. Such an extensible learning

procedure, coupled with fast-growing available data has enabled researchers to develop better and

more complex architectures for many tasks. However, the universality of this learning procedure

comes with a cost, learning a new task is both data inefficient and computationally expensive.

A high-performing machine learning model often requires a large number of examples. However, if

we compare this to the human learning process we see several contradictions. Humans learn new

concepts more efficiently. Children who have seen dogs and kittens for a few times can detect them

quickly. People who know how to play a game are likely to discover new games with little or even

no demonstration. Is it possible to design a machine learning model that learns new concepts and

skills as fast by using a few training samples? Conceptually, that’s what meta-learning attempts

to solve.

22

Chapter 3

Meta-learning

3.1 Introduction

The concept of meta-learning has been of interest in machine-learning for decades because of its

favorable applications to many areas of research [14, 27, 30, 66, 54]. Meta-learning is a sub-field

of machine learning where the automatic learning algorithms are applied on some meta-data.

The goal is to find a flexible automatic learning algorithm that can be applied to solve learning

problems. In other words, we aim to learn the learning algorithm itself. That’s why meta-learning

is also called learning to learn [7]. By using some meta-data from the learning process such as the

performance of an algorithm, the properties of a learning problem or previously derived pattern

from the data, we can learn, improve or change a learning algorithm for the given problem. The

inspiration of meta-learning comes from evolutionary methods [66]. As also stated by Jurgen

Schmidhuber’s early work [30] and Yoshua Bengio et al.’s work [14], “Genetic evolution learns the

learning procedure encoded in genes and executed in each individual’s brain. In an open-ended

hierarchical meta learning system using Genetic Programming, better evolutionary methods can

be learned by meta evolution, which itself can be improved by meta meta evolution, etc.” In

2001, A. Steven Younger and S. Hochreiter [66] showed that any recurrent network topology

and its corresponding learning algorithm(s) is a potential meta-learning system thanks to gating

mechanism of LSTM networks, they can store information for the longer periods of time needed to

do meta-learning. They concluded with an LSTM based system that is able to develop a learning

algorithm that could learn any quadratic function using only 35 training samples. There is an

interesting statement presented by M. Andrychowicz1 et al. in 2016 [12] relating meta-learning

and transfer learning. When we select a model for a prediction task, we specify a set of inductive

biases about how the function should perform at points that have not observed. In this scenario,

23

generalization corresponds to the capacity of the model to make decisions about the behavior of

the target function with regard to unseen samples. In the transfer learning setting, the samples

are problem instances themselves meaning generalization corresponds to the ability to transfer

knowledge between different problems. “This reuse of problem structure is commonly known as

transfer learning, and is often treated as a subject in its own right.” [12]. The meta-learning

perspective can be seen as the problem of transfer learning as one of the generalization matters.

3.2 Applications of Meta-Learning

The perspective of the small-data regime opens many directions for applications that would not

be practical under the current deep learning framework. For instance, in cancer diagnosis, the

sensitivity of the data gathered from patients might be an issue when training large-scale models,

unless one uses public datasets. If we can build some prior knowledge from different patients (e.g.

demographic information about the population) without gathering all of the data, this would be

a great help for retaining data privacy. The advantage of meta-learning, in this case, is that only

the knowledge of the learning process on each patient will contribute to the overall prior, not their

data.

3.3 Meta-Learning Vs. Multitask Learning, Transfer Learn-

ing, and Domain Adaptation

The ideas of knowledge sharing, adaptation and transfer learning have been previously studied in

other related machine learning fields. Here I explain each of them briefly and their differences with

meta-learning.

Meta-Learning, also known as learning to learn aims to design models supplied with two important

criteria. First, it is to be able to learn new skills quickly. Secondly, it is important to adapt to

new environments using only a few training examples. The adaptation process is a mini learning

phase, and it happens during the test time with a limited exposure to the new task samples.

Meta-learning considers the assumption of offline learning (i.e. all training samples are available

at train time).

24

Figure 11: Visual representation of meta-learning framework where training tasks are different but

coming from the same source domain, aims at learning a model generalizes to new tasks which are

still from the same source domain. The image is inspired from R. Aljundi.[11].

3.3.1 Multitask Learning

In practice, meta-learning is very close to multitask learning. The model is usually trained on

related tasks in an offline mode. As shown in figure 12, the tasks used during test-time are coming

from the same distribution as training tasks. Therefore, no adaptation is required at test-time

as opposed to meta-learning. In multi-task learning, the parameters are shared between tasks for

better generalization.

3.3.2 Transfer Learning

As illustrated in figure 13, the goal in transfer learning is to transfer knowledge gained from the

source domain(Qs) and source task(Ts) where sufficient training data is available, to the target

domain(Qt) and target task(Tt) where training data is limited, also, Qs 6= Qt, or Ts 6= Tt. An

example of transfer learning is finetuning, where models are pre-trained on large tasks then used

as initialization for tasks with limited training data. There is no task adaption required in transfer

learning as the model is only evaluated on the samples coming from the target domain.

25

Figure 12: Visual representation of multitask learning framework where training and test tasks

are coming from the same distribution. The image is inspired from [11].

Figure 13: Visual representation of transfer learning setting. Inspired by [11].

3.3.3 Domain Adaptation

Domain adaptation is a type of transfer learning where the source and target tasks are the same

but drawn from different input domains. The target domain examples are unlabeled and the

aim is to train a model on the source domain in a way that it acquires high performance on the

unlabeled target domain samples, as you can see in figure 14. In other words, it relaxes the classical

26

machine learning assumption of having training and test data drawn from the same distribution

[11], [17]. One of the approaches to domain adaptation is trying to learn a shared space to match

the distributions of the source and target datasets. For instance, learning to detect different types

of planes in black and white images (source distribution) then try to generalize this task to color

images (target distribution).

Figure 14: Visual representation of domain adaptation where source and target tasks are the same

but drawn from different data distribution. Inspired by [11].

3.4 Meta-Learning Algorithms

According to the recent works, there are three main categories of algorithms in meta-learning,

metric-based, gradient-based, and model-based. I briefly describe the metric-based and gradient-

based methods in the following sections. Should the reader be interested in a thorough review of

these approaches, the meta-learning blog [64] and the survey on few-shot learning [63] are great

resources. In Section 3.5, I followed a probabilistic perspective to give a general introduction to

meta-learning. Although, there are other meta-learning algorithms that do not necessarily require

a distribution over model meta-parameters p(θ′ | Dmeta), we need one in algorithmic methods to

infer θ′? from the meta-training set Dmeta. Similarly, the adaptation procedure does not need to be

a maximum a posteriori. For instance, gradient-based meta-learning models use gradient descent

for the adaptation.

27

3.4.1 Gradient-Based Meta-Learning

3.4.1.1 Model-Agnostic Meta-Learning for Fast Adaptation (MAML)

The inspiration behind MAML [22] is the fact that some underlying representations are more trans-

ferable than others. This inspiration is also shared between other multi-task learning algorithm

and even transfer learning. For instance, there might be some internal features that are broadly

applicable to several tasks, rather than a single task. In the MAML scenario, during training, the

meta-learner parameterized by θ provides information to θ′Ti of the learner for task Ti, and the

learner returns error signals such as gradients to meta-learner to improve its parameters θ. Model

parameters θ are also known as task-invariant parameters that is shared between all given tasks.

MAML provides the same initialization for all tasks, while neglecting the task-specific information.

This only suits a set of very similar tasks and does not work well when tasks are distinct. An

illustration of MAML algorithm has been presented in figure 19. The equations for MAML are as

follows. Below denotes task specific parameters θ′ that is computed using one or more gradient

descent updates on task Ti:

θ′i
(t) = θ(t) − α∇θLTi(fθ(D

(train)
i)) (9)

The model parameters are trained by optimizing for the performance of fθ′ i with respect to θ

across tasks sampled from p(T). The model parameters θ are updated as follows:

θ(t+1) = θ(t) − β∇θ

∑
Ti∼p(T)

LTi(fθ′i(D
(val)
i)) (10)

There is also another variation of MAML that is called first-order MAML (fo-MAML) which

is an approximation to the full-order MAML. MAML normally needs computing second-order

gradients, which can be computationally expensive both in terms of time and memory. Therefore,

an approximation of MAML is often used where the within-tasks gradients are ignored.

3.4.2 Metric-Based Meta-Learning

Metric-based methods are a sub-category of embedding-learning approaches where the model learns

to find a good representation (also presented as a latent variable z) of the train and test samples by

embedding them to smaller hypothesis space that is called H. According to figure 15, we also need

a similarity measurement in this type of method that is used to calculate the similarity between

f(xtrain) and g(xtest) in the embedding space. Functions f(.) and g(.) are used to embed train

28

Figure 15: Visual representation of embedding learning where f and g are train and test embedding

functions and s is the similarity metric. The image is illustrated by inspiration from [61].

and test samples respectively. Even though sometimes g can be different from f , they are in most

cases the same, as in the cases that I am explaining here

3.4.2.1 Prototypical Networks

Prototypical networks (ProtoNet) [56] are types of embedding-learning methods where the model

performs a comparison between x(test) ∈ D(test) and the prototype of each class in D(train). A

prototype is a mean of the embeddings of train samples drawn from the same class in dataset

Dtrain
i . For instance, the prototype for class k in ith dataset is defined as:

vik =
1

|Dtrain
i |

∑
(xi,yi)traini

fθ(x
i) (11)

The ProtoNet is using the same network to embed both train and test samples (i.e. f and g are

the same), the reader can refer to figure 15 for a better comprehension. For a given test sample

29

Figure 16: Prototypical networks in the few-shot learning framework. Few-shot prototypes vk are

computed as the mean of embedded train examples for each class. The distances from class 1 and

2, are d1 and d2 respectively, since d2 < d1, x
test is classified as class 2. The figure is illustrated by

inspiration from [56].

xi, a distribution over classes is formed which is a softmax over the inverse of distances between

the test data embedding and prototypes. This can be written as:

pθ(y = ck|x) = Softmax(−d(fθ(x), vk)) =
exp(−d(fθ(x), vk))∑
k′ exp(−d(fθ(x), vk′))

(12)

The loss function is the negative log-likelihood: Lθ = −logPθ(y = ck|x)

In equation 12, d is the squared Euclidean distance. To classify a new test point, the class of the

nearest prototype to the embedded test point is assigned.

