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Abstract

High-dimensional Sparse Count Data Clustering Using Finite Mixture Models

Nuha Zamzami, Ph.D.

Concordia University, 2019

Due to the massive amount of available digital data, automating its analysis and modeling for

different purposes and applications has become an urgent need. One of the most challenging tasks

in machine learning is clustering, which is defined as the process of assigning observations sharing

similar characteristics to subgroups. Such a task is significant, especially in implementing complex

algorithms to deal with high-dimensional data. Thus, the advancement of computational power in

statistical-based approaches is increasingly becoming an interesting and attractive research domain.

Among the successful methods, mixture models have been widely acknowledged and successfully

applied in numerous fields as they have been providing a convenient yet flexible formal setting for

unsupervised and semi-supervised learning. An essential problem with these approaches is to de-

velop a probabilistic model that represents the data well by taking into account its nature. Count

data are widely used in machine learning and computer vision applications where an object, e.g.,

a text document or an image, can be represented by a vector corresponding to the appearance fre-

quencies of words or visual words, respectively. Thus, they usually suffer from the well-known

curse of dimensionality as objects are represented with high-dimensional and sparse vectors, i.e., a

few thousand dimensions with a sparsity of 95 to 99%, which decline the performance of clustering

algorithms dramatically. Moreover, count data systematically exhibit the burstiness and overdisper-

sion phenomena, which both cannot be handled with a generic multinomial distribution, typically

used to model count data, due to its dependency assumption.

This thesis is constructed around six related manuscripts, in which we propose several ap-

proaches for high-dimensional sparse count data clustering via various mixture models based on
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hierarchical Bayesian modeling frameworks that have the ability to model the dependency of repet-

itive word occurrences. In such frameworks, a suitable distribution is used to introduce the prior

information into the construction of the statistical model, based on a conjugate distribution to the

multinomial, e.g. the Dirichlet, generalized Dirichlet, and the Beta-Liouville, which has numer-

ous computational advantages. Thus, we proposed a novel model that we call the Multinomial

Scaled Dirichlet (MSD) based on using the scaled Dirichlet as a prior to the multinomial to allow

more modeling flexibility. Although these frameworks can model burstiness and overdispersion

well, they share similar disadvantages making their estimation procedure is very inefficient when

the collection size is large. To handle high-dimensionality, we considered two approaches. First,

we derived close approximations to the distributions in a hierarchical structure to bring them to

the exponential-family form aiming to combine the flexibility and efficiency of these models with

the desirable statistical and computational properties of the exponential family of distributions, in-

cluding sufficiency, which reduce the complexity and computational efforts especially for sparse

and high-dimensional data. Second, we proposed a model-based unsupervised feature selection ap-

proach for count data to overcome several issues that may be caused by the high dimensionality of

the feature space, such as over-fitting, low efficiency, and poor performance.

Furthermore, we handled two significant aspects of mixture based clustering methods, namely,

parameters estimation and performing model selection. We considered the Expectation-Maximization

(EM) algorithm, which is a broadly applicable iterative algorithm for estimating the mixture model

parameters, with incorporating several techniques to avoid its initialization dependency and poor

local maxima. For model selection, we investigated different approaches to find the optimal number

of components based on the Minimum Message Length (MML) philosophy. The effectiveness of

our approaches is evaluated using challenging real-life applications, such as sentiment analysis, hate

speech detection on Twitter, topic novelty detection, human interaction recognition in films and TV

shows, facial expression recognition, face identification, and age estimation.
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Chapter 1
Introduction

Clustering, the process of discovering the natural grouping of a set of objects and assigning

observations sharing similar characteristics to subgroups, is a significant task in data analysis and

pattern recognition that has attracted considerable attention of scholars in the last decades. Numer-

ous scientific fields and applications have utilized clustering techniques with different algorithms.

Statistical-based approaches are robust and widely used in generative learning processes to abstract

the complexity of a vast amount of information. One primary approach is finite mixture models that

permit a formal technique for unsupervised learning [1]. Mixture models are used to model data

sampled from a finite number of homogeneous subpopulations, where the whole model is formed

by a weighted sum of the subgroups densities [2, 3]. Due to their flexibility, mixture models are

adopted in many applications related, for instance, to image processing and computer vision [4],

social networks [5], and recommending systems [6]. Most of the clustering methods have been

developed for the case of continuous data. However, count data naturally appear in numerous fields

with several applications in machine learning and computer vision. Consider, for instance, image

categorization and other computer vision tasks, sentiment analysis, and documents that can be clus-

tered to generate topical hierarchies for efficient information access or retrieval. Clustering count

data is a challenging task due to its high-dimensionality and sparse nature. Furthermore, count data

are usually characterized by burstiness and overdispersion phenomena [7, 8].

Hierarchical Bayesian modeling frameworks, such as Dirichlet Compound Multinomial (DCM)

[9], Generalized Dirichlet Multinomial (GDM) [10] and Multinomial Beta-Liouville (MBL) [11]
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have shown to be competitive with the best-known clustering methods for count data that ad-

dress these phenomena and outperform the widely used multinomial model. However, their esti-

mation procedures are very inefficient when the collection size is large. Indeed, processing high-

dimensional data requires significantly increasing time and space. Thus, to handle high-dimensional

data, an efficient exponential-family approximation to the DCM (EDCM) has been previously pro-

posed by Elkan [12]. Exponential family of distributions has finite-sized sufficient statistics, mean-

ing that we can compress the data into a fixed-sized summary without loss of information [13, 14].

EDCM has shown to address the burstiness phenomenon successfully and to be considerably com-

putationally faster than DCM, especially when dealing with sparse and high-dimensional vectors.

Another approach to handle high dimensionality is feature selection, which aims at finding the most

relevant feature subset from high-dimensional feature space based on certain evaluation criteria

[15–17]. Thus, feature selection helps in improving the statistical model structure and overcoming

several issues that may be caused by the high dimensionality of the feature space such as over-fitting,

low efficiency, and poor performance [18–20]. This thesis is motivated by the growing demand to

handle high-dimensional and sparse frequency vectors that appear in many real-life applications.

1.1 Contributions

The goal of this thesis is to propose several novel approaches for high-dimensional sparse count

data clustering and classification based on various mixture models frameworks. The contributions

of this thesis are listed as the following:

+ An MML Criterion to Determine the Number of Components in EDCM Mixture

we develop an MML criterion to determine the number of components in EDCM mixture

as an efficient unsupervised learning algorithm for clustering high-dimensional and sparse

count data. This work is an extended version of our earlier work [21], as we further extend

the proposed approach to different challenging count data clustering tasks. Based on the

EDCM mixture and the MML criterion, we proposed a probabilistic model for online docu-

ment clustering with application to the topic novelty detection, which can be viewed as one

of the significant contributions of this paper. The other contribution concerns proposing a
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distance-based agglomerative clustering approach for hierarchical image categorization using

a mixture of EDCMs. This work is published in Applied Intelligence journal [22].

+ A Novel Scaled Dirichlet-based Statistical Framework for Count Data Modeling

we propose a novel statistical framework, which is the composition of the scaled Dirichlet

distribution and the multinomial. We initially proposed the model in [23], and we called it

the Multinomial Scaled-Dirichlet (MSD). In addition, we derive a new distribution that is a

close approximation to the MSD as a member of the exponential family of distributions that

we called (EMSD). Then, for determining the number of components in the EMSD mixture,

we develop a Minimum Message Length (MML) criterion. By means of some challenging

applications, we show that both MSD and EMSD are better suited than the multinomial and

DCM for modeling count data. This work is published in Pattern Recognition journal [24].

+ Hybrid Generative/Discriminative Approaches Based on Mixture Models

we propose a hybrid model devoted to the applications in which count data representations are

involved. Several well-motivated SVM kernels have been developed based on MSD/EMSD

mixture models. In particular, we develop a Fisher kernel between two MSD/EMSD distribu-

tions and closed-form expressions of different information-divergence based kernels, namely,

Kullback–Leibler kernel, Reńyi kernel, and Jensen–Shannon kernel. This work is published

in Applied Intelligence journal [25].

+ Approximating MBL as a Member of the Exponential-Family for High-Dimensional

Count Data Clustering

we propose an exponential approximation to the Multinomial Beta-Liouville (MBL) that im-

proves its performance and computation complexity. Moreover, we propose a learning ap-

proach that is robust in terms of initialization and simultaneously deals with fitting the mixture

model to the observed data and selecting the optimal number of components, which makes

it efficient for large datasets. Furthermore, we build new probabilistic kernels based on in-

formation divergences and Fisher scores from the proposed mixture of EMBL for Support

Vector Machines (SVMs) as a powerful hybrid learning approach. This work in under review

by the Information Sciences journal [26].
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+ An Exponential Approximation to Generalized Dirichlet Multinomial Distributions

we derive a new distribution that is a close approximation to the GDM as a member of the

exponential family of distributions that we called EGDM. Furthermore, we developed a clus-

tering framework via a mixture of EGDMs. For learning the parameters of an EGDM mixture,

we propose the use of the Deterministic Annealing Expectation-Maximization (DAEM) algo-

rithm to avoid the initialization dependency problem of the standard EM. Based on the EGDM

mixture and the MML criterion, we proposed a probabilistic model for different challenging

clustering tasks that involve high-dimensional sparse count data. This work is under review

by IEEE Transactions on Neural Networks and Learning Systems [27].

+ A Novel MM Framework for Simultaneous Feature Selection and Clustering of High-

Dimensional Count Data

we propose a probabilistic feature selection approach that considers discrete random variables

modeled by a finite mixture of GDM distributions. Moreover, we derive a minorization-

maximization (MM) algorithm for estimating the proposed mixture with feature saliencies

where the surrogate function is much simpler than the log-likelihood, and thus the M step

can be solved analytically. For clustering, we propose an unsupervised learning approach that

simultaneously deals with fitting the mixture model to the observed data and selecting the

optimal number of components. We validate the proposed model via challenging clustering

problems that involve multimedia data with high-dimensional discrete feature spaces. This

work is under review by IEEE Transactions on Cybernetics [28].

1.2 Thesis Overview

The organization of this thesis is as follows:

• Chapter 1 introduces the background knowledge regarding finite mixture models for count

data and provides an overview of the thesis.

• In Chapter 2, we propose the use of Minimum Message Length (MML) criterion for deter-

mining the number of components that best describes the data with a finite EDCM mixture
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model. Parameters estimation is based on the previously proposed Deterministic Annealing

Expectation- Maximization (DAEM) approach. The validation of the proposed unsupervised

algorithm involves different real applications: text document modeling, topic novelty detec-

tion, and hierarchical image classification.

• In Chapter 3, we propose a novel model called the Multinomial Scaled Dirichlet (MSD)

distribution that is the composition of the scaled Dirichlet distribution and the multinomial.

Moreover, to improve the computation efficiency in high-dimensional spaces, we propose to

approximate the MSD as a member of the exponential family. The performance evaluation of

the proposed models is conducted through a set of extensive empirical experiments on chal-

lenging applications, namely; text classification, facial expression recognition, and texture

images clustering.

• In Chapter 4, we combine the advantages and desirable properties of generative models, i.e.,

finite mixture, and the Support Vector Machines (SVMs) as powerful discriminative tech-

niques for modeling count data. In particular, we select accurate kernels generated from mix-

tures of Multinomial Scaled Dirichlet distribution and its exponential approximation (EMSD)

for support vector machines. We demonstrate the effectiveness and the merits of the proposed

framework through challenging real-world applications, namely; object recognition and vi-

sual scenes classification.

• In Chapter 5, we propose a mixture model for high-dimensional count data clustering based on

an exponential-family approximation of the Multinomial Beta-Liouville distribution, which

we call EMBL. We deal simultaneously with the problems of fitting the model to observed

data and selecting the number of components. The learning algorithm automatically selects

the optimal number of components and avoids several drawbacks of the standard Expectation-

Maximization algorithm, including the sensitivity to initialization and possible convergence

to the boundary of the parameter space. We demonstrate the effectiveness and robustness of

the proposed clustering approach through a set of extensive empirical experiments that in-

volve challenging real-world applications such as sentiment analysis, shape categorization,
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and human iterations in movies and TV shows. Moreover, we proposed a hybrid genera-

tive/discriminative learning approach based on the mixture of MBL/EMBL and validated it

for distinguishing male and female faces.

• In Chapter 6, we derive a new family of distributions that approximates the GDM distribu-

tions, and we call it (EGDM). A mixture model is developed based on the new exponential

family of distributions, and its parameters are learned through the Deterministic Annealing

Expectation-Maximization (DAEM) approach as a new clustering algorithm for count data.

Moreover, we propose the use of the Minimum Message Length (MML) criterion for select-

ing the optimal number of components to describe the data with a finite EGDM mixture model

best. A set of empirical experiments, which concern text documents modeling, natural scenes

categorization, and human action recognition, have been conducted to evaluate the proposed

approach performance.

• In Chapter 7, we propose a probabilistic approach for count data based on the concept of

feature saliency in the context of mixture-based clustering using the generalized Dirichlet

multinomial (GDM) distribution. By minimizing the message length, the saliency of irrel-

evant features is driven toward zero, which corresponds to performing feature and model

selection simultaneously. Through a set of challenging applications, it is demonstrated that

the developed approach performs effectively in selecting both the optimal number of clusters

and the most relevant features and, thus, improve the clustering performance considerably

in different real-world applications including hate speech detection, face identification, race

recognition, and age estimation.

• In Chapter 8, we conclude the thesis by highlighting the main findings, summarizing our

contributions, and presenting some promising future research directions.
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Chapter 2
Model Selection and Application to

High-dimensional Count Data Clustering

via Finite EDCM Mixture Models

EDCM, the Exponential-family approximation to the Dirichlet Compound Multinomial (DCM),

proposed by Elkan [12], is an efficient statistical model for high-dimensional and sparse count data.

EDCM models take into account the burstiness phenomenon correctly while being many times faster

than DCM. This work proposes the use of the Minimum Message Length (MML) criterion for deter-

mining the number of components that best describes the data with a finite EDCM mixture model.

Parameters estimation is based on the previously proposed Deterministic Annealing Expectation-

Maximization (DAEM) approach. The validation of the proposed unsupervised algorithm involves

different real applications: text document modeling, topic novelty detection, and hierarchical im-

age classification. A comparison with results obtained for other information-theory based selection

criteria is provided.

