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Abstract

Two-Stage Dynamic Average Consensus in Asymmetric Networks

Boshra Arghavani

The main focus of this thesis is directed towards distributed control strategies for

multi-agent systems. Given an asymmetric network of homogeneous agents with single-

integrator dynamics and weighted links, it is desired to design a control rule for each

agent using its local information as well as the information it receives from its neighbors

to solve the average consensus problem. In other words, the global objective is to

drive every agent's state to the average of the initial states of all agents (static average

consensus) or the average of the reference inputs (dynamic average consensus). The

main challenge, however, is to achieve these objectives in a general weighted network,

i.e., when the graph representing the network is directed and each edge is weighted.

To this end, a novel two-stage strategy is proposed, where in the �rst stage a mirror

model is de�ned for every agent to compute its �nal state based on a standard consensus

protocol. Then in the second stage, the standard update rule is adjusted for each agent

accordingly to account for the discrepancy between the �nal state of its mirror model

and the desired average consensus state. Simulations demonstrate the e�ectiveness of

the proposed control strategies in di�erent scenarios.
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Chapter 1

Introduction

1.1 Motivation

Multi-agent systems have attracted a great deal of attention in the literature due to

their applications in diverse �elds such as the analysis of social media, coordination

of a platoon of autonomous vehicles, formation �ying of UAVs, and target tracking in

wireless sensor networks, to name only a few [1,5,22,41,51,54]. In this type of networked

control systems, it is often desired to use an update rule for each agent based on its local

information and also the information it receives from its neighboring agents to achieve a

global objective such as consensus, formation, and �ocking [35,37,45,48]. Two classes of

networks are studied in the control literature: symmetric and asymmetric [18,44], [12,39].

In a symmetric network, communication between neighboring agents is bidirectional, and
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hence, the graph representing the network is undirected [33], [47], [53]. In an asymmetric

network, on the other hand, �ow of information between agents is unidirectional, and

therefore, the network is modeled by a directed graph (digraph) [3], [13]. A graph is

called balanced if for each node the summation of the input weights be equal to the

summation of the output links [39]. It is to be noted that in a graph model of a network,

each agent is represented by a vertex (node) and the communication link between any

pair of agents is represented by an edge (arc).

A class of multi-agent networks in which the communication links (edges) between

the agents (nodes) are weighted is of special interest in emerging applications such as

smart grids and acoustic underwater sensor networks [11, 15, 23]. For example, due

to surface ambient noise, multi-path propagation and temperature �uctuation in an

underwater acoustic sensor network, the environment is very unpredictable, and hence,

communication among nodes in this type of network is not uniform [11], [53]. More

precisely, the probability of node A receiving information from node B in the network is

not necessarily the same as the probability of node B receiving information from node A.

Thus, a random graph is often used to model such a network, which means that distinct

edges in the graph may have di�erent weights [14], [6].

Di�erent control algorithms are proposed in the literature to achieve the global

objectives mentioned earlier [17,39,56]. Since this thesis is mainly focused on the average

consensus control, some background on the problem is provided in the next section.
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1.2 Average Consensus Problem

Consensus is one of the fundamental objectives in the control of multi-agent systems.

The objective of the consensus problem is to reach an agreement on the states of a

group of agents using a distributed control strategy [26,36,40]. Two types of consensus

problem are in particular important from the control perspective: static average control

and dynamic average control. In the static average consensus problem, no reference

signal is applied to the network, and the desired state that all agents' states are to

converge to is the average of the initial states of all agents [13, 28]. In the dynamic

consensus control problem, on the other hand, every agent is subject to a reference

input (which can be time-varying, in general), and every agent's state is to approach

the average of all reference inputs at any time instant [44, 56]. Both of these problems

have been investigated extensively by several researchers in the past two decades, and

various algorithms have been proposed for consensus control of multi-agent systems with

undirected, directed and balanced directed graphs [3, 17,56].
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1.3 Thesis Contributions

Two main problems concerning the control of multi-agent networks are investigated

in this dissertation. The �rst one is focused on average consensus in an unbalanced

directed network with no external inputs. To solve the problem, a set of mirror models

(one for each agent) is introduced, where each model uses the information available to

the corresponding agents to compute the �nal state of the agent under the standard

consensus algorithm. The result obtained is subsequently used to adjust the algorithm

in such a way that the state of the agent asymptotically converges to the average of the

initial states of all agents. The theoretical �ndings are validated by extensive simulations.

Numerical examples also demonstrate that the proposed protocol can also achieve by

dynamic average consensus for certain reference inputs.

The second problem studied in this dissertation is concerned with dynamic average

consensus in an unbalanced directed network. It is assumed that every agent is subject

to an external reference signal, and given the information �ow constraint, each agent is

not aware of the other agents' reference signal. The objective is to track the average of

the reference signals at all times. To solve the problem, an approach similar to the static

average consensus case is used but for a faster communication, the two-stage algorithm

here consists of an inner stage and an outer stage. In the inner stage, the di�erence

between the reference signals in two consecutive time instants is communicated between

the agents, and in the outer stage the standard consensus algorithm is performed, using
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the results of the inner stage. The convergence analysis is provided, where it is shown

that the state of every agent converges to an arbitrary small of the desired �nal state.

Numerical simulations con�rm the e�ectiveness of the proposed protocol.

1.4 Thesis Layout

The structure of the thesis is as follows:

• Chapter 1 provides the motivation and some background information. It also

outlines the contributions of the work.

• Chapter 2 presents a novel two-stage distributed protocol to reach average con-

sensus in an asymmetric multi-agent network.

• Chapter 3 presents a two-stage solution to the dynamic average consensus prob-

lem in a weighted asymmetric network.

• Chapter 4 provides concluding remarks as well as suggestions for future research

directions.
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Chapter 2

A Calibration-Based Average

Consensus Protocol for Directed

Multi-Agent Systems

In this chapter, a novel distributed protocol for consensus control of multi-agent networks

is proposed. The objective is that every agent's state converges to the average of the

initial states in a strongly connected unbalanced directed network of agents. The problem

of average consensus has been investigated in the literature in the case of a connected

undirected network as well as a strongly connected balanced directed network. However,

the existing algorithms are not as e�ective in unbalanced directed networks. To address

this shortcoming, a set of "mirror" models is de�ned to compute how much each agent
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contributes to the discrepancy between the �nal state and the average of the initial

states. These values are subsequently used to adjust the control input of every agent

in such a way that the network reaches average consensus asymptotically. The results

are then extended to the case where there are constant reference signals. It is shown

that using the proposed update rule and under some mild conditions, the agents' states

converge to the average of the reference inputs. Numerical examples demonstrate the

e�ectiveness of the proposed protocol in di�erent scenarios.

2.1 Introduction

The consensus problem in multi-agent networks has been thoroughly studied in the

control literature for both cases of undirected and directed graphs [12, 18, 27, 39, 42, 44,

47, 49, 54, 56]. In this type of problem, it is desired to reach an agreement in the states

of the agents, with limited information communication between them. The consensus

problem has applications in emerging �elds such as sensor networks, control of a platoon

of autonomous vehicles, and social networks, to name only a few [1, 5, 41]. As a special

case of the general problem, static and dynamic average consensus in undirected and

balanced directed networks have been investigated extensively in recent years for agents

with di�erent dynamics (e.g., single integrator or double integrator agents).

