
SPEECH ENHANCEMENT USING FIBER ACOUSTIC

SENSOR

Miao Wang

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

Concordia University
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Abstract

Speech Enhancement Using Fiber Acoustic Sensor

Miao Wang

With the development of IoT (Internet of Things) services and devices, the voice

command becomes a more and more important tool for human computer interaction.

However, the audio signal recorded by the conventional omni-directional microphone

is easy to be corrupted by the environmental noise like interference speech. Although

the conventional beamforming techniques are able to point the main lobe of beam

pattern at the desired speaker, it requires several omni microphones to form a micro-

phone array, which will occupy large space on an IoT device. Many researchers are

devoting their efforts to inventing a microphone of small size that can create direc-

tional beam pattern. Recently, researchers get inspirations from the spider’s way to

sense the acoustic wave. They invented a new small-size acoustic sensor made of spi-

der silks. This acoustic sensor has a frequency-independent dipole beam pattern for

wideband audio signal. Utilizing this fiber acoustic sensor, two compact microphone

arrays and corresponding speech enhancement systems can be constructed. The first

microphone array consists of one omni-microphone collocated with one fiber acoustic

sensor. And the second one consists of two collocated fiber acoustic sensors with

orthogonal dipole beam patterns.

By using the first microphone array, a first-order adaptive beamformer is designed

in this thesis to reduce speech interference effects and separate speeches. In this de-

sign, an adaptive first-order beam pattern is formed by means of normalized least

mean square method. Considering a scenario where the desired speech and interfer-

ence speech are present at the same time, this adaptive beamformer is able to point

the null angle of beam pattern at the undesired speaker to achieve speech interfer-

ence reduction. In order to verify this idea, numerical simulations are conducted in an

ideal condition (clean speech without reverberation) and real scenario (clean speech

corrupted by white noise and reverberation). The results show that this design is able

to improve speech quality significantly in ideal case. Under the condition suffering
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from white noise and reverberation, the improvement is achieved as well but at a

much smaller scale.

By using the second collocated microphone array, a speech enhancement system

is proposed to make the collocated fiber acoustic sensors be able to capture the

speech from any direction and suppress the white noise. This system includes three

parts. The first part conducts DOA (direction of arrival) estimation empowered

by a machine learning method. Here the inter-channel level difference is employed

to compute raw DOA estimates in the presence of white noise and reverberation.

After obtaining the raw DOA estimates, the machine learning method (generalized

wrapped Gaussian mixture model) is used to give a more accurate DOA estimation.

This proposed method is robust to both white noise and reverberation with a low

computational complexity and solves the phase ambiguity problem between 0 and π

for DOA estimation. In the second part, by using the orthogonality of the dipoles of

the two collocated fiber acoustic sensors (one is sinθ and the other is cosθ ), along

with the DOA (θ) estimated by the generalized wrapped Gaussian mixture model, a

steerable dipole beam pattern is generated to point its main lobe at the speaker. In the

third part, a noise reduction procedure is applied to the output signal of the steerable

beamformer. The proposed method is based on a time-frequency mask, which is

used to filter out time-frequency bins of white noise and keep those of speech signal.

In order to verify the effectiveness of the designed system, numerical simulations

are conducted in the existence of both white noise and reverberation. The result

shows that the proposed DOA estimation method is robust to both white noise and

reverberation. It implies that this type of microphone array is able to obtain precise

speaker spatial information. Meanwhile, the audio quality of the output signal of this

system is improved by at least 50%.
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Chapter 1

Introduction

1.1 Introduction

With the increasing demand for recording high quality audio signals in IoT (Internet

of Things) devices, modern audio system has shifted from single channel recording

to multiple channel recording format like stereo type. Many multi-channel audio

capturing systems are utilizing microphone array techniques to obtain high quality

audio signal since these techniques provide more spatial information of speakers to

enable a better speech processing even in a noisy environment.

1.1.1 Microphone Array Techniques

Researchers have developed different kinds of microphone arrays, which can be divided

into two main categories [1]:

(a) Distributed arrays where microphone capsules are geometrically distributed.

(b) Collocated microphone arrays where the microphone capsules are arranged

such that there is no time delay among the sounds reaching the capsules in the array.

Traditionally, microphone arrays are used for DOA estimation to localize sound

sources [2]. According to recent studies [3], microphone arrays have the ability to

enhance audio quality, remove background noise and even separate speeches.

The Uniform Linear Microphone Array

The uniform linear array is the most common microphone array in literature. In this

type of microphone array, several omni microphones are arranged along a straight
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line with a separation distance d between each other [1]. This arrangement is shown

in Fig.1, where M omni microphones are distributed uniformly along a straight line.

Given speech source signal s(t), the audio signal received by the mth microphone in

an uniform linear array is expressed in equation (1) below,

Figure 1: Uniform linear array [1]

xm(t) = hm(t) ∗ s(t− τm) + nm(t) (1)

where xm(t) represents the signal recorded by the mth omni microphone; hm the

impulse response from speech source to the mth microphone; s(t − τm) the delayed

version of original speech s(t) with τm representing the time delay; and nm(t) the noise

existing in the mth omni microphone. As shown in Fig.1, the relationship between

DOA θ and time delay τ is given by,

τ =
d · sinθ

c
(2)

where d denotes the distance between two adjacent microphones; c the sound speed in

the air; and τ the time delay between signals received by two adjacent microphones.

Based on this signal model of uniform linear array where a time delay exists, the

generalized cross correlation method [4] and its derivatives [5]–[10] are invented to

localize sound sources, enhance speech quality and even separate speeches. Using the
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generalized cross correlation, the time difference of arrival (TDOA) τ between two

adjacent omni microphones xm(t) and xm+1(t) can be estimated by,

τ ∗ = argmax{Real{R(τ)}} = argmax{Real{
∫ ∞
−∞

X∗m(w)Xm+1(w)ejwτdw}} (3)

where Xm(w) and Xm+1(w) denote the Fourier transforms (FT) of xm(t) and xm+1(t)

respectively; w is the angular frequency; [·]∗ stands for the complex conjugate opera-

tion; and R(τ) denotes the cross correlation between xm(t) and xm+1(t).

This approach is able to give a reasonable result under the condition of low noise

and reverberation level. Researchers find that using phase transformation with gener-

alized cross correlation method is able to give a more accurate result that is also more

robust to noise and reverberation [7]. This method is named as GCC-PHAT (general-

ized cross-correlation phase transform). Equation (4) shows how to estimate TDOA

τ by applying the Fourier transforms of the xm(t) and xm+1(t) with unit magnitude,

τ ∗ = argmax{Real{ 1

2π

∫ ∞
−∞

1

|X∗m(w)Xm+1(w)|
X∗m(w)Xm+1(w)ejwτdw}} (4)

Besides the generalized cross correlation methods, another type of DOA estimation

method is the steered power response (SPR) approach. This approach processes the

audio signals recorded by all microphones together by using maximum likelihood

estimation to obtain the maximum signal energy from a given direction. The delay

and sum beamformer is one of the simplest beamforming methods using SPR [1]. For

a uniform linear microphone array, the delay and sum beamformer is expressed below,

o(t) =
M∑
i=1

xi(t− τi) (5)

where xi(t) is the signal recorded by ith microphone; τi is the time delay in relation

to the reference microphone (i = 1); and o(t) is the output signal from this delay and

sum beamformer. However, the effectiveness of this beamformer is limited since it is

not able to enhance the desired speech under the condition of moderate levels of noise

and reverberation [1]. So based on this delay and sum beamformer, people invent an

advanced version called filter and sum beamformer. Note that these beamformers

could be used in both distributed and collocated microphone arrays. For a uniform

3



linear microphone array shown in Fig 1, the filter and sum beamformer is expressed

as,

O(w) =
M∑
i=1

Hi(w)Xi(w)e−jwτ(i−1) (6)

where Hi(w) is the filter, Xi(w) the signal received by the ith microphone in frequency

domain; and τ is the TDOA between signals received by two adjacent microphones.

Furthermore, the procedure to estimate the TDOA is simplified as finding an optimal

value of τ to maximize the signal energy
∫∞
−∞ |O(w)|2dw, namely,

τ ∗ = argmax

∫ ∞
−∞
|O(w)|2dw (7)

where τ ∗ represents the optimal estimate of τ . Similarly with GCC-PHAT, an en-

hanced version of the filter and sum beaforming method is proposed in [11] and named

as steered power response with phase transform (SPR-PHAT). Since then, it has be-

come one of the most widely used algorithms for sound source localization. This

enhanced method of TDOA estimation is expressed as,

τ ∗ = argmax
M∑
i

M∑
j

Real{
∫ ∞
−∞

X∗i (w)Xj(w)ejwτ

|X∗i (w)Xj(w)|
dw} (8)

This method is considered as one of the most robust DOA estimation methods as

long as the number of microphones is large enough [1]. However, for the collocated

microphone arrays like acoustic vector sensor, this method cannot work any more since

there is no time delay between any pair of microphones in a collocated microphone

array.

In order to minimize the computation cost for equation (8), in 2007, researchers

provided a fast implementation using coarse-to-fine region contraction to locate sound

sources [12]. After two years, the authors proposed a new method which uses stochas-

tic particle filtering to localize sound sources with less computational cost [13]. The

authors claim that this approach makes SPR-PHAT more practical for real-time ap-

plications [13]. In the work of [14], the authors proposed a method to localize mul-

tiple simultaneous talkers using SPR-PHAT. Another improvement for SPR method

is given by [15], where the researchers claim that their method is fast enough for the

development of real-time source localization applications.
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There is a type of DOA estimation methods without dependency on the geo-

metric structure of microphone array. This approach is named as spectral estimation

based method [1]. Among many spectral estimation methods, MUSIC (multiple signal

classification) and ESPRIT (estimation of signal parameters via rotation invariance

techniques) are the top two methods used widely for DOA estimation.

MUSIC method utilizes eigenvalue decomposition to split output signals of micro-

phone array into speech and noise parts [16]. It is proposed initially for narrow band

signal processing like DOA estimation for radar signals. And then researchers in the

field of audio processing borrow this idea and apply it to sound source localization.

Since it requires eigenvalue decomposition, the computational cost of MUSIC is a

little heavy. With the development in past several decades, many variants of MUSIC

method are proposed like cyclostationary MUSIC [17], spatial smoothing MUSIC [18],

[19] and root MUSIC algorithm [20]. The spatial smoothing MUSIC method is able

to estimate DOA values even if the speeches are correlated [1]. Note that MUSIC

method has the ability to do DOA estimation with both distributed and collocated

microphone arrays.

Unlike MUSIC method, the ESPRIT as another spectral estimation based method

needs to do exhaustive search among all possible steering vectors for DOA estimation

[21], [22]. Furthermore, the ESPRIT method requires more eigenvalue decomposi-

tion operations and matrix manipulations, meaning that this method is of a large

computational cost.

The Circular Microphone Array

Another type of commonly used distributed microphone array is the circular micro-

phone array. As shown in Fig.2, there are M omni microphones distributed along a

circle with radius q. Assuming that there are P active sound sources near the circular

microphone array, the signal received at the mth microphone xm(t) is given below,

xm(t) =
P∑
k=1

amksk(t− tm(θk)) + nm(t) (9)

where sk is the kth sound source; amk and tm(θk) are, respectively, the attenuation

factor and time delay from the kth source to the mth microphone; θk is the DOA of

source sk observed with respect to the x-axis in Fig.2; and nm(t) is an additive white

5



Figure 2: Circular microphone array [23]

noise at the mth microphone, which is uncorrelated with sk(t) and the white noises

from other microphones.

Circular microphone array is commonly used for sound source localization. Com-

pared to uniform linear microphone array, the circular array is able to contain more

microphone capsules within a smaller space. For example, in paper [24], 32 omni

microphones are arranged uniformly on a 0.5m diameter circle. And in paper [25],

the authors constructed a circular microphone array by distributing 288 microphone

capsules uniformly on a circle with radius of 1 meter. Since there is displacement

between any pair of microphone capsules, the generalized cross correlation is adapted

to estimate DOA using circular microphone array [26]. In paper [27], the authors

proposed a DOA estimation method using circular microphone array, called circu-

lar integrated cross spectrum (CICS). Following this idea, the authors in papers [23],

[28]–[30] have developed several real-time implementation schemes to localize multiple

sound sources and determine the number of active sound sources. These techniques

are able to achieve a promising result for applications like speech enhancement and

speech separation.
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The Spherical Microphone Array

The spherical microphone array has three-dimensional symmetry [31] and has been

often used for spatial audio recordings. It is able to capture the sound information

in three dimensional space as accurately as possible [1]. And it is also used to ex-

tract DOA information for beamforming and speech enhancement. In paper [32], the

authors utilized the spherical microphone array to suppress reverberation. One big

advantage of spherical microphone array is that it is able to contain large amount

of microphones in a relatively small space [33]. The microphone capsule could be

either omni microphone or cardioid microphone. And the position of each capsule is

arranged randomly in paper [34] or optimally for specific purpose in paper [35].

The Acoustic Vector Sensor

The acoustic vector sensor is a type of collocated microphone array, which is able

to capture audio signal with spatial information within a small space. This prop-

erty enables such device to be deployed on a small mobile or embedded device. As

one important type of collocated microphone array, acoustic vector sensor is able to

record both sound pressure and particle velocity signal of sound waves simultaneously

within a small size. Usually, it includes two or three directional microphones pointing

at different orthogonal directions and one omni microphone capturing sound pressure

signal. At the beginning, the acoustic vector sensor is used to detect electromagnetic

waves and measure seismic data for underwater acoustic applications [1]. Researchers

have done theoretical derivations of the performance of acoustic vector sensor [36].