Prototypical networks can be related to clustering as class means are prototypes when distances are

computed with the squared euclidean distance. As visualized in figure 16, prototypical networks

are based on the idea that there exists an embedding space in which points cluster around a single

prototype representation for each class.

In figure 17, there are two notions of support and query sets which are similar to train and test sets

in a supervised setting. In prototypical networks similar to matching networks, support set includes

labeled samples that are used to learn an embedding to predict classes for the unlabeled points

(the query set). In this algorithm, there is a single training loop and for each episode it computes

a single loss and backpropagates that loss to update the embedding weights; the embedding model

is a convnet and the Protonet model feeds both the ‘support’ samples (NS) and ‘query’ samples

(NQ) through the convnet to compute the loss, returning that loss to the training loop.

30

Figure 17: Prototypical networks algorithm from J. Snell’s work [56]. N is the number of examples

in the training set, K is the number of classes in the training set. RANDOMSAMPLE(S,N) denotes

a set of N elements chosen uniformly at random from support set S, without replacement.

3.4.2.2 Matching Networks

In matching networks, the model assigns xtest ∈ Dtest to the most similar train point’s embedding

in Z where xtrain and xtest are embedded differently using f and g. The classifier defines a proba-

bility distribution over output labels y given a test point x. Similar to other metric-based models,

the classifier output is defined as a sum of labels of support samples weighted by attention kernel

a(x, xi) which should be proportional to the similarity between x and xi [64].

The output of the classifier is as follows where S denotes a support set S = {xi, yi}ki=1 for k-shot

classification problem:

p(y|x, S) =
k∑
i=1

a(x, xi)yi, (13)

The attention weight between two data points is the cosine similarity, cosine(.), between their

embedding vectors, normalized by softmax: (x simply presents support samples and xi is a given

test point)

a(x, xi) = Softmax(cos(f(x)), g(xi))) =
exp(cos(f(x), g(xi)))∑k
j=1 exp(cos(f(x), g(xj)))

(14)

31

3.5 Mathematical Formulation

In standard supervised learning, a model is typically specified by its likelihood function (y | x; θ),

where x is the input of the model, y is the output and θ is its parameters. The likelihood function

p(y | x; θ) can be parametrized by a deep neural network. Learning such a model then refers

to inferring the parameters θ from a dataset D = {(x1, y1), . . . , (xn, yn)}. To find the optimal

parameters θ? under the maximum likelihood framework we can write:

θ? = argmax
θ

log p(θ | D) = argmax
θ

log p(D | θ) + log p(θ) (15)

= argmax
θ

n∑
i=1

log p(yi | xi; θ) + log p(θ), (16)

where the prior term log p(θ) acts as a regularizer on the overall objective. While learning with

this kind of objective is reasonable in the large data regime, the role of the prior p(θ) becomes

essential when D only comprises a small amount of data under a few-shot setting.

Conventionally, this prior distribution over network parameters, is initialized randomly (i.e. the

weights are initialized randomly) and often turned to be far from the desired hypothesis space as

you can see in figure 18.

3.5.1 Meta-Dataset and Meta-Parameters

According to the illustration in figure 18, in meta-learning we aim to learn inductive biases [60]

via two update rules. First, a slow learning parameter that generalizes across tasks (meta-training

phase). Second, a fast learning parameter that adapts quickly to a new task (adaptation phase).

As I briefly introduced in the previous section, the initialized prior distribution over parameters

is usually far from the desired hypothesis space and this is a critical issue in fast and efficient

learning. To mitigate the effect of choosing a poor prior, we can incorporate additional data Dmeta

to compensate for the lack of data in Di. Di is a part of Dmeta. The objective in Equation (15)

now becomes

θ? = argmax
θ

log p(θ | Di,Dmeta). (17)

In the context of meta-learning, this additional data Dmeta = {D1, . . . ,DN} is a collection of

datasets, called the meta-training set. Each element Di is a collection of input/output pairs

Di = {(xi1, yi1), . . . , (xin, yin)}. For instance, the meta-training set can contain samples of multiple

32

Figure 18: Conceptual representation of inductive biases for a binary classification task on images.

Ji in the figure denotes an optimization track that leads the model to the right hypothesis space.

tasks the agent has performed in the past (e.g. classifying different birds, then detecting planes,

etc...), which can then be leveraged to learn a new task more efficiently (e.g. classifying different

species of birds from a few examples).

However, storing and retrieving all information caught by the previous experiences of the model

of Dmeta every time the model is required to learn a new task might be computationally expensive

(i.e. optimizing Equation (17)). Here, I am focusing on a specific form of meta-learning where

the goal is to learn some prior over the parameters that will be useful for subsequent learning.

Among the possible interpretations of meta-learning I’m focusing on a specific form, in the style of

MAML, where the goal is to learn some prior over the parameters that will be useful for subsequent

learning. The goal of meta-learning in this setting is to integrate all the experiences from Dmeta

into more versatile meta-parameters θ′, by optimizing a second objective called the meta-objective

θ′? = argmax
θ′

p(θ′ | Dmeta). (18)

For a better understanding of the notion of model parameters and meta-parameters, an illustration

has been provided in figure 19 that will help one understand the subsequent ones better.

Similar to how the likelihood model p(y | x; θ) or the regularizer p(θ) in supervised learning is a

33

model selection task, a deep neural network, p(θ′ | Dmeta) is also a model selection paradigm. I will

explain some of meta-learning algorithms in Section 3.4. Furthermore, if these meta-parameters

contain all the essential information from Dmeta to infer the model’s parameters θ, then we can

approximate the objective from Equation (17) with the following equation: (θ and θ′ denote the

model’s parameters and meta-parameters respectively)

log p(θ | Di,Dmeta) = log

∫
p(θ | Di, θ′)p(θ′ | Dmeta) dθ′ (19)

≈ log p(θ | Di, θ′?) + log p(θ′? | Dmeta). (20)

3.5.2 Adaptation to a New Task

Once the optimal meta-parameters θ′? have been found, they can be used as a substitute for

Dmeta in Equation (17) to learn a new task. In addition to θ′?, a small dataset of input/output

examples called D′i is provided for a new task to learn the model parameters θ. The significant

distinction between meta-learning and standard supervised learning is that the model needs an

extra adaptation step before making predictions, even if θ′? is known. However, a model trained

with standard supervised learning can be used to make predictions with p(y | x; θ?) right away.

To draw a parallel with maximum a posteriori from Equation (15), this adaptation phase can be

written as:

θ? = argmax
θ

log p(θ | D′i,Dmeta) ≈ argmax
θ

log p(θ | D′i, θ′?) (21)

≈ argmax
θ

n∑
i=1

log p(yi | xi; θ, θ′?) + log p(θ | θ′?). (22)

The meta-parameters θ′? integrated into the prior distribution p(θ | θ′?) over model parameters.

Besides, the regularization term log p(θ | θ′?) is not just a random initialization, but is now driven

by the data from the meta-training set Dmeta.

34

Figure 19: Visual representation of meta-learning phase to learn a prior knowledge over hypothesis

space through θ and adaption phase when the model learns a new task through θ′.

35

3.6 Meta-learner Selection Choice

In conclusion, the previously described methods are the most common approaches of meta-learning

algorithms, as they showed a pretty good performance on few-shot classification tasks. This has

been studied by Triantafillou, 2019 [59]. According to figure 20, ProtoNet has the second-highest

rank between other methods. As explained by Snell et al., 2017 [56], the choice of distance

metric is very important. As the euclidean distance used in Prototypical Networks considerably

outperforms the more common one, i.e. cosine similarity used in Matching Networks. Prototypical

Networks achieve state-of-the-art performance on several common benchmark tasks. Besides, they

are simpler and more efficient than other meta-learning algorithms, making them an appealing

approach for few-shot learning problems. MAML does not work well when tasks are distinct. It

provides the same initialization for all tasks, while neglecting the task-specific information. This

only suits a set of very homogeneous tasks, which is not the case in my experiments. From all

the possible choices, I decided to go with ProtoNet as the meta-learner for my project. At the

time I was reviewing the literature, ProtoNet was the most powerful meta-learner that had been

proposed, however in October 2019, a new method has been designed by Triantafillou et al., called

fo-Proto-MAML, which is also a powerful approach that combines the complementary strengths

of Prototypical Networks and MAML. However, one will realize by looking at figure 20, that

the improvement is not significant. Also, this method is computationally more expensive than

ProtoNet.

Figure 20: Few-shot classification results on Meta-dataset [59] using models trained on ILSVRC-

2012. The image is credited to [59].

36

Chapter 4

Learning Cancer Phenotypes Using

Meta-learning

4.1 Introduction

This chapter contributes to the main core of the project where we propose a meta-model that

can learn new genomic tasks without having been seen by the classifier during train time. In this

work, the goal is to study the generalizability of neural networks across different datasets in the

context of genomics. This work also proposes a public Meta-Dataset that provides 174 defined

clinical tasks that we named TCGA Meta-Dataset. Moreover, this includes a meta-dataloader that

is available on the Github repository that can be found at [52].