2.1 Introduction

In data analysis and pattern recognition, a challenging task is clustering, the process of discover-

ing the natural grouping of a set of objects, and assigning observations sharing similar characteristics

7



to subgroups [29]. Numerous scientific fields and applications have utilized clustering techniques

with different algorithms. Consider for instance, image segmentation and other computer vision

tasks [30, 31], documents that can be clustered to generate topical hierarchies for efficient informa-

tion access [32, 33], or retrieval [34]. For applications where time plays an increasingly essential

role, treating the new coming data as soon as it arrives in a temporal sequence is an important issue

to satisfy the users’ needs [35, 36]. Online clustering, also called incremental clustering, is a de-

manding unsupervised learning task that needs to be done in an online setting. Topic detection and

tracking [37, 38], dynamic image databases summarization [36], and object recognition in video

[39], are few examples for online clustering applications.

Statistical-based approaches are powerful and widely used in generative learning processes to

abstract the complexity of a huge amount of information. One major approach based on statistics

is finite mixture models that permit a formal approach for unsupervised learning [1]. They are

used to model data sampled from a finite number of homogeneous subpopulations, where the whole

model is formed by a weighted sum of the subgroups densities [2, 3]. Due to their flexibility,

mixture models are adopted in many applications, including, but not limited to, image processing

and computer vision [4], social networks [5], and recommending systems [6]. An essential issue in

mixture modeling is selecting the optimal number of components that best describes and represent

the data [40, 41]. For instance, given a set of documents, users have to browse the whole document

collection in order to estimate the number of topics K, which is not only time consuming but also

unrealistic, especially when dealing with large datasets. Furthermore, an improper estimation of

K might easily mislead the clustering process as using a bigger or a smaller number of clusters

ultimately degrades clustering accuracy [42].

On the other hand, classes that are represented by different modes in the mixture are indeed

generalizations of each other and can be considered as sub-clusters of the main cluster in many

domains [35, 43]. Thus, hierarchical clustering is one of the most frequently used schemes in

unsupervised learning to represent the underlying application domain naturally. Given a set of

data points that are sampled from a mixture of distributions, the clustering output is a binary tree

(dendrogram) that organizes the clusters hierarchically, where this hierarchy agrees with the intuitive

organization of real-world data [44, 45]. Hierarchical trees provide a view of the data at different
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levels of abstraction, which allows flat partitions of different granularity to be extracted during

data analysis, making them ideal for interactive exploration and visualization [45]. The problem

of hierarchical mixture modeling has been addressed in the literature either in divisive (top-down)

mode [46, 47], or agglomerative (bottom-up) mode [48] based on probabilistic distances [49, 50],

or interclass correlations [51].

In this paper, we develop an MML criterion to determine the number of components in the

EDCM mixture as an efficient unsupervised learning algorithm for clustering high-dimensional and

sparse count data. This paper is an extended version of our earlier work [21], in which we evaluated

the efficiency of the proposed approach in determining the number of topics within a document

collection. Here, we further extend the work to different challenging clustering tasks that involve

high dimensional count data. Based on the EDCM mixture and the MML criterion, we propose

a probabilistic model for online document clustering with application to topic novelty detection,

which can be viewed as one of the major contributions of this paper. The other contribution concerns

proposing a distance-based agglomerative clustering approach for hierarchical image classification

using a mixture of EDCMs.

The rest of the article is organized as follows. Section 2.2 discusses previous relevant works.

In Section 3, we review the EDCM mixture model and the estimation of its parameters. In Section

2.3, we review EDCM mixture model and its parameters estimation. The MML expression for

the EDCM mixture, as well as the complete algorithm for estimation and selection, are detailed in

Section 2.4. Section 2.5 presents and discusses the clustering applications experiments and results.

Section 2.6 ends the paper with some concluding remarks.

2.2 Related Works

Clustering methods can be categorized based on whether the number of clusters is required as

the input parameter. If the number of clusters is predefined, many algorithms based on the proba-

bilistic finite mixture model have been provided in the literature, including the multinomial mixture

model that applies the EM algorithm for document clustering, for instance, assuming that docu-

ment topics follow multinomial distribution [52]. Deterministic annealing procedures are proposed

9



to allow this algorithm to find better local optima of the likelihood function [53]. The multino-

mial distribution is often used to model text document, and it makes a naive Bayes independence

assumption, i.e., each word of the document is generated independently from the others, which is

not valid for word emissions in the natural text where words tend to appear in bursts [7, 54]. An

alternative approach for modeling term frequencies is hierarchical Bayesian modeling that intro-

duces the Dirichlet distribution as a prior to the Multinomial, which results in Dirichlet Compound

Multinomial (DCM) [9]. The hierarchical approach of DCM considers the count vector to be gen-

erated by a multinomial distribution whose parameters are generated by the Dirichlet distribution.

This composition that is based mainly on the fact that the Dirichlet is a conjugate to the multino-

mial offers numerous computational advantages [55]. The experiment by Madsen et al. [9] showed

that the performance of DCM was comparable to that obtained with multiple heuristic changes to

the multinomial model. However, the DCM model lacks intuitiveness, and the parameters in that

model cannot be estimated quickly. Elkan [12] derived the EDCM distribution, which belongs to

the exponential family, which is a good approximation to the DCM distribution. The EM algorithm

with the EDCM distributions has shown to attain high clustering accuracy while being much faster

than the corresponding algorithm with DCM distributions proposed in [9]. In recent years, the EM

algorithm with EDCM distribution is the most competitive algorithm for document clustering in

case the number of clusters is predefined.

If the number of clusters K is unknown before the clustering process, one solution is to esti-

mate K first and use this estimation as the input parameter for those document clustering algorithms

requiring K predefined. Several other approaches have been proposed in the literature to find the

optimal number of clusters K. The most straightforward method is the likelihood cross-validation

technique, which trains the model with different values of K and picks the one with the highest like-

lihood. Another approach is to assign a prior to K and then calculate the posterior distribution of K

to determine its value, where the methods can be generally classified, from a computational point of

view, into deterministic and stochastic methods. Since the stochastic schemes are computationally

demanding, the majority of the used approaches are deterministic [3]. Examples of deterministic

methods based on information/coding theory concept include Minimum Message Length (MML)

[1, 56], Akaike’s Information Criterion (AIC) [57], Minimum Description Length (MDL) [58],
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Mixture MDL (MMDL) [1]. MML is a statistically consistent and efficient technique and its imple-

mentation as a model selection criterion has shown to give good results with mixtures models (for

instance; with mixture of Gaussians [40], Poisson and von Mises circular distributions [41], and re-

cently with mixture of Dirichlet distributions [59] and mixture of generalized Dirichlet distributions

[60]).

2.3 Finite EDCM Mixture Model

In this section, we shall first summarize the hierarchical Bayesian model called Dirichlet Com-

pound Multinomial (DCM), which is a composition of the multinomial and Dirichlet distributions.

Moreover, we discuss the close approximation to the DCM that has been derived as a member of the

exponential family of distributions by Elkan [12] called EDCM. Then, we present the deterministic

annealing expectation-maximization algorithm for learning a mixture of EDCMs.

2.3.1 The Dirichlet Compound Multinomial (DCM) Distribution

Define X = (x1, . . . , xW ) as a sparse vector of counts representing a document, or an image,

where xw is the frequency of the word, or visual word, w. Then, the probability of X that it follows

a multinomial distribution with parameters α = (α1, . . . , αW ), is given by:

M(X|α) =
n!

W∏
w=1

xw!

W∏
w=1

αxww (2.1)

where W is the size of the vocabulary, and n =
∑W

w=1 xw.

Several limitations and technical problems associated with the multinomial assumption have

been discussed in the literature [9, 61]. Consider, for example, the in-dependency assumption, i.e.,

each word of the document is generated independently from every other, which is not valid for word

emissions in natural text with burstiness phenomenon, once a word appears in a document it is much

more likely to appear again [7, 54]. An appropriate and efficient solution to address this issue is the

hierarchical Bayesian modeling approach that introduces the prior information into the construction

of the statistical model. Generally, the natural conjugate prior to the multinomial assumption is the
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Dirichlet distribution with a set of parameters ϕ = (ϕ1, . . . , ϕW ), defined as [62]:

D(α|ϕ) =
Γ(s)

W∏
w=1

Γ(ϕw)

W∏
w=1

αϕw−1
w (2.2)

where s =
∑W

w=1 ϕw is the sum of the parameters. Then, the Dirichlet Compound Multinomial

(DCM) is the marginal distribution given by the integration over all possible Multinomials [9]:

DCM(X|ϕ) =

∫
α
M(X|α)D(α|ϕ)dα

=
n!

W∏
w=1

(xw)!

Γ(s)

Γ(
W∑
w=1

xw + ϕw)

W∏
w=1

Γ(xw + ϕw)

Γ(ϕw)
(2.3)

where n =
∑W

w=1 xw is the document length.

We can note that compared to the multinomial, the DCM has one extra degree of freedom, since

its parameters are not restricted to satisfy the unit-sum constraint, which makes it more practical

[61, 63]. However, DCM parameters cannot be estimated quickly in high-dimensional spaces [64].

2.3.2 The Exponential-family Approximation to DCM (EDCM)

Considering the sparsity nature of the datasets represented as bag-of-words, or bag-of-visual-

words, a close approximation to the DCM has been derived as a member of the exponential family

of distributions by Elkan that was called EDCM [12]. In such approximation, only non-zero word

counts xw are used for computation efficiency, given that most words do not appear in most docu-

ments. That is, we retain only the sufficient statistic for the purpose of estimating the parameters

[65]. The EDCM, as an approximation to DCM, can be written as [12]:

EDCM(X|ϕ) = n!
Γ(s)

Γ(s+ n)

∏
w:xw≥1

ϕw
xw

(2.4)

This form makes it clear how EDCM allows multiple appearances of the same word to have

high probability. That is, the first appearance of a word w reduces the probability of a document by

ϕw � 1, while mth appearance of any word reduces the probability by (m − 1)/m which tends
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to 1 as m increases. Moreover, it distinguishes between word types and word tokens, as modeling

both frequencies is beneficial for capturing the statistical properties of natural languages [66].

As the EDCM distribution is a member of the exponential family of distributions, its density

can be written in the following form [14, 67]:

q(X|θ) = H(X)Φ(θ) exp{G(θ).T (X)} (2.5)

where T (X) = (T1(X), . . . , TW (X)) is a vector of sufficient statistics and G(θ) is the vector of

natural parameters [65]. Thus, re-writing Eq.(2.4) as an exponential density gives:

q(X|ϕ) =

( ∏
w:xw≥1

x−1
w

)
n!

Γ(s)

Γ(s+ n)
exp

[ W∑
w=1

I(xw ≥ 1) logϕw

]

where I(xw ≥ 1) is an indicator equals to 1 if the word w appears at least once in a vector X , and

0 otherwise.

2.3.3 EDCM Mixture Model Learning

Given a documents collection X with N independent documents {X1, . . . ,XN}, an EDCM

mixture with M components, different topics, is defined as:

P (X|Θ) =
M∑
j=1

EDCM(X|ϕj) µj (2.6)

where (0 < µj < 1 and
∑M

j=1 µj = 1) are the mixing proportions. In this case, X represents

a set of observed variables, and Θ = (ϕ1, . . . , ϕM , µ1, . . . , µM ) denotes the set of all latent

variables and parameters. In this case, the complete data are considered to be {X ,Z|Θ}, where

Z = {Z1, . . . ,ZM} denotes the missing group-indicator vectors for data elements in the jth cluster.

The value of zij is equal to one if the observation Xi is generated by the cluster j and zero otherwise.

Thus, the complete data log-likelihood corresponding to a M -component mixture is given by:

L(X ,Z|Θ) =

N∑
i=1

M∑
j=1

zij log(P (Xi|ϕj) µj) (2.7)
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Learning mixture models is possible through the Expectation Maximization (EM) algorithm

[65, 68], which produces a sequence of estimates {Θ(c), c = 1, 2, . . . }. For learning a mixture of

EDCM distributions, Elkan [12] suggested using the deterministic annealing procedure that allows

EM to avoid initialization dependency and poor local maxima [53]. Some interesting justifications

about using the deterministic annealing procedure can be found in [12, 53].

In that procedure, three phases are considered where each phase runs EM until convergence.

The temperature parameter T has been set to T = 25, T = 5,, and lastly T = 1, where the final Θ

parameters in each phase are used as initial values in the next one. According to Elkan [12], slower

annealing schedules provide no significant additional benefit in the case of EDCM. When applying

the deterministic annealing procedure, the posterior probabilities will be computed in the E-step as:

z
(c)
ij =

(
P (Xi|ϕ(c)

j ) µ
(c)
j

)τ
M∑
j=1

(
P (Xi|ϕ(c)

j ) µ
(c)
j

)τ (2.8)

where τ = 1
T . In the M-step, the parameters estimates will be updated according to:

Θ̂(c+1) = arg max
Θ
L(X ,Z|Θ,Θ(c), T ) (2.9)

when maximizing (2.9), we obtain:

µ
(c+1)
j =

1

N

N∑
i=1

z
(c)
ij (2.10)

The weighted maximum-likelihood parameter vector in the case of EDCM can be obtained easily,

as shown in [12]. Each ϕw for a component j can be computed using:

ϕ
(c+1)
jw =

∑N
i=1 z

(c)
ij I(xiw ≥ 1)∑N

i=1 z
(c)
ij Ψ(s

(c)
j + ni)−D Ψ(s

(c)
j )

(2.11)

where D =
∑N

i=1 z
(c)
ij , and Ψ is the digamma function.
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2.4 The MML Criterion for EDCM Mixture

In this section, we determine the message length expression for the EDCM mixture and give

the complete algorithm of estimation and selection. Minimum Message Length (MML) is an

invariant point estimation that can be interpreted as it variously states that the best conclusion

from data is the theory with the highest posterior probability [41]. Let D be the data and H be

an hypothesis (or theory) with prior probability Pr(H), MML information-theoretical interpre-

tation is that an event of probability p can be coded by a message of length l = − log2 p bits

according to elementary coding theory. Hence, since we know that − log2(Pr(H).P r(D|H)) =

− log2(Pr(H)) − log2(Pr(D|H)), maximizing the posterior probability Pr(H|D), is equivalent

to minimizing the length of the two-part message [41, 69]:

Messlen = − log2(Pr(H))− log2(Pr(D|H))

MML, as a model selection criterion, has shown to give good results with mixture modeling.