They have shown a Cramer-Rao lower bound for localizing sound sources using acous-

tic vector sensor [36], [37]. This lower bound indicates that the performance of DOA

estimation using acoustic vector sensor is better than those using other microphone

arrays with comparable number of microphones and size [1].

The signal model of a 3D acoustic vector sensor is expressed in equation (10),

under assumptions that the acoustic wave is traveling in a homogeneous space and
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the signal is considered to be a plane wave at the location of the sensor [37].
so[n]

sx[n]

sy[n]

sz[n]

 =


1

sinφcosθ

sinφsinθ

cosφ

 p[n] +


wo[n]

wx[n]

wy[n]

wz[n]

 (10)

where si[n], i ∈ {o, x, y, z} are called intensities in acoustic vector sensor, and rep-

resent, respectively, the signals received by the omni microphone, directional micro-

phone along x axis, directional microphone along y axis and that along z axis; θ

denotes the azimuth angle; φ denotes the elevation angle; p[n] denotes the sound

pressure signal; wo[n] denotes the additive white noise signal of omni microphone;

wx[n],wy[n], and wz[n] denote the additive white noises of three corresponding direc-

tional microphones. In a simpler case where the directional microphone along z axis

is omitted, the signal model of such arrangement is given below,
so[n]

sx[n]

sy[n]

 =


1

cosθ

sinθ

 p[n] +


wo[n]

wx[n]

wy[n]

 (11)

In the following summary about acoustic vector sensor, only the methods for the

structure with three directional microphones are demonstrated. However, the meth-

ods are also suitable for the structure with two directional microphones as long as a

model simplification step is proceeded.

In real applications, in order to describe the reverberation of the room acoustic,

the signal model of the acoustic vector sensor which considers the room impulse

response is given as, 
so[n]

sx[n]

sy[n]

sz[n]

 =


(p ∗ ho)[n]

(p ∗ hx)[n]

(p ∗ hy)[n]

(p ∗ hz)[n]

+


wo[n]

wx[n]

wy[n]

wz[n]

 (12)

where ∗ denotes the convolution operation; hi, i ∈ {o, x, y, z} represents the impulse

response of corresponding microphone [37].

The methods for DOA estimation using acoustic vector sensor have been developed

in the past decades. Among these methods, four methods are the most representative
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ones. The first approach is based on the signal intensity difference between different

channels in acoustic vector sensor [36]. The second one utilizes the velocity covariance

matrix [36]. The third one is named as maximum power method [38]. And the

fourth one is based on maximum likelihood estimation [39]. The common part among

these four methods is that a vector u = [ux, uy, uz]
T = [sinφcosθ, sinφsinθ, cosφ]T , is

estimated firstly, and then θ and φ are calculated by,(
φ

θ

)
=

tan−1(√u2x+u
2
y

uz
)

tan−1(uy
ux

)

 (13)

The DOA estimation approach based on intensity difference is expressed as,

ũ = v
||v||

v = 1
N

∑N
n=1


so[n] · sx[n]

so[n] · sy[n]

so[n] · sz[n]

 (14)

where ũ is the estimate of u; v is the mean value of the product between the pres-

sure signal so[n] and the vector containing signals received by the three directional

microphones [37]. And the DOA estimation method using velocity covariance matrix

applies the eigenvalue decomposition method to the covariance matrix to locate sound

sources. This method is given by,

R = 1
N

∑N
n=1 dv[n]dT

v [n]

ũ : Eigenvector corresponding to the largest eigenvalue of R
(15)

where dv[n] = [sx[n], sy[n], sz[n]]T ; R is the covariance of the signals recorded by

directional microphones. The third most representative approach is designed to search

for one direction which is able to maximize the power of the first-order beamformer

t[n], which is given by [38],

t[n] = α · so[n] + (1− α) · ũT
steerdv[n] (16)

where ũT
steer is the unit norm steering vector and α ∈ [0, 1] controls the weight be-

tween the omni-directional and directional sensor response [37]. The maximum power

method finds the unit vector which has the largest beamforming response as the source

9



direction. This procedure is given by,

ũ = argmax T (ũsteer)

subject to ũT
steerũsteer = 1,with T (ũsteer) = 1

N

∑N
n=1 t2[n]

(17)

Similar with the third approach discussed above, the fourth method also finds

the estimate of vector u by solving an optimization problem. However, the objective

function is changed as a probability density function, which is explained with details

in paper [39].

1.1.2 Fiber Acoustic Sensor

As one part of acoustic vector sensor, the directional microphone plays an important

role to the performance of DOA estimation and the recorded speech quality. Recently,

researchers have invented a directional microphone with a frequency-independent

beam pattern according to their investigations on spider silks. Spiders use their silks

to weave a web. The web is very important to spiders. With sticky web, they not

only can catch other small insects as food but also sense the environment according

to the vibration of spider silks. More specifically, spider silks are sensitive enough

to surrounding acoustic waves. Utilizing this special function of spider silks, several

researchers in Binghamton University developed a new directional microphone made

of spider silks [40]. They found that spider silks move with the same velocity of

surrounding air [40]. Based on this finding, a new microphone prototype has been

developed. This directional microphone is named as fiber acoustic sensor, which is

one type of particle velocity microphone. In 2018, after some further investigations,

the prototype microphone is refined with an instinct wideband directive beam pattern

[41]. Furthermore, this device is able to sense acoustic velocity by fibers in a nano

scale with a frequency-independent dipole beam pattern. With this unique acoustic

property, this new microphone will benefit numerous applications like acoustic vector

sensor that require directional microphones for sound detection, identification, and

localization [41].

Components

Fiber acoustic sensor consists of the following four parts: fiber, chip, battery and

magnetic field. The fiber is used to sense acoustic waves. Once the fiber starts

10



vibrating with the acoustic wave in magnetic field, a voltage signal is generated. This

voltage signal is amplified and transmitted by the chip. Note that a battery is used

to power the chip.

Figure 3: Fiber sensor mechanism

Mechanism

The core idea behind fiber acoustic sensor is based on the electromagnetic induction

law. As shown in Fig.3, the acoustic wave propagates with a velocity v and a coming

angle θ. Once the acoustic wave reaches the fiber, the fiber starts moving with a same

velocity v. The velocity can be decomposed into 2 orthogonal components: v sin θ

(along the fiber) and v cos θ (orthogonal to the fiber) as shown in Fig.3. Because this

movement is located inside a magnetic field, a voltage between the two ends of fiber is

generated according to the electromagnetic induction law. This weak voltage signal is

detected and amplified by the chip. Then, the amplified voltage signal is transmitted

to computer through a USB port. This is the entire process of sensing acoustic wave

by the fiber sensor.

Furthermore, according to the electromagnetic induction law, this kind of sensing

process could be quantified. Given the intensity of magnetic field B, the length of
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fiber L, the velocity of acoustic wave v(t) and speech arriving angle θ, the voltage

signal u(t) is determined by the following formula:

u(t) = B · L · v(t) · cos θ (18)

According to the equation above, the information about the direction of sound

source is automatically encoded into the audio signal u(t).

Beam Pattern

Note that the parameters B and L are constants in equation (18), and thus this

equation can be simplified as,

u(t) = k · v(t) · cos θ

where k is a constant. Applying Fourier transform to both ends of the equation above,

a beam pattern equation is obtained as given by,

B(θ) = |U(ejw)

V (ejw)
| = k · | cos θ| (19)

Note that the instinct beam pattern of the fiber sensor is dipole. Also it is frequency-

independent since it is only impacted by the arriving angle of acoustic wave θ.

As shown in Fig.4, the beam pattern of fiber sensor is plotted under different

frequencies. When the frequency changes from 100Hz to 10KHz, the dipole beam

pattern doesn’t change. However, it is observed that the fiber sensor has a good beam

pattern (perfect dipole) in low frequency around 100Hz and the beam pattern gets

a little distortion when frequency reaches around 10KHz. The slight degradation in

directivity at very high frequencies can be removed by decreasing the fiber length [41].

In general, the instinct beam pattern of the fiber sensor is a frequency independent

dipole. This property makes this type of sensor a promising product for high quality

audio recording.

Directivity Factor of Fiber Sensor

Directivity factor is used to measure whether a microphone is more sensitive to partic-

ular directions. Given beam pattern B(θ) and a particular direction θ0, it is calculated

by,

G(θ0) =
B2(θ0)

1
π

∫ π
0
B2(θ)dθ

(20)
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Figure 4: Dipole beam pattern of spider silk [41]

Usually people have more interests in the main lobe of beam pattern. So the direc-

tivity factor G [42] is also computed by,

G =
max {B2(θ)}
1
π

∫ π
0
B2(θ)dθ

(21)

Since the beam pattern of fiber sensor is dipole, which can be expressed by cosθ, then

the term max {cos2(θ)} equals 1 and
∫ π
0
cos2(θ)dθ equals 0.5π. So the directivity

factor of fiber sensor is calculated as 2.

Directivity Index of Fiber Sensor

The definition of directivity index D(θ0) in specific direction θ0 is given by,

D(θ0) = 10log10(G(θ0)) (22)

Given that θ0 equals 0, the maximal directivity index of the fiber sensor is equal to

3.01.
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Signal to Noise Ratio (SNR)

The definition of SNR here is based on the energy ratio between clean speech and

noise signal, namely,

SNR = 10log10(
Es
En

) (23)

where Es denotes the energy of clean speech; and En denotes the energy of noise only

audio. For the fiber acoustic sensor, since the noise here is the white noise generated

by the circuits, there is no way to record a clean speech. In practice, the SNR is

calculated by,

SNR = 10log10(
Es − σ2

n

σ2
n

) (24)

where Es = 1
N

∑N
i=1 s

2(i) denotes the average energy of noisy speech signal s(n); and

σ2
n denotes the variance of the white noise. For example, if the variance of the white

noise in the circuits is 4.3023e-05 and the energy of noisy speech is 0.0043316, then

the SNR of the fiber acoustic sensor is 19.9861 dB.

1.2 Objective of the Research

According to the discussion in the previous section, it is clear that the collocated

microphone array like acoustic vector sensor is more suitable than those distributed

microphone arrays to be deployed on a mobile or embedded device like cellphones

and audio devices, due to its small size as opposed to distributed arrays. Usually, an

acoustic vector sensor consists of four microphones: one omni-directional microphone

and three directional microphones. It is obvious that a microphone array is able to

be constructed within a smaller size by using less microphone capsules. Simplifying

an acoustic vector sensor like removing several microphone capsules but retaining the

functions of speech enhancement and DOA estimation is still an open question. There

is a lack of investigations about this simplified version of acoustic vector sensors.

Meanwhile, the inventors of this fiber acoustic sensor have granted the correspond-

ing technology to a startup company, which has applied for a patent about this novel

directional microphone. The startup company aims to develop prototypes for speech

enhancement by using this fiber acoustic sensor. In collaboration with the company,

14



the work done in this thesis is based on an NSERC (National Sciences and Engineer-

ing Research Council of Canada) Engage project which aims to develop a simpler

collocated microphone array using the newly invented fiber acoustic sensor. More

specifically, two simplified versions of acoustic vector sensor are investigated in this

thesis: the first one is built by one omni microphone collocated with a fiber acoustic

sensor; and the second one consists of double collocated fiber acoustic sensors that are

pointing at orthogonal directions. For each array, the corresponding speech enhance-

ment system is proposed. Required by the NSERC, results achieved in this thesis

have been transferred to the company and are protected as the intelligent property

of the company as well.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows.

In chapter 2, a simplified version of acoustic vector sensor using one omni mi-

crophone and one fiber acoustic sensor is constructed. Inspired by the first-order

adaptive differential microphone, this collocated microphone array is utilized to form

an adaptive beamformer. This adaptive beamformer is designed to reduce the im-

pact of speech interference during audio recording by achieving the beam pattern

whose null angle always points at the interference speaker. Compared with the first-

order differential microphone array which is used to obtain the first-order adaptive

beamformer, the proposed collocated microphone array has the advantages of simpler

structure and independence of frequency. Numerical simulations are conducted in an

anechoic environment, showing that this method is able to suppress speech inference

and improve the speech quality significantly. On the other hand, when considering

the reverberation and white noise in the fiber acoustic sensor, our numerical simu-

lations show that the effectiveness of this method for speech interference reduction

encounters a big degradation. Further investigations about dereverberation and white

noise removal are needed for this collocated microphone array.

In chapter 3, using double collocated fiber acoustic sensors, another collocated

microphone array is constructed. Based on the signal intensity difference among

these double directional microphones, a new method of calculating DOA estimates

is proposed. However, limited by the symmetric property of dipole beam pattern, a

15



phase ambiguity problem between 0 and 180 degrees is introduced. In order to solve

this problem, a histogram based wrapped Gaussian mixture model with less com-

putational complexity is proposed to estimate DOA. After obtaining reliable DOA

estimates, a steerable beamforming method is utilized here to point the main lobe of

dipole beam pattern at the speaker and enhance the quality of recorded audio. This

approach enables the collocated microphone array to record the speech from any

direction. However, the white noise in fiber acoustic sensors corrupts the recorded

audio quality a lot. In order to suppress the white noise in the output signal of steer-

able beamformer, a spectral subtraction method is proposed to reduce the negative

impact of white noise on the audio quality. The aforementioned schemes constitute

a comprehensive speech enhancement system using the collocated microphone array.

In order to investigate the performance of this system under room reverberation and

the condition of there being white noise in fiber acoustic sensors, a virtual acoustic

environment is constructed. Numerical simulations are conducted inside the virtual

acoustic room. Our results show that the proposed system is able to estimate DOA

accurately and is robust to reverberation and white noise of fiber acoustic sensor.