It is shown in [49] that an undirected network of agents with second-order dy-

namics can reach average velocity consensus using a suitable algorithm if the network
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graph is connected. For the case of single integrator agents, on the other hand, position

average consensus can be achieved in an undirected network if and only if the network

graph is connected [32]. In a directed network, however, the same objective is achieved

if and only if the network graph is balanced [39]. In [40], a Kalman �lter is employed for

distributed estimation of reference inputs to achieve dynamic average consensus in an

undirected multi-agent network. The use of Kalman �lters in the consensus problem has

also been investigated in [38], [36]. The authors in [16] propose an algorithm to track the

average of reference signals in an undirected network by means of a multi-stage cascade

consensus �lter. It is shown in [42] that asymptotic consensus in a network of single

integrators can be achieved if the union of the collection of directed interaction graphs

across some time intervals has a spanning tree frequently enough. A dynamic average

consensus algorithm is proposed in [56] under some conditions on the relative deviation

of the reference signals. The authors in [12] investigate the distributed discrete average

consensus problem in an undirected network, and show that for a time-invariant directed

graph containing a directed spanning tree, the network reaches consensus, but not nec-

essarily average consensus, in �nite time. In [30] two algorithms are proposed to solve a

distributed optimization problem with nonconvex velocity constraints, nonuniform po-

sition constraints and nonuniform step sizes in a multi-agent network for the case when

the communication topology is jointly strongly connected and balanced. The dynamic

average consensus problem for an undirected network of agents with double integrator
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dynamics is studied in [18], where it is shown that with reduced requirements on the

velocity measurements using a distributed algorithm, one can achieve dynamic average

consensus provided the input signals of the agents, their velocities and accelerations are

all bounded. The authors in [54] propose an average consensus algorithm for a symmet-

ric sensor network based on the maximum-likelihood estimate of the network parameters

in the presence of measurement noise. [33], the dynamic average consensus problem in

an undirected network is formulated as a static consensus problem in su�ciently small

time intervals. A dynamic average consensus protocol is introduced in [27] for input

signals with �rst- and second-order dynamics. The algorithm drives the agents to a suf-

�ciently small neighborhood of the average of the reference signals at a pre-speci�ed rate

for a strongly connected network with weight-balanced topology. The authors in [44]

investigate the consensus problem in an undirected network with switching topology.

While most of the existing results on consensus control of multi-agent systems are

concerned with undirected or balanced directed networks, some algorithms have also

been developed for unbalanced directed networks. Authors in [8] and [9] use a sur-

plus-based algorithm for solving the average consensus problem in a strongly connected

directed network for static and time-varying topologies, respectively, where each agent,

in addition to updating its state, updates its corresponding surplus value. In [3], a

proportional-integral algorithm is presented which yields dynamic average consensus for
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any initial state, provided node i has access to the ith column and ith row of the Lapla-

cian matrix. However, such a requirement may not be realistic in a practical setting.

In [13] and [3], distributed strategies are introduced to adapt the weights of a digraph

in order to asymptotically reach a balanced graph. In the former paper, each node can

adapt the weights of its outgoing links based on the weights of its incoming links. How-

ever, this poses some practical di�culties as far as the limited resources of the agents

are concerned. In the present work, a novel approach is introduced to solve the static

average consensus problem in a directed network without any requirements of having

balanced weights. The proposed scheme is performed in two stages, and unlike some of

the existing methods, it is completely distributed. In the �rst stage, namely calibration,

every agent uses its locally available information to compute the discrepancy between

the �nal states under the standard consensus protocol and the desired �nal state, which

is the average of the initial states. Then in the second stage, an error compensation

term is added to the standard consensus protocol in order to asymptotically reach the

desired state and hence achieve the average consensus objective.

The remainder of this chapter is organized as follows. In Section 2.2, some prelim-

inaries on graph theory and background information on average consensus are provided.

The main contributions of this chapter are presented in Section 2.3, where the mirror

models for the calibration phase are introduced, and it is shown how these models can

be used to generate an error compensation term in order to achieve average consensus.

10



Then, in Section 2.4, simulation results are presented which con�rm the e�ectiveness of

the proposed average consensus protocol in di�erent scenarios. Finally, conclusions are

drawn in Section 2.5.

2.2 Preliminaries

Notation: Throughout this work, the set of real and natural numbers are denoted by R

and N, respectively. Furthermore, Nn represents the �nite set of integers {1, 2, ..., n}. All

scalar variables are denoted by Italic fonts while all vectors and matrices are represented

by bold fonts. The transpose of a vector or a matrix is denoted by a superscript T , and

the (i, j) element of a matrix M is represented by mij. The n × n identity matrix is

denoted by In, the n× 1 vector of all ones is denoted by 1n, and a column vector of all

zeros except a 1 at the ith position is represented by ei.

Consider a directed network with n nodes, whose information exchange topology

is represented by the weighted digraph G = (V,E,W), where V = Nn is the set of

vertices, E ⊆ V × V is the set of edges, and W ∈ Rn×n is a matrix whose elements

represent the weight of the corresponding elements in the edge set E. The in-neighbor

and out-neighbor sets associated with node i, for any i ∈ V , are de�ned as

N in
i = {j ∈ V \ {i} |(j, i) ∈ E} , (2.1)
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N out
i = {j ∈ V \ {i} |(i, j) ∈ E} . (2.2)

For a digraph, the in-neighbor set of a node and in-degree Laplacian matrix of a network

are hereafter referred to simply as the neighbor set and the Laplacian matrix, respectively.

Note that the in-degree Laplacian of a weighted digraph G is a real matrix L de�ned

as [32]

L(G) = ∆(G)−W(G), (2.3)

where ∆ is a diagonal matrix whose diagonal element, δii, i ∈ V , is equal to the sum

of the in-degree of vertex vi, i.e., the total number of incoming edges of vi, and W(G) is

the weight matrix of G whose (i, j) entry represents the weight of the link from node j

to node i. In other words

∆(G) = diag{din(vi)},

din(vi) =
∑
j∈Nini

wij,
(2.4)

W(G) =


wij, if (j, i) ∈ E,

0, otherwise.

(2.5)

12



From equations (2.3) - (2.5), one can �nd the Laplacian matrix as follows

lij =



−wij, if (j, i) ∈ E,

∑
k 6=iwik, if j = i,

0, otherwise.

(2.6)

Note that each node knows the weights of its incoming links (the corresponding row of

the Laplacian matrix), which are by de�nition, its neighbors, but does not know the

weights of its outgoing links.

A graph is said to be strongly connected if every vertex is reachable from every

other vertex [32]. Strong connectivity is a fundamental requirement in cooperative con-

trol of multi-agent systems. It is assumed in this work that the digraph representing the

network is strongly connected.

From equations (2.6)), it is obvious that sum of each row in the Laplacian matrix is

equal to zero for a directed network (this is a well-known property of undirected network

as well). This means that zero is an eigenavlue of the Laplacian mtrix and p = 1 is its

corresponding right eigenvector, i.e. of Laplacian matrix

L1 = 0. (2.7)

Unlike undirected networks, however, in a directed network the sum of the elements of

every columns is not zero unless it is weight balanced. In other words, q = 1T is a left

13



eigenvector of the Laplacian matrix associated with the zero eigenvalue in a directed

network only if the network is balanced.