From the information theory point of view, this selection criterion approach is based on evaluating

statistical models according to their ability to compress a message containing the data, where high

compression is obtained by forming good models of data to be coded [70]. For each model in the

model space, the message includes two parts. The first part encodes the model using only prior

information about the model and no information about the data. The second part encodes only the

data in a way that makes use of the model encoded in the first part [69].

Let X = {X1, . . . ,XN} a set of data controlled by a mixture of EDCM distributions with

parameters Θ = (θ1, . . . , θM ), where M is the number of clusters and θj is the parameter vector

of the jth component. According to information theory, the optimal number of clusters M is the

candidate value, which minimizes the amount of information, measured in nats using the natural

logarithm, to transmit X efficiently from a sender to a receiver [71]. For a mixture of distributions

with Np free parameters to be estimated, which is M(W + 1) − 1 in case of EDCM mixture, the
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formula for the message length is given by [40, 41]:

MessLength ' − log(h(Θ))− log(P (X|Θ))

+
1

2
log(|F (Θ)|) +

Np

2
(1 + log(kNp)) (2.12)

where h(Θ) is the prior probability, P (X|Θ) is the likelihood for the complete dataset, |F (Θ)| is the

determinant of the expected Fisher information matrix, and kNp is the optimal quantization lattice

constant for RNp [72]. When Np = 1 the value of k1 = 1/12 ' 0.083, and as Np grows, kNp tends

to the asymptotic value given by 1
2πe ' 0.05855 which can be approximated by 1

12 [41].

The following sections show the detailed calculations for the determinant of Fisher information|F (Θ)|,

and the prior probability density function h(Θ) for a mixture of EDCM.

2.4.1 Fisher Information for a Mixture of EDCM Distributions

Fisher information is defined as the determinant of the Hessian matrix of minus the log-likelihood

of the mixture [41]. In the case of the EDCM mixture, the complete-data Fisher information matrix

has a block-diagonal structure. We assume that ϕ and µ are independent as the prior information

about one would usually not be greatly influenced by the other. Moreover, the components of ϕ

are also assumed to be independent. Thus, the complete-data Fisher information determinant is

given as the product of the determinant of the Fisher information of ϕj for each component and the

determinant of the Fisher information of mixing parameters vector µ [1, 40], as follows:

|F (Θ)| ' |F (µ)|
M∏
j=1

|F (ϕj)| (2.13)

Given that the mixing proportions satisfy the requirement
∑M

j=1 µj = 1, it is possible to con-

sider its Fisher information as a series of trails, and each has M possible outcomes. In this case,

the number of trails of the jth cluster is a multinomial distribution with parameters (µ1, . . . , µM ).
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Hence, the determinant of the Fisher information of the mixing parameters vector is [40]:

|F (µ)| = N
M∏
j=1

µj

(2.14)

where N is the number of documents.

The Fisher information matrix in case of a mixture model can be computed after the data vectors

have been assigned to their respective clusters, as proposed in [1]. Let Xj = {Xl, . . . ,Xl+ηj−1} be

the data elements in the jth cluster where l ≤ N and ηj the number of the observations generated by

the jth mixture component with parameters ϕj . The negative of the log-likelihood function given

the vector ϕj = (ϕ1, . . . , ϕW ) and sj =
∑W

w=1 ϕjw of a single EDCM distribution is −L(Xj |ϕj).

Thus, we can show that log(|F (Θ)|) in case of finite EDCM mixture model is given by (see Ap-

pendix 1):

log(|F (Θ)|) ' log(N)−
M∑
j=1

log(πj) +
M∑
j=1

log

(
|1 +

(
ηj(−Ψ′(sj)) +

l+ηj−1∑
d=l

Ψ′(sj + nd)

)

×
W∑
w=1

1
l+ηj−1∑
d=l

I(xdw ≥ 1) 1
ϕ2
jw

|

)
+

M∑
j=1

W∑
w=1

log
(l+ηj−1∑

d=l

I(xdw ≥ 1)
1

ϕ2
jw

)
(2.15)

2.4.2 Prior Distribution h(Θ) for EDCM

The capability of the MML criterion is controlled by the choice of prior distribution h(Θ) for

the parameters of EDCM. In case of mixture models, we make a general assumption that the pa-

rameters of the different components as a prior are independent from the mixing probabilities, and

the components of h(ϕj) are independent as well [73], that is:

h(Θ) = h(µ)

M∏
j=1

h(ϕj) = h(µ)

M∏
j=1

W∏
w=1

h(ϕjw) (2.16)

Knowing that the vector µ is defined on the simplex {(µ1, . . . , µM ) :
∑M

j=1 µj = 1}, then the

Dirichlet distribution is a natural choice as a prior for the mixing probabilities. The choice of a
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constant Dirichlet parameters (a vector of ones) gives a uniform prior as follows [40, 41]:

h(µ) = Γ(M) = (M − 1)! (2.17)

For calculating h(ϕj) and in the absence of other knowledge about the ϕjw, w = 1, . . . ,W , we

assume that h(ϕjw) is locally uniform over the range [0, e6 |ϕ̂j |
ϕjw

] where ϕ̂j is the estimated vector.

We choose to use a simple uniform prior, which is known to give good results, in accordance with

Ockham’s razor [74], as:

h(ϕjw) =
e−6ϕjw
|ϕ̂j |

(2.18)

Thus, substituting Eq.(2.18) and Eq.(2.17) into Eq.(2.16), and taking the log we obtain:

log(h(Θ)) =
M∑
j=1

log(j)− 6MW −W
M∑
j=1

log(|ϕ̂j |) +
M∑
j=1

W∑
w=1

log(ϕjw) (2.19)

The expression of MML for a finite mixture of EDCM distributions, given a candidate value for

M , is then obtained by substituting Eq.(2.19) and Eq.(2.15) into Eq.(2.12).

2.4.3 Algorithm for EDCM Mixture Estimation and Selection

In this section, we summarize the algorithm for estimating the EDCM mixture parameters and

selecting the optimal number of consistent components which best describe the data. The input to

this algorithm is a dataset X with N observations each is a W -dimensional count vector represent-

ing a document, or an image. Its output is the number of components and estimated parameters.

The estimation of the parameters is usually based on the minimization of the MML. However, for

estimation, the mixture parameters the Maximum Likelihood approach is very similar to the MML

estimates [40]. Note that the initialization of the EDCM mixture parameters can be done using the

method of moments equations of DCM given in [75], or with random values.

The complete algorithm for estimation and selection is, thus, summarized is Algorithm 1.
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Algorithm 1: Model selection for EDCM mixture model.
Output: Optimal number of components M∗, best model parameters Θ∗

Input: W -dimensional dataset with N vectors X = {X1, . . . ,XN}, and a set of
candidates M = (Mmin, . . . ,Mmax)

1 Initialization of Θ(0), Set τ ← τmin(τmin � 1).;
2 for Mmin ≤M ≤Mmax do
3 while τ ≤ 1 do
4 Iterate the two following steps until convergence: ;

5 E-step: Compute the posterior probabilities z(c)
ij using (2.8) ;

6 M-step: Update the mixing weights µ(c)
j using (2.10);

7 Update the EDCM parameter ϕ(c)
j using (2.11);

8 Use next temperature parameter (τ ← τ × const) ;
9 end

10 Calculate the associated MML criterion MessLength(M) using (2.12);
11 end
12 Select the optimal M∗ such that: M∗ = arg minM MessLength(M)

2.5 Experimental Results

Information explosion is not only creating large amounts of data but also a diverse format of

data. For instance, social media platforms offer many possibilities of data formats, including tex-

tual data, pictures, videos, sounds, and geolocations. Analyzing different types of data can help

in gaining insights into issues, trends, influential actors, and other kinds of information. Several

tasks of text classification, for instance, have been studied, including detecting discussed topics in

news collection, filtering spam emails, and classifying the sentiment typically in product or movie

reviews. Moreover, social media analysis will be affected by the inevitable changes in peoples’

tastes, population changes, and many other influences, which makes it important to consider the

model capability of coping with the evolution of these data streams. On the other hand, categorizing

image databases is very important because it simplifies the task of retrieval by restricting the search

for similar images to a smaller domain of the database. Indeed, summarizing the database is very

efficient for browsing as knowing the categories of images in a given database allows the user to

find the images they are looking for more quickly.

In this section, we demonstrate the effectiveness of the proposed approach via three interesting

applications. The first application concerns text classification, the second one involves the detection
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of topic novelty, and in the third application, we focus on the problem of image categorization. In

our implementations, we have set τmin to 0.04 and const = 5, which have been found to be reason-

able choices according to [12]. The experiments aim at comparing three count data model-based

clustering approaches, namely, the Multinomial mixture (MM), Dirichlet Compound Multinomial

(DCM) mixture, to the EDCM. The results that we will present in the following represent the av-

erage over 100 runs with different random initialization. Moreover, we compare the results from

the MML approach with those obtained for the same EDCM model using other information-theory

based techniques.

2.5.1 Text Documents Modeling

Text categorization techniques are essential for classifying new documents and finding inter-

esting information contained within several on-line websites. The applications of text modeling

include a number of tasks such as document organization and browsing, corpus summarization, and

document classification [76]. The goal of this first application is to investigate the performance of

EDCM mixture with MML as a model selection criterion for modeling high dimensional and sparse

textual data. The methods that we compare the MML to are: Akaike’s Information Criterion (AIC)

given by [57]:

AIC(M) = − log(P (X|Θ)) +
Np

2
(2.20)

Minimum Description Length (MDL) given by [58]:

MDL(M) = − log(P (X|Θ)) +
1

2
Np log(N) (2.21)

Mixture MDL (MMDL) given by [1]:

MMDL(M) = − log(P (X|Θ)) +
1

2
Np log(N) +

c

2

M∑
j=1

log(µj) (2.22)

where c is the number of parameters describing each component, equal to (W + 1) in the case

of EDCM. The model selected by each method is usually determined according to the candidate

number of classes M that yields the minimum value of message length. For our experiments, we
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use text datasets that have been considered in the past (see [11, 77]), namely Reuters-10 1, NIPS 2,

WebKB4 and 7Sectors 3.

Reuters-10 is a subset of the well-known corpus Reuters-21578, which is composed of 135

classes with a vocabulary of 15, 996 words. The documents in this dataset are multi labeled, as

they may belong to 0, 1, or many categories. We consider a subset which is composed of the

10 categories having the highest number of class members (6, 775 and 2, 258 training and testing

documents, respectively). Since stop words have already been removed in these collections, we

are not removing any additional words. NIPS collection contains the OCRed text of all papers

published in the 2002 and 2003 NIPS proceedings. This collection has 391 documents in 9 different

topics and characterized by 6, 871 words. Papers that are less than 700 words long were eliminated,

and stop words were removed. WebKB4 dataset is a subset of the WebKB dataset containing 4, 199

Web pages gathered from computer science departments of various universities. The considered

subset is limited to the four most common categories: Course, Faculty, Project, and Student. The

7sectors dataset consists of 4, 581 HTML articles in hierarchical order. We considered the initial

parent class label to have the documents partitioned into 7 classes. The first step in our preprocessing

is removing all stop and rare words from the vocabularies. Then, we perform the feature selection

using the Rainbow package [78]. Then, each web page is represented as a vector containing the

frequency of occurrence of each word from the term vector. Some statistical properties of the used

datasets are summarized in Table (2.1).

Table 2.1: Summarized text datasets properties (N : number of documents, nd: average document
length, W : vocabulary size, M : true number of classes)

Dataset N nd W M

Reuters-10 9, 033 193.3 19, 119 10

NIPS 391 1332.4 6, 871 9

WebKB4 4199 49.7 7, 786 4

7sectors 4, 581 433.2 4, 500 7

1http://kdd.ics.uci.edu/databases/reuters21578
2https://cs.nyu.edu/˜roweis/data.html
3http://www.cs.cmu.edu/˜webkb
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Table 2.2: Clustering results of text datasets (average± slandered error) using a mixture of EDCMs.

Dataset Model Accuracy Precision Recall Mutual info.

Reuters-10 EDCM 88.63± 0.01 69.36± 0.08 80.72± 0.07 0.7820± 0.04

DCM 83.44± 0.02 74.84± 0.05 90.56± 0.02 0.7511± 0.02

MM 81.52± 0.03 72.31± 0.04 82.11± 0.02 0.7354± 0.06

NIPS EDCM 90.28± 0.03 87.14± 0.02 97.70± 0.03 0.8406± 0.05

DCM 74.11± 0.04 72.58± 0.07 83.96± 0.03 0.8406± 0.07

MM 69.34± 0.17 65.45± 0.74 75.31± 0.33 79.33± 0.16

WebKB4 EDCM 84.31± 0.02 84.66± 0.06 84.50± 0.02 0.7794± 0.03

DCM 82.74± 0.06 83.72± .021 93.56± 0.02 0.7651± 0.02

MM 81.16± 0.41 81.20± 0.44 82.65± 0.50 0.7367± 0.35

7sectors EDCM 91.41± 0.05 84.79± 0.02 93.75± 0.04 0.8321± 0.07

DCM 84.77± 0.09 81.26± 0.05 89.33± 0.04 0.8792± 0.06

MM 75.33± 0.02 80.54± 0.02 82.78± 0.02 0.7877± 0.05

The performance of the compared generative models is evaluated using the average classifica-

tion accuracy, precision and recall averaged at macro level. We have also considered the Mutual

Information [12, 65]. Let mi be the number of documents assigned to class i, and nj the number of

documents with prespecified label j, and cij the number of documents in class i but misclassified

and assigned to class j. With N total documents, define pi = mi/N , qj = nj/N , and rij = cij/N .