Furthermore, the PESQ (Perceptual Evaluation of Speech Quality) score, as the per-

formance metric, of the output signal of this speech enhancement system is improved

by at least 50%. It can be concluded that this speech enhancement system is able to

boost the quality of recorded audio significantly by using the collocated double fiber

acoustic sensors.

In chapter 4, the work of this thesis is summarized firstly. Then, several potential

aspects of the future work are pointed out.

1.4 Contributions

The main contributions of this thesis are highlighted as follows.

1. A collocated microphone array which consists of one omni microphone and a fiber

acoustic sensor, is designed to form an adaptive first-order beamformer to achieve

speech interference reduction and speech separation.

2. A collocated microphone array which consists of two fiber acoustic sensors pointing

at orthogonal directions, is designed to capture the speech from any direction and

extract DOA information.
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3. The wrapped Gaussian mixture model is generalized to handle angular values with

any period. In particular, it can successfully estimate the probability distribution of

angular values with a period of π.

4. A novel DOA estimation method is proposed by using the double collocated fiber

acoustic sensors, which is robust to white noise and reverberation and solves the phase

ambiguity problem between 0 and 180 degrees for DOA estimation.

5. A novel and simple method is developed by using the double collocated fiber

acoustic sensors to enhance audio quality through suppressing the white noise in the

circuits.

6. A speech enhancement system which consists of 3 procedures (DOA estimation,

steerable beamformer and white noise suppression), is developed by using the double

collocated fiber acoustic sensors. The numerical simulation results show that this

system is able to enhance speech signal significantly.

7. One patent based on the results in this thesis has been applied for.
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Chapter 2

Speech Enhancement using

Collocated Fiber Sensor and Omni

Microphone

As mentioned in the previous chapter, an acoustic vector sensor includes four micro-

phones: one omni microphone and three directional microphones pointing at x, y and

z axes respectively. This type of acoustic vector sensor has been fully investigated.

However, there are not enough investigations about a simplified version of the acoustic

vector sensor, which only consists of one omni microphone and one directional micro-

phone. In this chapter, by using one omni microphone and a fiber acoustic sensor,

a new collocated microphone array is constructed. More specifically, the knowledge

about the first-order differential microphone array and the first-order adaptive dif-

ferential microphone array is reviewed at first. Then, similar with the design of the

first-order adaptive differential microphone array, an adaptive beam pattern is formed

by using the proposed collocated microphone array. At last, numerical simulations

are conducted to investigate the performance of the proposed microphone array for

speech enhancement.
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Figure 5: First-Order differential microphone array

2.1 Principle of First-Order Differential Microphone

Array

In 2001, the first-order full band differential microphone array is invented by a team

led by Gary Elko [43]. In their approach, two omni microphones are adopted to

form the first-order differential array. And the first-order adaptive beamformer is

performed by the normalized least mean square (NLMS) method [44].

2.1.1 The First-Order Differential Microphone Array

As shown in Fig.5, the first-order differential microphone array consists of two omni

microphones and one time delay T . The distance between two microphones is d.

An acoustic wave coming from angle θ can reach 2 omni microphones respectively.

Due to the displacement d between these 2 omni microphones, there is a time delay

generated among the audio signals recorded by these 2 microphones. The difference

of the two received signals y(t) is expressed as,

y(t) = s(t)− s(t− T − d cos θ

c
) (25)

where c represents the speed of sound; and T represents the time delay. By applying

Fourier transform to both ends of equation (25), a directive pattern of this differential

microphone is achieved, which is given by,

Y (ejw)

S(ejw)
= 1− e−jw(T+

d cos θ
c

) (26)
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Figure 6: First-Order differential microphone array with low pass filter

where w denotes the frequency and j equals
√
−1. Note that the exponential term in

equation (26) can be replaced with its Taylor series expansion. The definition about

Taylor series expansion is given in Appendix A.1. Utilizing this series expansion, the

beam pattern of this differential microphone is rewritten as,

Y (ejw)

S(ejw)
= 1− (1− jw(T +

d cos θ

c
) + ...) ≈ jw(T +

d cos θ

c
) (27)

Note that this beam pattern is linearly dependent on the frequency w as seen in

equation (27) above. In order to compensate for this frequency dependency, a fist-

order low pass filter 1
jw

is usually used. By applying this low pass filter, the beam

pattern can be expressed as,

|Y (ejw)

S(ejw)
| ≈ |(T +

d cos θ

c
)| (28)

This design is shown in Fig.6, where the value of T can be specified to achieve

different first-order beam patterns. Several possible values of T are listed in Table.1,

where τ0 = d
c
, to form the corresponding beam patterns. Meanwhile, with the help of

low pass filter, the beam pattern becomes more flat along frequency axis. However,

this approach of differential approximation is known to suffer from high white noise

gain [39], since the gain of low pass filter 1
jw

becomes infinity when w is close to 0.

Furthermore, the accuracy of a spatial derivative requires that the distance between

sensors to be small with respect to the acoustical wavelength [39], [45]. At high

frequencies, however, this assumption fails, leading to distorted beam patterns [39].
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Beam Pattern Value of T

Dipole 0
Cardioid τ0

Hyper-Cardioid 0.5τ0

Super-Cardioid
√
2−1

2−
√
2
τ0

Table 1: Beam pattern of first-order differential microphone array [46]

Figure 7: First-Order full band adaptive differential microphone array [43]

2.1.2 Adaptive First-Order Differential Microphone Array

Although the time delay T in Fig.6 provides the chance to generate different beam

patterns, it is not suitable for a real-time implementation which requires time-varying

beam patterns. Utilizing forward-facing and backward-facing cardioid, the research

team led by Elko proposed a structure of first-order adaptive differential microphone

array [43].

As shown in Fig.7, where T is a fixed time delay and its value is equal to d
c
, this

structure consists of three main parts: fixed beamformer, adaptive beamformer and

low pass filter. The signal cF (t) (forward-facing cardioid) and cB(t) (backward-facing

cardioid) are the outputs of the fixed beamformer. And the Fourier transforms of

these two signals are as follows:

CF (w, θ) = jwT (1 + cosθ)S(ejw)

CB(w, θ) = jwT (1− cosθ)S(ejw)

The derivation processes of the forward-facing and backward-facing cardioids,
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which utilize the Taylor series expansion as well, are given in Appendixes A.2 and

A.3 respectively. And these two signals (cF (t) and cB(t)) are fed into the adaptive

beamformer where a real value βt is updated at each time step by the NLMS method

to achieve the adaptive beamformer, which is given by,

e(t) = cF (t)− βtcB(t)

βt = βt−1 + µ
e(t)cB(t)

||cB(t)||2 + δ

where µ is the step size; and δ is a small constant. At last, since the cardioid beam

pattern is generated by using differential methods, a low pass filter is required to

compensate for the output signal from the adaptive beamformer.

2.2 Fiber Sensor with Omni Microphone Model

The main idea behind the first-order adaptive differential microphone array is using

an adaptive filter to find an optimal beam pattern, whose null angle always points at

the interference speaker.

Since the beam pattern of omni microphone is a constant 1 and that of fiber

acoustic sensor is cos θ, which depends on the speech coming angle θ and is frequency

independent, combining one fibre sensor with one omni microphone is able to achieve

cardioids (1 + cos θ and 1 − cos θ) as the fixed beamformers discussed in section

2.1.2. So the fixed beamformers in section 2.1.2 could be replaced with one omni

microphone and one fiber sensor. Based on this assumption, a collocated microphone

array is designed in this section by using one omni microphone and one fiber acoustic

sensor. Note that the instinct dipole beam pattern is generated by the fiber acoustic

sensor, and there is no need to use a low pass filter to do compensation.

2.2.1 Components and Structure

In order to form an adaptive first-order beam pattern easily, the arrangement of the

fiber sensor and the omni microphone is shown in Fig.8, where the omni microphone

is at the center of fiber sensor. When the speech signal s(t) comes from θ angle, it is

recorded by the omni microphone and the fiber sensor at the same time. The signal

recorded by omni microphone sm(t) should be the same as the original signal s(t).

And the signal recorded by fiber sensor sf (t) should be the product of cosθ and s(t).
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Figure 8: Arrangement of fiber sensor and omni microphone

So the beam patterns, forward facing cardioid cF (t, θ) and backward facing car-

dioid cB(t, θ), are computed by the equation (29) and (30) respectively,

cF (t, θ) = sm(t) + sf (t) = (1 + cosθ) · s(t) (29)

cB(t, θ) = sm(t)− sf (t) = (1− cosθ) · s(t) (30)

where sm(t) represents the audio signal recorded by the omni microphone and sf (t)

represents the audio signal recorded by the fiber acoustic sensor.

The signal flow graph in Fig.9 shows how an adaptive beamformer is constructed

by using the omni microphone and fiber acoustic sensor. The NLMS method is used

to find the optimal β in a time-varying situation. And β is a real value gain, which

is updated for each time step t. The update formula of NLMS can be written as,

βt+1 = βt + µ
y(t)cB(t)

||cB(t)||2 + δ
(31)

where µ is the step size; δ is a small constant to avoid division by zero; and y(t)

equals cF (t)− βcB(t). Note that the beam pattern of the fiber sensor is independent

of frequency, and thus there is no need to add a low pass filter for compensation

before y(t).
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Figure 9: Adaptive beamformer achieved by the proposed method

2.2.2 Generalized Adaptive First-Order Beamformer

It should be noticed that there are two constraints during the usage of the adaptive

first-order beamformer. Firstly, the interference speech should come from the back

half plane. In other words, the interference speech should come from any angle in

the range from 90 to 270 degrees. Secondly, the maximal gain of this beamformer

can only be achieved in 0 degree. It implies that people should always point this

microphone array to the desired speaker at 0 degree. These two constraints should

be taken into account in the usage of this adaptive first-order beamformer.

As discussed in equation (31), where y(t) = cF (t)− βcB(t) = ((1 + cosθ)− β(1−
cosθ))s(t), the gain of beamformer can be extracted as,

g(θ, β) = (1 + cosθ)− β(1− cosθ) (32)

Since the purpose of the adaptive beamformer is to reduce the interference, the gain

should be 0 when an interference speech comes from null angel θnull.

g(θnull, β) = (1 + cosθnull)− β(1− cosθnull) = 0 (33)
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Figure 10: β − θnull forward facing Figure 11: β - θnull backward facing

By solving equation (33), the relationship between β and θnull is expressed below.

β =
1 + cosθnull
1− cosθnull

(34)

As shown in Fig.10, the value of β diverges when θnull is close to 0. However,

when θnull ranges from 90 to 180 degrees, β becomes stable and it ranges from 1 to

0. This feature leads to that the coming angle of interference speech is limited in

the back half plane. Furthermore, it can be concluded that the generalized adaptive

first-order beamformer is described by the following formulas.

y(t) = c1(t)− βc2(t) (35)

βt+1 = βt + µ
y(t)c2(t)

||c2(t)||2 + δ
(36)

where the parameters µ and δ remain the same definitions as in equation (31). In

this generalized beamformer, signal c1(t) can be cF (t) or cB(t); and signal c2(t) can

be cF (t) or cB(t) as well.

Forward Facing Adaptive First-Order Beamformer

In equation (35), when c1(t) is equal to cF (t) and c2(t) is equal to cB(t), the forward

facing adaptive first-order beamformer is obtained. This beamformer suppresses the

signal coming from back half plane and enhances that coming from 0 degree. At the
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Figure 12: Reverberant room

same time, it requires that the coming angle of interference speech should be in the

back half plane.

Backward Facing Adaptive First-Order Beamformer

Similarly, in equation (35), the backward facing adaptive first-order beamformer is

obtained, when c1(t) is equal to cB(t) and c2(t) is equal to cF (t). It always suppresses

the signal coming from forward half plane and enhances that coming from 180 degrees.

Note that the relationship between β and θnull is modified in this case as,

β =
1− cosθnull
1 + cosθnull

(37)

According to equation (37), the value of β gets infinity when θnull is close to 180

degrees and becomes stable as θnull remains in the front half plane. This feature,

depicted in Fig.11, requires that the coming angle of interference speech should be in

the forward half plane.

2.3 Experimental Results

In this section, based on the adaptive first-order beamformer implemented by the

collocated fiber acoustic sensor and omni microphone, two numerical simulations are

conducted to demonstrate the speech enhancement performance of this design: the

first one is speech interference reduction and the second one is speech separation.

2.3.1 Virtual Reverberant Room

A virtual reverberant room with the room size and the fiber acoustic sensor location

is shown in Fig.12. We use the image method [47] to simulate the reverberation in the
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Acoustic Parameter Corresponding Value

Room Size 6m× 6m× 3.2m

Omni Microphone and Fiber Sensor Location 2m× 1.5m× 1.6m

Fiber Sensor Orientation 0

Reverberation Time T60 400 ms (milliseconds)

Sound Speed 340 m/s

Table 2: Acoustic parameters of virtual reverberant room

real life environment. Table.2 gives the detailed room size and acoustic parameters of

a virtual reverberant room setup. In our numerical experiments, the distance between

each speaker and the microphone array is fixed as 1.5 meters.