The organization of this chapter is as follows. Section 4.2 presents the motivations of the work. In

Section ??, the meta-learning framework has been described. Section 4.3 states the dataset, cancer

studies, and phenotypes. Sections 4.4 and 4.5 explain the task and related works. Sections 4.6 and

4.7 present the tool we developed to load the data. In section 4.8, I contribute to a description

of the experimental and training setup, the machine learning and meta-learning models we imple-

mented and applied in this work. Then, in section 4.9, I present the results on the generalizability of

meta-learning on the genomic tasks and a comparison between meta-learning and classical machine

learning baselines. In the end, I conclude the results and expand this to potential future directions.

A part of this work has been done as a collaboration with Joseph Paul Cohen, Tobias Würfl and

Tristan Deleu at Mila institute where I also worked with a biologist Genevive Boucher [53].

37

4.2 Motivations

One of the key concerns that makes the meta-learning more demanding comes from a perspective

of data efficiency. Meta-learning algorithms are mostly applied to few-shot learning problems (i.e.

problems with only a few training samples). One can inquire about the importance of this “small-

data” regime problems versus the more common “big-data” scenario which can even perform better

in several cases. Here are the 3 important reasons that justify the importance of this small-data

setting:

1. Data Availability: Even though, the amount of data gathered using smart sensors keeps

increasing, as a direct consequence, the amount of available data to use does not necessarily

increase at a similar rate. The amount of available data depends on the application. For ex-

ample, there is not enough number of samples for some rare diseases and cancers. Therefore,

only the few that have access to large databases can afford to develop expert systems under

the current deep learning paradigm.

2. Data Privacy: There are many rules and regulations for data acquisition depending on

the application and the field that data is associated with. More specifically, in hospitals

and clinics, data protection rules require the explicit consent of individuals to provide the

information to external parties. The local legislation restricts the effective amount of available

data, and this is a high-ranking limitation for training deep learning models.

3. Notion of General Intelligence (as opposed to specialists): Deep neural networks can

already solve several hard tasks and can achieve superhuman performance. Recent progress

in the field of Machine and Reinforcement Learning have developed agents that outperform

human performance in playing games such as Go. This is an example of an expert system.

However, we might be interested in more general intelligent systems capable of performing

multiple tasks and adapt to new situations, not necessarily at a superhuman level. We are

particularly interested in models that are able to learn tasks by using a few samples, and

this reduces the cost of data acquisition and the limitation of the expert systems.

4.3 Dataset

For this work, we used a public dataset called The Cancer Genome Atlas (TCGA). This dataset

includes clinicopathologic annotation data along with multi-platform molecular profiles of more

than 11,000 human tumors across 38 different cancer types [41]. TCGA provided more than 2.5

38

petabytes of genomic, epigenomic, transcriptomic, and proteomic data. This data-hub is publicly

available for anyone in the research community and has already enabled many improvements

for better diagnosis and treatments as well as preventing cancer severity. For this project, we

leverage the gene expression profile (20530 genes) called IlluminaHiSeq. The gene expression

profile was measured experimentally using the Illumina HiSeq 2000 RNA Sequencing platform by

the University of North Carolina TCGA genome characterization center. There is also the TGCA

pan-cancer analysis that examines the similarities and differences among the genomic and cellular

alterations found in the first dozen tumor types to be profiled by TCGA. Genomic alterations in

diverse cell types at different sites in the body give rise to hundreds of different forms of cancer, and

these changes result in tumors with different biology, pathology and treatment strategies which

are beginning to be characterized.

We used 35 different cancer types to predict particular genomics and clinical variables which I

explain in the following.

4.3.1 Types of Cancers Selected for Study

In this section, I explain the cancer studies, their full name and a brief description of each. If

one needs more detailed information about each cancer type, the articles at [2] and [10] are good

resources. These cancer studies have been selected by TCGA program according to specific criteria.

I also decided to stick to these cancer types as they have been globally accepted and approved

by National Cancer Institute (NCI). One of the important criteria that has been important for

the community is the poor prognosis of these cancers. This can help doctors and physicians for a

better and more accurate diagnosis. The other reason is the overall public health impact that has

been reported from these cancer types. Also, the availability of samples from patients as well as

the quality and quantity of them are of an essential matter.

• ACC (TCGA Adrenocortical Cancer): This is the case when cancer cells form in the

outer layer of the adrenal gland.

• BLCA (TCGA Bladder Cancer): Bladder cancer typically affects men rather than

women and it often occurs in older adults. This type of cancer most frequently begins

in the urothelial cells that line the inside of the bladder.

• BRCA (TCGA Breast Cancer): Breast cancer starts when a group of cancer cells grow

into breast tissues and invade nearby ones.

39

• CESC (TCGA Cervical Cancer): This type of cancer occurs in the cervix when cervical

cells grow abnormally and destroy other tissues and organs in the body. However, the

progress of cervical cancer is usually slow and it allows for early detection and treatment.

The average age of women who are diagnosed with cervical cancer is in the mid-50s.

• CHOL (TCGA Bile Duct Cancer): For a better understanding of this cancer, one should

know the role of bile ducts. They move a fluid called bile from the liver and gallbladder to

the small intestine where it allows a better digestion of the fats in foods. Sometimes the cells

in the bile ducts change and grow abnormally. These changes can cause benign conditions

or lead to bile duct cancer. Most often, bile duct cancer begins in the cells of the inner layer

of the bile duct.

• COAD (TCGA Colon Cancer): Colon cancer often occurs in older adults. It usually

starts as a small, noncancerous mass of cells called polyps that form on the inside of the

colon. Some of these polyps can turn into colon cancers over time.

• COADREAD (TCGA Colon and Rectal Cancer): Colon and Rectum are parts of

the digestive system and the large intestine. This type of cancer is also known as colorectal

cancer as these organs have the same type of tissues and there is no clear border between

them.

• DLBC (TCGA Large B-cell Lymphoma Cancer): Lymphoma is a complicated cancer

that begins in lymphocyte cells of the immune system. These cells are white blood cells that

are responsible for fighting infections.

• ESCA (TCGA Esophageal Cancer): This cancer occurs in the esophagus which is a

long, hollow tube that moves the food from the back of the throat to the stomach to be

digested.

• GBM (TCGA Glioblastoma Cancer): Glioblastoma is an aggressive type of cancer that

usually affects the brain cells or spinal cord. Glioblastoma is made of cells called astrocytes

that support nerve cells.

• GBMLGG (TCGA Lower-Grade Glioma & Glioblastoma): Glioma is a type of

cancer that develops in the glial cells of the brain. Glial cells support the brain nerve cells

and provide them with the required nutrients. Tumors are classified into grades I, II, III,

and IV based on standards established by the World Health Organization. TCGA studied

40

lower-grade glioma, which consists of grades II and III. GBM or glioblastoma is classified as

grade IV, which is the most aggressive one.

• HNSC (TCGA Head and Neck Cancer): Cancers of the head and neck are categorized

by the area of the head or neck in which they occur. They usually start in the squamous cells

that have moist and mucosal surfaces inside the head and neck such as inside the mouth, the

nose, and the throat.

• KICH (TCGA Kidney Chromophobe): Chromophobe renal cell carcinoma is a rare

type of kidney cancer that forms in the cells lining the small tubules in the kidney. These

small tubules help filter waste from the blood to make urine.

• KIRP (TCGA Kidney Papillary Cell Carcinoma): This is the second most common

type of kidney cancer and usually develops from inside the kidney’s tubules.

• LAML (TCGA Acute Myeloid Leukemia): LAML is one of the most common acute

leukemia cancer in North America. The average age of LAML patients is 67. LAML is a

cancer of the blood and bone marrow. It’s quite dangerous and should be treated quickly as

it can result in death within months.

• LGG (TCGA Lower Grade Glioma): As I have already explained in the GBMLGG

type of cancer, lower-grade glioma is of grade II and III types of tumors in glial cells that

support the brain nerve cells.

• LIHC (TCGA Liver Cancer): Liver cancer occurs in the cells of the liver. The liver plays

an important role in the body by cleaning the blood and discarding harmful materials.

• LUNG (TCGA Lung Cancer): There are two types of lung cancers. Non-small cell lung

cancer and small cell lung cancer are based on the type of cell in which cancer starts.

• LUAD (TCGA Lung Adenocarcinoma): Non-small cell lung cancer usually starts in

glandular cells on the outer part of the lung. This type of cancer is called adenocarcinoma.

• LUSC (TCGA Lung Squamous Cell Carcinoma): Non-small cell lung cancer can also

start in flat, thin cells called squamous cells. This type of cancer is called squamous cell

carcinoma of the lung.

• MESO (TCGA Mesothelioma): Malignant mesothelioma is a type of cancer that starts

in the thin layer of tissue that covers the majority of the internal organs (mesothelium).

41

• OV (TCGA Ovarian Cancer): Ovarian cancer is a type of cancer that occurs in the

ovaries. The female reproductive system contains two ovaries, one on each side of the uterus.

The ovaries make hormones estrogen and progesterone as well as ova.

• PAAD (TCGA Pancreatic Cancer): Pancreatic cancer begins in the tissues of your

pancreas. The pancreas produces enzymes that help digestion and makes hormones that

help manage blood sugar.

• PCPG (TCGA Pheochromocytoma & Paraganglioma): These are rare tumors that

come from the same type of tissue. Paraganglioma starts in nerve tissues in the adrenal

glands and near certain blood vessels and nerves. Paragangliomas that form in the adrenal

glands are called pheochromocytomas.

• PRAD (TCGA Prostate Cancer): Prostate cancer is a type of cancer that occurs in the

prostate. This is one of the most common cancers among men.