The MI is then given by:

MI =
∑
i

∑
j

rij log
rij
piqj

(2.23)

According to Table (2.2), the results achieved using the EDCM for document clustering suggest

an outstanding performance based on the four tested datasets. For the Reuters-10 dataset, EDCM

outperforms other models with an accuracy of 88.63% compared to 81.52% for MM and 83.44%

for DCM. The average accuracy for classifying NIPS using EDCM is 90.28%, which is significantly

better than the previously reported results using MM or DCM, given that NIPS document collection

has relatively longer documents than the other used datasets. For the WebKB4 collection, the aver-

age accuracies achieved are 81.16% and 82.74% (mean plus/minus standard error) by multinomial

mixtures and DCM, respectively, and by EDCM is 84.31%. EDCM, once again, outperforms the

other tested models for 7sectors datasets with an average accuracy of 91.41%. All differences are

statistically significant, as shown by a Student’s t-test. Moreover, according to mutual information
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reported in Table (2.2), it is clear that EDCM outperforms the other two models (i.e., a Student’s

t-test shows that the differences in MI between the EDCM, DCM and MM models are statistically

significant). The mutual information gained by classifying the Reuters-10 dataset, for example, us-

ing EDCM is 0.7820, which is statistically significantly superior to the 0.7511 and 0.7354 by the

DCM and MM, respectively.

Fig. (2.1a-2.1d) show the number of clusters found by different selection criteria for Reuters-10,

NIPS, WebKB4, and 7sectors datasets, respectively. It is clear that the values of the MML criterion

each time agrees with the true number of classes. The number of classes found using MML, MDL,

and MMDL with NIPS documents collection is M = 9 also agrees with the prespecified number

of classes. Moreover, we can see that MML and MMDL found M = 7 and M = 10, which

corresponds to the true number of classes for the 7sectors and Reuters datasets, respectively. For

WebKB4, the AIC, MDL, and MMDL criteria failed to find the correct number of clusters, and only

MML select M = 4 (the true number of classes).

2.5.2 Topic Novelty Detection

2.5.2.1 Online Learning Framework

Novelty detection is an important and challenging task of recognizing that test data differ in

some respect from the data that are available during training [37, 79]. It has gained much re-

search attention in application domains involving large datasets acquired from critical systems such

as intrusions in electronic security systems of credit card or mobile phone fraud detection, video

surveillance, and email and news articles classification. The goal of this application is to apply an

online document clustering algorithm based on the EDCM mixture to identify the “novel” dissim-

ilar objects from a sequence of data to previously seen instances. More precisely, the proposed

probabilistic model is applied to Topic Detection and Tracking (TDT). The intention is to develop a

flexible and accurate online mixture model that correctly identifies the novel topics (detection), and

instances of old topics must be correctly classified (tracking) while letting us choose the optimal

number of model components simultaneously. For online clustering systems, new coming data is
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Figure 2.1: Values of the different model selection criteria for the text datasets.

received in online mode, and the model should be updated accordingly without losing its flexibil-

ity. Thus, an efficient system should be able to make an important decision regarding whether new

classes should be created to represent the new coming data or not.

Formally, assume that at time t we have a dataset X = {X1, . . . ,XN} of N documents which

is represented by an M -component EDCM mixture with parameters Θ
(t)
M . Now, at time t + 1,

a new document XN+1 is presented to the model, and the parameters, thus, should be updated

incrementally considering the new data which might be assigned to already defined topics or it might

be the First Story creating a new cluster. That is, whenever new data is inserted, we find the optimal

number of clusters by running the MML model concurrently for models {Mmin, . . . ,Mmax}, and

select the candidate value M∗ which minimizes the message length. To overcome the problem of

slow computation and complexity resulting from the larger range of clusters number candidates,
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Figure 2.2: Overview of the proposed online framework for topic novelty detection.

we keep all the candidate model fitting with {ΘMmin , . . . ,ΘMmax}. Fig. (2.2) shows the learning

process for both training and updating phases graphically.

For updating the parameters, we use the stochastic ascent gradient parameter updating proposed

in [80]. Naturally, we have to keep the constraints (0 < µ
(t)
j ≤ 1) and

∑M
j=1 µ

(t)
j = 1. In this regard,

new variables π1, . . . , πM−1 belongs to R are considered by introducing the Logit transform,

πj = log
µj
µM

, j = 1, . . . ,M − 1

to ensure the unity of the the mixing proportion µj . The mixing proportion can be updated as

follows:

µ
(t+1)
j =

exp(π
(t+1)
j )

1 +
∑M−1

j=1 exp(π
(t+1)
j )

, j = 1, . . . ,M − 1 (2.24)

µ
(t+1)
M =

1

1 +
∑M−1

j=1 exp(π
(t+1)
j )

(2.25)

such that,

π
(t+1)
j = π

(t)
j + δN (zN+1j − µ(t)

j ),

where δN is a sequence of positive number that decreases to zero chosen to be δN = 1/(N + 1)
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[36, 80], and zN+1j is the posterior probability of the new coming vector given a set of parameters

Θ(t). Moreover, the model parameters ϕj will be updated according to [80]:

ϕ
(t+1)
j = ϕ

(t)
j +

zN+1j

N + 1

∂ log(P (XN+1, ZN+1|ϕ(t)
j ))

∂ϕj
(2.26)

Thus, the complete EDCM mixture updating algorithm for online TDT is as follows:

Algorithm 2: Online learning for EDCM mixture model.

Output: Optimal number of components M∗, updated parameters Θ∗(t+1)

Input: At t, W -dimensional dataset with N vectors
X (t) = {X1, . . . ,XN},Θ(t) = {Θ(t)

Mmin
, . . . ,Θ

(t)
Mmax

}
Input: At t+ 1, new data vector XN+1

1 while Mmin ≤ j ≤Mmax do
2 Compute zN+1j using (2.8), ;
3 Assign XN+1 to cluster which maximizes the posterior probability zN+1j ;
4 Update the weights µ(t+1) using (2.24) and (2.25);

5 Update the parameters ϕ(t+1)
j using using (2.26) ;

6 Calculate the associated MessLength using (2.12);
7 end
8 Select the optimal M∗ such that: M∗ = arg minM MessLength(M)

2.5.2.2 Data, Evaluation Metrics and Results

We illustrate our results on high-dimensional, sparse and challenging real-world datasets, namely,

The Topic Detection and Tracking (TDT2) [81], and 20 Newsgroups 4. In general, the model is built

from a training set that is selected to contain no examples, or very few, of the novel class. In our ex-

periments, we initialize the number of components to Mmax = 40, and run the tested algorithms 10

times for evaluation. Moreover, we evaluated the proposed frameworks for topic novelty detection

problem using typical evaluation criteria that have been used in the context of text clustering.

TDT-2 dataset contains news stories classified into 96 topics and has been collected in 1998

from six sources: two newswires (Associated Press World Stream and New York Times), two ra-

dio programs (Voice of America and Public Radio Internationals The World), and two television

programs (CNN and ABC). This corpus is subdivided into three two-month sets: a training set
4Both datasets are available at: http://www.cad.zju.edu.cn/home/dengcai/Data/TextData
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(Jan-Feb), a development test set (Mar-Apr), and an evaluation set (May-Jun). For preprocessing,

documents that belong to several topics have been removed; thus, only 30 topics were left, resulting

in 9, 394 with a vocabulary size of 36, 771 words and average document length of 184. This dataset

is unbalanced, where some topics have less than 60 documents, while others have over 1, 800 doc-

uments. The 20 Newsgroups contains 18, 828 documents characterized by 61, 298 words with an

average document length of 116. The documents in this corpus are fairly distributed over 20 dif-

ferent topics and were collected from UseNet postings over several months in 1993. The datasets

characteristics are summarized in Table (2.3).

Table 2.3: Summary of datasets characteristics (N : number of documents, nd: average document
length, W : vocabulary size, M : true number of classes)

Dataset N nd W M

TDT2 9, 394 184 36, 771 30
20newsgroups 18, 828 116 61, 298 20

For our experiments, we considered clustering quality and time, which are the natural perfor-

mance measures for online algorithms [82]. We reported the execution time of the online framework

on an Intel(R) Core(TM) i7-6700 Processor PC with the Windows 7 Enterprise Service Pack 1 op-

erating system with a 16 GB main memory. To evaluate the performance, we calculated the F1

(micro-averaged), F1 ∈ (0, 1), measures as follows:

F1(micro− averaged) =
2× Precision×Recall
Precision+Recall

(2.27)

In addition, we calculated normalized mutual information (NMI) criterion [82] in order to measure

how closely the cluster partitioning could reconstruct the underlying label distribution in the data.

For evaluating the performance of topic systems, a standard metric is the cost of detection cdet,

which combines miss (PM ) and false alarm (PFA) errors into a single number [83].

Table (2.4) illustrates the average normalized mutual information (NMI), the average micro F1,

the cost of detect and run time results averaged over 10 runs for the two tested datasets. All re-

sults are shown in the format of (average ± standarderror). The presented results suggest that
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Table 2.4: Performance of different models comparing to online EDCM framework (NMI: nor-
malized mutual information, F1: F score micro-averaged, cdet: cost of detect).

Dataset Model NMI F1 cdet Time

TDT2 EDCM 0.7316± 0.04 0.7011± 0.05 0.0421± 0.01 0.0042

DCM 0.7044± 0.12 0.6805± 0.03 0.0533± 0.04 0.0112

MM 0.6797± 0.05 0.6650± 0.03 0.0687± 0.02 0.0183

20newsgroups EDCM 0.9241± 0.06 0.8524± 0.04 0.0206± 0.06 0.0068

DCM 0.8534± 0.02 0.7518± 0.13 0.0490± 0.05 0.0480

MM 0.7449± 0.05 0.6587± 0.06 0.0563± 0.02 0.1280

(a) TDT2 dataset. (b) 20Newsgroups dataset.

Figure 2.3: Performance vs. fraction of documents in Online TDT framework based on EDCM
mixture model.

the performance of our proposed online TDT framework based on a mixture of EDCM is promis-

ing, in terms of time and accuracy, and significantly outperforms both; a mixture of Multinomials

and DCMs. The clustering quality measured by the normalized mutual information of 0.7316 and

0.9241 with run time equals to 0.0046 and 0.0068 per story for TDT2 and 20Newsgroups, respec-

tively, offered a faster and more accurate online clustering framework. We compare the performance

of the online TDT algorithm on both datasets. First, stories in both datasets have been arranged in

chronological order. Then, we selected the oldest 20% articles from each dataset to initialize, where

we clustered using the algorithm proposed in [12], and later we used the proposed online algorithm

(Algorithm 2), where we insert new story each time until the end. The performance over a different

number of stories fed to the system over time is shown in Fig. (2.3). For both datasets, the best F1

and NMI are achieved when we insert the whole set of documents.

Moreover, we considered the last class of each dataset as the novel class and compared the
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Figure 2.4: Message length values as a function of the number of clusters for the whole data XN+1

in TDT2 dataset.

results of MML for XN and whole data after insertion of XN+1. The experiment consists of a

training phase and a testing phase. The training phase is the phase during which we build the

mixture model that represents the data where we suppose that XN come all at time t and build

the model according to our algorithm, using the MML to estimate the adequate number of classes.

Then, for the testing phase, at time t + 1 we insert the novel class vectors and update the model

according to our proposed online algorithm and use MML again to select the optimal model that

represents the whole dataXN+1. We can see in Fig. (2.4) and (2.5) that the MML criterion is capable

of representing the data, as well as, detect the novel class. The number of classes that minimizes

the message length for the training data was M = 29 and M = 19 for TDT2 and 20Newsgroups

datasets, respectively. When the novel vectors inserted, the MML tells that the newly inserted data

should be represented by a new component, and the best models selected then were M = 30 and

M = 20 for TDT2 and 20Newsgroups datasets, respectively, which agrees with the exact number

of prespecified classes as well.

2.5.3 Hierarchical Image Categorization

2.5.3.1 Hierarchical Clustering Approach

Hierarchical clustering solutions have been primarily obtained using agglomerative algorithms

[84, 85], in which objects are initially assigned to their own cluster, and then pairs of clusters are re-

peatedly merged until the whole tree is formed. We are proposing a hierarchical clustering algorithm

based on the probabilistic distance between the EDCM mixture components. Probabilistic distance
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Figure 2.5: Message length values as a function of the number of clusters for the whole data XN+1

in 20Newsgroups dataset.

measures between two probability distributions are significant metrics to evaluate the similarity for

data of statistical nature. If the parameters of two Probability Density Functions (PDF) are known

or can reliably be estimated; a quantitative value can be calculated to assess how far or close the two

distributions are from each other [86]. The Kullback Leibler (KL) Divergence [87, 88], also known

as the relative entropy, is a widely used approach in statistics to measure the similarity between two

density distributions. The KL divergence between two EDCM distributions with parameters θj1 and

θj2, with n =
∑N

i=1 xi, and sj =
∑W

w=1 ϕjw, is given by (see Appendix 2):

KL
(
P (X|θj1), P (X|θj2)

)
= log

[Γ(sj1)Γ(sj2 + n)

Γ(sj1 + n)Γ(sj2)

]
+

W∑
w=1

(
log(ϕj1)− log(ϕj2)

)(
Ψ(sj1 + n)−Ψ(sj1)

)
(2.28)

The input to the hierarchical algorithm is a M × M similarity matrix, where M is the optimal

number of classes. The approach involves finding the least dissimilar pair of clusters in the current

clustering, the shortest distance, and merge them into a single cluster to form the next clustering

level with M − 1 classes. Updating the dissimilarity and merging the closest pair of clusters are

repetitively done until all objects are in one cluster. We clarify the generation of the dendrogram by

means of the graphical representation in Fig. (2.6).
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Figure 2.6: The graphical representation of the hierarchical clustering resulting in a tree-structured
graph(dendrogram).

2.5.3.2 Data Representation and Results

Recent successful approaches in image classification and retrieval are inspired by the text re-

trieval systems. That is, the local image patches are considered as the visual equivalents of individ-

ual words and images are, thus, represented as a “bag of visual words” or “bag of features” [89].

Our baseline system builds upon the bag-of-features approach, which has demonstrated comparable

or better results than other approaches for object-based image classification. First, a set of local im-

age patches “Keypoints” are extracted, and a vector of visual descriptors is evaluated on each patch

independently using the Scale-Invariant Feature Transform (SIFT) [90]. The resulting distribution

of descriptors is then quantized into a number of homogeneous clusters using an unsupervised clus-

tering approach, typically a k-means algorithm [91], where the centroid of each cluster is treated

as a visual word. The representation is then obtained by assigning the descriptors (for features ex-

tracted from a novel image) to the closest visual word (Euclidean distance) resulting in a histogram

of frequencies that can, then, be used for the categorization.