Let x[k] ∈ Rn be a vector in discrete time domain, and x̄[k] be a vector with equal

elements. For any real positive constant ε, x[k] is said to be in the ε-neighborhood of

x̄[k] if there exists an integer k′ such that

‖ x[k]− x̄[k] ‖∞< ε, ∀k > k′. (2.8)

Consider a multi-agent system, and let the dynamics of each node in the discrete-

time domain is described by

xi[k + 1] = xi[k] + hui[k], (2.9)

where h > 0 is the sampling time, and xi[k], ui[k] ∈ R are the state and control input

of node i in the time interval [kh, (k + 1)h), k ∈ N, respectively. Denote the average of

the initial states of all nodes as

x̄0 =
1

n

n∑
i=1

xi[0]. (2.10)

In the average consensus problem, it is desired that the state of every node converges to

x̄0 as k increases. For the case of a balanced network with �xed topology (i.e., when the

edge set E is �xed) and zero communication delay, it is well-known that the following
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control rule achieves average consensus [28,31, 52]

ui[k] =
∑
j∈N i

in

wij(xj[k]− xi[k]). (2.11)

Let ri[k] represent the reference signal applied to node i, for any i ∈ V . Then,

r[k] ∈ Rn is a vector consisting of all reference signals, and ∆ri[k] = ri[k] − ri[k − 1].

Consider the dynamic average consensus problem with the following agent dynamics [44]

xi[k + 1] = xi[k] + hui[k] + ∆ri, (2.12)

where the initial state of node i is assumed to be xi[0] = ri[−1]. In this case, the

objective is that the state of each node approaches r̄[k], as k increases.

Remark 2.1. Let dmax = maxi (lii) denote the maximum in-degree of the nodes of the

network digraph. Then, for all sampling times h ∈ (0, 1/dmax), (I−hL) is a nonnegative

matrix.

2.3 Control Protocol: Average Consensus

Consider an asymmetric network consisting of n nodes, represented by the weighted di-

graph G, and let the node dynamics be described by (2.9). The objective is to develop a

distributed algorithm for reaching average consensus. For a �xed topology, it is known

that the consensus protocol (2.11) reaches average consensus asymptotically if and only
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if the graph is strongly connected and balanced. However, using this update rule for a

strongly connected unbalanced digraph results in a steady-state error, in general. The

amount of this steady-state error is, in fact, a function of the initial states of the system

and the link weights.

It is desired now to modify the update rule (2.11) for balanced directed networks

in such a way that average consensus is achieved for a network with an unbalanced

digraph. It is to be noted that since the control structure is distributed, each node has

only access to its own information as well as that of its neighbors. De�ne nmirror models

with identical dynamics, and denote the state of the ith model, i ∈ Nn, by q̂i ∈ Rn. Let

the dynamics of each model be described by

q̂i[k] = (In − hL)q̂i[k − 1],

q̂i[0] = ei, i ∈ Nn.

(2.13)

One can then write

q̂i[k] = (In − hL)kq̂i[0]. (2.14)

It is shown in [39] that in an asymmetric network with the node dynamics (2.9),

consensus is achieved asymptotically, i.e., the states of all nodes x1[k], ..., xn[k] become

equal as k goes to in�nity. It can be veri�ed that for any positive real value ε, the states

of all nodes reach the ε-neighborhood of the same steady-state value for a su�ciently
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large k. This steady-state value depends on the parameters of the network as well as

the initial states. Now, let the steady-state value of q̂i[k] be denoted by q̂i,ss1n, and

note that the dynamics of the mirror model (2.13) resembles that of the network from

the viewpoint of node i. Note also that the average value of the elements of the initial

state in (2.13) is equal to 1/n. Thus, the di�erence between the �nal state and the

average value of the initial states is 1/n − q̂i,ss. This value will be referred to as the

average disagreement for node i. It is important to note that the value of the average

disagreement depends only on the Laplacian matrix L and sampling time h.

Remark 2.2. It is to be noted that in the calibration phase, each node only requires

information from its in-neighbor nodes. More precisely, node i requires the information

of the ith row of the Laplacian matrix along with the current states of its in-neighbor

nodes at each time instant to generate the vector q̂i at the next time instant.

It is desired now to add a term to the dynamics of the nodes given by (2.9) in

order to calibrate them in such a way that the average consensus is achieved.

Lemma 2.1. Let the vector of steady state values obtained from the n mirror models be

given by (2.13), i.e. q̂ss := [q̂1,ss q̂2,ss, . . . q̂n,ss]
T . Then, q̂ss is, in fact, the left eigenvector

corresponding to eigenvalue 1 of matrix (In − hL).

Proof. Matrix (In − hL) is irreducible if and only if the digraph corresponding to the

Laplacian L is strongly connected [4, 21, 55]. Since (In − hL) is a non-negative, square,

and irreducible matrix whose all diagonal elements are positive, it is a primitive matrix
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[19,55]. According to Perron-Frobenius theorem [25,55], for any primitive matrix, there

exists a real positive number λp, that is an eigenvalue of (In − hL), such that the

magnitude of any other eigenvalue (possibly complex) λ is strictly smaller than r, i.e.

|λ| < λp. Given that (In − hL) has an eigenvalue at 1 (and hence so does (In − hL)k

for any integer k), which is, in fact, the eigenvalue with the largest magnitude, one can

show that

lim
k→∞

(In − hL)k

rk
= p1qT1 , (2.15)

where r = 1 and vectors p1 and q1 denote, respectively, the right and left eigenvectors

corresponding to the eigenvalue 1 of the matrix (In−hL), normalized such that qT1 p = 1.

It is shown in [2] that every node in a strongly connected directed graph can obtain the

information of the graph topology in �nite time. Therefore, every node in the network

considered here can obtain the steady state information (2.15) in �nite time. It then

follows from (2.14) and (2.15) that q̂i[k] = p1qT1 q̂i[0]. Note that for a digraph p1 = 1;

therefore, q̂i[k] = 1 [q11 q12 · · · q1n] q̂i[0]. Now it is straightforward to verify that

q̂i[k] = [q1i q1i · · · q1i]
T . �

Theorem 2.1. Let L represent the Laplacian of the digraph of an directed network with

n agents, described by (2.9). Using the following control input

ui[k] =
∑
j∈N in

i

wij(xj[k]− xi[k]) + νiδ[k], (2.16)
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where δ[.] is the unit impulse function and

ν =


1

h
ζ1

...

1

h
ζn

 =


1

h
( 1
nq̂1,ss

− 1)x1[0]

...

1

h
( 1
nq̂n,ss

− 1)xn[0]

 , (2.17)

results in the average consensus in steady state.

Proof. Using the average disagreement term introduced earlier, de�ne the deviation

adjustment value ζi as follows

ζi = xi[0](
1

n
− q̂i,ss)

1

q̂i,ss
=

xi[0]

nq̂i,ss
− xi[0]. (2.18)

It follows from (2.9), (2.16), and (2.17) that

x[k + 1] = (In − hL)kx[0] + (In − hL)kνδ[k]. (2.19)

Now, from (2.15)

x[k + 1] = p1qT1 x[0] + p1qT1 νδ[k], (2.20)
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or

x[k + 1] =



∑n
i=1 xi[0]

n
−
∑n

i=1 q1ixi[0]

...∑n
i=1 xi[0]

n
−
∑n

i=1 q1ixi[0]



+


∑n

i=1 q1ixi[0]

...∑n
i=1 q1ixi[0]

 δ[k].

(2.21)

It then follows that

x[k + 1] = 1x̄0. (2.22)

�

Remark 2.3. It can easily be seen that using control input of (2.16) is equivalent as

xnew[0] = Zx[0], (2.23)

where matrix Z is

Z =



1
nq̂1,ss

0 · 0

0 1
nq̂2,ss

· · · 0

...
. . .