• READ (TCGA Rectal Cancer): This cancer occurs in the rectum that is the last part

of the large intestine.

• SARC (TCGA Sarcoma): Soft tissue sarcoma is a rare type of cancer that occurs in the

tissues that connect, support and surround other body structures. This can contain nerves,

muscle, blood vessels, fat, tendons and the lining of the joints.

• SKCM (TCGA Melanoma): Melanoma, the most serious type of skin cancer, develops in

the cells called melanocytes that make melanin which is the pigment gives the skin its color.

• STAD (TCGA Stomach Cancer): Stomach cancer usually begins in the mucus-producing

cells that line the stomach.

• TCGT (TCGA Testicular Cancer): Testicular cancer occurs in the testicles. The testi-

cles release male sex hormones and sperm for reproduction.

• THCA (TCGA Thyroid Cancer): Thyroid cancer occurs in the cells of the thyroid. The

thyroid makes hormones that regulate blood pressure, heart rate, body temperature, and

weight.

• THYM (TCGA Thymoma): Thymoma and thymic carcinoma are diseases in which

cancer cells form on the outside surface of the thymus. The thymus is an organ in the neck

that makes T-cells for the immune system.

42

• UCEC (TCGA Endometrioid Cancer): Endometrial cancer occurs in the cells that

form the inner layer of the uterus (endometrium) and is sometimes called uterine cancer.

Other types of cancer can form in the uterus, including uterine sarcoma, but they are much

less common than endometrial cancer.

• UCS (TCGA Uterine Carcinosarcoma): This type of cancer starts in the inner layer of

the tissue lining the uterus, while sarcoma begins in the outer layer of muscle of the uterus.

• UVM (TCGA Ocular Melanomas): As explained in TCGA Melanoma, this is a type of

cancer that develops in the cells that produce melanin. The eyes also have cells that make

melanin and can develop melanoma. Eye melanoma is also called ocular melanoma.

Now that we have a more clear idea of different types of cancer, we can proceed with the definition

of the phenotypes that I studied in my experiments.

4.3.2 Genomics and Clinical Attributes Selected for Study

After understanding the cancer studies in TCGA, we need to know the phenotype that has been

used for prediction corresponding to a cancer study. There are 44 different clinical and genomic

variables (phenotypes) in the defined tasks. The tasks cover a range of clinical problems including

modeling:

• Event: This is a boolean value that shows whether the patient had a new tumor event (e.g.

metastatic, recurrence or new primary tumor) after their initial treatment for the tumor.

This phenotype is also named as “new tumor event type”.

• Gender: A binary variable that gets either male or female.

• Tumor Tissue Site: A clinical site that collects and provides patient samples and clinical

metadata for research use.

• White Cell Count: The number of white cells in the given tissue sample.

• Histological Type: Usually cancers are classified in two ways. First by the type of tissue

in which cancer originates (histological type) and by primary site, or the location in the

body where cancer first developed. For example, in Esophageal cancer, there are 2 categories

of histological type, Esophagus Squamous Cell Carcinoma and Esophagus Adenocarcinoma.

The first type often forms in the thin, flat cells lining the inside of the esophagus and the

43

second usually occurs in mucus-secreting glands. This variable has a different variety of

classes depending on the task.

• OCT Embedded: A boolean value indicating whether the Optimal Cutting Temperature

compound (OCT) is used to embed tissue samples before frozen sectioning on a microtome-

cryostat.

• Metastasis: Metastasis is the major cause of breast cancer-associated deaths. Metastatic

cancer (also called stage IV breast cancer) is a breast cancer that has spread to another part

of the body, most commonly the liver, brain, bones, or lungs. In this dataset, metastasis is

a binary feature and includes the possible labels of M0 and M1. M0 means cancer has not

spread to other parts of the body and M1 means cancer has already spread to other parts of

the body.

• Mental Status Changes: This phenotype is presented in LGG and GBMLGG. It indicates

if the patient/participant presented with mental status changes prior to the diagnosis of

cancer. It is a binary variable with values of ‘Yes’ and ‘No’.

• Family History of Cancer: This phenotype shows whether the patient/participant has

a first degree relative (parents, siblings, children) with a history of cancer. This is also a

binary feature with ‘Yes’ and ‘No’ values.

• Evidence of Active Hepatic Inflammation in Adjacent Tissue: This is a phenotype

of liver cancer and indicates whether the patient had evidence of active hepatic inflamed

adjacent tissues. It’s a 3-class classification problem with values including Mild, Severe, and

None.

• Colon Polyps Present: Indicates if polyps were present in the colon, surgically and/or

pathologically, at the time of tissue collection for the tumor submitted to TCGA. It’s a

binary feature with the values of ‘Yes’ and ‘No’.

• Lymphovascular Invasion Present: Indicates whether large vessel (vascular) invasion

and/or small, thin-walled (lymphatic) invasion was detected. This is also a binary classifica-

tion problem with ‘Yes’ and ‘No’ values.

• Anatomic Neoplasm Subdivision: This is a phenotype measured in Ovarian cancer.

Using the patient’s pathology/laboratory report, it shows the anatomic site of the tumor

used for TCGA. It is a 3-class classification problem with the values right, left, and bilateral.

44

• Pan-Cancer DNA Methylation: As I explained in section 4.3, Pan-cancer analysis is a

project to identify the similarities and differences between genomic unusual modifications

across different tumor types. DNA Methylation is an epigenetic alternation that can have a

significant impact on changing the healthy regulation of gene expression to a disease pattern.

Epigenetic modifications are a mechanism the cell uses to turn gene expression on/off without

changing the DNA sequence itself. The methylation of genomic DNA in malignant cells is

different across various cancer types. In my experiments, this phenotype tested on Head and

Neck Cancer that is a 4-class classification problem from clusters 1 to 4. The prediction of

this attribute can help in treatment of cancer.

• Pan-Cancer MicroRNA Expression: This is a 5-class classification attribute from clus-

ters 1 to 5. miRNA expression is dysregulated in human cancer through various mechanisms.

They have been grouped to different clusters to indicate the cause of this dysregulation which

can be a result of amplifications or deletions of miRNA genes, abnormal transcriptional con-

trol of miRNAs, etc.

and a few others that are described in detail in [9].

4.4 Task Definition

A collection of 174 genomic tasks is proposed in this work. Tasks are combinations of a phenotype

to predict and a cancer study corresponds to that phenotype. They are classification problems

and the input space is gene-expression data with 20530 genes. Each task denotes an independent

dataset. The purpose of each dataset to predict a phenotype of a particular cancer type. The

purpose can also be inferred by the name of the dataset. For instance, one of the datasets is named

‘gender-LAML’ means we predict ‘gender’ for ‘Acute Myeloid Leukemia’ samples. Tasks have been

trained and evaluated under a few-shot learning regime. I evaluated the performance of each task

using the prototypical model, k-nearest neighbors, logistic regression and a neural network that will

predict across cancer studies. Should you need a background on any of these models, please read

sections 2.4 and 3.4.2.1. This framework is an initiative to develop Meta-Learning techniques that

make use of the interrelated tasks of gene-expression data to learn effective classification models

despite the small sample size of each individual task. There are 44 phenotypes and 25 cancer

studies.

45

4.5 Related Works

A recent paper in Meta-learning literature which is closely related to this work is Meta-Dataset by

Triantafillou et al., 2019 [59] that offers an environment for training and evaluating meta-learners

for few-shot image classification by evaluating various baselines and meta-learners on this Meta-

Dataset. This benchmark includes 10 datasets from various image classification tasks including

ILSVRC-2012 (ImageNet) [51], Omniglot [35], Aircraft [43], MSCOCO [38], CUB-200-2011 (Birds)

[62], Describable Textures [16], Quick Draw [29], Fungi [55], VGG Flower [47] and Traffic Signs

[28]. Despite having a small number of tasks, developing this benchmark opens the door to the use

of multiple datasets for few-shot learning by leveraging the use of samples from different datasets

to construct the prior knowledge from multiple data sources and allows researchers to evaluate

more challenging generalization problem.

In the literature of genomics applications, most of the works are developing algorithms and tech-

niques that can solve only one particular clinical task at a time. To the best of our knowledge,

there is no particular work that is doing general genomics and clinical feature prediction using

gene expression data; although one of the works that has a similar initiative is “Multitask learning

and benchmarking with clinical time-series data” by Harutyunyan, 2019 [26]. In this work, only

4 different tasks from MIMIC-III database have been defined. There are three main differences

between our work and the one mentioned. Firstly, we defined a higher variety of tasks. Secondly,

the dataset that our tasks are originated from is TCGA. Finally, we consider a few-shot setting

for each task.

4.6 Torchmeta Library for Gene Expression Data

The existence of standardized benchmarks has played a crucial role in the progress we have ob-

served over the past few years in meta-learning research. They make the evaluation of existing

methods easier and fair, which in turn serves as a reference point for the development of new

meta-learning algorithms; this creates a virtuous circle, rooted into these well-defined collections

of tasks. Unlike existing datasets in supervised learning, such as MNIST [36] or ImageNet [51], the

benchmarks in meta-learning accommodate datasets of datasets. This adds a layer of complexity

to the data pipeline, to the extent that a majority of meta-learning projects implement their spe-

cific data-loading component adapted to their method. The lack of a standard at the input level

creates variances in the mechanisms surrounding each meta-learning algorithm, which makes a fair

comparison more challenging [19].

46

4.7 Data-Loaders for Few-Shot Learning

While there has been an extreme growth in Machine Learning research for Genomics, several

barriers have slowed the potential progress. One particular barrier is the absence of global publicly

available benchmark datasets in the field of gene expression works to evaluate the performance of

models, facilitate reproducibility and allow the community to focus on a set of challenges. There

are consistent public benchmarks in the field of computer vision for image classification tasks.