We evaluate our model performance on three different image datasets: CIFAR-10 [92], Natural

Scene [93], and PPMI [94]. The CIFAR-10 dataset collected by researchers at MIT and NYU over

the span of six months. The dataset consists of 60, 000 natural-color images of size 32×32 collected

using several search engines, including Google, Flickr, and Altavista, based on 79, 000 search terms.

The images belonging to 10 completely mutually exclusive categories are split into 50, 000 for
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saxophoneflute erhu French horn guitarbassoon violin

Figure 2.7: Example images of the PPMI dataset.

training images and 10, 000 test images (1, 000 images per class). Natural Scene Contains 13

categories available in grayscale only. The average size of each image is 250 × 250 pixels. The

dataset includes 3, 859 images, classified as 13 categories: 360 coasts, 328 forest, 374 mountain,

410 open country, 260 highway, 308 inside of cities, 356 tall buildings, 292 streets, 241 suburb

residence, 174 bedroom, 151 kitchen, 289 living room, and 216 office. Each category of scenes

was split randomly into two separate sets of images, 80 : 20 for training (learning the codebook)

and testing (creating the BOF representation). PPMI, People-playing-musical-instruments, consists

of 7 different musical instruments bassoon, erhu, flute, French horn, guitar, saxophone, and violin

(Fig. 2.7). Each class includes ∼ 300 highly diverse and cluttered images of humans playing or

holding the instruments. The dataset is already split randomly into two separate sets of images, half

for training and a half for testing.

For constructing the codebook and obtaining the bag-of-features representation, we learn 25k,

22k, and 15k visual vocabulary from CIFAR-10, Natural Scene, and PPMI datasets, respectively.

For each dataset, we compare the different model selection criteria for the same model parameters

(Fig. 2.8). We observe that all the methods worked well in the case of the CIFAR-10 dataset. All

four criteria selected M = 10, which is the true number of classes. However, for the Natural Scene

dataset, only MML and MMDL selected the true number of classes M = 13, where AIC and MDL

selected M = 12 and M = 11, respectively. For PPMI, the true number of clusters M = 7 was

again selected by MML and MMDL. These results make it clear that the MML model selection

criterion outperforms other methods indicated by the true number of classes always selected by
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Figure 2.8: Number of clusters found by the different criteria for the different image datasets.

Table 2.5: Comparison of image databases categorization results using different clustering ap-
proaches.

Dataset M W MM DCM EDCM H-EDCM

CIFAR-10 10 25k 89.05± 0.08 91.46± 0.12 94.40± 0.36 98.77± 0.02

Natural Scene 13 22k 81.24± 0.03 85.34± 0.13 93.45± 0.41 99.51± 0.03

PPMI 7 15k 83.79± 0.04 88.50± 0.02 97.11± 0.16 99.64± 0.05

MML with a mixture of EDCM distributions.

The overall accuracy for image categorization obtained using the different generative models are

shown in Table (2.5). Clearly, EDCM outperforms both MM and DCM for the three tested images

datasets. According to the reported results, the average categorization accuracies for CIFAR-10

are 94.40% using EDCM, 91.46%, and 89.05% for DCM and MM, respectively. Moreover, the

overall accuracy of categorizing the Natural Scene dataset using EDCM mixture is 93.45%, which is

significantly better than 85.34% by DCM and 81.24% by MM mixture. Similarly, EDCM achieves

significantly superior performance in categorizing the PPMI dataset with an overall accuracy of

97.11%, compared to 83.79% and 88.50% by MM and DCM, respectively.

Furthermore, we evaluate the proposed hierarchical clustering algorithm by conducting another

experiment where we compare both the traditional and hierarchical clustering approaches on the
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Figure 2.9: Confusion matrix for clustering the CIFAR-10 dataset using an EDCM mixture model.

three different datasets. We first categorize the images into the optimal number of classes M ,

and we can further establish some relationship among the categories by looking at KL divergence

among them and merge those most similar categories repetitively. Table (2.5) shows the correct

number of classes M , the vocabulary size W and the accuracy for clustering in M classes using the

different generative models, as well as, the accuracy after all classes are merged (H-EDCM) using

the proposed hierarchical algorithm for the different datasets.

Moreover, we measure the intra-class performance of the EDCM mixture for categorizing the

images in the 10 classes of CIFAR-10 using the confusion matrix (Fig. 2.9). Each entry (i, j) of the

confusion matrix denotes the percentage of images in class i that are assigned into class j. From

this figure, we can see that the average categorization accuracy was 94.40% (an error rate of 5.60%)

for this database. The best classified objects are frog and cat with a performance of 99.1 percent

and 99.0 percent, respectively. Then, we evaluated the similarity between each pair of distributions.

When the KL divergence between them is the minimum, the categories are close to each other and

can be merged into one class to form the tree (Fig. 2.10). The evaluation of pairwise similarity was

repetitively done, and after all the categories are hierarchically related, the accuracy improved to

98.77%. A Student’s t-test shows that the improvement is statistically significant (p-values between

0.012 and 0.044).

Fig. 2.11(a) shows example images from the Natural Scene dataset. The most difficult scenes

to classify are tall building. There is confusion between the street and forest scenes and between
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Figure 2.10: Dendrogram showing the closest categories in CIFAR-10 based on KL divergence.

the living room and office scenes which were also the most similar categories. We established the

relationship among the similar categories and evaluated the accuracy of M − 1 classes after each

pair of clusters are merged into a larger one (Fig. 2.11(b)). Clearly, the EDCM mixture performance

is very much improved by the hierarchical clustering approach (accuracy increased from 93.45%

to 99.51%). The difference in accuracy is statistically significant, as shown by Student’s t-test (p-

values between 0.032 and 0.039).

The PPMI clustering accuracy achieved by the EDCM mixture was 97.11% (an error rate of

2.89%). From the confusion matrix (Fig. 2.12(a)), we can see that most difficult instruments to

classify are bassoon and erhu with a performance of 84.4 percent and 98.7 percent, respectively.

Considering the KL divergence between each pair of distributions in the PPMI dataset, we could

establish the hierarchical relationships as when the distributions are most similar; the categories

are also close to each other on the dendrogram (Fig. 2.12(b)). For example, the closest categories

are flute and erhu, then saxophone and French horn. As shown in Table (2.5), the accuracy of

categorizing PPMI using the EDCM mixture has been improved from 97.11% to 99.64% using the

hierarchical clustering approach. This difference is, once again, statistically significant according

to the Student’s t-test (p-values between 0.030 and 0.042).

35



(a) (b)

Figure 2.11: (a) Example images of the 13 categories Natural Scene dataset (b) Average accuracy
of each level of the tree after merging similar clusters based on KL divergence.

2.6 Conclusion

In this work, we have proposed an MML-based approach to select the model that best represents

the data based on a finite EDCM mixture. The deterministic-annealing expectation-maximization

algorithm has been used to estimate the parameters of this model, and the obtained results, when ap-

plied on real data, show its merit as an unsupervised learning model for clustering count data. The

proposed model-selection approach based on EDCM was applied to three challenging real-world

applications, including text mining, topic detection, and tracking, and hierarchical image catego-

rization. For each application, a comprehensive performance evaluation of the model and selection

criterion was given using different large and widely-used datasets. We believe that the mixture of

EDCM distributions with the proposed MML approach offers strong modeling capabilities for many

other applications that involve high dimensional and sparse count data.
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(a) (b)

Figure 2.12: (a) Confusion matrix for the PPMI (b) Dendrogram showing the closest categories
based on KL divergence.

Appendix 1: Proof of Eq.(2.15)- The Fisher Information Matrix for

EDCM

We have the negative of log-likelihood function as:

−L(Xj |ϕj) = − log

l+ηj−1∏
d=l

EDCM(Xd|ϕj)


= ηj(− log Γ(sj)) +

l+ηj−1∑
d=l

log Γ(sj + nd)−
∑

w:xdw≥1

logϕjw + log xdw (2.29)

Then, the first order derivative of the negative log-likelihood, also called the Fisher score function:

−∂L(Xj |ϕj)
∂ϕjw

= ηj(−Ψ(sj)) +

l+ηj−1∑
d=l

Ψ(sj + nd)−
l+ηj−1∑
d=l

I(xdw ≥ 1)
1

ϕjw
(2.30)

where Ψ is the digamma function. Then,

−∂
2L(Xj |ϕj)
∂ϕ2

jw

= ηj(−Ψ′(sj)) +

l+ηj−1∑
d=l

Ψ′(sj + nd)

+

l+ηj−1∑
d=l

I(xdw ≥ 1)
1

ϕ2
jw

(2.31)
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and:

− ∂2L(Xj |ϕj)
∂ϕjw1∂ϕjw2

= ηj(−Ψ′(sj)) +

l+ηj−1∑
d=l

Ψ′(sj + nd), w1 6= w2 (2.32)

where Ψ′ is the trigamma function. We remark that F (ϕj) can be written as:

F (ϕj) = Dj + γjAAT (2.33)

where D = diag
[l+ηj−1∑

d=l

I(xdw ≥ 1) 1
ϕ2
j1

)
, . . . ,

l+ηj−1∑
d=l

I(xdw ≥ 1) 1
ϕ2
jW

)]
, γ = ηj(−Ψ′(sj)) +

l+ηj−1∑
d=l

Ψ′(sj + nd), and AT = 1. Then, according to(Theorem 8.4.3) given by Graybill [95], the

determinant of the Fisher information matrix F (ϕj) is:

|F (ϕj)| =

(
1 + γj

W∑
w=1

a2
jw

Djw

)
W∏
w=1

Djw (2.34)

By substituting Eq.(2.34) and Eq.(2.14) into Eq.(2.13), we obtain:

|F (Θ)| ' N
M∏
j=1

µj

M∏
j=1

[(
1 + γj

W∑
w=1

a2
jw

Djw

) W∏
w=1

Djw

]
(2.35)

Then, taking the log gives Eq.(2.15).

Appendix 2: Proof of Eq.(2.28)- KL Divergence Between Two EDCM

Distributions

The KL divergence between two distributions that belong to the exponential family is defined

as [67]:

KL
(
P (X|θj1), P (X|θj2)

)
= Φ(θj1)− Φ(θj2)+(
G(θj1)−G(θj2)

)
Eθj1 [T (X)] (2.36)
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where Eθ is the expectation with respect to P (X|θ). We have:

Φ(θ) =
Γ(s)

Γ(s+ n)
(2.37)

G(θ) = log(ϕjw) (2.38)

T (X) = I(xw ≥ 1) (2.39)

Moreover, we have the following [67]:

Eθ[T (X)] = −Φ′(θ) (2.40)

Thus, according to Eqs.(2.37 and 2.39), we have:

Eθ

[
I(xw ≥ 1)

]
= −∂Φ(θ)

∂ϕjw
= Ψ(s+ n)−Ψ(s) (2.41)

substituting Eqs. (2.41, 2.37 and 2.38) in Eq.(2.36) gives Eq.(2.28).
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Chapter 3
A Novel Scaled Dirichlet-based Statistical

Framework for Count Data Modeling:

Unsupervised Learning and Exponential

Approximation

The multinomial distribution and the Dirichlet Compound Multinomial (DCM) are widely ac-

cepted to model count data. However, recent research showed that the Dirichlet is not the best choice

as prior to multinomial. Thus, we propose a novel model called the Multinomial Scaled Dirichlet

(MSD) distribution that is the composition of the scaled Dirichlet distribution and the multinomial.

Moreover, to improve the computation efficiency in high-dimensional spaces, we propose to approx-

imate the MSD as a member of the exponential family. The performance evaluation of the proposed

models is conducted through a set of extensive empirical experiments on challenging applications,

namely, text classification, facial expression recognition, and texture images clustering. The results

show that the proposed model, and its approximation, strive to achieve higher accuracy compared

to the state-of-the-art generative models for count data clustering, while the approximation EMSD

is many times faster than the corresponding MSD.
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3.1 Introduction

Count data appear in many domains in machine learning and computer vision applications.

Consider, for instance, textual collections, or image modeling and clustering where each document

or image can be represented by a vector of frequencies of words or visual words, respectively. Real

texts systematically exhibit the burstiness phenomena; if a word appears once in a document, it is

much more likely to appear again [7, 54]. This phenomenon is not limited to text and can also be

observed in images with visual words [96].

Modeling the probabilities of words occurrences improves classification performance and in-

formation retrieval accuracy. Multinomial distributions fail to capture this phenomenon well, as

was shown in [9]. Hierarchical Bayesian modeling was proposed as an appropriate and efficient

solution to address this issue by introducing the Dirichlet distribution as a prior to the Multinomial,

which results in the Dirichlet Compound Multinomial (DCM) [9]. The hierarchical approach of

DCM considers the count vector to be generated by a multinomial distribution whose parameters

are generated by the Dirichlet distribution. That is, in a specific document, for example, the Multi-

nomial is linked to particular sub-topics, and thus, it makes the emission of some words more likely

than others. This gives it the ability to handle burstiness, even for rare words. This composition

is based mainly on the fact that the Dirichlet is a conjugate to the multinomial offers numerous

computational advantages [55]. The Dirichlet, however, has some drawbacks, including its very

restrictive negative covariance structure, inconsiderate relations between categories, and its poor

parameterization [63, 97, 98]. Thus, different efficient alternatives to the DCM have been lately

proposed; namely, the Multinomial Generalized Dirichlet Distribution (MGD) [10], and the Multi-

nomial Beta-Liouville Distribution (MBL) [11]. This paper is based on another alternative model

called the Multinomial Scaled Dirichlet (MSD) distribution, which we have previously proposed

in [23]. The new proposed model MSD is the composition of the scaled Dirichlet distribution and

the multinomial in the same way that DCM, MGD, MBL are the compositions of the Dirichlet, the

generalized Dirichlet, and the Beta-Liouville, respectively, with the multinomial. For clustering, we

considered a finite mixture model that permits a formal approach for unsupervised learning.

On the other hand, in bag-of-words, or bag-of-visual-words, representation, many features occur
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only once, and many more do not occur at all, as each observation contains only a small subset of

the vocabulary. This is referred to as the sparsity nature resulting in many of the entries being zero.