Given the audio from desired speaker sd(n) and that from the interference speaker

si(n), the signal received by the omni microphone so(n) and that received by the fiber

acoustic sensor sf (n) in a reverberant environment are expressed in equations (38)

and (39), respectively,

so(n) = RIRod(θd) ∗ sd(n) + RIRoi(θi) ∗ si(n) (38)

sf (n) = RIRfd(θd) ∗ sd(n) + RIRfi(θi) ∗ si(n) + sn(n) (39)

where RIRod(θd) denotes the room impulse response for omni microphone from the

desired speaker; RIRfd(θd) the room impulse response for the fiber sensor from the

desired speaker; RIRoi the room impulse response for omni microphone from the

interference speaker; RIRfi the room impulse response for the fiber sensor from the

interference speaker; θd the angular position of the desired speaker; and θi the angular

position of the interference speaker. The SNR of the fiber sensor is set to be less than

20dB, considering that there is a white noise in the circuits which is denoted as sn(n)

in equation (39).

2.3.2 Speech Interference Reduction

Ideal Case

We first consider the ideal case where the acoustic environment is anechoic and noise-

free (without reverberation and noise) and the audio recorded by fiber sensor is not
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Figure 13: Speech waveform

corrupted by white noise. As shown in Fig.13, two audio samples are used as inputs

representing the speeches of the desired and interference speakers respectively.

More specifically, the arrangement of speakers and microphone array is shown

in Fig.14, where the speech of speaker 1 from 0 degree and that of speaker 2 from

135 degrees are recorded by the fiber sensor and omni microphone, suppose that the

desired speaker is speaker 1. Note that in this setup, the main lobe of the dipole

beam pattern of the fiber sensor should always point at the desired speaker.

As the interference speech comes from back half plane, this adaptive beamformer

finds an optimal beam pattern by NLMS method to suppress the speech. In this case,

the gain of beam pattern at 135 degrees should be 0, since the first-order adaptive

beamformer gives the entire beam pattern as displayed in Fig.15. By applying this

beam pattern, the generated audio signal is shown in Fig.16, where the waveform

is very close to the speech of the desired speaker. We have also conducted more

experiments in the cases when the interference speaker is talking at 90 and 180 degrees,

and measured the effectiveness of the speech enhancement system using wideband

PESQ (Perceptual Evaluation of Speech Quality) score as the objective performance

metric. The PESQ score can range from 1 to 4.5. A bigger PESQ score implies a

higher speech quality.

The PESQ scores of the signals recorded by omni microphone and output signal
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Figure 14: Simulation setup for speech interference reduction

Figure 15: Beam pattern achieved by the adaptive beamformer when the interference
speech comes from 135 degrees

Figure 16: Audio generated by adaptive beamformer
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PESQ (wideband)
Interference
Angle

Omni Adaptive
Beamformer

Improvement

90 1.0821 2.6162 141.77%
135 1.0821 2.8425 162.68%
180 1.0821 3.3587 210.39%

Table 3: PESQ score (ideal case)

PESQ (wideband)
Interference
Angle

Omni Adaptive
Beamformer

Improvement

90 1.0788 1.2389 14.84 %
135 1.0845 1.2348 13.86 %
180 1.0870 1.1918 9.64 %

Table 4: PESQ score (real case)

from adaptive beamformer are listed in Table.3, where the big improvements on PESQ

scores indicate that the adaptive beamformer achieved by the proposed collocated

microphone array is able to reduce speech interference significantly. However, these

improvements are achieved in the ideal cases without considering white noise and

reverberations. In reality, the wall reflections of signals make speech interference

reduction more challenging.

Real Case with Reverberation and White Noise

In this case, numerical simulations are conducted in the virtual reverberation room.

We assume that the white noise only exists in the audio recorded by the fiber acoustic

sensor. The SNR of the audio recorded by the fiber sensor is set to 15dB. Similar with

the settings in the ideal cases, the simulations are conducted when the interference

speaker is talking at 90, 135 and 180 degrees. The wideband PESQ score is used here

as the performance metric of audio quality as well.

The results shown in Table.4 indicate that the proposed method is able to improve

audio quality by reducing the negative effects of speech interference. However, due

to the presence of reverberation and white noise, the proposed adaptive beamformer

cannot obtain significant improvements on the recorded audio quality, comparing to

the result in ideal cases, which is shown in Table.3. In order to get more effectiveness
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Figure 17: Simulation setup for speech separation

on speech interference reduction to tackle white noise and reverberation, it seems that

more investigations are required, such as designing a fiber sensor with higher SNR

and a procedure for dereverberation.

2.3.3 Speech Separation

Ideal Case

As shown in Fig.17, speaker 1 from 0 degree and speaker 2 from 180 degrees are talk-

ing simultaneously. Their speeches are recorded by the fiber acoustic sensor and omni

microphone. Using the generalized adaptive beamformer, which is discussed previ-

ously in section 2.2.2, it is apparent that the forward and backward facing adaptive

beamformer could extract the speech of speaker 1 and 2 separately.

Speech Speech 1 Speech 2

PESQ (Recorded by Omni) 1.0821 1.1122
PESQ (Recorded by Generalized Adaptive Beamformer) 3.3587 3.5475

Table 5: The improvement of PESQ score (ideal case)

After these 2 speeches are separated, the wideband PESQ scores of these recovered

signals are calculated. At the same time, the PESQ scores of the speeches recorded

by omni microphone are also computed for comparison. These PESQ scores are

listed in Table.5, where results show that the proposed method using the collocated

microphone array can improve audio quality by speech separation.
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Real Case with Reverberation and White Noise

Here, we consider the room reverberation and the white noise existing in the fiber

acoustic sensor for our numerical simulations. The forward-facing and backward-

facing adaptive beamformer are used to separate the two simultaneous speeches as

well. After the simulations, the wideband PESQ scores are listed in Table.6. Compar-

ing to the results in the ideal cases, the performance of speech separation is degraded

a lot due to the presence of reverberation and white noise. It can be concluded that

the proposed speech separation method is able to enhance the audio quality on a

smaller scale. However, in reality, a dereverberation procedure and a fiber sensor

with better SNR are demanded, especially in a reverberation intensive environment.

Speech Speech 1 Speech 2

PESQ (Recorded by Omni) 1.0870 1.0635
PESQ (Recorded by Generalized Adaptive Beamformer) 1.1918 1.1038

Table 6: The improvement of PESQ score (real case)

2.4 Conclusion

In this chapter, the design of the first-order adaptive differential microphone array

has been presented firstly. Then, inspired by this differential microphone array and

the beam pattern of fiber acoustic sensor, a more compact microphone array, which

is constructed by one omni microphone collocated with a fiber acoustic sensor, has

been proposed to form a first-order adaptive beam pattern. This design can be re-

garded as a simplified version of acoustic vector sensor as well. In order to investigate

the speech enhancement performance of this collocated microphone array, numerical

experiments are conducted in both ideal case and real case, where the former means

an anechoic and noise-free condition and the latter corresponds to the an acoustic

environment with both reverberation and white noise. The results of numerical ex-

periments show that this design is able to enhance the audio quality through speech

interference reduction and speech separation in the ideal case. However, limited by

the environment with strong reverberation and white noise in the fiber sensor, the

improvement of audio quality degrades a lot in a real scenario. In the future, more
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investigations are required, such as developing a procedure for dereverberation or

designing a better fiber acoustic sensor with higher SNR.
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Chapter 3

Speech Enhancement using X-Y

Collocated Fiber Sensors

As discussed in the previous chapter, a two-dimensional acoustic vector sensor in-

cludes one omni microphone and two directional microphones pointing at x and y

axes respectively. Utilizing this arrangement, it is able to locate speaker’s direction

and enhance the quality of recorded speech. In this chapter, in order to construct a

simplified version of acoustic vector sensor, we use only two fiber acoustic sensors to

build a collocated microphone array and investigate its performance on DOA estima-

tion and speech enhancement. This type of collocated microphone array is named as

X-Y collocated fiber sensors.

The beam pattern of each fiber sensor is a dipole one, namely, the angle that

delivers the maximal gain is orthogonal to the null angle of the dipole. This feature

leads to that the audio signal arriving from null angle is eliminated. Intuitively, the

null angle of one fiber acoustic sensor could be compensated easily by aligning another

fiber acoustic sensor perpendicularly to the current one. This kind of orthogonal

arrangement is the property of X-Y collocated fiber sensors. Here we also call this

collocated microphone array as X-Y sensors for simplification. The detailed structure

and acoustic property of X-Y sensors are presented in section 3.1.

However, once adding another perpendicular fiber sensor and forming the X-Y

sensors, two audio signals from these sensors could be obtained. How to utilize these

two audio signals and produce the final output is the key to the success of employing

this X-Y sensors. Otherwise, the audio quality of the final output cannot be assured.

34



In order to solve this problem, a steerable beamforming approach and DOA estimation

methods are proposed and explained in detail in section 3.2 and 3.3 respectively.

In the real scenario, the circuits in the fiber acoustic sensor converts the vibration

of acoustic waves into voltage signal. Meanwhile, it also produces white noise, as

side effect, which degrades the audio quality severely. However, the property of the

white noise produced by certain circuits is stable and could be measured as prior

knowledge. In order to reduce the audio quality degradation caused by white noise, a

spectral subtraction approach is proposed to suppress the white noise. This content

is introduced in section 3.4.

At last, in section 3.6, to make the numerical simulation close enough to the real

world scenario, the image method [47] is adopted to simulate the room acoustic con-

ditions. Utilizing the DOA estimation techniques discussed in section 3.3, a steerable

beam pattern is achieved and followed by noise reduction techniques introduced in

section 3.4. This entire procedure is regarded as a speech enhancement system and

summarized in section 3.5. In order to evaluate the proposed system, the PESQ score

[48] is calculated as the prime comparison metric.

3.1 Principle of X-Y Collocated Fiber Acoustic

Sensors

Since the beam pattern of the fiber sensor is directional, the speech coming from null

angle will not be captured. In order to compensate for this drawback, one of the most

intuitive and easiest ways is adding the second fiber sensor, which is collocated and

orthogonal to the first one. These two collocated fiber sensors are named as X-fiber

and Y-fiber respectively.

As shown in Fig.18, two orthogonal dipoles are formed by these two collocated

fiber acoustic sensors. Assuming that one speaker is talking at 0 degree, the signals

recorded by X-fiber and Y-fiber are shown in Fig.19. The audio signal captured by

Y-fiber is silence since the speaker is at the null angle of Y-fiber dipole. Meanwhile,

the audio signal is fully recorded by X-fiber as the speaker is at the main lobe of

X-fiber dipole. It should also be noted that there is white noise presenting in the

signals recorded by fiber sensors. This white noise is generated in the circuits, which

leads to a degradation of audio quality.
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Insummary,givenaspeakertalkingatθdegree,theoutputsignalsofX-fiberand

Y-fibercanberepresentedbyequations(40)and(41),respectively,

sX(n)=cos(θ)·s(n) (40)

sY(n)=sin(θ)·s(n) (41)

wheres(n)denotestheoriginalspeechsignalofthespeaker;sX(n)andsY(n)repre-

senttheaudiosignalsrecordedbyX-fiberandY-fiber,respectively.

3.2 SteerableBeamforming

Asdiscussedintheprevioussection,theX-fiberandY-fiberareabletoformsine

andcosinedipolebeampatternsrespectively. Meanwhile,sincethecosineandsine

functionsareorthogonaltoeachother,itiseasytoformadipolepointingatangleθ
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Figure 19: Directional properties of X-Y fiber sensors

in a 2D plane by,

cos(φ− θ) = cos(φ) · cos(θ) + sin(φ) · sin(θ) (42)

where φ ranges from [0, 2π) and θ is the angle pointed by the main lobe of dipole

cos(φ− θ). Note that the value of θ could be limited into a smaller range: [0, π), due

to the symmetric property of dipole beam pattern.

Considering the situation where only one speaker is present, steering the main

lobe of a dipole to the speaker could be expressed below if the angular location of the

speaker is given,

p(n) = cos(θ) · sX(n) + sin(θ) · sY (n) (43)

where θ is the angular location of the speaker; sX(n) and sY (n) represent the signals

recorded by X-fiber and Y-fiber respectively; and p(n) is the output signal of steerable

beamformer.

3.3 DOA Estimation

Sound localization is an important technique for many applications like target de-

tection, speaker localization and identification [49]–[51]. Recently, sound localization
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and DOA estimation are used widely in human computer interaction, hearing aids

device in noisy environment and virtual reality [52], [53]. Conventional sound local-

ization methods by acoustic pressure sensing usually need TDOA or sound pressure

amplitude difference. Here, for X-Y sensors, a sound localization method needs to be

developed to form a steerable beam pattern, which is used to record the speech from

any direction.

In order to achieve the steerable dipole and point it at the speaker, a DOA es-

timation method is demanded. Due to the X-fiber and Y-fiber are collocated, there

is no time delay between signals recorded by these two fiber sensors. It means that

the typical DOA estimation methods which need inter-element TDOA, such as GCC-

PHAT [5], are not suitable for X-Y sensors any more. However, due to the dipole

beam patterns formed by X-fiber and Y-fiber with orthogonal orientations, the differ-

ent amplitudes of the signals recorded by X-fiber and Y-fiber expose the spatial clues

about speaker’s direction. In this section, a robust DOA estimation method, which

is based on inter-channel level difference, is proposed to locate speech arriving angle

using this collocated microphone array. This method is also extendable to locate

multiple sound sources with small computational complexity.

3.3.1 Inter-Channel Level Difference

Considering a scenario where only one person is speaking, given the angular position

of the speaker θ, the output signals sX(n) and sY (n) could be expressed by equations

(40) and (41) respectively. On the other hand, it should be possible to estimate θ by

using sX(n) and sY (n), since this θ could be calculated by,

θ = tan−1(
|SY (ejw)|
|SX(ejw)|

) (44)

where SX(ejw) and SY (ejw) are obtained by applying Fourier transform to sX(n) and

sY (n) respectively. This approach, based on the amplitude difference between X-fiber

and Y-fiber signals, is also named as inter-channel level difference method.