...

0 0 · · · 1
nq̂n,ss


. (2.24)

Using the new vector of states results in static average consensus of an asymmetric
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network.

Corollary 2.1. The consensus protocol (2.16) with initial states xi[0] = ri[−1], i ∈ Nn,

achieves dynamic average consensus for any constant reference signal r.

Proof. The proof is similar to that of Theorem 2.1, and is omitted here. �

Corollary 2.2. The consensus protocol (2.16) with the initial states xi[0] = ri[−1], i ∈

Nn, and the reference signals satisfying ∆ri[k] = ∆rj[k],∀i, j ∈ Nn, for all time in-

stances, achieves dynamic average consensus.

Proof. An eigenvector of the Laplacian matrix corresponding to the zero eigenvalue is

also equal to 1; hence, an eigenvector of the matrix (In − hL) corresponding to the

eigenvalue 1 is equal to 1, i.e. (In− hL)1 = 1. It then follows from equations (2.12) and

(2.23) that

x[k] = (In − hL)kZx0 + (In − hL)k−1∆r[1] + (In − hL)k−2∆r[2] + ...+ ∆r[k]

= 1x̄0 + ∆r[1] + ∆r[2] + ...+ ∆r[k] = r[0] + r[k]− r[0] = r[k].

(2.25)

�

For the static case, the vector of states at time instance k is

xnew[k] = (In − hL)kx0. (2.26)
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In the case of having reference signals, the vector of states can be shown as

xnew[k] =(In − hL)kZx0 + (In − hL)k−1∆r[0] + (In − hL)k−2∆r[1] + · · ·

+ (In − hL)∆r[k − 2] + ∆r[k − 1].

(2.27)

Since all the elements in ∆r[j] are the same

∆r[j] = 1∆r̄j. (2.28)

Thus, equation (2.27) yields

xnew[k] =(In − hL)kZx0 + (In − hL)k−11∆r̄0 + (In − hL)k−21∆r̄1 + · · ·

+ (In − hL)1∆r̄k−2 + 1∆r̄k−1.

(2.29)

Since (In − hL)1 = 1, it follows from equation (2.29) that

xnew[k] = (In − hL)kZx0 + 1∆r̄0 + 1∆r̄1 + · · ·+ 1∆r̄k−1. (2.30)

From Theorem 2.1, (In − hL)kZx0 = 1r̄−1, thus

xnew[k] = 1r̄−1 + 1∆r̄0 + 1∆r̄1 + · · ·+ 1∆r̄k−1 = 1r̄k−1. (2.31)
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Figure 2.1: Digraph pf the multi-agent network in Examples 1, 2 and 5

2.4 Numerical Examples

In this section, some simulations are presented to demonstrate the e�ciency of the

proposed algorithm in achieving both static and dynamic average consensus in directed

networks.

For the next two examples, a strongly connected network of three agents is con-

sidered, with a digraph depicted in Fig. 2.1. All three nodes perform the calibration

procedure by computing the steady state value of q̂1, q̂2 and q̂3 in the mirror models

(2.13) for the initial states [1 0 0]T , [0 1 0]T and [0 0 1]T , as noted earlier. Using the

resultant steady-state values q̂1,ss, q̂2,ss and q̂3,ss, each node can �nd its corresponding

deviation adjustment value introduced in (2.18), and subsequently obtain the update

rule proposed in Theorem 2.1 to achieve average consensus.

Example 2.1. Let the initial states of node 1, 2 and 3 be, respectively 0, 0.6 and 0.3.
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Let also the sampling time and weight matrix be h = 0.01 and

W =


0 0 0.7

0.5 0 0

0 0.2 0

 . (2.32)

Using the controller proposed in Theorem 2.1 the results given in Fig. 2.2 are obtained.

This �gure shows that the states of all three nodes converge to 0.3 as time increases,

which means that the average consensus is achieved (as the average of the initial states

is, in fact, equal to 0.3). It can be easily veri�ed that matrix Z in this example is equal

to

Z =


1.9667 0 0

0 1.4048 0

0 0 0.5619

 , (2.33)

and

xnew[0] =


0

0.8429

0.1686

 . (2.34)
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Figure 2.2: Convergence of the states of the multi-agent network of Example 1 to the average
of the initial states using the proposed average consensus protocol

Example 2.2. Consider now the same network as the previous example, with a constant

reference signal r = [3 2 4]T and the initial state vector x[0] = r. Using equation (2.12)

and under Assumption 3, the network reaches the average of the reference signals as

illustrated in Fig. 2.3. For comparison, the trajectory of the dynamic average consensus

protocol proposed in [17] is shown in Fig. 2.4. Note that [17] requires the ith node to

have the information of both the ith row and ith column. However, this is not realistic

in practice because in a distributed control structure, each agent has the information

of its incoming edges (row i for agent i) not its outgoing edges (column i for agent i).

In addition, the simulations demonstrate that the trajectory obtained by the method
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proposed in the present work is smoother than that resulted by using [17].

Figure 2.3: Convergence of the states of the multi-agent network of Example 2 to the average
of the three constant reference inputs in r using the proposed average consensus protocol
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Figure 2.4: Convergence of the states of the multi-agent network in [17] to the average of the
three constant reference inputs in r

Example 2.3. Consider a network of four agents with the con�guration depicted in

Fig. 2.5, the initial values satisfying x[0] = x[−1], sampling time h = 0.01, and the

following reference signals



r1(t) = t+ 1 + 5 sin t,

r2(t) = t− 1 + 5 sin t,

r3(t) = t+ 5 sin t,

r4(t) = t+ 50 + 5 sin t.

(2.35)
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Figure 2.5: Con�guration of the digraph of the multi-agent network in Example 3 and 4 com-
munication graph with four nodes

One can easily verify that the above reference signals satisfy the conditions for the speci�c

class of signals de�ned in [56]. Fig. 2.6 demonstrates the trajectory of agents' states

with given reference signals under the proposed average consensus control protocol. This

�gure shows that in addition to the static case, control protocol of (2.12) is capable of

handling the dynamic cases, where derivative of all reference signals in each time instance

are the same ∆∀i∈V ri[k] = ∆∀j∈V rj[k].

Example 2.4. Consider the same multi-agent network of Example 3 with the new
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Figure 2.6: The convergence of the states of the multi-agent network of Example 3 to the
average of the four time-varying reference inputs in r using the proposed average consensus
protocol
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reference signals given below



r1(t) = 5 sin t+ 10
t+2

+ 1,

r2(t) = 5 sin t+ 10
t+2

+ 2,

r3(t) = 5 sin t+ 10
t+2

+ 3,

r2(t) = 5 sin t+ 10 exp−t+ 4.

(2.36)

Similar to the previous example, it can be easily veri�ed that these reference signals also

belong to the class of signals introduced in [56]. Fig. 2.7 shows the trajectory of agents'

states with the above reference signals under the proposed average consensus protocol. It

can be observed from this �gure that the proposed control algorithm can reach dynamic

average consensus when the derivative of all reference signals are the same in each time

instance.
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Figure 2.7: The convergence of the states of the multi-agent network of Example 4 to the
average of the four time-varying reference inputs in r using the proposed average consensus
protocol

Example 2.5. In this example, perturbation in the graph weight matrix and its e�ect on

the performance of the proposed average consensus algorithm is investigated numerically.