Thus, text documents and images are usually represented as high-dimensional and sparse vectors,

i.e., a few thousand dimensions with a sparsity of 95 to 99% [81]. The sparseness of data is heavily

studied in the literature, where many techniques have been proposed to optimize data representation

for more efficient and accurate clustering (see, for example,[99]). Among the successful approaches,

Elkan [12] has shown that the estimation algorithm of the exponential-family approximation to the

DCM, EDCM, is much faster than the corresponding algorithm with DCM and has the ability to

model the burstiness phenomenon well even for rare words. Indeed, exponential families of dis-

tributions offer several appealing statistical and computational properties [14, 65]. For instance,

sufficiency retains the essential information in a data set regarding the parameters which reduce

the computation time, especially for sparse high-dimensional data. The new proposed model MSD

shares similar problems to the ones with DCM, including that it does not belong to the exponential

family, its expression lacks intuitiveness, and its parameters cannot be estimated quickly. Thus, we

derive a new distribution that is a close approximation to the MSD. The proposed approximation is

a member of the exponential family of distributions that we called (EMSD). Moreover, for deter-

mining the number of components in the EMSD mixture, we develop a Minimum Message Length

(MML) criterion as an efficient unsupervised learning algorithm for clustering high-dimensional

and sparse count data. The consideration of the MML approach is inspired by its impressive perfor-

mance for model selection in the case of EDCM [22]. By means of some challenging applications,

we show that both MSD and EMSD are better suited than the multinomial and DCM for modeling

count data.

The rest of the paper is organized as follows. In Section 3.2, we review DCM and other alterna-

tives proposed in the literature. Section 3.3, introduces a new prior to the multinomial, namely, the

scaled Dirichlet, and applies the expectation-maximization (EM) algorithm with the MSD mixture.

Next, Section 3.4 discusses the approximation in detail where we derive a new family of distri-

butions that we called EMSD and the deterministic annealing EM (DAEM) approach to learn the

EMSD parameters. The MML expression for the EMSD mixture is detailed in Section 3.5. Finally,

Section 3.6 is devoted to experimental results, and Section 3.7 concludes the paper.
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3.2 Hierarchical Bayesian Models for Count Data

3.2.1 Dirichlet Compound Mutinomial (DCM)

Multinomial distribution, the multivariate generalization of the Binomial distribution, is widely

used in count data clustering. For instance, in modeling text documents using Multinomial distri-

bution, an individual document is represented as a vector of word counts (bag-of-words represen-

tation). The assumptions for the Multinomial model are the length of document n (in tokens) is

known, and the occurrences of the words are independent of each other.

Define X = (x1, . . . , xW ) as a sparse vector of counts representing a document, or an image,

where xw is the frequency of a word, or visual word, w. Then, the probability of X that it follows a

Multinomial distribution with parameters ρ = (ρ1, . . . , ρW ), is given by:

M(X|ρ) =
n!

W∏
w=1

xw!

W∏
w=1

ρxww (3.1)

where W is the vocabulary size, and n =
∑W

w=1 xw.

The Dirichlet distribution, with a set of parameters α = (α1, . . . , αW ), is defined as:

D(ρ|α) =
Γ(a)

W∏
w=1

Γ(αw)

W∏
w=1

ραw−1
w (3.2)

where a =
∑W

w=1 αw. Then, the DCM is the marginal distribution given by the following integra-

tion [9]:

DCM(X|α) =

∫
ρ
M(X|ρ)D(ρ|α)dρ

=
n!

W∏
w=1

(xw)!

Γ(a)

Γ(
W∑
w=1

xw + αw)

W∏
w=1

Γ(xw + αw)

Γ(αw)
(3.3)

We can note that compared to the multinomial, the DCM has one extra degree of freedom, since its

parameters are not constrained to sum up to one, which makes it more practical [61, 63].
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3.2.2 Efficient Alternative Priors

Although the Dirichlet distribution is a natural conjugate prior to the multinomial likelihood,

and it exhibits many convenient mathematical properties, it is not the most appropriate solution.

Hence, other distributions have been proposed in the literature to be used as a prior for the multino-

mial. Dirichlet distribution, for instance, has a very restrictive negative covariance structure, and the

variables with the same mean must have the same variance [98, 100]. These properties make its use

as a prior in the case of positively correlated data inappropriate. Recent works show that the gener-

alized Dirichlet has many convenient properties that make it more useful and practical, as prior to

the multinomial than the Dirichlet in real-life applications [10, 100]. Bouguila [11] later introduced

another alternative based on Liouville family distributions, which is in contrast with the Dirichlet

and, like the generalized Dirichlet, can have positive or negative covariance. In addition, like the

Dirichlet and the generalized Dirichlet, the Liouville distribution of the second kind is a conjugate

to the Multinomial distribution [100]. Other interesting properties of the Liouville distribution are

discussed in [101, 102]. In this work, we look at other limitations of the Dirichlet distribution. For

instance, Dirichlet does not take into account relative positions between categories or multinomial

cells [98]. Moreover, it has an inadequate parameterization that limits its ability to better model

variance and covariance [97]. Thus, we are proposing the choice of a more flexible prior to the

Multinomial that can help to resolve these issues, which is a generalization of the Dirichlet called

scaled Dirichlet distribution [98, 103].

3.3 The Proposed Model

In this section, we discuss in details the proposed model that we called Multinomial Scaled

Dirichlet (MSD) distribution, based on introducing a new prior to the multinomial, namely, the

scaled Dirichlet.
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3.3.1 Multinomial Scaled Dirichlet (MSD)

In this work, we look at some limitations of the Dirichlet distribution. For instance, Dirichlet

does not take into account relative positions between categories or Multinomial cells [98]. More-

over, it has a poor parameterization that limits its ability to better model variance and covariance

[97]. Thus, we are proposing the choice of a more flexible prior to the Multinomial that can help to

resolve these issues, which is a generalization of the Dirichlet called Scaled Dirichlet distribution

[98, 103]. The Scaled Dirichlet is a generalization of the Dirichlet distribution, which is the dis-

tribution of a random vector obtained after applying the perturbation and powering operations to a

Dirichlet random composition. These operations define a vector-space structure in the simplex and

play the same role as sum and product by scalars in real space [103].

The scaled Dirichlet is a generalization of the Dirichlet distribution obtained after applying the

perturbation and powering operations to a Dirichlet random composition. These operations define

a vector-space structure in the simplex and play the same role as sum and product by scalars in real

space [103]. In dimension W , the scaled Dirichlet with a set of parameters α = (α1, . . . , αW )

which is the shape parameter, and β = (β1, . . . , βW ) which is the scale parameter, is defined by

[104, 105]:

SD(ρ|α,β) =
Γ(a)

W∏
w=1

Γ(αw)

W∏
w=1

βαw
w ραw−1

w(
W∑
w=1

βwρw

)a (3.4)

where Γ denotes the Gamma function, and a =
∑W

w=1 αw.

The shape parameter α simply describes the form or shape of the scaled Dirichlet distribution,

and its flexibility is very significant in finding patterns and shapes inherent in a dataset. The scale

parameter β controls how the density plot is spread out where the shape of the density is invariant,

irrespective of the value of a constant or uniform scale parameter. Note that the Dirichlet distribution

is a special case of the scaled Dirichlet that can be obtained when all elements of the vector β are

equal to a common constant [103]. Thus, the scaled Dirichlet includes the Dirichlet as a special

case. Compared to the Dirichlet, the scaled Dirichlet, has W extra parameters, which enhances the

model flexibility [106, 107]. The proper parameterization of scaled Dirichlet gives it the ability to
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better model variance and covariance [97]. Moreover, unlike Dirichlet, the scaled Dirichlet takes

into account relative positions between categories or multinomial cells [98, 103]. These properties

make the scaled Dirichlet a more flexible choice of a prior to Multinomial.

The composition of the Multinomial and scaled Dirichlet is, thus, obtained by integrating over

ρ, which gives the marginal distribution of X, as follows:

MSD(X|α, β) =

∫
ρ
M(X|ρ)SD(ρ|θ)dρ

=
n!

W∏
w=1

xw!

Γ(a)

Γ(a+ n)
W∏
w=1

βxww

W∏
w=1

Γ(αw + xw)

Γ(αw)
(3.5)

This equation is obtained by using the fact that
∫
ρ SD(ρ|α,β) = 1, and applying the following em-

pirically tested approximation:
(∑W

w=1 βw ρw

)∑W
w=1 αw

'
∏W
w=1 β

αw
w , given a common constant

value for β (see Appendix 1). Moreover, by setting β1 = β2 = · · · = βW = 1, Eq.(3.5) is reduced

to the DCM.

3.3.2 The Multinomial Scaled Dirichlet Mixture Estimation

Statistical-based approaches are powerful and widely used in generative learning processes to

abstract the complexity of a huge amount of information. One major approach based on statistics is

the finite mixture models that are used to model data sampled from a finite number of homogeneous

subpopulations, where the whole model is formed by a weighted sum of the subgroups’ densities.

Given an observed dataset X = {X1, . . . ,XN} with N data instances, each is a W -dimensional

vector Xi = (xi1, . . . , xiW ) drawn from a superposition of M multinomial scaled Dirichlet densi-

ties of the form:

P (Xi|π,θ) =

M∑
j=1

πjMSD(Xi|θj) (3.6)

where πj (0 < πj < 1 and
M∑
j=1

πj = 1) are the mixing proportions. Each MSD(Xi|θj) is

called a component of the mixture, and has its own parameters θj = {αj, βj}, where αj =

(αj1, . . . , αjW ), and βj = (βj1, . . . , βjW ).

Next, we introduce a M -dimensional binary random vector Zi = (zi1, . . . , ziM ) to each data
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vector Xi, where
∑M

j=1 zij = 1, and zij is a latent variable works as an indicator equal to one if

Xi belongs to cluster j and zero, otherwise. The complete data at this case are (X ,Z|Θ), where

X represents a set of observed variables, the complete set of all latent variables and parameters is

denoted by Θ = (α1, . . . ,αM ,β1, . . . ,βM , π1, . . . , πM ). Thus, the complete data log-likelihood

corresponding to a M -component mixture is given by:

L(X ,Z|Θ) =
N∑
i=1

M∑
j=1

zij

(
logP (Xi|θj) + log πj

)
. (3.7)

For learning a mixture model, the Expectation Maximization (EM) algorithm is the most popular

approach which generates a sequence of models with non-decreasing log-likelihood on the data. In

EM, estimation is broken down into a two-step iteration (E-step and M-step) using the notion of

incomplete data which produces a sequence of estimates {Θ(t), t = 0, 1, 2, . . . }. The posterior

probabilities will be computed in the E-step, as:

ẑ
(t)
ij =

π
(t)
j P (Xi|θ(t)

j )

M∑
j=1

π
(t)
j P (Xi|θ(t)

j )

(3.8)

In the M-step, the parameters estimates will be updated according to:

Θ(t+1) = arg max
Θ
L(X ,Z|Θ,Θ(t)) (3.9)

when maximizing (3.9), we obtain:

π
(t+1)
j =

1

N

N∑
i=1

ẑ
(t)
ij (3.10)

The maximum likelihood parameter estimate is obtained by taking the derivative of the log-

likelihood function and find Θ when the derivative is equal to zero. However, we do not obtain a

closed-form solution for theαj and βj parameters. We, therefore, use the Newton-Raphson method
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expressed as:

θnewj = θoldj −H−1G, (3.11)

where H is the Hessian matrix associated with L(X ,Z|Θ), and G is the gradient vector associated

with the first-order derivatives (see Appendix 2), where the complete block Hessian matrix Hj has

to be transformed to its inverse before it can be used in the Newton-Raphson maximization.

Indeed, the EM algorithm highly depends on the initialization to handle the local maxima prob-

lem resulting from the multimodal nature of the likelihood function when we deal with mixture

models [108]. Thus, proper initialization is needed in order to achieve optimal performance. Thus,

we initialize the πj parameter using the K-means algorithm, and to initialize the model parameters,

we make use of the method of moments. In the case of the multinomial scaled Dirichlet distribution,

a closed-form solution for its moment equations does not exist. Thus, we initialize the αj vector

using the moments’ equations of the DCM distribution [75], while the βj vector is initialized with

equal scaling (a vector of ones). Parameters will be then updated during the EM iterations to take

their natural values in relation to the observed data. Then, the complete algorithm for learning the

MSD mixture parameters is summarized in Algorithm 3.

Algorithm 3: MSD mixture model parameters estimation.

Output: Model parameters {θj}Mj=1

Input: Dataset X = {X1, . . . , XN}, each is a W -dimensional vector, a pre-specified
number of clusters M

1 Initialize the mixing weights πj using K-means ;
2 Initialize the shape parameters αj using method of moments ;
3 Initialize the scale parameter vector βj with a vector of ones;
4 while Convergence criteria is not reached do
5 for i = 1 to N do
6 for j = 1 to M do
7 Compute the posterior probabilities p(j|Xi, θj) using equation (3.8) ;
8 end
9 end

10 for j = 1 to M do
11 Update the mixing proportion πj using Eq.(3.10);
12 Update the parameters θj = {αj , βj} using Eq.(3.11);
13 end
14 end
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3.4 Approximating the MSD

In this section we derive a new distribution that is an approximation to the MSD. We call the

new distribution EMSD and it is, unlike the MSD, a member of the exponential family.

3.4.1 An Exponential-family Approximation to MSD (EMSD)

Given the sparsity nature of datasets represented using bag-of-words, or bag-of-visual-words,

it should be possible to evaluate the probability as a function of non-zero xw values only for com-

putational efficiency. That is, the value of xw! = 1, βxww = 1 and Γ(αw + xw)/Γ(αw) = 1 when

xw = 0. The MSD distribution in this case is given by:

MSD(X|α, β) =
n!∏

w:xw≥1
xw!

Γ(a)

Γ(a+ n)
∏

w:xw≥1
βxww

∏
w:xw≥1

Γ(αw + xw)

Γ(αw)
(3.12)

In case of high dimensional data when the parameters are really small, we can use the approxi-

mation given in [12] to replace Γ(αw+xw)/Γ(αw) by Γ(xw)αw in the previous equation. Using the

fact that if x is an integer then x! = x(x−1)!, we can further simplify to obtain the new distribution

that we call (EMSD):

EMSD(X) =
n!∏

w:xw≥1
xw

Γ(s)

Γ(s+ n)

∏
w:xw≥1

λw
νxww

(3.13)

where s =
∑W

w=1 λw. We denote the EMSD parameters as λw instead of αw, and νw instead of βw

to distinguish them from the MSD parameters for clarity.