For example, ImageNet and Large Scale Visual Recognition Challenge (ILSVRC) [51] allowed

a significant improvement in the classification acccuracy from 25% in 2011 to 95% in 2017 for

benchmark tasks. In contrast, practical progress in genomics applications has been difficult to

measure due to variability and inconsistency in data sets and task definitions. Although there is

a fairly well-known challenge called DREAM that can be found at [3], it has not imposed itself as

a standard challenge such as ImageNet.

The meta-dataset we provide in this work offers a collection of datasets corresponding to few-shot

classification problems. The interface was created to support modularity between datasets, to

simplify the process of evaluation on benchmarks; the data-loader developed for this meta-dataset

has also been included in Torchmeta library developed by Deleu et al, 2019 [19]. The data-loaders

from Torchmeta are fully compatible with standard data components of PyTorch, such as Dataset

and DataLoader. Before going into the details of the meta-dataloader, I first briefly recall the

problem setting before going into more detail.

To balance the lack of data inherent in few-shot learning, meta-learning algorithms acquire some

prior knowledge from a collection of datasets Dmeta = {D1, . . . ,Dn}, called the meta-training set.

In the context of few-shot learning, each element Di contains only a few inputs/output pairs (x, y),

where y depends on the nature of the problem. For instance, these datasets can contain examples

of different tasks performed in the past. Torchmeta offers a solution to automate the creation of

each dataset Di, with a minimal amount of problem-specific components.

We developed a meta-dataloader for TCGA that allows loading a batch of tasks that can be it-

erated over to generate datasets. The possibility of loading only one clinical task by specifying a

phenotype and a cancer study is also provided. The file TCGA.py includes the detail of the dataset

and meta-dataloader that can be found at the provided GitHub repository [52]. You can see an

example below in which the variable ‘datasets’ is the collection of all tasks and ‘task’ is one of

these datasets named (histological type, LGG). TCGA meta-dataloader is a part of the Torchmeta

Library [19].

47

Helper function, equivalent to Section 4.7

datasets = meta dataloader.TCGA.TCGAMeta(download="True", min samples per class=10)

task = meta dataloader.TCGA.TCGATask((‘histological type’, ‘LGG’))

print(task.id)# output: (‘histological type’, ‘LGG’)

print(task. samples.shape)# output: (529, 20530)

print(collections.Counter(task. labels))# output: Counter(2: 198, 0: 197, 1: 134)

4.8 Experimental Setup and Technical Details

We implement four different supervised models to evaluate the performance of each task using

regression and neural network baselines. For logistic regression, we use a 1-layer neural network

(zero-hidden layer neural net with Softmax output) from PyTorch [48] and LBFGS function [40]

for optimization. We also apply a k-nearest neighbors classifier using the sklearn library and search

over possible values of K in the range of 2 to 10. K equals 4 gives a better performance when

compared to other possible values. We also use the euclidean distance as a distance metric in

KNN. For a neural network, we tweak the network using different number of layers and hidden

layer size. The results of our hyperparameter search is given in Table 2. The learning rate of 1e-4

and the network with 2 hidden layers with 128 and 64 hidden nodes respectively have been chosen

for our further analysis. Also, we use fully-connected layers and ReLU as the activation function.

In our experiments, batch size equals 32 and weight decay is 0.0 (no regularization effect). We use

Adam [31] for optimization in the neural network. We run the network for 250 epochs for each

task and the performance is averaged over 10 different trials (by changing seed from 0 to 9). All

tasks have 150 samples in total. We split 150 samples between train and test sets and valid set if

needed for early stopping. Train and test sets contain 50 and 100 samples respectively. The train

set has less number of examples to serve the few-shot learning regime.

48

Number of Layers

1 Hidden Layer Size

[512] 67.55

[256] 67.25

[128] 68.07

[64] 67.70

[32] 65.48

2 Hidden Layer Size

[512, 256] 67.92

[256, 128] 67.70

[128, 64] 68.14

3 Hidden Layer Size

[128, 64,32] 68.24

[256, 128, 64] 66.87

[512, 128, 64] 67.96

[256, 128, 32] 67.36

4 Hidden Layer Size

[512, 256, 128, 64] 62.833

[256, 128, 64, 32] 62.834

[128, 64, 32, 16] 62.833

Learning Rate Range of Values

1e-5 67.55

1e-4 68.33

1e-3 68.0

1e-2 63.33

Table 2: The results of hyperparameter search, learning rate sets to 1e-3 when tweaking the

architecture. Also, when tuning the learning rate, the neural network has 2 layers with 128 and

64 hidden nodes in each layer respectively.

49

4.8.1 Evaluation Strategy

We consider accuracy over test tasks as the evaluation metric; however, it may not be the most

relevant metric in an applied setting given a new dataset. In meta-learning algorithms during

the training, the model maximized its averaged performance over a batch of tasks. Whereas, in

practice, we are concerend with the behaviour of the model on an individual task during test time.

This contradiction between the desired objective and the meta-learning goal can make unexpected

outcomes where the performance of the model may decrease on some tasks during training [18]

while there is no improvement on the target tasks during test time. This is highly critical in

healthcare applications, where guarantees on the learning phase are necessary.

4.8.2 Training Prototypical Networks

I developed a prototypical network from scratch using Pytoch and tested it in meta-learning

framework as described in MAML [22]. I evaluated its performance on the Omniglot dataset to

verify my model according to the original paper [56]. As presented in Algorithm 2, to train a

ProtoNet in MAML setting, we define two for-loops to perform two optimization processes, an

outer loop that is over batches of multiple tasks and the ‘meta epoch’ variable (M) specifies the

number of iterations. The outer loop aims to minimize the average loss across batches of tasks.

The inner loop iterates over tasks in one batch and calculates the task-specific loss. The ‘meta

batch size’ variable (MB) indicates the number of tasks per batch. The variable ‘number of shots’

(NS) specifies the number of samples the ProtoNet employs to compute the protos (i.e. class

means). However, during test time, we do not use the number of shots and instead employ all 50

samples for training the model and all 100 samples of test set for the adaptation phase. Figure 21

presents the training pipeline.

50

Figure 21: A visual representation of the training pipeline.

Algorithm 2 An overview of meta-training procedure

1: procedure Meta-training({T1, ..., Tk}, {D1, ...,Dk}, modelfθ)
2: Choose an initial vector for θ and learning rate α, β and number of tasks per batch (MB).

3: Initial M as the size of meta epochs and NS as the number of shots.

4: for m=1 to M do

5: Create meta-batch Km by random sampling |MB| tasks from {T1, ..., Tk}
6: for each task Tj ∈ Km do . K is a batch of tasks.

7: Calculate Prototypes and Proto-loss for task Tj.
8: . Only use NS number of samples to calculate Prototypes.

9: Adapt model with θ′ as in Equation 23 using sample from Dj

10: Update model parameter with θ as in Equation 24

θ′j
(t) = θ − α∇θLTj(fθ(Dtrainj)) (23)

θ(t+1) = θ(t) − β∇θ

∑
Ti∼p(T)

LTj(fθ′j(D
val
j)) (24)

51

I designed two types of experiments for my meta-learning framework. Simple mode and complex

mode. In both experiments, the number of shots and meta batch size are equal to 5.

4.8.3 Simple Mode Setup

In this mode, I expose the model to only one type of phenotype across multiple cancer studies.

For example, I trained the meta-learner to learn to predict histological type in 4 different types

of cancers and tested on a new one. In this set of experiments, the size of the meta-train set (i.e.

the number of datasets) in various tasks is different. In all experiments, the samples from test

tasks have not been shown to the model over previous runs. The full description of phenotypes is

provided in section 4.3.2.

52

4.8.3.1 Event Prediction

Trained on 18 various types of cancer and tested on 5 new ones that has been provided in table 3.

The average train and test accuracy are 65.5 and 72.0 respectively. Figure 22 shows loss decreases

and accuracy increases over 250 epochs at a very slow rate. This can be due to the high variety

of cancers in the event prediction tasks and also the lack of samples under the few-shot learning

scenario. The description of cancer types is presented in section 4.3.1.

Phenotype Cancer Logistic Regression KNN MLP Meta-Learner (ProtoNet)

Event STAD 61.0 57.9 52.1 61.0

Event THCA 97.0 97.0 56.2 97.0

Event SKCM 52.0 56.0 74.1 58.99

Event SARC 63.0 59.0 97.0 63.0

Event LIHC 61.0 63.0 63.9 63.0

Table 3: The accuracy of event prediction tasks across models. ProtoNet has been trained on 18

different cancers and tested on 5 new ones.

(a) The average meta batch loss (b) The average meta batch accuracy

Figure 22: The average loss and accuracy for event prediction using 18 tasks in the meta train set.

53

4.8.3.2 Gender Prediction

Trained on 16 types of cancers including LUNG, LAML, PAAD, etc. and tested on 5 other types

namely THCA, STAD, PCPG, SARC, and SKCM. The average train and test accuracy are 78.41

and 77.8 respectively. In figure 23, one can see the trend of decreasing loss and increasing accuracy

over epochs. However, there are many fluctuations due to the variety of tasks in each batch. The

results can be found in table 4.

Phenotype Cancer Logistic Regression KNN MLP ProtoNet

Gender THCA 92.6 75.0 80.8 81.0

Gender STAD 82.1 61.0 73.4 87.0

Gender SARC 74.7 61.0 63.8 96.0

Gender SKCM 73.3 57.9 66.1 75.0

Gender PCPG 87.3 63.0 64.9 99.0

Table 4: The accuracy of gender prediction tasks across models. The meta-learner has been trained

on 16 different cancers and tested on 5 new cancers.