Consider the multi-agent system of Example 1, and let the weight matrix used in the

calibration phase be given by

W =


0 0 0.3

0.5 0 0

0 0.2 0

 , (2.37)

which is di�erent from the actual weight matrix given by (2.32). Thus, matrix Z de�ned
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in (2.24) is computed based on an inexact weight matrix. The simulation results are

depicted in Fig. 2.8, and show that while convergence is achieved, there is a discrepancy

between the steady-state values and the desired �nal value.

Figure 2.8: The steady-state error resulted from the weight matrix perturbation

It is to be noted that matrix Z is dependent on the left eigenvectors of the matrix

(In−hL), Thus, due to the discrepancy in the actual weight matrix and the one used in

the computations of the calibration phase, the agents' states in this example converge

to
∑n

i=1

qi
nq̂i

xi[0] the average of the initial states. The sensitivity of the left eigenvector

of a matrix to the perturbation is studied in [20].
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2.5 Conclusions

In this chapter, the problem of consensus as well as some special cases of dynamic

average consensus in asymmetric networks were investigated. The proposed scheme is

distributed, and consists of a calibration phase followed by a novel average consensus rule.

In the calibration phase, every agent uses its local information as well as the information

it receives from its neighbors to compute an error term which is subsequently used in

the update rule to compensate for the di�erence between the �nal state, obtained by

using a standard consensus protocol, and the average of the initial states of all agents.

The convergence analysis is carried out using the celebrated Perron-Frobenius theorem.

The method is then extended to the case where each agent is subject to a class of

reference signals under some mild conditions. The e�ciency of the results is con�rmed

by simulations.
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Chapter 3

A Dynamic Average Consensus

Algorithm for Directed Multi-Agent

Networks

In this chapter, a novel algorithm is presented to achieve dynamic average consensus in

a directed network of homogeneous agents. Each agent receives an input signal which is

not available to other agents. The objective is for every agent's state to track the average

of all input signals at all times. The agents communicate information according to a

directed communication graph. To achieve the objective, an algorithm is proposed where

every agent initially shares information about the di�erence between the current value

of its reference signal and the previous value. The procedure is repeated for certain
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number of times, and then the obtained value is used by the agents to update their

state. Moreover, it is shown that using an error-compensating scheme similar to the

one presented in Chapter 2, the steady-state error of the dynamic average consensus

problem can be driven to a su�ciently small neighborhood of zero. The convergence

analysis is provided using the Markov chain properties. Simulations are presented to

verify the theoretical results.

3.1 Introduction

One of the important objectives in the control of the multi-agent systems with a reference

signal for each agent is that the state of every agent tracks the average of all reference

signals [27,44,56]. This problem is referred to as the average dynamic consensus problem,

and has important applications, e.g., in the surveillance problem and target tracking in

mobile sensor networks [10,24].

Several techniques are proposed in the literature to solve the dynamic average

consensus problem in multi-agent systems. In [12], the authors use a signum function

to tackle the problem. A decomposed Kalman �lter approach is used in [36] to achieve

dynamic average consensus. In [7, 46, 47], the time required for reaching a su�ciently

small neighborhood the steady-state is investigated in the context of Markov chain mod-

els using the so-called "mixing time" property. The authors in [47] use this property for

the convergence analysis in undirected multi-agent systems.
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In this chapter, a novel approach is proposed for dynamic average consensus control

in multi-agent systems. Using the concept of Markov chain, an upper bound is derived

for the disagreement vector in the dynamic average consensus control of a directed multi-

agent network with unbalanced topology. The convergence analysis is provide to show

that the state of every agent settles within a desired neighborhood of the average of

the reference signals after a su�ciently long time. Numerical examples support the

theoretical �ndings.

The remainder of the chapter is organized as follows. In Section 3.2, some prelim-

inaries and background information concerning networked systems are provided. Then

in Section 3.3, the main contribution of this chapter is presented and an upper bound is

derived for the magnitude of the disagreement vector in the dynamic average consensus

problem for a directed multi-agent network with unbalanced topology. In Section 3.4,

simulation results are presented, and �nally, concluding remarks are made in Section 3.5.

3.2 Preliminaries and Notation

In this section, some preliminaries on the dynamic average consensus problem and

Markov chain are reviewed. Consider an asymmetric network of n agents (nodes), whose

information exchange topology is represented by the weighted digraph G = (V,E,W),

where V = Nn := {1, ..., n} is the set of vertices (nodes), E ⊆ V × V is the set of edges,

and W ∈ Rn×n is the weight matrix associated with the edge set E. The in-neighbor
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and out-neighbor sets of node i for all i ∈ Nn in a digraph are de�ned as

N in
i = {j ∈ V \ {i} |(j, i) ∈ E} , (3.1)

and

N out
i = {j ∈ V \ {i} |(i, j) ∈ E} . (3.2)

As noted in the previous chapter, the Laplacian matrix for an undirected network is

L = ∆−W, (3.3)

or

lij =



−wij, if (j, i) ∈ E,

∑
k 6=iwik, if j = i,

0, otherwise,

(3.4)

where wij is the (i, j) element of the weight matrix W, which is, in fact, the weight of

the edge from node j to i. The matrix given above is, in fact, the in-degree Laplacian

matrix.

From equations (3.3) and (3.4), it is concluded that the row sum of the Laplacian

matrix is equal to zero for a directed network (this is a well-known property of undirected

networks as well). This means that zero is an eigenavlue of the Laplacian matrix and
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p = 1 is its corresponding right eigenvector, i.e.

L1 = 0. (3.5)

Unlike undirected networks, however, in a directed network the sum of the elements of

every columns is not zero unless the digraph is weight-balanced. In other words, q = 1T

is a left eigenvector of the Laplacian matrix associated with the zero eigenvalue in a

directed network only if the network is balanced.

3.2.1 Dynamic Average Consensus

In the dynamic average consensus problem, a reference input is applied to every agent,

and the objective is that all agents track the average of the reference signals. Similar

to the static average consensus problem, existing protocols for the dynamic average

consensus of directed networks are mainly for those with a balanced graph. For the

case of unbalanced networks, the standard consensus protocol leads to a steady-state

tracking error. It is shown later in this work how the steady-state error can be reduced

by using the properties of the Markov chain along with an error-compensating scheme

similar to the one proposed in the previous chapter.
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3.2.2 Disagreement Vector in Dynamic Average Consensus

To evaluate the performance of a consensus control protocol in the case of no reference

signal, the concept of disagreement vector is introduced in [39] for balanced networks as

follows

x[k] = α1+ φ[k], (3.6)

where α represents the average state of the nodes at time k, i.e. α = x1[k]+...+xn[k]
n

.

The disagreement vector is used to determine how far the agents' states are from their

steady-state value and what the rate of convergence is.

For the case of dynamic average consensus, the disagreement vector can be formu-

lated as [17]

φ[k] = xnew[k]− 1

n
11T r[k], (3.7)

where r[k] is the vector of all reference signals. A dynamic average consensus protocol

is proposed later, which drives the above vector to an arbitrarily small neighborhood of

zero. To this end, some important properties of the Markov chain are reviewed next.

3.2.3 Markov Chain

A Markov chain is a stochastic model for a sequence of events whose probability depends

on the state attained in the previous event [29,34]. This can be described by the following
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dynamic equation

µ[k] = µ[k − 1]P, (3.8)

where µ is a row vector of the probability distributions and P is the transition matrix.