Rectangular (Bandpass) Filter Bank on Mel Scale

It is more efficient to estimate DOA in the time-frequency domain in the presence of

noise and reverberation. In this section, the rectangular filter bank on Mel scale is
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used to compute the spectrum. The Mel scale is usually adopted to mimic the non-

linear property of human hearing system, which implies that sounds in low frequencies

are discriminated by human beings more easily than that in high frequencies. It was

devised through human perception experiments and was firstly suggested by Stevens

and Volkman in 1937 [54]. The relationship between Mel scale m and frequency f in

Hertz in non-linear (logarithmic) form is given by,

m = 2595log10(1 +
f

700
) (45)

or

f = 700(10
m

2595 − 1) (46)

Algorithm 1: The Procedure to Compute Bandpass Filter Bank

1 Input: Fs: sampling frequency;
2 Nfft: number of FFT points;
3 fmin: minimal frequency;
4 fmax: maximal frequency;
5 Nfilter: number of bandpass filters
6 Procedure:

7 mmin = 2595log10(1 + fmin
700

)

8 mmax = 2595log10(1 + fmax
700

)
9 m = linspace(mmin,mmax, Nfilter + 1)

10 f = 700(10
m

2595 − 1)

11 b = floor( f
Fs
Nfft) + 1

12 fstart = b(1 : end− 1)
13 fstop = b(2 : end)
14 H = zeros(Nfft, Nfilter)
15 for i = 1 to Nfilter

16 H(fstart(i) : fstop(i), i) = 1
17 endif
18 return H

Equation (46) explains how to compute frequency value f once the corresponding Mel

value m is given. Furthermore, on the top of Mel scale, several bandpass filters are

constructed to exploit the human perceptual feature. Once the bandpass filter bank

is obtained, these filters are applied to the spectrums of audio signals from both X

and Y fiber sensors. The procedure to implement the bandpass filter bank is given in

the Algorithm.1. Note that the bandwidth of each bandpass filter varies. In practice,
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a bandpass filter is discarded once its bandwidth is not large enough. Furthermore,

since the frequency of human voice usually ranges from 300Hz to 20kHz, the bandpass

filters should also focus on this range. As shown in Fig.20, eight bandpass filters are

constructed with the frequency ranging from 300Hz to 20kHz under the sampling rate

of Fs=48kHz and the FFT (fast Fourier Transform) size of Nfft=128.
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Figure 20: Frequency responses of eight bandpass filters

DOA Calculation

Given double channel signal sX(n) and sY (n) , the short time Fourier transform

(STFT) is used to obtain power spectrum |SX(t, w)|2 and |SY (t, w)|2, where t is the

time frame index and w is the frequency bin. At this step, after applying filter

bank H(w, nfilter) to both |SX(t, w)|2 and |SY (t, w)|2, the DOA map θ(t, nfilter) is

calculated by,

θ(t, nfilter) =

 tan−1(
√

EY (t,nfilter)

EX(t,nfilter)
) corr(sX(n), sY (n)) > 0

π − tan−1(
√

EY (t,nfilter)

EX(t,nfilter)
) otherwise

(47)

where corr denotes the cross correlation; EX(t, nfilter) is equal to |SX(t, w)|2H(w, nfilter);

and EY (t, nfilter) is equal to |SY (t, w)|2H(w, nfilter). Note that the DOA 0 is identical

to π according to this equation. It implies that the range of DOA estimates is with a

period π instead of the conventional 2π. This property is named as phase ambiguity.

As shown in Fig.21, a 2D array of DOA estimates is calculated according to

equation (47). However, the dataset of all the DOA estimates is super noisy. It is
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Figure 21: A 2D array of DOA estimates

necessary to develop a metric to select reliable DOA estimates from all these samples.

Time-Frequency Bins Selection

Due to the presence of noise from the fiber acoustic sensor, the X and Y double

channel speech quality is degraded. Even if there is no speech present, the spectrums

of audio signals sX(n) and sY (n) are not zeros. It is necessary to develop a metric

to determine whether a speech signal presents in time-frequency domain. In other

words, given a 2D (time-frequency) array where each pixel contains a DOA estimate,

a 2D mask, which determines whether a speech is significant enough in each pixel, is

used to filter out the unreliable DOA estimates. As a result, by applying this mask to

the 2D array of noisy DOA estimates, a reliable and clean DOA dataset is obtained

without being contaminated by the white noise inherent in fiber acoustic sensors.

Generally speaking, the energy of audio signal becomes larger when a speech

signal exists. Similarly, a mask could be calculated by utilizing several threshold-

ing values along frequency axis. More specifically, when there is no speech present,

the white noise signal n(n) is recorded. By applying short time Fourier transfor-

mation to noise signal n(n) and then applying filter bank H(w, nfilter) to the power

spectrum |N(t, w)|2 in the time-frequency domain, the time-frequency representation

EN(t, nfilter) is calculated by EN(t, nfilter) = |N(t, w)|2H(w, nfilter), where N(t, w) is

obtained by applying STFT to white noise signal n(n). And then the average value of

EN(t, nfilter) along time axis Eavg
N (nfilter) is computed as well. This value Eavg

N (nfilter)

and the corresponding threshold Tnfilter are used to compute the mask M(t, nfilter),

given EX(t, nfilter) and EY (t, nfilter), as described below,

M(t, nfilter) =

{
1

max{EX(t,nfilter),EY (t,nfilter)}
EavgN (nfilter)

> Tnfilter

0 otherwise
(48)

where t denotes the frame index; nfilter represents the index of bandpass filters,
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which is discussed in section 3.3.1 above; and Tnfilter is the thresholding value for the

bandpass filter indexed by nfilter. In summary, this thresholding metric is based on

the prior knowledge about the white noise inherent in fiber acoustic sensors.
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Figure 22: 2D mask for time-frequency bins selection

As shown in Fig.22, using the criteria introduced above, a 2D mask is obtained

to select reliable samples from all DOA estimates. Here, the yellow area denotes the

locations where DOA estimates are reliable; and on the other hand, the blue area

denotes the locations where DOA estimates should be ignored.

The Distribution of DOA Estimates
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Figure 23: Histogram of DOA estimates when the speech comes from 45 degrees

By applying the 2D mask to the 2D array of raw DOA estimates, a more reliable

set of DOA estimates is generated. A histogram is an easy and powerful tool to

visualize how these DOA estimates are distributed in angular space. The Fig.23

depicts the distribution of DOA estimates when a speaker is talking at 45 degrees.

This distribution could be modeled by the Gaussian distribution. And the DOA
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estimate could be represented by the mean value of the Gaussian distribution. So

given a set of DOA estimates, the mean value of its Gaussian distribution is the

average of all samples. However, it should be noticed that the sample space of the

Gaussian distribution includes any real value from −∞ to ∞. Here, the typical

sample space of DOA estimates is an angular one where 0 is identical to 2π. More

specifically, using the X-Y collocated fiber sensors here, the DOA 0 is identical to

π due to the inter-channel level difference method expressed by equation (47). It

implies that the phase ambiguity between 0 and π becomes a barrier to obtain an

accurate DOA estimate.
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Figure 24: Histogram of DOA estimates when the speech comes from 0 degree

Fig.24 shows a histogram representing the distribution of DOA estimates when

the speaker is talking at 0 degree. It is apparent that the distribution cannot be

modeled by the Gaussian distribution any more, since the DOA estimates should be

in a circular space. Also, using average value as the final DOA estimate is not suitable

neither, since the mean value of the dataset shown in Fig.24, where the samples in

half dataset are around 0 and samples in the other half dataset are around 180, is 90

but 0. Due to this problem, another distribution, the wrapped Gaussian distribution,

is adopted and generalized here to solve the angular ambiguity between 0 and π for

DOA estimation.

3.3.2 Wrapped Gaussian Mixture Model

Since the DOA estimates are within an angular space which has a circular property,

the approaches for DOA estimation based on Gaussian distribution like Gaussian

mixture model (GMM) do not hold any more. However, based on the statistics on

circular space, the wrapped Gaussian distribution is suitable to model the distribution

of DOA estimates. Furthermore, the wrapped Gaussian mixture model (WGMM) is
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able to handle multiple-speaker localization problems.

Figure 25: Performance comparison between WGMM and GMM on synthesized an-
gular dataset with means at 160 and 355 degrees

Fig.25 depicts different results of WGMM and GMM methods on estimating the

distribution of synthesized DOA samples, which is represented by a histogram. Due

to the phase ambiguity problem between 0 and 2π, the GMM method gives a wrong

probability density function (PDF), which is highlighted by a black line. It is apparent

that the WGMM is able to obtain accurate distribution of DOA samples. The WGMM

method was proposed to quantify the harmonic phases in human speech as early as

in 2007 [55]. Recently, more and more researchers find it useful for DOA estimation,

especially for multiple-speaker localization problems [56], [57]. However, their work

only solves the phase ambiguity problem between 0 and 2π. In this section, the

WGMM method for any period (2π, π .etc) is derived and a histogram based WGMM

method is developed to reduce the computational complexity with minor precision

loss. Furthermore, this histogram based WGMM method is suitable to be deployed

in embedded systems for real-time applications.

Circular (Directional) Statistics

Circular (Directional) Statistics is a subclass of statistics that deals with directions,

axes (lines going through the origin in Rn) and rotations in Rn [58]. More generally,

directional statistics deal with observations on compact Riemann manifolds [58]. In

this case, the DOA samples calculated by inter-channel level difference method are

circular as well, since the 0 degree and 180 degrees are considered identical.

In order to obtain the wrapped Gaussian distribution (WN(x;µ, σ2)), the linear
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normal distribution (N(x;µ, σ2)) is wrapped onto the unit circle [59]. The PDF of

normal distribution N(x;µ, σ2) is given by,

N(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (49)

where x is a circular random variable and confined in interval [0, 2π); µ is the mean

value and σ2 is the variance. Hence, the PDF of the wrapped Normal distribution is

expressed as,

WN(x;µ, σ2) =
∑
w∈Z

[
1√

2πσ2
e−

(x−µ−2πw)2

2σ2 ] (50)

where w is an integer; µ and σ2 are the mean and variance of the wrapped normal

distribution respectively.
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Figure 26: σ2 impacts on the PDF of wrapped Gaussian distribution

As shown in Fig.26, the PDF of wrapped normal distribution could be approxi-

mated by the PDF of linear normal distribution if the variance σ2 satisfies σ2 ≤ 1

and by the uniform distribution if the variance σ2 satisfies σ2 ≥ 2π [55]. In summary,

the PDF of wrapped normal distribution is constructed by infinite wrappings of the

PDF of linear normal distribution in the interval [0, 2π) [55]. In practice, however,
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selecting the value of w in equation (50) ranging from -2 to 2 could provide a sufficient

approximation even if σ2 is large [55].

Wrapped Gaussian Mixture Model (WGMM)

According to the DOA calculation procedure stated in section 3.3.1, N DOA estimates

could be obtained and regarded as a DOA dataset, where each DOA estimate is

marked as xi. Regarding the clusters as a random variable z, for each DOA estimate

xi, zi = k if this estimate xi belongs to cluster k. Assuming there are K clusters in

total and each cluster is distributed as wrapped Gaussian distribution, given a DOA

estimate xi, the probability P (xi) is given by,

P (xi) =
K∑
k=1

P (xi|zi = k)P (zi = k) =
K∑
k=1

WNk(x
i;µk, σ

2
k)αk (51)

where αk represents the weight of cluster k and WNk(x
i;µk, σ

2
k) represents the PDF

of the kth wrapped Gaussian distribution. Note that µk is the mean value of the

wrapped Gaussian distribution WNk and it should range within the interval [0, 2π).

Objective Function based on WGMM

Given that the number of components in the mixture model is K, then

γ = {α1, ..., αk, ..., αK , µ1, ..., µk, ..., µK , σ
2
1, ..., σ

2
k, ..., σ

2
K}

is the parameter set of WGMM. Meanwhile, assuming that the observed DOA is

xi and there are N observations in total, the objective function of the maximum

log-likelihood estimation is defined in equation (52), which utilizes a log of the joint

probability P (zi = k, xi) (the probability when the DOA estimate is xi and it belongs

to cluster k). The procedure about how the objective function is derived is given in

Appendix A.4.

L =
N∑
i=1

K∑
k=1

P (zi = k|xi)[logP (zi = k, xi)] (52)
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Since P (zi = k, xi) = P (zi = k)P (xi|zi = k), the objective function could be rewrit-

ten as,

L =
N∑
i=1

K∑
k=1

P (zi = k|xi)[logαk + logWNk] (53)

Expectation-Maximization Algorithm

Now, the DOA estimation is rephrased as an optimization problem with the target

to find the maximum of objective function L in equation (53) and its corresponding

optimal parameters γ. The DOA estimate of cluster k is the mean value µk among γ.

In order to find these optimal parameters, the EM (Expectation-Maximization)

algorithm is adopted here [60]. The EM algorithm is implemented in iterative manner.

Each iteration includes 2 steps: E-step and M-step. On E-step, P (zi = k|xi) and

P (xi) are computed. On M-step, the optimal parameter set γ is updated. The

equations used for updating γ are obtained based on the following constraints: ∂L
∂µk

=
∂L
∂σ2
k

= 0 and
∑K

i=1 αk = 1, αk > 0.