(a) The average meta batch loss (b) The average meta train accuracy

Figure 23: The average train loss and accuracy for gender prediction using 16 tasks in the meta-

train set.

54

4.8.3.3 Oct Embedded Prediction

Trained on 12 cancers including BLCA, LIHC, LGG, CESC, GBMLGG, KIRP, and a few others

and tested on 4 new cancers including THCA, SKCM, STAD, and UCEC. The average train

accuracy is 67.9 and the average test accuracy is 65.75. The results are presented in table 5.

Moreover, the learning curve has been provided in figure 24.

Phenotype Cancer Logistic Regression KNN MLP ProtoNet

Oct embedded THCA 64.9 52.0 66.8 58.0

Oct embedded SKCM 75.3 67.0 79.6 80.0

Oct embedded STAD 60.58 64.0 59.6 60.0

Oct embedded UCEC 57.1 53.0 57.1 65.0

Table 5: The accuracy of oct embedded prediction tasks across models. In ProtoNet, the model

has been trained on 12 different cancer types and tested on 4 new ones.

(a) The average meta batch loss (b) The average meta train accuracy

Figure 24: The average train loss and accuracy for oct embedded prediction using 12 tasks in the

meta-train set.

55

4.8.3.4 Histological Type Prediction

The model has been trained on 4 different cancer studies including LGG, PCPG, ESCA, PRAD

with an average accuracy of 83.41. As presented in table 6, the model tested on UCEC with an

accuracy of 62.0. Histological type for UCEC cancer is a 3-classes classification task. One can find

the learning curve of this task in figure 25.

Phenotype Cancer Logistic Regression KNN MLP ProtoNet

Histological type UCEC 68.4 75.0 71.7 62.0

Table 6: The accuracy of histological type prediction tasks across models. In the prototypical

network, the model has been trained on 4 different cancers and tested on a new cancer.

(a) The average meta batch loss (b) The average meta batch accuracy

Figure 25: The average train loss and accuracy for histological type prediction using 4 tasks in

meta train set.

56

4.8.3.5 Colon Polyps Presence Prediction

Trained on only one type of cancer that is called COAD and tested on a new type named as

COADREAD. The average train accuracy is 89.40 and the test accuracy is 71.0. Table 7 shows a

comparison of accuracy among models. As there is only one task in the meta-train set, there is no

fluctuation in the learning curve 26.

Phenotype Cancer Logistic Regression KNN MLP ProtoNet

Colon polyps present COADREAD 65.6 72.0 68.8 71.0

Table 7: The accuracy of colon polyps presence prediction task across models. In the prototypical

network, the model has been trained on COAD cancer and tested on COADREAD.

(a) The average meta batch loss (b) The average train accuracy

Figure 26: The average train loss and accuracy for colon polyps presence prediction using 1 task

in the meta-train set.

57

4.8.4 Complex Mode Setup

In this scenario, I trained the meta-learner on the full meta-dataset that I defined earlier in Section

4.4. The meta-train set includes 96 tasks and the meta-test set contains 25 different tasks that

have been shown in table 8 (only the tasks with at least 150 samples have been selected). In

table 8, one can see the performance of the ProtoNet meta-learner over 25 tasks provided. As

illustrated, the ProtoNet does not perform as well as a finetune neural net on all tasks. This result

was expected as the finetune neural network is a specialized on each particular task. Also, the

meta-test tasks are all new and have not been seen by the model over past experiences. To have

a fair comparison, all models have been provided using 50 training and 50 test samples meaning

the training procedure has been done under few-shot learning setting.

4.9 Results

Table 9 shows that the finetune neural network has the highest overall performance compared to the

prototypical network, logistic regression, and k-nearest neighbors. The main limitation of logistic

regression is that it cannot model the interactions between input variables. While neural networks

are dealing better with clinical classification tasks, logistic regression has higher performance on

gender tasks. This is because gender tasks can be classified by using only one gene, i.e. whether

it includes y chromosome or not.

Figure 27: Prototypical Network performance on the defined genomics tasks.

In table 9, you can see the average accuracy of each model over tasks as well as 95% confidence

interval of models over multiple trials . This result has been concluded over 10 trials. In figure 27,

58

ID Phenotype Cancer
LR KNN MLP ProtoNet

Acc Rank Acc Rank Acc Rank Acc Rank

1 Pancan Micro RNA LUAD 37.3 3 47.0 1 39.7 2 31.0 4

2 Pancan Micro RNA LAML 64.9 3 69.0 2 71.3 1 35.0 4

3 Histological Type LGG 54.7 2 46.0 3 55.6 1 38.0 4

4 Pancan DNAMethyl HNSC 64.8 2 54.0 3 74.1 1 41.0 4

5 Adj. Hepatic Tissue Inflamm. Extent Type LIHC 51.6 4 56.9 1 54.6 2 52.0 3

6 Gender COAD 95.1 1 63.0 3 79.8 2 54.0 4

7 Lymphovascular Invasion Present BLCA 53.8 2 48.0 4 53.1 3 55.0 1

8 Oct Embedded THCA 64.9 2 52.0 4 66.8 1 58.0 3

9 Gender LUNG 87.5 1 76.0 3 77.1 2 60.0 4

10 Family History of Cancer LGG 50.7 4 61.0 2 55.2 3 62.0 1

11 Event GBMLGG 74.0 1 71.0 3 74.0 1 62.0 4

12 Histological Type UCEC 68.4 3 75.0 1 71.7 2 62.0 4

13 Lymphovascular Invasion Present HNSC 60.0 4 68.0 1 64.3 2 64.0 3

14 Oct Embedded LIHC 61.2 4 67.0 1 64.6 3 65.0 2

15 Oct embedded UCEC 57.1 2 53.0 4 57.1 2 65.0 1

16 Gender LIHC 87.4 1 72.0 3 78.2 2 66.0 4

17 Colon Polyps Present COADREAD 65.6 4 72.0 1 68.8 3 71.0 2

18 Gender THCA 92.6 1 75.0 3 80.8 2 73.0 4

19 Anatomic Neoplasm Subdivision OV 59.6 4 72.0 2 72.0 2 73.0 1

20 Mental Status Changes GBMLGG 65.3 4 74.0 2 67.3 3 75.0 1

21 Oct Embedded SKCM 75.3 3 67.0 4 79.6 2 80.0 1

22 Histological Type PCP 82.6 2 74.0 4 84.5 1 82.0 3

23 Oct Embedded SARC 75.6 3 70.0 4 80.1 2 85.0 1

24 Metastasis BRCA 98.0 1 98.0 1 98.0 1 97.0 4

25 Gender BRCA 99.0 1 99.0 1 99.0 1 95.0 4

Average Rank 2.48 2.44 1.88 2.84

Table 8: Few-shot classification results on Meta-test set tasks using classical models and meta-

learner trained on Meta-training set tasks only using 5 samples. The evaluation metric is accuracy

and it has been provided in an ascending order.

Model Accuracy

Logistic Regression 69.96 ± 6.78

K-Nearest Neighbor 67.20 ± 5.55

Fine-tuned Neural Network 70.73 ± 5.65

Prototypical Network 64.04 ± 7.18

Table 9: Accuracy and 95% confidence interval of models over multiple trials.

59

the overall performance of ProtoNet over 25 tasks has been provided. The meta-learning algorithm

(MAML) from [22] was indeed evaluated but performed so poorly that the specific results were

not worth including in the thesis. By looking at this figure, one can realize which tasks are easier

for meta-learners to learn. The reason behind the poor performance for the tasks at the beginning

of the plot is either that they have more labels in comparison to the others meaning the tasks

are intrinsically more complicated, or the knowledge learned so far is not sufficient for these tasks

to provide good insight to the model. This is the result of a complex mode setup which is the

ultimate goal of meta-learning, the ability of the model to generalize to new tasks coming from

different distributions. However, I also designed a set of simplified experiments as I explained

in 4.8.3, where I trained the meta-learner only on one type of phenotype across different cancer

studies. This way, I keep the distribution of the phenotype the same over experiments. By looking

at figures 22 to 25, one can discern that by training and testing only on one type of phenotype, the

meta-learner achieves higher performance than the complex setup where the model is trained on a

higher variety of tasks. This is expected as it is easier for the model to learn the shared structural

information only across cancers rather than learning the higher-level features over both various

phenotypes and cancers.

In the majority of existing meta-learning algorithms including ProtoNet, the meta-objective is

averaged over tasks distributions (playing a role similar to the distribution over datasets in Sec-

tion 3.5.1.

Therefore, the learning rule achieved by the meta-learning procedure is conditioned on the op-

timization procedure of θ∗. The model should on average see its performance increase after the

adaptation phase. The behavior on average across several tasks does not ensure good performance

on an individual task. The adaptation could significantly improve the performance of the model

on a subset of tasks while decreasing it on another. However, at test-time, only the performance

of the model on a single new task is of interest. This is an issue that does not appear in classical

supervised learning since the model is only trained on one task.

This contradiction between the meta-learning objective and evaluation can lead to unexpected

outcomes, where the performance of the model might decrease on specific tasks after adaptation

[18]. This is especially critical in high-risk applications, such as healthcare, where guarantees on

the learning phase are necessary. Can the learning rule resulting from the meta-learning be ade-

quately restrained to avoid this sort of uninformative behavior?