According to [43], for a Markov chain described by (3.8), given an initial distribution

µ[0], if the second largest eigenvalue of P, denoted by λ∗, is strictly less than 1, then

there exist a stationary distribution π for which limk→∞ ‖ µ[k] − π ‖→ 0. Moreover,

for any given ε, one can determine how large k should be such that ‖ µ[k] − π ‖∞≤ ε.

In fact, there is a unique distribution π on j ∈ {0, 1, ..., n− 1} such that

| µj[k]− πj |≤ Cjk
J−1(λ∗)

k−J+1, (3.9)

where Cj is a strictly positive constant and J is the size of the largest Jordan block of

P. This yields

‖ µ[k]− π ‖≤ CkJ−1λk−J+1
∗ . (3.10)

According to [43], if matrix P is diagonalizable then J = 1, and equation (3.9) can be

rewritten as

| µj[k]− πj |≤ (
n−1∑
m=1

| amwmj |)λk∗, (3.11)
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where w0, ...,wn−1 are the bases of left eigenvectors corresponding to λ0, ..., λn−1, respec-

tively, and where a0, ..., an−1 are the unique coe�cients satisfying

µ[0] = a0w0 + a1w1 + ...+ an−1wn−1. (3.12)

3.3 Control Protocol: Dynamic Average Consensus

Consider an asymmetric network of n stationary nodes, whose topology is represented

by a weighted digraph G = (V,E,W), where V = Nn is the set of vertices, E ⊆ V × V

is the set of edges, and W ∈ Rn×n is a matrix whose entries represent the weight of the

corresponding elements in the edge set E. It is desired now to develop a distributed

algorithm to achieve dynamic average consensus for any type of reference signal under

some mild conditions. To this end, a protocol is introduced which consists of an inner

loop and an outer one. The inner loop aims at compensating for the error due to the

reference signals under the unbalanced Laplacian matrix, and the outer loop compensates

for the error due to the initial states under the unbalanced Laplacian matrix. The outer

loop is described by

xi[k + 1] = xi[k] + hui[k] + ∆ρ
[imax]
i [k],

ui[k] =
∑
j∈N in

i

wij(xj[k]− xi[k]) + νixi[0]δ[k],
(3.13)
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while the inner loop is given by

∆ρ[k′+1][k] = (In − h′L)∆ρ[k′][k], (3.14a)

∆ρ[0][k] = Z(r[k]− r[k − 1]). (3.14b)

In the above equation, h′ ≤ h is the sampling time of the inner loop. Moreover, k is

the outer loop iteration index, k′ is the inner loop iteration index, and imax denotes the

maximum number of the inner loop iterations. The vector ∆ρ[0][k] denotes the amount

of increase in the reference signal from time k− 1 to time k. Note that equation (3.14b)

describes the evolution of ∆ρ[k] in the inner loop.

Fig. 3.1 demonstrates the integration of the two loops in the proposed dynamic

average consensus protocol. The structure given in this �gure consists of multiple inner

loops and one outer loop. Utilizing inner loops with a su�ciently small sampling time

and suppressing the error term at each time step by applying the inner loop, the steady-

state error of the original system will be signi�cantly reduced.

Figure 3.1: Schematic of the proposed two stage dynamic average consensus protocol
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The disagreement vector in equation (3.7) can be written as

φ[k] = xnew[k]− 1

n
11Tx[0]− 1

n

k∑
i=0

11T∆r[k]. (3.15)

Expanding the term xnew from equation (2.23) yields

φ[k] =(In − hL)kZx[0] +
k∑
i=0

(In − hL)k−i(In − h′L)imaxZ∆r[k]

− 1

n
11TZ∆r[k]− 1

n

k∑
i=0

11T∆r[k].

(3.16)

From Chapter 2, the above equation can be simpli�ed as

φ[k] =
k∑
i=0

(In − hL)k−i(In − h′L)imaxZ∆r[k]− 1

n

k∑
i=0

11T∆r[k]. (3.17)

Similarly, if imax is su�ciently large, each term of the two summation in the right side

of the above equation approaches a small neighborhood of zero. However, there might

be some limitation in terms of how large imax could be chosen (depending on the rate of

convergence of the inner loop). Regardless of the size of imax, since the number of the

iterations is �nite in practice and the size of error decreases after each iteration, one can

�nd an upper bound on the magnitude of the disagreement vector for each imax.

It is desired to �nd an upper bound on the magnitude of φ[k], and the number

of summation terms in (3.17) in order to have su�ciently small error. To this end, it

is noted that the entry Pij of matrix P in equation (3.8) is the probability that state
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of node i becomes equal to that of node j in the next iteration. In contrast, in our

problem, element Tij of matrix T = (In − hL), represents the probability that node j

sends information to node i. In other words, although both P and T are row stochastic,

in the former the sum of the outgoing links from each node is equal to one, while in the

latter on the sum of the incoming links to each node is equal to one. For the case of an

undirected graph, no transformation would be required. Taking the transpose of both

sides of (3.8), one obtains

µT [k] = PTµT [k − 1]. (3.18)

On the other hand, the transpose of matrix (In − hL)T in equation (3.18) is column-

stochastic. According to [50], there exists a similarity transformation to convert the

above matrix to it transposed form, i.e.

M(In − hL)M−1 = (In − hL)T , (3.19)

where M is an invertible matrix. The dynamics of the initial state can be expressed by

v[k] = (In − hL)v[k − 1], where v[0] = Zx[0]. (3.20)

One can then rewrite the above equation as

yv[k] = yv[k − 1](In − hL), (3.21)
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where yv[k] := (Mv[k])T . Now using the inequality (3.10), it can be concluded that

‖ yv[k]− πyv ‖≤ Cyvk
J−1λk−J+1

∗ , (3.22)

where Cyv is a matrix of strictly positive entries and πyv is a stationary distribution as

described in (3.10). Since yv[k] = Mv[k], thus

‖Mv[k]− πyv ‖≤ Cyvk
J−1λk−J+1

∗

→‖ v[k]−M−1πyv ‖≤
Cyv

‖M ‖
kJ−1λk−J+1

∗ ,

(3.23)

which results in

‖ v[k]− πv ‖≤ Cvk
J−1λk−J+1

∗ , (3.24)

where Cv :=
Cyv
‖M‖ . A procedure similar to (3.21)-(3.24) can now be used to obtain an

upper bound on ∆ρ in (3.14) after each iteration of the outer loop. Therefore, for the

k-th outer loop

‖ y∆ρ[imax][k] − πy
∆ρ[imax][k]

‖≤ Cy
∆ρ[imax][k]

kJ−1(λ∗)
k+imax , (3.25)

or

‖∆ρ[imax][k]− π∆ρ[imax][k] ‖≤ C∆ρ[imax][k]k
J−1(λ∗)

k+imax . (3.26)

Note that to derive the upper bound in (3.24), it is required to �nd matrix M in the

similarity transformation introduced in (3.19). Let D be a diagonal matrix with the
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eigenvalues of T on its main diagonal (not for simplicity and loss of generality, it was

assumed that the Laplacian matrix does not have repeated eigenvalues, and hence the

eigenvalues of matrix T are also distinct). It is straightforward to show that there are

invertible matrices S and R such that

D = S−1TS,

D = R−1TTR.
(3.27)

Thus

TSR−1 = SR−1TT → (SR−1)−1T(SR−1) = TT , (3.28)

which yields

M = RS−1. (3.29)

Note that matrices S and R can be obtained from right eigenvectors of T and TT ,

respectively. Moreover, from equation (3.27) it can be deduced that R−1 = ST . As a

result, equation (3.29) can be rewritten as

M = (S−1)
TS−1. (3.30)

This implies that

TT = (SST )−1TSST . (3.31)

To derive the upper bound in (3.24) and (3.26), it is also required to �nd matrices Cyv
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and Cy∆ρ. Since matrix T is assumed to be diagonalizable, according to [43], equation

(3.9) can be written as

| µj[k]− πj |≤ (
n−1∑
j=1

| amwmj |)λk∗, (3.32)

where w0, ...,wn−1 are the bases of left eigenvectors corresponding to λ0, ..., λn−1, respec-

tively, and where a0, ..., an−1 are the unique coe�cients of the following linear combina-

tion

µ[0] = a0w0 + a1w1 + ...+ an−1wn−1. (3.33)

In order to �nd the said upper bound on the disagreement vector in equation (3.26), it

is required to �nd ai, wi in the above equation for i = 0, 1, ..., n−1 in the k-th iteration.