This form shows that EMSD allows multiple appearances of the same word to have higher

probability. Moreover, it distinguishes between word types and word tokens, as modeling both

frequencies is beneficial for capturing the statistical properties of natural languages [66]. Similar

to DCM and EDCM, the maximum likelihood estimates of MSD and EMSD are sensitive to which

words appear in which documents, while Multinomial ignores the type-token distinction (i.e. the

Multinomial parameters are the same regardless documents boundaries in the collection). We can
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rewrite Eq.(3.13) in exponential family form as:

EMSD(X) =
( ∏
w:xw≥1

xw

)−1
n!

Γ(s)

Γ(s+ n)

× exp
[ W∑
w=1

I(xw ≥ 1) log(λw)− xw log(νw)
]

(3.14)

where I(xw ≥ 1) is an indicator that represents whether the word w appears at least once in the

frequency vector X.

3.4.2 Mixture of EMSDs Learning

For learning a mixture of EMSD distribution, we propose to use the deterministic annealing EM

(DAEM) [53], which has been efficiently used to avoid the major issues of initialization dependency

and poor local maxima in regular EM. The deterministic annealing approach uses multiple phases,

each with a value of temperature parameters set, where the final Θ parameters in each phase are

used as initial values in the next one. The annealing process begins at a high temperature where

the function is smoothed and has only one global optimum point. As the temperature decreases, the

function shape gradually approaches the original objective, so the DAEM continually tracks the new

optimum point until it finds the best one. Moreover, exploring a larger region of parameter space

through the slow EM convergence is an important factor in the good performance of soft clustering

algorithms [110]. Practically, slower convergence makes the weights zij further away from zero and

one, thus they reflect the membership uncertainty more realistically [12].

When applying the deterministic annealing procedure, posterior probabilities will be computed

in the E-step, as:

z
(t)
ij =

(
π

(t)
j P (Xi|θ(t)

j )
)τ

M∑
j=1

(
π

(t)
j P (Xi|θ(t)

j )
)τ (3.15)

where τ = 1
T , and T corresponds to the computational temperature 1. Then, the maximum like-

lihood parameter estimates can be obtained by taking the derivative of the log-likelihood function
1Experimentally, we have concluded that using a three-phases annealing, with T ∈ [1, 5, 25], is a reasonable choice

that gives good results, which is the same confirmation reached in [10, 12].
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associated with the complete data Q(X ,Z|Θ) and find Θ when the derivative is equal to zero.

Thus, setting partial derivative of the log-likelihood with respect to λjw, w = 1, . . . ,W , to zero and

solving for λjw, gives:

λjw =

N∑
i=1

zijI(xiw ≥ 1)

N∑
i=1

zijΨ(sj + ni)−KΨ(sj)

(3.16)

where K =
∑N

i=1 zij . Then, we can compute sj by summing each side of Equation (3.16) over all

words, giving:

sj =

W∑
w=1

N∑
i=1

zijI(xiw ≥ 1)

N∑
i=1

zijΨ(sj + ni)−KΨ(sj)

(3.17)

The numerator in this case is the number of times a word w appears at least once in any vector

of the dataset. Note that this equation can be solved numerically efficiently by Newton’s method

as it involves only a single unknown, sj . Having sj in hand, Eq.(3.16) can be used directly to

compute each individual λjw 2. Furthermore, by setting the partial derivative of the log-likelihood

with respect to νjw, w = 1, . . . ,W , to zero and solving for νjw, we obtain:

νjw = −
N∑
i=1

zijI(xiw ≥ 1) (3.18)

3.5 MML Criterion for EMSD Mixture

Minimum Message Length (MML) is a selection criterion based on evaluating statistical models

according to their ability to compress a message containing the data. High compression is obtained

by forming good models of data to be coded [70]. For each model in the model space, the message

includes two parts. The first part encodes the model using only prior information about the model

and no information about the data. The second part encodes only the data in a way that makes use
2Eqs. (3.16) and (3.17) are similar to (5) and (6) in [12] for estimating the parameters of the EDCM.
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of the model encoded in the first part [69].

Let X = {X1, . . . ,XN} a set of data controlled by a mixture of EMSD distributions with

parameters Θ. According to information theory, the optimal number of clusters M is the candidate

value, which minimizes the amount of information, measured in nats using the natural logarithm,

to transmit X efficiently from a sender to a receiver [71]. The formula for the message length for a

mixture of distributions, with Np free parameters, is given by [40, 41]:

MessLength ' − log(h(Θ))− log(P (X|Θ))

+
1

2
log(|F (Θ)|) +

Np

2

(
1 + log(kNp)

)
(3.19)

where h(Θ) is the prior probability, P (X|Θ) is the likelihood for the complete data set, |F (Θ)|

is the determinant of the expected Fisher information matrix, and kNp is the optimal quantization

lattice constant for RNp [72]. When Np = 1 the value of k1 = 1/12 ' 0.083, and as Np grows,

kNp tends to the asymptotic value given by
1

2πe
' 0.05855, which can be approximated by 1

12 [41].

The complete-data Fisher information matrix in mixture models has a block-diagonal structure,

and its determinant is given as the product of the determinant of the Fisher information of θj for each

component and the determinant of the Fisher information of mixing parameters vector π [1, 40].

Given that the mixing proportions satisfy the requirement
∑M

j=1 πj = 1, it is possible to consider

its Fisher information as a series of trails; each has M possible outcomes. Thus, the number of

trails of the jth cluster is a multinomial distribution with parameters (π1, . . . , πM ) [40, 59]. The

|F (θj)| is the determinant of the Fisher information matrix of the expected second partial derivatives

of the negative log-likelihood [41]. As proposed in [1], the Fisher information matrix in case of

a mixture model can be computed after the data vectors have been assigned to their respective

clusters. Let Xj = {Xl, . . . ,Xl+ηj−1} be the data elements in the jth cluster where l ≤ N and

ηj the number of the documents generated by the jth topic with parameters θj . The negative of

the log-likelihood function given the vector θj = {λj , νj} and sj =
∑W

w=1 λjw of a single EMSD

distribution is −Q(Xj |θj). The complete Fisher matrix for each component F (θj) has a block

structure (see Appendix 3); therefore, we compute the determinant of each block matrix using the

solution provided in [111]. Thus, we can show that log(|F (Θ)|) in case of finite EMSD mixture
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model is given by:

log(|F (Θ)|) = log(N )−
M∑
j=1

log(πj) +
M∑
j=1

log(|F (θj)|) (3.20)

The capability of the MML criterion is controlled by the choice of prior distribution h(Θ) for

the parameters of the EMSD. In case of mixture models,we make a general assumption in mixture

models that the parameters of the different components as a prior are independent from the mixing

probabilities, and the components of h(λj) and h(νj) are independent as well [73], that is:

h(Θ) = h(π)

M∏
j=1

W∏
w=1

h(λjw)h(νjw) (3.21)

Knowing that the vector π is defined on the simplex {(π1, . . . , πM ) :
∑M

j=1 πj = 1}, then the

Dirichlet distribution is a natural choice as a prior for the mixing probabilities. The choice of a

constant Dirichlet parameters (a vector of ones) gives a uniform prior as follows [40, 41]:

h(µ) = Γ(M) = (M − 1)! (3.22)

For calculating h(λ), h(ν) and in the absence of other knowledge about the λjw, νjw, w =

1, . . . ,W , we assume that h(λjw) and h(νjw) are locally uniform over the ranges [0, e6 |λ̂j |
λjw

] and

[0, e6 |ν̂j |
νjw

] where λ̂j and ν̂j are the estimated vector. We choose to use a simple uniform prior, which

is known to give good results, in accordance with Ockham’s razor [74], as:

h(λjw) =
e−6λjw

|λ̂j |
, h(νjw) =

e−6νjw
|ν̂j |

(3.23)

Thus, substituting Eq.(3.23) and Eq.(3.22) into Eq.(3.21), and taking the log we obtain:

log(h(Θ)) =
M∑
j=1

log(j)− 12MW −W
M∑
j=1

log(|λ̂j |)

+

M∑
j=1

W∑
w=1

log(λjw)−W
M∑
j=1

log(|ν̂j |) +

M∑
j=1

W∑
w=1

log(νjw) (3.24)
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The expression of MML for a finite mixture of EMSD distributions, given a candidate value for

M , is then obtained by substituting Eq.(3.24) and Eq.(3.20) into Eq.(3.19).

3.6 Experimental Results

In this section, we demonstrate the effectiveness of the proposed approaches via four interesting

real-world applications. The first application concerns text classification, the second one involves

the recognition of facial expression, in the third application we focus on the problem of categoriz-

ing natural scene images, and the last application concerns the clustering of texture images. The

experiments aim at comparing the Multinomial mixture (MM), the DCM, the MGD, and the MBL

to our proposed models MSD and EMSD. The results that we report in the following represent the

average over 20 runs of the different learning algorithms.

3.6.1 Text Classification

Text classification is the task of automatically assigning predefined categories to documents

written in natural languages. Several tasks of text classification have been studied, each of which

deals with different types of documents and categories, such as detecting discussed topics in news

collection, filtering spam emails, and classifying the sentiment typically in product or movie re-

views. The performance of the proposed approaches is compared using precision and recall aver-

aged at the macro level, and F score averaged at macro and micro levels [112], to evaluate how the

models perform overall across the tested sets of data. We have also considered the mutual infor-

mation (MI) [12, 110], to quantify how much the assigned classes by an algorithm agrees with the

pre-specified ones. We use datasets that have been widely considered in the past (see, for instance,

[113, 114]), and/or used in the previously with the tested models to ensure fair comparison. The

text datasets used in our experiments are IMDB3, Reuters-21578 4, WebKB4, and 20Newsgroups5.

IMDB (movie reviews) contains positive and negative sentiments [115]. Ratings on IMDB are

given as star values ∈ {1, 2, . . . , 10}, which were linearly mapped to [0, 1] to use as document

3http://ai.stanford.edu/˜amaas/data/sentiment/
4http://www.daviddlewis.com/resources/testcollections/reuters21578/
5http://www.cs.cmu.edu/˜webkb/
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Table 3.1: Description of the text data sets and comparison of the running time for MSD and
EMSD (N :number of documents, W : vocabulary size, ni: average document length, M : num-
ber of classes).

Dataset N W ni M TMSD TEMSD

IMDB 50, 000 76, 340 115.25 2 926.44 350.25

Reuters-10 9, 033 19, 119 193.9 10 495.6 84.3

WebKB4 4, 199 7, 786 502.2 4 135.4 15.2

20News. 18, 846 61, 298 136.7 20 876.2 136.5

labels; negative and positive, respectively. We used a union of the training and testing sets having

around 25, 000 samples from each positive/negative group with 76, 340 unique words in total. The

second data set used is a subset of the well-known corpus Reuters-21578, which is composed of

135 classes with a vocabulary of 15, 996 words. For our experiments, we consider a subset which

is composed of the 10 categories having the highest number of class members (6, 775 and 2, 258

training and testing documents are considered for this subset, respectively). WebKB4 data set

is a subset of the WebKB data set containing 4, 199 Web pages gathered from computer science

departments of various universities. The considered subset is limited to the four most common

categories: Course, Faculty, Project, and Student. Finally, the 20 Newsgroups which contains

18, 828 documents characterized by 61, 298 words, and the documents are fairly distributed over 20

different news topics. Note that the experiments are done directly here (i.e., we do not separate the

data set into training and testing sets). The Rainbow package [78] was used to read the text files

and perform the feature selection considering words with the highest average mutual information

after removing all stop and rare words (less than 50 occurrences in our experiments). For sentiment

analysis, certain stop words (e.g., negating words) are indicative, so traditional stop word removal

was not used in the IMDB dataset. Each text file is then represented as a vector containing the

occurrence frequency for each word from the vocabulary. Some statistical properties of the used

data sets are summarized in Table (3.1), where we also show the running time (in seconds) for each

data set using MSD and EMSD. The reported execution time is for optimized MATLAB2017a codes

run on an Intel(R) Core(TM) i7-6700 Processor PC has the Windows 7 Enterprise Service Pack 1

operating system with a 16 GB main memory. Fig. (3.1) shows the number of clusters selected

by our EMSD algorithm, and we can observe that the exact number of clusters (M = 2,M =
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(c) M=4(b) M=10 (d) M=20(a) M=2

Figure 3.1: Number of clusters found by the MML criterion for the text data sets (a)IMBD,
(b)Reuters-10, (c)WebKB4, and (d)20newsgroups.

Table 3.2: Classification results for IMDB dataset using MSD/EMSD mixture models.

Measures MM DCM MGD MBL MSD EMSD

Precision 0.74 0.71 0.75 0.76 0.84 0.85

Recall 0.82 0.89 0.81 0.81 0.84 0.86

Macro F 0.75 0.84 0.82 0.82 0.84 0.86

Micro F 0.76 0.84 0.82 0.82 0.84 0.85

Mutual Info. 0.73 0.88 0.89 0.80 0.88 0.89

10,M = 4, and M = 20) was selected for the IMBD, Reuters-10, WebKB4 and 20newsgroups

data set, respectively.

Table 3.3: Classification results for Reuters-10 dataset using MSD/EMSD mixture models.

Measures MM DCM MGD MBL MSD EMSD

Precision 0.72 0.74 0.77 0.76 0.76 0.80

Recall 0.92 0.93 0.95 0.94 0.91 0.94

Macro F 0.81 0.83 0.86 0.86 0.83 0.87

Micro F 0.88 0.90 0.93 0.94 0.90 0.94

Mutual Info. 0.89 0.88 0.75 0.79 0.88 0.94

The classification results for the four data sets are given in Table (3.2-3.5), reported as the aver-

age percentage of performance metrics over the 20 runs. According to the F measures and Mutual

information in this table, the new proposed model MSD behaves similarly to MGD and MBL (i.e.,

a Student’s t-test shows that the difference in performance is not statistically significant: p-values

are 0.1380 and 0.1422 for F measure and MI, respectively). However, MSD is shown to outper-

form Multinomial, and DCM as the differences between the MSD these models are statistically

significant (i.e., p-values between 0.0004 and 0.0071 for the different runs). On the other hand, the
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exponential family approximation to MSD (EMSD) is outperforming all the other tested models as

shown by a Student’s t-test (i.e., p-values are 0.0275 and 0.0012 for the difference between MSD

and EMSD according to F measure and MI, respectively). Moreover, compared to MSD, the EMSD

based classification is between 3 and 9 times faster for the different data text sets.