60

4.10 Conclusion

This chapter presented an analysis of the incorporation of prior knowledge into neural networks

for genomics and clinical task prediction. My goal was to use gene expression data to learn the

higher-level features between various phenotypes. For this purpose, I implemented three classical

machine learning models as well as a meta-learner called prototypical network. According to

the results of the experiments that have been provided in Section 4.9, a finetune neural network

with 2 hidden layers has the highest overall performance compared to the prototypical network,

logistic regression, and k-nearest neighbors. While neural networks are dealing better with clinical

classification tasks, logistic regression has higher performance on gender tasks. As provided in

table 8, ProtoNet shows a higher performance on some tasks including detecting lymphovascular

invasion for bladder cancer, family history of cancer for lower-grade glioma, oct embedded for

endometrioid, melanoma, and sarcoma as well as predicting mental status change in lower-grade

glioma and glioblastoma These tasks are all binary classification problems and there are only two

types of labels.

When the tasks are similar to each other during meta-train and meta-test, the meta-learner shows

a higher performance in comparison to the case that there is a high diversity of tasks in the meta-

train set. However, this diversity is also important to certain extents because a batch of similar

tasks might not be informative enough for the meta-learning algorithm to learn a good inductive

bias.

61

Chapter 5

Conclusion and Future Work

In this work, I proposed a Meta-learner that can learn multiple genomics tasks using gene expres-

sion data and a Meta-dataset of tasks where each task is combinations of a phenotype to predict

and a cancer study. This dataset can be used as a test-bed for developing algorithms for genomics

applications which can leverage a few-shot learning regime. I also evaluated the performance of

the defined tasks using supervised models and compared their accuracy to provide a baseline of

what current techniques can achieve on. Since there is a limited number of samples available in

the few-shot learning regime, we leverage the samples from a collection of tasks and construct a

prior knowledge for a general prediction by using meta-learning.

In chapter 2, first, we give an introduction to genomic basics and present a couple of machine

learning problems including supervised, semi-supervised, and unsupervised learning with more

emphasis on supervised setting. Later, we explain the development of deep learning and how it is

linked to meta-learning.

Chapter 3 gives detail about meta-learning framework, different categories of meta-learning models

and their difference. We conclude this chapter by explaining the meta-learner selection choice for

the current application.

In chapter 4, we present a study of meta-learning on genomics task predictions using gene ex-

pression data by using the prototypical network as a meta-learner, and also logistic regression,

k-nearest neighbors, and an MLP as classical models. By sharing knowledge between tasks and

using the adaptation procedure, we could learn new genomics tasks. This would be pretty help-

ful for the prediction and diagnosis of rare cancers that do not have enough number of samples.

Even though there are still some failures in the prediction of particular tasks (either complicated or

under-represented), I believe that addressing these shortcomings constitutes an important research

goal of cancer detection moving forward.

62

I believe meta-learning with the mentioned definition in Chapter 3, is one more step towards a

higher level of intelligence as it can uncover new designs that outperform hand-designed archi-

tectures. Applying meta-learning methods allows us to construct shared structural information

within interrelated tasks by using multiple sources of data.

5.1 Future Work

In this section, we provide potential ideas for future research directions.

5.1.1 Meta-Learning Sensitivity to Task Distributional Changes

The standardized benchmarks, based on fixed task distributions, were developed to get a fair

comparison between different meta-learning algorithms. However, it is unclear how robust these

algorithms are across different task distributions. A future goal can be to design more robust and

more consistent meta-learning methods across multiple task distributions.

5.1.2 Task Specification

Task specification is an important matter in the meta-learning procedure. Currently, the notion

of a task is not clearly defined in the meta-learning framework. The meta-learning foundations

are based on the assumption that we have access to distribution of tasks. In the conventional

benchmarks for few-shot supervised learning, this distribution is often provided manually for con-

venience. However, the structure of this distribution is crucial in learning the appropriate inductive

biases since the prior knowledge is formed based on the dataset. Therefore, it contributes greatly

to the success or failure of meta-trained solutions. Nonetheless, the way this distribution is defined

has never been questioned.

5.1.3 Task Distribution Diversity Quantification

The task distribution has an important impact on the task efficiency during meta-training, which

specifies the optimal value for the number of tasks required in the meta-training set or the number

of meta-training steps. For example, if the algorithm operates on batches of tasks, a step on

a batch of similar tasks might not be informative in the overall meta-training procedure. How

diverse the distribution of tasks should be during the meta-training and how we can quantify this

diversity, are interesting questions.

63

5.1.4 Similarity Metric Definition

A distribution over tasks implicitly requires a notion of distance between these tasks. In this case,

what does it mean for tasks to be similar (i.e. to be close to each other)? Computing this distance

between tasks is also related to how these tasks are represented in an embedding space. The notion

of similarity between tasks needs an implicit definition of distance metric.

5.1.5 The Role of Memory in Meta-Learning

The role of memory in meta-learning is an interesting direction. It is easier for the network to

quickly integrate new information and not forget them in the future by using external memory. An

agent is unlikely to receive a full set of tasks at once in real-world applications. It would instead

experience these tasks sequentially. This setting is commonly introduced as continual learning, or

lifelong learning, which is closely related to meta-learning. There is also an open question related

to this topic that is “what would be a good encoding and decoding scheme for new information?”

64

Bibliography

[1] A Collaborative Learning Space for Science. https://www.nature.com/scitable/

definition/. Accessed: 2019-12-10.

[2] Canadian Cancer Society. https://www.cancer.ca/. Accessed: 2019-12-03.

[3] DREAM Challenges. http://dreamchallenges.org/. Accessed: 2019-11-05.

[4] Gene Wikipedia. https://en.wikipedia.org/wiki/Gene#cite_note-Edd01-46. Accessed:

2019-12-25.

[5] Genome Quebec Tutorials. https://www.genomequebec-education-formations.com/. Ac-

cessed: 2019-10-17.

[6] Meta-Learning Scholarpedia. http://www.scholarpedia.org/article/Metalearning. Ac-

cessed: 2020-01-12.

[7] Meta-Learning Wikipedia. https://en.wikipedia.org/wiki/Meta_learning_(computer_

science). Accessed: 2020-01-06.

[8] Prototypical Network Github Repository. https://github.com/jakesnell/

prototypical-networks. Accessed: 2019-09-11.

[9] TCGA Cancer Phenotypes. https://docs.cancergenomicscloud.org/docs/. Accessed:

2019-12-11.

[10] Mayo Clinic. https://www.mayoclinic.org/, Accessed: 2019-12-03.

[11] Rahaf Aljundi. Continual Learning in Neural Networks. PhD thesis, KU Leuven, Faculty of

Engineering Science, 2019.

65

https://www.nature.com/scitable/definition/
https://www.nature.com/scitable/definition/
https://www.cancer.ca/
http://dreamchallenges.org/
https://en.wikipedia.org/wiki/Gene#cite_note-Edd01-46
https://www.genomequebec-education-formations.com/
http://www.scholarpedia.org/article/Metalearning
https://en.wikipedia.org/wiki/Meta_learning_(computer_science)
https://en.wikipedia.org/wiki/Meta_learning_(computer_science)
https://github.com/jakesnell/prototypical-networks
https://github.com/jakesnell/prototypical-networks
https://docs.cancergenomicscloud.org/docs/
https://www.mayoclinic.org/

[12] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoffman, David

Pfau, Tom Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient

descent. ArXiv, abs/1606.04474, 2016.

[13] Yoshua Bengio, Frdric Bastien, Arnaud Bergeron, Nicolas BoulangerLewandowski, Thomas

Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Ct, Dumitru Erhan, Jeremy Eu-

stache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu, Salah Rifai,

Franois Savard, and Guillaume Sicard. Deep learners benefit more from out-of-distribution

examples. In Geoffrey Gordon, David Dunson, and Miroslav Dudk, editors, Proceedings of

the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of

Proceedings of Machine Learning Research, pages 164–172, Fort Lauderdale, FL, USA, 11–13

Apr 2011. PMLR.

[14] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. IJCNN-

91-Seattle International Joint Conference on Neural Networks, ii:969 vol.2–, 1991.

[15] Derek Browne. Cognitive versatility. volume 6, pages 507–523. Minds and Machines, 1996.

[16] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, and Andrea Vedaldi. Deep filter banks

for texture recognition, description, and segmentation. International Journal of Computer

Vision, 118(1):65–94, 2016.

[17] Gabriela Csurka. Domain Adaptation in Computer Vision Applications. Springer International

Publishing, 2017.

[18] Tristan Deleu and Yoshua Bengio. The effects of negative adaptation in Model-Agnostic

Meta-Learning. 2nd Workshop on Meta-Learning at NeurIPS 2018, Montreal, Canada, 2018.

[19] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Bengio. Torch-

meta: A Meta-Learning library for PyTorch, 2019. https://github.com/tristandeleu/

pytorch-meta.

[20] MD Dr. Ananya Mandal. Gene expression measurement, March 2019. https://www.

news-medical.net/life-sciences/Gene-Expression-Measurement.aspx.

[21] Chelsea Finn. Learning to Learn with Gradients. PhD thesis, UC Berkeley, 2018.

[22] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast

Adaptation of Deep Networks. International Conference on Machine Learning (ICML), 2017.

66

https://github.com/tristandeleu/pytorch-meta
https://github.com/tristandeleu/pytorch-meta
https://www.news-medical.net/life-sciences/Gene-Expression-Measurement.aspx
https://www.news-medical.net/life-sciences/Gene-Expression-Measurement.aspx

[23] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cam-

bridge, MA, USA, 2016. http://www.deeplearningbook.org.

[24] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: Concepts and techniques. Morgan

Kaufmann Imprint, 22nd June 2011.

[25] Douglas Hanahan and RobertA. Weinberg. Hallmarks of cancer: The next generation. Cell,

144(5):646 – 674, 2011.

[26] Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan.

Multitask learning and benchmarking with clinical time series data. Scientific Data, Volume.

6:96, 2019.