Replace µ0 in (3.33) by y∆ρ[0][k] = M∆ρ[0][k] to obtain

M∆ρ[0][k] = a0w0 + a1w1 + ...+ an−1wn−1. (3.34)

Therefore, a0, a1, ..., an−1 can be found as

ay∆ρ[k]
= W−1M∆ρ[0][k], (3.35)

where W is a matrix whose columns are the left eigenvectors of matrix T. De�ne Wr =
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[w1 w2 ... wn−1] and ary∆ρ[k]
= [a1 a2 ... an−1]T . It then follows from (3.32) that

| y∆ρ[imax][k] − πy
∆ρ[imax][k]

≤|Wrary∆ρ[k]
| λk+imax
∗ . (3.36)

The above inequality provides an upper bound on the disagreement error after each

iteration of the outer loop. Similarly, one can �nd an upper bound on the initial state

disagreement expressed in equation (3.24) as

| yv[k]− πyv [k] ≤|Wraryv | λ
k
∗. (3.37)

To �nd the overall bound on the disagreement, one needs to take the summation of the

error bounds of all inner loops. To this end, let the state of the system at step k be

written as

x[k] =(In − hL)kZx0

+ (In − hL)(In − h′L)imaxZ∆r[0]

+ (In − hL)k−1(In − h′L)imaxZ∆r[1]

+
...

+ (In − hL)(In − h′L)imaxZ∆r[k − 1]

+ (In − h′L)imaxZ∆r[k],

(3.38)
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or equivalently

x[k] = (In − hL)kZx0 +
k∑
i=0

(In − hL)k−i(In − h′L)imaxZ∆r[k]. (3.39)

For simplicity, let h′ = h; then

x[k] = (In − hL)kZx0 +
k∑
i=0

(In − hL)k+imax−iZ∆r[k]. (3.40)

Multiplying the transformation matrix M to both sides of the above equation and using

(3.20) yields

Mx[k] = Mv[k] +
k∑
i=0

MZ∆ρ[imax][k − i], (3.41)

or

Mx[k] = yv[k] +
k∑
i=0

y∆ρ[imax][k−i]. (3.42)

From equations (3.36) and (3.42)

‖ yv[k]− πyv ‖ +
k∑
i=0

‖ y∆ρ[imax][k−i] − πy
∆ρ[imax][k−i]

‖

≤‖Wraryv ‖ (λ∗)
k +

k∑
i=0

(‖Wrary∆ρ[k−i]
‖ (λ∗)

k+imax−i),

(3.43)
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or equivalently

‖M(In − hL)kZx[0]− πyv ‖

+
k∑
i=0

‖M(In − hL)k+imax−iZ∆ρ[imax][k − i]− πy
∆ρ[imax][k−i]

‖,

≤‖Wraryv ‖ (λ∗)
k +

k∑
i=0

(‖Wrary∆ρ[k−i]
‖ (λ∗)

k+imax−i).

(3.44)

Thus

‖ v[k]−M−1πyv ‖ +
k∑
i=0

‖∆ρ[imax][k − i]−M−1πy
∆ρ[imax][k−i]

‖

≤
‖Wraryv ‖
‖M ‖

(λ∗)
k +

k∑
i=0

(
‖Wrary

∆ρ[k−i]
‖

‖M ‖
(λ∗)

k+imax−i).

(3.45)

The overall disagreement for any k can then be obtained as

‖ x[k]− πx ‖

≤‖ v[k]− πv ‖ +
k∑
i=0

‖∆ρ[imax][k − i]− π∆ρ[imax][k−i] ‖

≤
‖Wraryv ‖
‖M ‖

(λ∗)
k +

k∑
i=0

(
‖Wrary∆ρ[k−i]

‖
‖M ‖

(λ∗)
k+imax−i).

(3.46)

Remark 3.1. It is to be noted that for the concept of Markov chain, some fundamental

assumptions are required. These assumptions are given below.

i) 0 ≤ (MZx[0])j = yvj [0] ≤ 1;

ii)
∑n−1

j=0 yvj [0] = 1;
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iii) 0 ≤ (MZ∆ρ[k])j = (y∆ρ[imax][k−i])j ≤ 1, and

iv)
∑n−1

j=0 (y∆ρ[imax][k−i])j = 1.

Remark 3.2. The equations provided in this section can be properly scaled to make them

e�ective for any initial state or reference signal.

3.4 Numerical Examples

In this section, some numerical simulations are provided to demonstrate the e�ectiveness

of the proposed two-stage algorithm to achieve dynamic average consensus. Moreover,

the veri�cation of the proposed upper bound on the magnitude of the disagreement

function is performed by simulations.

In Examples 3.1 and 3.2, it is assumed that conditions (i)-(iv) in Remark 3.1 are

satis�ed. However Example 3.3 and 3.4 consider the general case. The case of dynamic

average consensus is �rst investigated in Example 3.1 to 3.3 in order to compare the

disagreement value with the upper bound provided in equation (3.46). The e�ect of

sampling time on the performance of the proposed dynamic average consensus strategy

is then investigated in Example 3.4. It is to be noted that the state and reference signal

of each agent in these examples are assumed to be scalars. Thus, Italic letters are used

to represented them (instead of boldface Roman letters).

Example 3.1. Consider a network of four agents, each one subject to a �rst-order
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reference signal (as a function of time). Let the number of the inner loop iterations be

imax = 400, and the sampling time be h ≈ 0.0126s (which means that 1
h
≈ 79.58). The

graph representing this network is depicted in Fig. 3.2. In order to compare the actual

disagreement values with the upper bound derived in Subsection 3.3, all four conditions

of Remark 3.1 need to be satis�ed. To this end, consider



( y∆ρ)1 = 0.1 t
h

+ 0.2,

( y∆ρ)2 = 0.4 t
h

+ 0.8,

( y∆ρ)3 = 0.2 t
h

+ 0.4,

( y∆ρ)4 = 0.3 t
h

+ 0.6,

(3.47)

where ( y∆ρ)j, j = 1, 2, ..., n, is the transformed reference signal applied to the j-th

agent. Respectively the corresponding reference signals r1, ..., r4 are as follows



r1 = 34.09t+ 0.856,

r2 = 0.001,

r3 = 51.14t+ 1.284,

r4 = 36.53t+ 0.9176,

(3.48)

where k represents the k-th iteration of the outer loop. Fig. 3.3 shows the trajectories of

the states and reference signals of the agents, where r̄ denotes the average of the reference
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signals. This �gure demonstrates that agents track the average of the reference signals,

and hence dynamic average consensus is achieved. Figs. 3.4 and 3.5 respectively show

the disagreement upper bound for ( y∆ρ)1, ..., (y∆ρ)4 and x1, ..., x4.