Algorithm 2: EM algorithm for DOA estimation based on WGMM

1 Initialize µk, αk, σ
2
k

2 Repeat until value of L converges:
3 1. E-step: Compute P (zi = k|xi) and P (xi)

4 P (xi) =
∑K

k=1 αkWN(xi;µk, σ
2
k)

5 P (zi = k|xi) =
αkWN(xi;µk,σ

2
k)

P (xi)

6 2. M-step: Update αk, µk, σ
2
k. .

7 αk =
∑N
i=1 P (zi=k|xi)

N

8 µk =

∑N
i=1

1

P (xi)

∑∞
w=−∞ e

− (xi−2wπ−µk)
2

2σ2
k (xi−2wπ)

∑N
i=1

1

P (xi)

∑∞
w=−∞ e

− (xi−2wπ−µk)2

2σ2
k

9 σ2
k =

∑N
i=1

1

P (xi)

∑∞
w=−∞ e

− (xi−2wπ−µk)
2

2σ2
k (xi−2wπ−µk)2

∑N
i=1

1

P (xi)

∑∞
w=−∞ e

− (xi−2wπ−µk)2

2σ2
k

As shown in Algorithm.2, the procedure about details of EM algorithm is given.

The derivation procedure for obtaining equations to update the parameters (αk, µk,

σ2
k) is provided in Appendix A.4.
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3.3.3 Generalized Wrapped Gaussian Mixture Model

Usually, the period of the wrapped Gaussian distribution is 2π. Moreover, the cor-

responding wrapped Gaussian mixture model could deal with DOA samples in a

circular space with the period 2π. Furthermore, this type of DOA estimation method

becomes more popular in recent research papers like [56] and [57]. However, limited

by the symmetric dipole beam pattern of the fiber acoustic sensor, the DOA samples

calculated by the inter-channel level difference method are with a period π. In other

words, the DOA estimate 0 and 180 degrees are identical in this scenario. So it is

necessary to generalize WGMM and make it fit with any possible periods.

Wrapped Gaussian Distribution with Period T

In order to enable the generalized wrapped Gaussian mixture model to be suitable

with any period T , the PDF of wrapped Gaussian distribution with period T is defined

below,

WN(x;µ, σ2, T ) =
∑
w∈Z

[
1√

2πσ2
e−

(x−µ−Tw)2

2σ2 ] (54)

where T is a fixed radian value. In practice, it is not necessary to do a summation

over infinite w values. Furthermore, choosing w among a small and finite range could

lead to a sufficient approximation. The range of w values depends on the value of

T . In practice, we can choose w ∈ {−2,−1, 0, 1, 2} to approximate the PDF of

wrapped Gaussian distribution if T = 2π and choose w ∈ {−1, 0, 1} if T = π. These

parameters are proved as the optimal ones according to our empirical results.

EM algorithm for Generalized Wrapped Gaussian Mixture Model

The details of EM algorithm for generalized wrapped Gaussian mixture model is given

in Algorithm.3. The procedure is similar with EM algorithm for the wrapped Gaus-

sian mixture model except that we need to replace WN(xi;µk, σ
2
k) with WN(xi;µk, σ

2
k, T ).

Note that the value of T depends on different application scenarios. It is selected

as π for the inter-channel level difference method in this thesis, which is introduced

in section 3.3.1.
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Algorithm 3: EM algorithm for Generalized Wrapped Gaussian Mixture
Model
1 Initialize µk, αk, σ

2
k

2 Repeat until value of L converges:
3 1. E-step: Compute P (zi = k|xi) and P (xi)

4 P (xi) =
∑K

k=1 αkWN(xi;µk, σ
2
k, T )

5 P (zi = k|xi) =
αkWN(xi;µk,σ

2
k,T )

P (xi)

6 2. M-step: Update αk, µk, σ
2
k. .

7 αk =
∑N
i=1 P (zi=k|xi)

N

8 µk =

∑N
i=1

1

P (xi)

∑∞
w=−∞ e

− (xi−wT−µk)
2

2σ2
k (xi−wT )

∑N
i=1

1

P (xi)

∑∞
w=−∞ e

− (xi−wT−µk)2

2σ2
k

9 σ2
k =

∑N
i=1

1

P (xi)

∑∞
w=−∞ e

− (xi−wT−µk)
2

2σ2
k (xi−wT−µk)2

∑N
i=1

1

P (xi)

∑∞
w=−∞ e

− (xi−wT−µk)2

2σ2
k

3.3.4 Generalized Wrapped Gaussian Mixture Model Based

on Histogram

Since most DOA estimation algorithms should run in a real-time scenario, the compu-

tational complexity of a real-time algorithm should be feasible under different condi-

tions. The complexity of the generalized wrapped Gaussian mixture model is bounded

by 2 factors: Ni (number of iterations) and Ns (number of samples). However, in the

real-time scenario, these two values (Ni and Ns) are random. This randomness will

cause unpredictable time delay, which degrades the real-time performance of DOA

estimation. In order to control this randomness, a maximal number of iterations

Nimax is used to limit Ni; and for constraining Ns, a histogram is adopted here to set

Ns as a fixed value.

Histogram Construction

As shown in Fig.27, a histogram is defined by Nbin bins. For the ith bin, bi denotes the

angular value and Nbi represents the number of samples inside the ith bin. Further-

more, the resolution of a histogram is defined as vres = bi+1 − bi, where 0 ≤ i < Nbin.

Given a DOA sample x and the histogram resolution vres, it could be confirmed that

DOA sample x belongs to the x
vres

th bin. A histogram with a proper resolution vres
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Figure 27: Histogram construction

could obtain a good enough approximation to describe the distribution of DOA sam-

ples. At the same time, it reduces the computational complexity of the wrapped

Gaussian mixture model as well.

EM algorithm for Generalized WGMM based on Histogram

Given a DOA dataset, each sample inside the dataset is mapped into a certain bin

of a histogram. Inside the ith bin of the histogram, there are Nbi samples with

the same angular value bi. Under this assumption, the equations of EM algorithm

for generalized WGMM are not proper any more. However, the procedure of the EM

algorithm keeps the same except the equations for updating parameters, which should

be based on the histogram (bi and Nbi) instead of each DOA sample xi.

Based on the constructed histogram, the procedure of EM algorithm for gener-

alized WGMM is modified and given in Algorithm.4, where N =
∑Nbin

i=1 Nbi ; Nbin

representing the number of bins; and Nbi is the number of samples in the ith bin

of the histogram. This modified EM method based on the histogram iterates Nbin

samples during each iteration. Note that there is one term
Nbi
P (bi)

introduced in the

algorithm to update the parameters. Its value is defined as NaN (Not a Number) if

Nbi = 0 and P (bi) ≈ 0 during updating parameters. In order to keep the numerical

calculation stable, the bins without any DOA samples are omitted during each itera-

tion. This trick reduces the complexity of numerical computation further and ensures

numerical stability.
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Algorithm 4: EM algorithm for Generalized Wrapped Gaussian Mixture
Model based on Histogram

1 Initialize µk, αk, σ
2
k (k=1 .. K)

2 Repeat until value of L converges:
3 1. E-step: Compute P (zi = k|bi) and P (bi)

4 P (bi) =
∑K

k=1 αkWN(bi;µk, σ
2
k, T )

5 P (zi = k|bi) =
αkWN(bi;µk,σ

2
k,T )

P (bi)

6 2. M-step: Update αk, µk, σ
2
k. .

7 αk =
∑Nbin
i=1 NbiP (zi=k|bi)

N

8 µk =
∑Nbin
i=1

Nbi
P (bi)

∑∞
w=−∞ e

− (bi−wT−µk)
2

2σ2
k (bi−wT )

∑Nbin
i=1

Nbi
P (bi)

∑∞
w=−∞ e

− (bi−wT−µk)2

2σ2
k

9 σ2
k =

∑Nbin
i=1

Nbi
P (bi)

∑∞
w=−∞ e

− (bi−wT−µk)
2

2σ2
k (bi−wT−µk)2

∑Nbin
i=1

Nbi
P (bi)

∑∞
w=−∞ e

− (bi−wT−µk)2

2σ2
k

WGMM Parameter Value

α1 0.4
α2 0.6
µ1 260π/180
µ2 355π/180
σ2
1 20 (degree)
σ2
2 20 (degree)

Nbin 360
vres π/180

Table 7: The parameters of synthesized
DOA dataset

Figure 28: Histogram of synthesized 10000
DOA samples
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In order to demonstrate the efficiency of the proposed algorithm, an artificial DOA

dataset, which includes 2 wrapped Gaussian distributions, is synthesized, based on

the settings shown in Table.7. Fig.28 visualizes the distribution of synthesized DOA

samples, where the total number of samples is 10000 and 2 peaks exist near the 2

mean angular values (260 and 355 degrees). Five DOA datasets of different sizes

(100, 500, 1000, 5000 and 10000 samples) are synthesized with the same mean values

and variances. For each dataset, we run EM methods 20 times and measure the

corresponding running time using the same computer. Fig.29 depicts the results of

this measurement. With the growth of total number of samples, the running time of

WGMM blows up simultaneously. However, the running time of the histogram based

WGMM remains the same level no matter how big the DOA dataset is. The histogram

based WGMM shows its robustness to deal with uncertain amount of samples within

a stable duration. In practice, to make the entire EM algorithm finish within a small

time period and fit real-time implementations, a maximal number of iterations is set.
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Figure 29: Running time comparison between WGMM and the histogram based
WGMM
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3.3.5 Proposed DOA Estimation Method

The entire procedure of the DOA estimation method proposed in this chapter is

depicted in Fig.30. Here, the double input signals sX(n) and sY (n) are processed by

short time Fourier transform (STFT) firstly. Then, a filter bank is used to convert the

spectrums of sX(n) and sY (n) into the time-frequency representations EX(t, nfilter)

and EY (t, nfilter). After that the raw DOA estimates DOA(t, nfilter) are calculated

by equation (47). Meanwhile, a binary mask is formed by a thresholding method.

By applying this mask to the raw DOA estimates, the unreliable DOA samples are

filtered out. At last, the remaining reliable DOA samples are used to estimate a

precise probability distribution by the generalized WGMM method to overcome the

phase ambiguity and negative effects of white noise and reverberation.

Figure 30: DOA estimation procedure

3.4 Spectral Subtraction for Noise Reduction

The DOA estimated in the previous section is used to point the main lobe of dipole

beam pattern at the desired speaker. Meanwhile, the environmental noise or interfer-

ence like the speeches from other speakers should be attenuated by the beamforming

method. However, the white noise existing in the circuits cannot be reduced by the

beamformer. It is necessary to design a procedure to do noise reduction with a low

53



computational complexity. In 2013, a spectral subtraction method is proposed in [42]

for speech interference reduction by a research team at Graz University of Technol-

ogy. However, spectral subtraction algorithms usually create isolated time-frequency

blocks which introduce a musical noise into the denoised signal [61]–[63]. This kind

of musical noise also degrades the audio quality. In order to reduce the bad effects of

spectral subtraction like musical noise, a modified version of spectral subtraction is

designed to suppress white noise and enhance audio quality.

The Entire Procedure

Figure 31: The entire procedure of spectral subtraction

Fig.31 depicts the entire procedure of spectral subtraction for white noise reduc-

tion. Here the STFT is used to convert the noisy signal p(n), which is the output

signal of steerable beamformer, into the time-frequency domain. This spectral sub-

traction method deals with the amplitude and phase information of noisy spectrum

separately. Based on a set of threshold values, a 2D binary mask is constructed, which

is smoothed by a 2D Gaussian kernel afterwards. This mask is designed to constrain

the amplitude of the spectrum where white noise is dominant to an ignorable level.

Then the mask is applied to the 2D amplitude of noisy speech spectrum. By adding

the phase information obtained by STFT at the beginning, the denoised speech spec-

trum is reconstructed. According to this spectrum, the denoised audio signal p
′
(n) is

generated by the inverse STFT finally.
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White Noise

The spectrum of white noise has equal intensity among different frequencies, leading

to a constant power spectral density. Since the white noise n(n) from the fiber sensor

is able to be measured easily, its time-frequency representation |N(t, w)| at each frame

t for each frequency w should be computed as well. Given the 2D array |N(t, w)|,
it is easy to compute the average value Navg(w) = 1

P

∑P
t=1 |N(t, w)| and standard

deviation Nσ(w) =
√

1
P

∑P
t=1(|N(t, w)| −Navg(w))2 along time frame index. These

two values are used to determine the thresholding value and the corresponding 2D

noise mask.

Time-Frequency Mask

The white noise is present in the circuits even if the environment is silent. Once

acoustic signal is received by the fiber sensor, the amplitude of the spectrum should

be above a certain level, based on which we can figure out which time-frequency

position should be assigned to speech and which one should be assigned to noise only.

After obtaining mean value Navg(w) and standard deviation Nσ(w), the thresholding

value for a 2D noise mask is defined as,

T (w) = Navg(w) + c ∗Nσ(w) (55)

where c is a positive constant to set how far the thresholding value T (w) is greater

than mean value Navg(w).

Given the noisy spectrum of the signal from steerable beamformer Snoisy(t, w) for

each frequency w in each time frame t, a 2D mask for noise time-frequency bins is

defined as,

Mnoise(t, w) =

{
1 |Snoisy(t, w)| < T (w)

0 otherwise
(56)

where T (w) is a preset threshold.