[27] Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn using gradi-

ent descent. In Georg Dorffner, Horst Bischof, and Kurt Hornik, editors, Artificial Neural

Networks — ICANN 2001, pages 87–94, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[28] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. De-

tection of Traffic Signs in Real-World Images: The German Traffic Sign Detection Benchmark.

2013.

[29] Jonas Jongejan, Takashi Kawashima Henry Rowley, Jongmin Kim, and Nick Fox-Gieg. Quick,

Draw. A.I. experiment. quickdraw.withgoogle.com, 2016.

[30] Schmidhuber Juergen. Evolutionary principles in self-referential learning, or on learning how

to learn: The meta-meta-... hook. PhD thesis, Institut fr Informatik, Technische Universitt

Mnchen, 1987.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. cite

arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Confer-

ence for Learning Representations, San Diego, 2015.

[32] Kevin B. Korb. Introduction: Machine learning as philosophy of science. Minds Mach.,

14(4):433440, November 2004.

[33] Amnon Koren, Itay Tirosh, and Naama Barkai. Autocorrelation analysis reveals widespread

spatial biases in microarray experiments. BMC Genomics, 8:164 – 164, 2007.

67

http://www.deeplearningbook.org
quickdraw.withgoogle.com

[34] Konstantina Kourou, Themis P. Exarchos, Konstantinos P. Exarchos, Michalis V. Karamouzis,

and Dimitrios I. Fotiadis. Machine learning applications in cancer prognosis and prediction.

Computational and Structural Biotechnology Journal, 13:8 – 17, 2014.

[35] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. The Omniglot Chal-

lenge: A 3-Year Progress Report. 2019.

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86, 1998.

[37] Louis Lello, Steven G. Avery, Laurent Tellier, Ana I. Vazquez, Gustavo de los Campos, and

Stephen D. H. Hsu. Accurate genomic prediction of human height. Genetics, 210(2):477–497,

2018.

[38] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,

Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In

David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision –

ECCV 2014, pages 740–755, Cham, 2014. Springer International Publishing.

[39] Christoph Lippert, Riccardo Sabatini, M. Cyrus Maher, Eun Yong Kang, Seunghak Lee, Okan

Arikan, Alena Harley, Axel Bernal, Peter Garst, Victor Lavrenko, Ken Yocum, Theodore

Wong, Mingfu Zhu, Wen-Yun Yang, Chris Chang, Tim Lu, Charlie W. H. Lee, Barry Hicks,

Smriti Ramakrishnan, Haibao Tang, Chao Xie, Jason Piper, Suzanne Brewerton, Yaron Tur-

paz, Amalio Telenti, Rhonda K. Roby, Franz J. Och, and J. Craig Venter. Identification

of individuals by trait prediction using whole-genome sequencing data. Proceedings of the

National Academy of Sciences, 114(38):10166–10171, 2017.

[40] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale

optimization. Math. Program., 45(1-3):503–528, August 1989.

[41] Jianfang Liu, Tara Lichtenberg, Katherine A. Hoadley, Laila M. Poisson, Alexander J. Lazar,

Andrew D. Cherniack, Albert J. Kovatich, Christopher C. Benz, Douglas A. Levine, Adrian V.

Lee, Larsson Omberg, Denise M. Wolf, Craig D. Shriver, Vesteinn Thorsson, The Can-

cer Genome Atlas Research Network, and Hai Hu. An integrated tcga pan-cancer clini-

cal data resource to drive high quality survival outcome analytics. Cancer Research, 78(13

Supplement):3287–3287, 2018.

[42] Boyu Lyu and Anamul Haque. Deep learning based tumor type classification using gene

expression data. ACM-BCB, pages 89–96, 2018.

68

[43] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. Fine-

grained visual classification of aircraft. CoRR, abs/1306.5151, 2013.

[44] Sunil Mathur and Joseph Sutton. Personalized medicine could transform healthcare. volume 7,

pages 3–5, Berlin, Heidelberg, 2017 Jul. Biomedical Report PMC.

[45] Stefan Michiels, Serge Koscielny, and Catherine Hill. Prediction of cancer outcome with

microarrays: a multiple random validation strategy. The Lancet, 365:488–492, 02 2005.

[46] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on International Conference

on Machine Learning, ICML’10, pages 807–814, USA, 2010. Omnipress.

[47] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large

number of classes. In Proceedings of the 2008 Sixth Indian Conference on Computer Vision,

Graphics Image Processing, ICVGIP 08, page 722729, USA, 2008. IEEE Computer Society.

[48] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-

Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation

in pytorch. 31st Conference on Neural Information Processing Systems (NIPS), 2017.

[49] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR,

2017.

[50] Victor Roman. Supervised learning: Basics of classifica-

tion and main algorithms. https://towardsdatascience.com/

supervised-learning-basics-of-classification-and-main-algorithms-c16b06806cd3,

2019. Accessed: 2019-11-22.

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-

Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[52] Mandana Samiei. Tcga benchmark tasks for clinical attribute prediction based on genome.

https://github.com/mandanasmi/TCGA_Benchmark, 2019.

[53] Mandana Samiei, Tobias Wrfl, Tristan Deleu, Martin Weiss, Francis Dutil, Thomas Fevens,

Genevive Boucher, Sebastien Lemieux, and Joseph Paul Cohen. The TCGA Meta-Dataset

Clinical Benchmark. CoRR, 2019.

69

https://towardsdatascience.com/supervised-learning-basics-of-classification-and-main-algorithms-c16b06806cd3
https://towardsdatascience.com/supervised-learning-basics-of-classification-and-main-algorithms-c16b06806cd3
https://github.com/mandanasmi/TCGA_Benchmark

[54] Tom Schaul and Juergen Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, January 2010.

[55] B. Schroeder and Y. Cui. Fgvcx fungi classification challenge. 2018. github.com/visipedia/

fgvcx_fungi_comp.

[56] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems 30, pages 4077–4087. Curran

Associates, Inc., 2017.

[57] Doris Steger, David Berry, Susanne Haider, Matthias Horn, Michael T. Wagner, Roman

Stocker, and Alexander Loy. Systematic spatial bias in dna microarray hybridization is caused

by probe spot position-dependent variability in lateral diffusion. PLoS ONE, 6, 2011.

[58] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The

MIT Press, second edition, 2018.

[59] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin,

Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-dataset:

A dataset of datasets for learning to learn from few examples. CoRR, abs/1903.03096, 2019.

[60] P. Utgoff. Shift of bias for inductive concept learning. In R. Michalski, J. Carbonell, and

T. Mitchell, editors, Machine Learning, volume 2, pages 163–190. Morgan Kaufmann, Los

Altos, CA, 1986.

[61] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.

Matching networks for one shot learning. In Proceedings of the 30th International Conference

on Neural Information Processing Systems, NIPS16, page 36373645, Red Hook, NY, USA,

2016. Curran Associates Inc.

[62] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011

dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[63] Yaqing Wang and Quanming Yao. Few-shot learning: A survey. CoRR, abs/1904.05046, 2019.

[64] Lilian Weng. Meta-learning: Learning to learn fast. https://lilianweng.github.io/

lil-log/. 2018-11-30.

70

github.com/visipedia/fgvcx_ fungi_comp
github.com/visipedia/fgvcx_ fungi_comp
https://lilianweng.github.io/lil-log/
https://lilianweng.github.io/lil-log/

[65] Wessel Wieringen, David Kun, Regina Hampel, and Anne-Laure Boulesteix. Survival predic-

tion using gene expression data: A review and comparison. Computational Statistics & Data

Analysis, 53:1590–1603, 2009.

[66] Arthur Younger, Sepp Hochreiter, and P.R. Conwell. Meta-learning with backpropagation.

volume 3, pages 2001 – 2006 vol.3, 02 2001.

71

	List of Figures
	List of Tables
	Introduction
	Meta-learning and Few-shot Learning
	Phenotype Prediction Problem
	Contributions of this Thesis
	Outline

	Background
	Biological Context
	Introduction
	Motivations
	Genomics Basic Concepts
	Gene Expression Data

	Machine Learning Context
	Introduction
	Supervised Learning Tasks
	Semi-supervised Learning Tasks
	Unsupervised Learning Tasks

	Optimization and Evaluation
	Gradient Optimization
	Gradient Descent

	Baselines Introduction
	K-Nearest Neighbor Classifier
	Logistic Regression
	Multilayer perceptrons (MLP) and Deep Neural Networks

	The Development of Deep Learning
	From Deep Learning to Meta Learning

	Meta-learning
	Introduction
	Applications of Meta-Learning
	Meta-Learning Vs. Multitask Learning, Transfer Learning, and Domain Adaptation
	Multitask Learning
	Transfer Learning
	Domain Adaptation

	Meta-Learning Algorithms
	Gradient-Based Meta-Learning
	Metric-Based Meta-Learning

	Mathematical Formulation
	Meta-Dataset and Meta-Parameters
	Adaptation to a New Task

	Meta-learner Selection Choice

	Learning Cancer Phenotypes Using Meta-learning
	Introduction
	Motivations
	Dataset
	Types of Cancers Selected for Study
	Genomics and Clinical Attributes Selected for Study

	Task Definition
	Related Works
	Torchmeta Library for Gene Expression Data
	Data-Loaders for Few-Shot Learning
	Experimental Setup and Technical Details
	Evaluation Strategy
	Training Prototypical Networks
	Simple Mode Setup
	Complex Mode Setup

	Results
	Conclusion

	Conclusion and Future Work
	Future Work
	Meta-Learning Sensitivity to Task Distributional Changes
	Task Specification
	Task Distribution Diversity Quantification
	Similarity Metric Definition
	The Role of Memory in Meta-Learning

	Bibliography