Figure 3.2: The graph representing the multi-agent network of Example 3.1

Figure 3.3: Trajectory of states and reference signals in Example 3.1
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Figure 3.4: Disagreement values of the equivalent Markov chain system and their upper bounds
in Example 3.1
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Figure 3.5: Disagreement values for the states of the agents and their upper bounds in Exam-
ple 3.1

Example 3.2. In this example, the same multi-agent system as Example 3.1 is consid-

ered with the following ( y∆ρ)1, ..., ( y∆ρ)4, which satisfy conditions (i)-(iii) of Remark 3.1

but not condition (iv).



(y∆ρ)1 = 3.315t+ 16.57 sin(t) + 0.2,

(y∆ρ)2 = 3.315t+ 16.57 sin(t) + 0.8,

(y∆ρ)3 = 3.315t+ 16.57 sin(t) + 0.4,

(y∆ρ)4 = 3.315t+ 16.57 sin(t) + 0.6,

(3.49)
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where ( y∆ρ)j, j = 1, 2, ..., n is the transformed reference signal applied to the j-th agent.

These functions satisfy conditions (i)-(iii) of Remark 3.1, but not condition (iv). The

corresponding reference signals r1, ..., r4 are, respectively, as follows



r1 = 7.103t+ 35.51 sin(t),

r2 = −13.19t− 65.95 sin(t) + 1.192,

r3 = 21.31t+ 106.5 sin(t)− 0.4279,

r4 = 5.073t+ 25.37 sin(t) + 0.7647.

(3.50)

Figs. 3.7 and 3.8 respectively show the disagreement upper bound for ( y∆ρ)1, ..., ( y∆ρ)4

and x1, ..., x4.
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Figure 3.6: Trajectory of the states of agents and reference signals in Example 3.2

57



Figure 3.7: Disagreement values of the equivalent Markov chain system and their upper bounds
in Example 3.2
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Figure 3.8: Disagreement values for the agents' states and their upper bounds in Example 3.2

Example 3.3. In this example, similar to the last two examples, a network of four

agents subject to �rst-order reference signals (as a function of time) is considered but

none of the conditions of Remark 3.1 applies in this case. The transformed signals in

this example are given by



(y∆ρ)1 = 0.5t+ 0.5,

(y∆ρ)2 = 0.9t+ 0.3,

(y∆ρ)3 = 0.7t+ 0.4,

(y∆ρ)4 = 0.3t+ 0.6,

(3.51)
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Figure 3.9: Trajectory of the states of agents and reference signals in Example 3.3

and the corresponding reference signals r1, ..., r4 are, respectively, as follows



r1 = 0.1793t+ 1.002,

r2 = 0.9t+ 0.2887,

r3 = 0.6405t+ 0.9066,

r4 = 0.549t+ 1.091.

(3.52)

Fig. 3.9 demonstrates the convergence of the states of all agents to the average of the

reference signals r̄. Figs. 3.10 and 3.11 also provide the upper bounds for the states of

the actual system and the transformed system, respectively.
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Figure 3.10: Disagreement values for the agents' states and their upper bounds in Example 3.3
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Figure 3.11: Disagreement values of the equivalent Markov chain system and their upper bounds
in Example 3.3

Example 3.4. In this example, the e�ect of sampling time on the performance of the

proposed dynamic average consensus control scheme with the same multi-agent system

and reference inputs as the previous example is studied. Four di�erent sampling times

are considered, and the results are depicted in Fig. 3.12. It can be observed from these

results that decreasing the sampling time improves the convergence speed of the dynamic

average consensus control scheme. However, this improvement comes at the cost of more

computations. This introduces a trade-o� between convergence time and computational

cost.
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Figure 3.12: Disagreement values of the equivalent Markov chain system and their upper bounds
in Example 3.3

3.5 Conclusions

A distributed control algorithm is proposed for dynamic average consensus in multi-agent

systems. The network is directed, weighted, and unbalanced, in general. The objective is

that the state of every agent tracks the average of the reference signals of all agents. An

iterative algorithm is developed which operates in two phases. In the �rst phase, called

inner stage, the di�erence between the reference signal of every agent in two consecutive

time instants is communicated to their neighbors, and using an iterative strategy the

disagreement vector with respect to the reference signals is suppressed. Then in the

second phase, called outer stage, a standard update rule is used to reduce the error in
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the consensus problem due to the initial states. Simulations demonstrates the e�ciency

of the proposed algorithm using the Markov chain concept.
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Chapter 4

Conclusions and Future Directions

In this thesis, the average consensus problem in a directed multi-agent network is stud-

ied, and a novel distributed algorithm is is introduced for the agents' states to reach the

desired agreement. The proposed algorithm is proved to outperform existing methods in

terms of the required information and/or steady-state performance for the class of un-

balanced weighted directed networks. This is an important class of multi-agent systems

which includes emerging applications such as underwater sensor networks.

Chapter 2 considers n homogeneous agents in an unbalanced weighted directed net-

work, where the agents' states are desired to reach the average of the initial states. It is

assumed that the directed network is strongly connected, and that each agent can receive

information only from its in-neighbors. The salient feature of the proposed method is

that it consists of two stages: (i) a calibration phase to �nd the discrepancy between the
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output of the standard consensus control protocol and the average of the initial states,

and (ii) a properly adjusted consensus algorithm to account for the expected discrepancy

in the �nal state of the agents. It is shown that under the proposed average consensus

procedure, the disagreement vector (representing the di�erence between the �nal state

of every agent and the average of the initial states) asymptotically converges to zero. It

is also shown that this two-stage protocol can also achieve dynamic average consensus

for the case of constant reference signals. Simulation results presented in this chapter

are in line with the theoretical �ndings, and, in fact, demonstrate the e�ectiveness of

the methods in a broader setting.

In Chapter 3, the same class of networks as the previous chapter is considered,

but for the dynamic average consensus problem. In other words, it is assumed that a

reference signal is applied to each agent, and the objective is that the state of every

agent tracks the average of the reference signals under some mild conditions. Similar

to the previous chapter, the main challenge here is to achieve the objective using only

the locally available information, for a directed network with unbalanced weights. It is

shown that using a Markov chain approach along with the error compensating method

introduced in Chapter 2 for the state average consensus problem, the state of every agent

tracks the average of the reference signals with an error bound which can arbitrarily small

at the cost of higher computation complexity. The proposed dynamic average consensus

protocol is scalable, and its e�ectiveness is veri�ed by simulations in various scenarios.
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4.1 Future Research Directions

Some suggestions for future research in this area are outlined below:

• applying the results obtained to the power optimization problem in underwater

acoustic sensor networks, given the unbalanced structure of edge weights in such

networks;

• extending the results to the case of a network with time-varying edge weights

and/or switching topology;

• using the algorithms proposed in this work to the consensus-based training algo-

rithms for the case of directed network of machines, where the privacy requirements

prohibit the bi-directional information communication between agents, and

• performing robustness analysis to evaluate the impact of parameter uncertainty

(e.g., in the elements of the weight matrix) on the steady-state results in both

static and dynamic average consensus problems.
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