Smoothing Mask by Gaussian Kernel

The noise mask is a binary one which may lead to audio clips after inverse Fourier

transform. Here, a 2D Gaussian kernel is used to smooth the binary mask Mnoise(t, w).
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Figure 32: 2D Gaussian smooth kernel

As shown in Fig.32, a rectangular Gaussian kernel is used to smooth the binary

mask Mnoise(t, w) through convolution operations. More specifically, the smooth op-

eration is defined as,

Mn−s(t, w) = Mnoise(t, w) ∗G(t, w) (57)

where Mnoise(t, w) denotes the binary noise mask; G(t, w) the 2D Gaussian smooth

kernel; ”*” the convolution operation; and Mn−s(t, w) the smoothed noise mask.

Applying Smoothed 2D Mask to Spectrum

By applying 2D noise maskMn−s(t, w) to the amplitude of noisy spectrum |Snoisy(t, w)|,
we obtain the amplitude of the denoised spectrum |Sdenoised(t, w)| as given by,

|Sdenoised(t, w)| = |Snoisy(t, w)|(1−Mn−s(t, w)) +Gainnoise ∗Mn−s(t, w) (58)

where Gainnoise is a small positive value. In order to use the inverse Fourier transform

for generating the denoised audio, the phase information of the noisy audio φnoisy is

added to the amplitude of the denoised spectrum. The final reconstructed audio

spectrum is expressed as,

Sdenoised(t, w) = |Sdenoised(t, w)|eφnoisy (59)

3.5 The Entire Speech Enhancement System

Fig.33 depicts the entire speech enhancement system, which includes three parts:

DOA estimation, steerable beamforming and spectral subtraction for the white noise

reduction. In the system, the STFT is used to convert the input signals sX(t) and
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Figure 33: The speech enhancement system for X-Y fiber acoustic sensors

sY (t) into the time-frequency representations SX(t, w) and SY (t, w). Then, the DOA

estimate is obtained by the histogram based WGMM method, which needs SX(t, w)

and SY (t, w) as the inputs. Based on the obtained DOA estimate, the steerable

beamformer achieves a dipole beam pattern pointing at the speaker. At last, the

spectral subtraction method is applied to the output signal of the beamformer to

suppress the white noise inherent in the fiber sensors.

3.6 Experimental Results

In this section, the proposed methods for DOA estimation, steerable beamforming and

noise reduction are implemented and tested with the synthesized audio files, which

are generated in a virtual reverberant room. The implementation of the proposed

algorithm is based on block-wise (frame-wise) processing, making it easy to transfer

the simulation codes to the real-time embedded systems. In our simulation-based ex-

periments, we choose the following parameters: sampling frequency 48kHz, hamming

window function for segmentation, 128-point FFT (fast Fourier transform) size and

50% overlapping between consecutive frames.

3.6.1 Virtual Reverberant Room

As stated in section 3.3, the DOA estimation is based on the inter-channel level

difference between the signals recorded by X and Y fiber sensors. For numerical sim-

ulations, the orthogonal X and Y fiber sensors are replaced with two dipole directional

microphones. These two dipole microphones are placed in a virtual 3D reverberant

room, which is shown in Fig.34. And the environmental acoustic parameters of the

reverberant room are listed in Table.8.
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Figure 34: Virtual reverberant room layout

Acoustic Parameter Corresponding Value

Room Size 5m× 5m× 3.2m

X-fiber and Y-fiber Location 2m× 1.5m× 1.6m

X-fiber Orientation 0

Y-fiber Orientation π
2

Reverberation Time T60 400 ms (milliseconds)

Sound Speed 340 m/s

Table 8: Acoustic parameters of virtual reverberant room

3.6.2 DOA Estimation Results

In simulations, a speaker is assumed to talk at 0, 45, 90 and 135 degrees respectively.

The distance between the speaker and X-Y sensors is 1.5 meters. We also assume

that the sound source and X-Y sensors are placed in the same 2D plane. At each

location, the room impulse responses for double channel directional microphones are

generated and used to synthesize the signals received by X and Y fiber sensors as

described by,

sX(n) = hx(n) ∗ s(n) + nx(n) (60)

sY (n) = hy(n) ∗ s(n) + ny(n) (61)

where s(n) denotes the clean speech signal; hx(n) and hy(n) denote the room impulse

responses for X and Y fiber sensors and nx(n) and ny(n) denote the white noises

existing in X and Y fiber sensors, respectively.
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Simplification of WGMM

If there is only one active speaker, the WGMM can be simplified. The simplified ver-

sion of WGMM contains the parameters to be estimated i.e., µ1, σ
2
1. And µ1 represents

the DOA estimate. σ2
1 usually implies the intensity of reverberation, according to our

empirical simulation results. A stronger reverberant environment usually leads to a

bigger variance value σ2
1. The simplified algorithm of the histogram based WGMM

method is shown in Algorithm.5.

Algorithm 5: Simplified EM algorithm for the Histogram based WGMM
with One Speaker

1 Initialize µ1,σ
2
1

2 Repeat until value of L converges:
3 1. E-step: Compute P (bi).
4 P (bi) = WN(bi;µ1, σ

2
1, π)

5 2. M-step: Update µ1, σ
2
1.

6 µ1 =
∑Nbin
i=1

Nbi
P (bi)

∑∞
w=−∞ e

− (bi−wπ−µ1)
2

2σ21 (bi−wπ)

∑Nbin
i=1

Nbi
P (bi)

∑∞
w=−∞ e

− (bi−wπ−µ1)2

2σ21

7 σ2
1 =

∑Nbin
i=1

Nbi
P (bi)

∑∞
w=−∞ e

− (bi−wπ−µ1)
2

2σ21 (bi−wπ−µ1)2

∑Nbin
i=1

Nbi
P (bi)

∑∞
w=−∞ e

− (bi−wπ−µ1)2

2σ21

DOA Estimation Results using WGMM

In numerical simulations, the WGMM method runs frame by frame for 4 different

speaker location settings (0, 45, 90 and 135 degrees). The results of DOA estimation

are shown in Fig.35, Fig.36, Fig.37 and Fig.38, where the DOA estimates obtained

by the WGMM method are super close to the ground truth highlighted by the red

target lines.

DOA Estimation Results using Histogram Based WGMM

Similar with the simulations for the WGMM method, here we simulate the histogram

based WGMM method for DOA estimation. The results are shown in Fig.39, Fig.40,

Fig.41 and Fig.42. About the performance of these two DOA estimation methods

(WGMM and histogram based WGMM), there is no significant difference observed
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Figure 35: DOA estimation results achieved by WGMM (DOA is 0 degree)
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Figure 36: DOA estimation results achieved by WGMM (DOA is 45 degrees)
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Figure 37: DOA estimation results achieved by WGMM (DOA is 90 degrees)
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Figure 38: DOA estimation results achieved by WGMM (DOA is 135 degrees)
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MWAE
DOA WGMM histogram

based
WGMM

0 10.0213 10.4941
45 4.1908 4.5641
90 6.8468 6.5669
135 4.1285 5.1222

Table 9: Performance comparison

from the resulting figures. In order to conduct a numerical comparison, a metric called

mean wrapped absolute error (MWAE) is adopted here. The definition of MWAE is

given by,

MWAE(θe, θt;T ) = min{abs(θe − θt), abs(θe − θt + T ), abs(θe − θt − T )} (62)

where θe denotes the DOA estimate; θt denotes the ground truth DOA; and T is the

angular period fixed as 180 degrees.

The MWAE values are given in Table.9, showing that the performance difference

between WGMM and histogram based WGMM is less than 1 degree. It implies that

the histogram based WGMM method is a good option for real-time computing with

little precision loss.

Effects of Reverberation on DOA Estimation

Here, more numerical experiments are conducted under two different room configura-

tions, 136 true DOA angles ranging from 0 to 135 degrees and 5 different reverberant

intensities (wall reflection coefficients: 0%, 25%, 50%, 65%, and 75%). Note that the

white noise is not considered in the fiber acoustic sensors. In order to measure how

the histogram based WGMM method performs, the MWAE and frame-wise accuracy

are used as performance metrics. The frame-wise accuracy is defined as,

Acc(%) = 100
Nc

Nf

% (63)

where Nf denotes the number of total frames; and Nc the number of frames with

a correct DOA estimation. For each frame, the DOA estimate θe is considered as

correct if MWAE(θe, θt) < 5 degrees, where θt is the ground truth.
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Figure 39: DOA estimation results achieved by the histogram based WGMM (DOA
is 0 degree)
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Figure 40: DOA estimation results achieved by the histogram based WGMM (DOA
is 45 degrees)
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Figure 41: DOA estimation results achieved by the histogram based WGMM (DOA
is 90 degrees)
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Figure 42: DOA estimation results achieved by the histogram based WGMM (DOA
is 135 degrees)
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AsshowninFig.43andFig.44,withtheincreasingintensityofreverberation,the

MWAEbecomeslargerandtheframe-wiseaccuracydecreases.Itcanbeconcluded

thatalthoughthereverberationdegradestheperformanceofthehistogrambased

WGMM,theproposedmethodisstillabletoachieve3.5degreesMWAEand75%

frame-wiseaccuracyunderthehighestlevelofreverberation. Thisfactshowsthat

thehistogrambasedWGMMisarobustDOAestimationunderdifferentreverberant

conditions.

3.6.3 SpectralSubtractionResults

GivenaDOAθ,thesignalreceivedbyX-fibersX(n)andthatbyY-fibersY(n),the

outputsignalp(n)fromthesteerablebeamformerisexpressedas,

p(n)=cos(θ)·sX(n)+sin(θ)·sY(n) (64)

Duetothepresenceofwhitenoise,thesignalsX(n)iscorruptedbywhitenoisenx(n),

whosevarianceisσ2nx.AndthesignalsY(n)isalsocorruptedbywhitenoiseny(n),

whosevarianceisσ2ny.Then,thevarianceofwhitenoisecontaminatingsignalp(n)is

derivedas,

σ2np=cos
2(θ)·σ2nx+sin

2(θ)·σ2ny (65)

Sincethewhitenoiseny(n)andnx(n)aregeneratedinthesamecircuit,theyhave

thesamevarianceσ2.Thenequation(64)issimplifiedasσ2np=cos
2(θ)·σ2nx+sin

2(θ)·

σ2ny=[cos
2(θ)+sin2(θ)]σ2=σ2.Itimpliesthatthewhitenoiseoftheoutputsignal
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p(n) from the steerable beamformer can be measured by using either the X or Y fiber

sensor in a silent environment.

With the prior knowledge about the white noise in the output signal p(n), the

spectral subtraction method introduced in section 3.4 is applied to p(n) for each

simulation. For example, when one speaker is talking at 0 degree, the spectrums of

the output signal from beamformer and the denoised signal are shown in Fig.45. And

the noisy waveform and denoised waveform are shown in Fig.46. It is apparent that

the white noise is suppressed significantly.

Figure 45: The spectrum of denoised signal (DOA is 0 degree)

Figure 46: The waveform of denoised signal (DOA is 0 degree)

In order to measure how the audio quality is improved, the wideband PESQ [48]

score is used. And the resulting scores are listed in Table.10. Based on the PESQ

scores of the denoised signals, the spectral subtraction scheme improves the audio

quality by at least 50% .
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PESQ (wideband)
DOA X fiber sensor Y fiber sensor Denoised Improvement
0 1.30571198 1.11912858 2.02172279 54.84%
45 1.20795333 1.20616138 1.93385077 60.09%
90 1.13096237 1.23799229 1.95860767 58.21%
135 1.22650313 1.19694507 2.09664202 70.94%

Table 10: PESQ score

3.7 Conclusion

In this chapter, a collocated microphone array, comprised of double collocated fiber

sensors, named as X-Y sensors, has been proposed. Based on the properties of X-Y

sensors, a speech enhancement system is implemented. The entire procedure of this

system includes three parts: DOA estimation, steerable beamformer and spectral

subtraction for white noise reduction. In the first part, based on the inter-channel

level difference, the DOA estimates are calculated in time-frequency domain. An un-

supervised learning method, namely generalized WGMM, is proposed to solve phase

ambiguity problem between 0 and 180 degrees for DOA estimation. It has been

shown that this method is able to obtain an accurate DOA estimate and is robust

to reverberation and white noise. Meanwhile, a histogram based WGMM method

is proposed to reduce the computational complexity for large datasets with a minor

precision loss. In the second part, once the accurate DOA estimate is obtained, the

steerable beamformer points the main lobe of a dipole beam pattern at the speaker.

In the third part, the spectral subtraction method is adopted to suppress the white

noise generated by the circuits. According to the results of numerical simulations in

a virtual reverberant room, the audio quality of the denoised signal is improved by

at least 50% overall, indicating a significant enhancement performance resulting from

the proposed system.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, several microphone array techniques have been studied. First, a new

directional microphone called fiber acoustic sensor is introduced. It senses the acoustic

flow by measuring the vibration of a nano-scale fiber, making it possible to design

an acoustic particle velocity microphone with a frequency-independent dipole beam

pattern. In order to investigate the possible speech enhancement applications using

this new microphone, two kinds of collocated microphone array are constructed and

corresponding numerical simulations are conducted. These two types of collocated

microphone can be regarded as the simplified versions of acoustic vector sensor.

The first type of microphone array consists of one omni microphone collocated

with one fiber acoustic sensor. This design is inspired by the conventional first-

order adaptive differential microphone array. Since the dipole beam pattern achieved

by the fiber acoustic sensor is frequency-independent, the structure of the proposed

collocated microphone array is simpler without differential operation and low pass

filtering, which is necessary in the first-order adaptive differential microphone array.

Numerical simulations are conducted to demonstrate the effectiveness of this design

for speech interference reduction and speech separation. However, according to our

numerical results, it still needs investigations to make this design more efficient in the

presence of reverberation and white noise.

The second type of microphone array designed in this thesis consists of double

orthogonal and collocated fiber acoustic sensors. Utilizing this microphone array, a
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speech enhancement system, which includes three parts: DOA estimation, steerable

beamforming and spectral subtraction, is implemented. More specifically, with these

two directive and orthogonal dipole beam patterns, DOA estimates are extracted by

inter-channel level difference method in time-frequency domain. Due to the existence

of white noise and reverberation, the distribution of DOA samples is modeled by the

wrapped Gaussian distribution. Furthermore, in the angular space, the generalized

wrapped Gaussian mixture model (WGMM) is proposed to achieve DOA estimation

and solve the phase ambiguity problem between 0 and 180 degrees. This proposed

method is also able to estimate the DOA of multiple speakers simultaneously. In

order to reduce the computational complexity of the WGMM method, a histogram

based WGMM approach with a lower time complexity and less memory requirement

is proposed. After obtaining the reliable DOA estimates by the WGMM method,

a steerable beamfomer is used to point the main lobe of a dipole beam pattern to

the desired speaker. As there is white noise existing in the fiber acoustic sensor, the

output audio from the beamformer is degraded. So a spectral subtraction method is

proposed to suppress the white noise and enhance the quality of output signal from

the steerable beamformer. Numerical experiments are conducted in the presence of

reverberation and white noise, whose results show that this proposed system can

capture the speech from any direction and improve the audio quality by above 50%

in terms of the wideband PESQ score as the performance metric.

4.2 Future Work

4.2.1 Algorithm Deployment on Embedded System

The algorithms designed in this thesis are implemented in MATLAB for simulations.

However, the potential microphone product will need to run the algorithms on the

embedded system. There is still a gap between the codes for simulations running

on laptops and that for embedded system. Due to the property of the embedded

system, the audio input signal is usually recorded by buffer-wise manner. It means

that the digital signal processing code needs to process a fixed-length array of samples

at each time. It needs more work if the buffer size is not consistent with the number

of FFT (fast Fourier transform) points. This practical implementation issue needs to

be addressed before shifting these algorithms to a hardware platform.
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4.2.2 Multiple-Speaker Localization and Separation

Although the WGMM used in this thesis has the ability to deal with multiple-speaker

localization problems, the number of speakers should be known before using it. This

precondition usually limits the deployment of WGMM on a real product. For multiple

speakers, the authors in paper [64] proposed a novel sparse source separation method

that is able to estimate the number of sound sources. Specifically, the proposed

method utilizes a sparse distribution modeled by the Dirichlet distribution as the

prior of the WGMM mixture weight [64]. After obtaining the DOA estimates of

multiple speakers, the beamforming is used to separate the mixture of speeches. This

approach should be promising in the X-Y collocated fiber acoustic sensors as well.

The future work may include some investigations about deploying this method on the

X-Y fiber sensors.

4.2.3 Multiple Modal Speech Separation

Nowdays, the mobile device like cellphone is usually equipped with multiple micro-

phones and cameras. Apparently, double or even triple cameras become common in

the commercial cellphone products like iPhone 11 or higher version. Multi-Camera

system makes the 3D vision available. When people are shooting a video by such

devices, both camera and audio systems are able to locate the speakers. It is possible

to fuse the speaker position information obtained from 3D vision and spatial audio.

This technique is useful for speech separation and enhancement. Researchers from

Snap Inc call this multi-modal speech processing technique as ”Audiovisual Zooming”

[65]. This framework is built on the top of the classic ideas of 3D computer vision and

audio beamforming and a computational approach is proposed to enhance sound from

a single direction using a microphone array [65]. Their results show that using their

system, the voice of a desired speaker in the video is enhanced and other interference

speech is attenuated. This idea enhances the user experience for a conference even in

a noisy environment. Following this idea, it is also possible to build a system using

the X-Y collocated fiber sensors with a stereo camera. For this future work, a new

coding standard about video recording for audio-visual speech separation should be

invented.
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Appendix A

Appendix

A.1 Taylor Series Expansion

The Taylor series expansion for exponential function ex, where x is close to 0, is given

by,

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + ...+

1

n!
xn + ... (66)

A.2 First-Order Forward-facing Cardioid

The first-order forward-facing cardioid is given by,

CF (w, θ) =
(

1 e−jwt0cosθ
)( 1

−e−jwt0

)
= 1− e−jwt0(1+cosθ) (67)

where w represents the frequency; and t0 represents the constant time delay d
c

between

2 adjacent omni microphones.

Using Taylor series expansion above and noting that t0 is an extremely small

constant, CF (w, θ) can be expanded around 0 as,

CF (w, θ) = 1− (1− jwt0(1 + cosθ) +O((−jwt0(1 + cosθ))2) (68)

By omitting the extremely small second-order term O((−jwt0(1+cosθ))2) in equation

(68), the expression of CF (w, θ) is simplified as,

CF (w, θ) ≈ jwt0(1 + cosθ) (69)
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A.3 First-Order Back-facing Cardioid

The first-order back-facing cardioid is given by,

CB(w, θ) =
(

1 e−jwt0cosθ
)(−e−jwt0

1

)
= −e−jwt0 + e−jwt0cosθ (70)

By using the Taylor series expansion in equation (66), the expression of CB(w, θ)

is expanded as,

CB(w, θ) = −(1− jwt0 +O((wt0)
2)) + (1− jwt0cosθ) +O((wt0cosθ)

2) (71)

By omitting the extremely small second-order terms O((wt0)
2) and O((wt0cosθ)

2),

CB(w, θ) is simplified further as,

CB(w, θ) ≈ jwt0(1− cosθ) (72)

A.4 Derivation of Wrapped Gaussian Mixture Model

A.4.1 Wrapped Gaussian Distribution

Regarding the clusters as a random variable z, for each sample xi, zi = k if this

sample belongs to cluster k.

Assuming there are K clusters and each cluster is distributed as wrapped Gaussian

distribution, then the probability density function (PDF) is given by the following

equation:

P (xi) =
K∑
k=1

P (xi|zi = k)P (zi = k)

=
K∑
k=1

WNk(x
i;µk, σ

2
k)αk

where αk represents the weight of each cluster and WNk(x
i;µk, σ

2
k) represents the

PDF of the wrapped Gaussian distribution with mean µk and variance σ2
k. Note that

µk ranges within the interval [0, 2π).

WNk(x
i;µk, σ

2
k) =

∑
w∈Z

1√
2πσ2

k

e
− (xi−2wπ−µk)

2

2σ2
k
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A.4.2 Objective Function of Maximum Log-likelihood Esti-

mation

The objective of maximum log-likelihood estimation is defined as,

L =
N∑
i=1

logP (xi)

In order to obtain the optimal parameters θ, which include µk, σ
2
k and αk, we need

to take the derivative of L as follows.

dL

dθ
=

N∑
i=1

d

dθ
logP (xi)

Using d
dθ
logm = 1

m
dm
dθ

(here log is the natural logarithm) and P (xi) =
∑

z P (z, xi),
dL
dθ

can be computed by,

dL

dθ
=

N∑
i=1

1∑
z′ P (z′, xi)

∑
z

d

dθ
P (z, xi)

Since d
dθ
P (z, xi) = P (z, xi) d

dθ
logP (z, xi), then we have:

dL

dθ
=

N∑
i=1

∑
z
d
dθ
P (z, xi)∑

z′ P (z′, xi)

=
N∑
i=1

∑
z P (z, xi) d

dθ
logP (z, xi)∑

z′ P (z′, xi)

=
N∑
i=1

∑
z

P (z, xi)

P (xi)

d

dθ
logP (z, xi)

=
N∑
i=1

∑
z

P (z|xi) d
dθ
logP (z, xi)

Hence, the objective function can be equivalently defined as,

L =
N∑
i=1

K∑
k=1

P (zi = k|xi)[logP (zi = k, xi)]

Since P (zi = k, xi) = P (zi = k)P (xi|zi = k), the objective function can be rewritten

as,
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L =
N∑
i=1

K∑
k=1

P (zi = k|xi)[logP (zi = k) + logP (xi|zi = k)]

=
N∑
i=1

K∑
k=1

P (zi = k|xi)[logαk + logWNk]

=
N∑
i=1

K∑
k=1

Ri
k[logαk + logWNk]

where Ri
k is used to represent term P (zi = k|xi). So the problem is very much

simplified as an optimization problem involving parameters αk, µk and σ2
k, namely,

argmax
αk,µk,σ

2
k

{L}

A.4.3 Estimating Mean

In order to estimate µk, we can derive as follows,

∂L

∂µk
=

∂

∂µk

N∑
i=1

K∑
k′=1

Ri
k′

[logαk′ + logWNk′ ]

=
N∑
i=1

Ri
k

∂

∂µk
[logαk + logWNk]

=
N∑
i=1

Ri
k

∂

∂µk
logWNk

=
N∑
i=1

P (zi = k|xi) ∂

∂µk
logP (xi|zi = k)

=
N∑
i=1

P (zi = k, xi)

P (xi)

1

P (xi|zi = k)

∂

∂µk
P (xi|zi = k)

=
N∑
i=1

P (zi = k, xi)

P (xi)

P (zi = k)

P (xi, zi = k)

∂

∂µk
P (xi|zi = k)

=
N∑
i=1

P (zi = k)

P (xi)

∂

∂µk
P (xi|zi = k)
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=
N∑
i=1

αk
P (xi)

∞∑
w=−∞

1√
2πσ2

k

e
− (xi−2wπ−µk)

2

2σ2
k

(xi − 2wπ − µk)
σ2
k

= αk
1√

2πσ2
k

1

σ2
k

N∑
i=1

1

P (xi)

∞∑
w=−∞

e
− (xi−2wπ−µk)

2

2σ2
k (xi − 2wπ − µk)

By setting ∂L
∂µk

= 0, we obtain the expression for µk as given by,

µk =

∑N
i=1

1
P (xi)

∑∞
w=−∞ e

− (xi−2wπ−µk)
2

2σ2
k (xi − 2wπ)∑N

i=1
1

P (xi)

∑∞
w=−∞ e

− (xi−2wπ−µk)2

2σ2
k

A.4.4 Estimating Variance

The way to estimate σ2
k is similar with that of estimating µk. By calculating the first

order derivative of L, we have

∂L

∂σ2
k

=
N∑
i=1

K∑
k′=1

Ri
k′
∂

∂σ2
k

logWNk′

=
N∑
i=1

P (zi = k)

P (xi)

∂

∂σ2
k

∞∑
w=−∞

1√
2πσ2

k

e
− (xi−2wπ−µk)

2

2σ2
k

=
N∑
i=1

αk
P (xi)

∞∑
w=−∞

[V1 + V2]

where

V1 =
1√
2π

(−0.5)(σ2
k)
−1.5e

− (xi−2wπ−µk)
2

2σ2
k

V2 =
1√
2π

(σ2
k)
−0.5e

− (xi−2wπ−µk)
2

2σ2
k (−0.5(xi − 2wπ − µk)2)(−1)(σ2

k)
−2

∂L

∂σ2
k

=
0.5αk√

2π
(σ2

k)
−2.5[

N∑
i=1

1

P (xi)

∞∑
w=−∞

(e
− (xi−2wπ−µk)

2

2σ2
k (xi−2wπ−µk)2−σ2

ke
− (xi−2wπ−µk)

2

2σ2
k )]

Let ∂L
∂σ2
k

equal 0, we can obtain the expression for σ2
k.
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σ2
k =

∑N
i=1

1
P (xi)

∑∞
w=−∞ e

− (xi−2wπ−µk)
2

2σ2
k (xi − 2wπ − µk)2∑N

i=1
1

P (xi)

∑∞
w=−∞ e

− (xi−2wπ−µk)2

2σ2
k

A.4.5 Estimating Cluster Weight

The following optimization problem is formulated to compute the weight of the kth

cluster αk.

maximize
αk

N∑
i=1

K∑
k=1

P (zi = k|xi)logP (xi, zi = k)

subject to
K∑
k=1

αk = 1

Using the Lagrange multiplier, the problem is rephrased as,

maximize
αk,λ

N∑
i=1

K∑
k=1

P (zi = k|xi)logP (xi, zi = k) + λ(1−
K∑
k=1

αk)

Here the cost function Lc = [
∑N

i=1

∑K
k=1 P (zi = k|xi)logP (xi, zi = k)] + λ(1 −∑K

k=1 αk), is regarded as the objective function to obtain optimal solution of αk.

The following procedure shows how the partial derivative of Lc is obtained.

∂Lc
∂αk

=
∂

∂αk
[
N∑
i=1

K∑
k′=1

P (zi = k′|xi)logP (xi, zi = k′)] +
∂

∂αk
[λ(1−

K∑
k′=1

α′k)]

∂Lc
∂αk

=
∂

∂αk
[
N∑
i=1

K∑
k′=1

P (zi = k′|xi)[log(αk′) + logP (xi|zi = k′)]] +
∂

∂αk
[λ(1−

K∑
k′=1

α′k)]

= [
N∑
i=1

P (zi = k|xi)
αk

]− λ

Let ∂Lc
∂αk

equal 0, we can have:

λ =

∑N
i=1 P (zi = k|xi)

αk
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Then we know αk ∝
∑N

i=1 P (zi = k|xi), it is easy to obtain the formula to calculate

αk.

αk =

∑N
i=1 P (zi = k|xi)∑K

i=1

∑N
i=1 P (zi = k|xi)

=

∑N
i=1 P (zi = k|xi)∑N

i=1

∑K
i=1 P (zi = k|xi)

=

∑N
i=1 P (zi = k|xi)∑N

i=1 1

αk =

∑N
i=1 P (zi = k|xi)

N
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