Table 3.4: Classification results for WebKB4 dataset using MSD/EMSD mixture models.

Measures MM DCM MGD MBL MSD EMSD

Precision 0.81 0.84 0.86 0.89 0.76 0.90

Recall 0.82 0.84 0.87 0.88 0.91 0.89

Macro F 0.82 0.89 0.89 0.89 0.83 0.89

Micro F 0.82 0.88 0.88 0.88 0.90 0.89

Mutual Info. 0.73 0.77 0.84 0.89 0.89 0.91

Table 3.5: Classification results for 20newsgroups dataset using MSD/EMSD mixture models.

Measures MM DCM MGD MBL MSD EMSD

Precision 0.85 0.86 0.87 0.86 0.88 0.95

Recall 0.86 0.88 0.90 0.91 0.84 0.96

Macro F 0.86 0.87 0.88 0.88 0.86 0.96

Micro F 0.85 0.86 0.87 0.88 0.89 0.95

Mutual Info. 0.87 0.88 0.88 0.86 0.86 0.97

3.6.2 Facial Expression Recognition

Facial expressions are the facial changes in response to a person’s internal emotional states, in-

tentions, or social communications. The automatic analysis and recognition of facial motions and

facial features changes from visual information have been the topic of extensive research. Auto-

matic facial expression analysis can be applied in many areas such as emotion and paralinguistic

communication, clinical psychology, psychiatry, neurology, pain assessment, lie detection, intelli-

gent environments, and human-computer interface (HCI) [116]. An efficient computer facial ex-

pression analysis system needs to analyze the facial actions regardless of context, culture, gender,

and so on. Generally, six basic facial expressions have been considered, namely anger, disgust, fear,

happiness, sadness, and surprise. In this work, the performance of our approaches was evaluated on

a challenging facial expression datasets, namely, MMI [117], CK+ [118].
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Figure 3.2: Sample facial expression images from the MMI dataset.

Figure 3.3: Sample facial expression images from the CK+ dataset.

The MMI dataset includes 19 different faces of students and research staff members of both

genders (44% female), ranging in age from 19 to 62, having either a European, Asian, or South

American ethnic background. Currently, it contains 2, 894 image sequences where each image

sequence has a neutral face at the beginning and the end, and each with the size of 720×576 pixels.

We selected the sequences that could be labeled as one of the six basic emotions. Removing the

natural faces resulting in 1, 140 images (150 Anger, 212 Disgust, 150 Fear, 255 Happiness, 192

Sadness, and 181 Surprise). Sample images from the MMI dataset with different facial expressions

are shown in Fig. (3.2). The Extended Cohn-Kanade (CK+) dataset consists of facial behavior

of 210 adults 18 to 50 years of age, 69% female, 81% Euro-American, 13% Afro-American, and

6% other groups. Image sequences were digitized into either 640 × 490 or 640 × 480 pixel arrays

with 8-bit gray-scale value. We included all posed expressions that could be labeled as one of the

6 basic emotion categories, which is about 4, 000 images (342 Anger, 503 Disgust, 417 Fear, 993

Happiness, 893 Sadness, and 852 Surprise). Fig. (3.3) shows examples of the emotion images from

the CK+ dataset. For each dataset, we randomly divided the selected image sequences into two

partitions: one for constructing the visual vocabulary, the other for representation.

The recognition accuracy of the facial expression, obtained by applying the different approaches

to the considered datasets, is shown in Table (3.6). The classification accuracy for detecting facial
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Table 3.6: Facial expression recognition results (average %) using MSD/EMSD mixture models.

Dataset MM DCM MGD MBL MSD EMSD

MMI 67.74 74.25 80.00 80.65 80.00 99.42

CK+ 70.94 77.41 77.84 73.09 77.84 97.74

Figure 3.4: Confusion matrix for the six categories in the CK+ dataset using MSD (left), and EMSD
(right).

expression in MMI and CK+ datasets using MSD are (80.00%) and (77.84%), respectively. Ac-

cording to the results, it is clear that the difference between the MGD, MBL, and MSD is again

not statistically significant (p-values between 0.1823 and 0.3211 for the different runs) while these

three models outperform Multinomial for the MMI and outperforming both Multinomial and DCM

for CK+ dataset. Moreover, EMSD clearly performs better on both datasets. Figure (3.4) below

shows the confusion matrix obtained by the proposed MSD and EMSD for the CK+ database.

From Fig. (3.4), we can see that the average categorization accuracy using MSD is (77.84%), an

error rate of (22.16%), for this database. The best classified expressions are surprise and happiness

with a performance of 85.7 percent and 78.4 percent, respectively. Using EMSD, the accuracy

was greatly improved to (97.74%). A Student’s t-test shows that the improvement is statistically

significant (p-values between 0.0011 and 0.0322). As shown in Table (3.6), the accuracy obtained

by MSD for detecting facial expression in MMI has been improved to (99.42%) using EMSD. This

difference is, once again, statistically significant according to the Student’s t-test (p-values between

0.0320 and 0.0420). Moreover, EMSD is 5 and 9 times faster than the corresponding MSD for MMI

and CK+ datasets, respectively.

59



Figure 3.5: Message length values as a function of the clusters number for the facial expression
datasets.

Fig. (3.5) shows that the MML criterion is capable of selecting the optimal number of clusters

to represent the data. The number of classes that minimizes the message length wasM = 6 for both

datasets, which agrees with the true pre-specified number of classes.

3.6.3 Texton-based Texture Clustering

Our visual world is richly filled with a great variety of textures, present in many application ar-

eas, including industrial automation, remote sensing and biomedical image processing [119]. Clas-

sifying texture images has attracted extensive research attention for over 50 years, dating back at

least to Julesz in 1962 [120]. As a classical pattern recognition problem, texture classification pri-

marily consists of two critical subproblems: texture representation and classification. Generally, if

poor features are used, even the best classifier will fail to achieve good results. Thus, the extraction

of powerful texture features plays a relatively important role. Several approaches have been exten-

sively studied with impressive performance. In this work, we used the texture analysis approach that

model texture as a probabilistic process that generates small patches. The representation is obtained

by means of a frequency histogram that measures how often texture patches from a codebook occur

in the textured surface. The resulting representations are generally called “textons” [121, 122]. In

these experiments, we consider existing natural texture image datasets that have been released and

commonly used by the research community for texture classification, as summarized in Table (3.7)

and sample images from each dataset are presented in Fig. (3.6).
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Table 3.7: Texture image datasets considered in the experiments.

Data set Classes
Samples Total Resolution
per class samples (pixels)

KTH-TIPS 10 81 810 200× 200

UIUCTex 25 40 1000 640× 480

DTD 47 210 9870 ∼ 400× 400

Figure 3.6: Examples of images from the texture datasets.

The first data set was introduced by researchers from the Royal Institute of Technology called

“KTH Textures under varying Illumination, Pose, and Scale”(KTHTIPS) [123]. To date, this

database contains ten materials: sandpaper, crumpled aluminum foil, styrofoam, sponge, corduroy,

linen, cotton, brown bread, orange peel, and cracker. The UIUC (University of Illinois Urbana-

Champaign) dataset collected by Lazebnik et al. [124] contains 25 texture classes, with each class

having 40 uncalibrated, unregistered images. It has significant variations in scale and viewpoint as

well as nonrigid deformations. The challenges of this database are that there are few sample images

per class, but with significant variations within classes. The last considered data set is the DTD

dataset [125], consisting of 120 texture based on a vocabulary of 47 human-interpretable texture

attributes. The large intraclass variations in the DTD are different from other texture datasets, in an

effort to support directly real-world applications. Evaluation results for the three datasets generated

by the different approaches are summarized in Table (3.8). We start by detecting local regions and

computing their SIFT descriptors [90], giving a 128-dimensional vector for each keypoint. Then,

we construct a global texton vocabulary via the clustering of descriptors obtained from the different

training classes. Following [126], we extract 10 textons using K-means (i.e., the textons are actually

the K-means cluster centers) for each texture class and then concatenate the textons of the different
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Table 3.8: Texture classification accuracy using different approaches.

Dataset MM DCM MGD MBL MSD EMSD

KTH-TIPS 92.63 93.14 95.29 95.20 96.00 96.02

UIUCTex 95.03 96.12 97.82 97.85 97.29 98.36

DTD 91.80 92.33 94.12 94.25 94.20 94.70

classes to form the visual vocabulary. Thus, the vocabulary sizes are 100, 250, and 470 for the

KTH-TIPS, UIUCTex, and DTD datasets, respectively. Clearly, the MSD, MGD, and the MBL out-

perform the other approaches, and a Student’s t-test shows that the differences in performance are

statistically significant (i.e., p-values between 0.0030 and 0.037 for the different runs). The results

show also that the MSD performance is comparable to that of the MGD and MBL (i.e., the differ-

ences are not statistically significant, p-values are 0.1127 and 0.2060). For texture classification, we

can see that accuracy achieved using EMSD is comparable to MSD for the three considered data set.

This can be explained by the relatively small texture vocabulary size. In other words, the consid-

eration of the approximation approach is justified by the challenge in clustering high-dimensional

and sparse data, i.e., the improvement in accuracy compared to the corresponding model, MSD is

usually obtained given the high-dimensionality of the data. Moreover, it is noteworthy also that

there is no significant improvement in the time complexity when using EMSD compared to MSD.

3.7 Conclusion

In this work, we have introduced the MSD, which is a composition of the multinomial and the

scaled Dirichlet distributions for count data modeling. The approach proposed is motivated by the

hierarchical Bayesian framework for modeling text data and can be used in many practical situa-

tions where the generated data is in the form of vectors of frequencies. The scaled Dirichlet has

several convenient properties that make it more useful and practical than the Dirichlet as a prior to

the multinomial: it has an extra set of parameters that allows more modeling flexibility. For learning

a finite mixture of MSD, the Expectation-Maximization (EM) algorithm has been outlined. Further-

more, we have introduced a new family of distributions (EMSD) based on the exponential family

approximation of the proposed Multinomial scaled Dirichlet (MSD) to cluster high-dimensional
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sparse count data faster and more efficient. The deterministic annealing expectation-maximization

(DAEM) algorithm has been proposed to estimate the parameters of the EMSD mixture model,

where the number of components is selected using the presented MML-based criterion.

The effectiveness of both new mixtures was shown through extensive experiments on challeng-

ing clustering problems such as text document classification, facial expression recognition, natural

scene categorization, and texture classification. Results revealed that MSD mostly outperforms

the mixtures of Multinomial and DCM, and achieve comparable performance compared to the re-

cently introduced MGD and MBL. On the other hand, EMSD successfully and correctly captures

the burstiness phenomenon while being many times faster and computationally efficient compared

to the corresponding MSD. Our unsupervised algorithm provides promising results in selecting the

optimal number of clusters by optimizing the message length of the data efficiently.

Appendix 1: Proof of Eq.(3.5)- The Marginal Distribution MSD

We have:

MSD(X|α, β) =

∫
ρ
M(X|ρ)SD(ρ|θ)dρ

=

∫
ρ

n!
W∏
w=1

xw!

W∏
w=1

ρxww
Γ(a)

W∏
w=1

Γ(αw)

W∏
w=1

βαw
w ραw−1

w(
W∑
w=1

βwρw

)a dρ

=
n!

W∏
w=1

xw!

Γ(a)
W∏
w=1

Γ(αw)

W∏
w=1

βαw
w

∫
ρ

W∏
w=1

ρxw+αw−1
w(

W∑
w=1

βwρw

)adρ
(3.25)
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Using the fact that the integration of the pdf=1, we have:
∫
ρ SD(ρ|α, β)dρ = 1, straightforward

manipulation yield:

∫
ρ

Γ(a)
W∏
w=1

Γ(αw)

W∏
w=1

βαw
w ραw−1

w(
W∑
w=1

βwρw

)a dρ = 1

Γ(a)
W∏
w=1

βαw
w

W∏
w=1

Γ(αw)

∫
ρ

W∏
w=1

ραw−1
w(

W∑
w=1

βwρw

)adρ = 1 (3.26)

Empirically, we found the following approximation:

(
W∑
w=1

βw ρw

)∑W
w=1 αw

'
W∏
w=1

βαw
w (3.27)

Considering this approximation to solve the integration in Eq.(3.26), gives:

∫
ρ

W∏
w=1

ραw−1
w(

W∑
w=1

βwρw

)adρ =

W∏
w=1

Γ(αw)

Γ(a)
W∏
w=1

βαw
w

(3.28)

Using Eq.(3.28) to solve the integration for SD(ρ|α+ x, β) in Eq. (3.25), we obtain:

MSD(X|α, β) =
n!

W∏
w=1

xw!

Γ(a)
W∏
w=1

Γ(αw)

W∏
w=1

βαw
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Γ(
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αw + xw)
W∏
w=1

βαw+xw
w

=
n!

W∏
w=1

xw!

Γ(a)

Γ(a+ n)
W∏
w=1

βxww

W∏
w=1

Γ(αw + xw)

Γ(αw)
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Appendix 2: Hessian Matrix for MSD

The gradient vector G is obtained by computing the first partial derivative of L(X ,Z|Θ) with

respect to αjw and βjw, w = 1, . . . ,W , we obtain:

∂L(X ,Z|Θ)

∂αjw
=

N∑
i=1

zij

(
Ψ(aj)−Ψ(aj + ni) + Ψ(αjw + xiw)−Ψ(αjw)

)
(3.29)

∂L(X ,Z|Θ)

∂βjw
=

N∑
i=1

zij

(
−xiw
βjw

)
(3.30)

where Ψ is the digamma function (the logarithmic derivative of the Gamma function). The Hessian

matrix is based on the second-order derivatives calculated as follows:

∂2L(X ,Z|Θ)

∂αjw1∂αjw2
=


N∑
i=1

zij

(
Ψ′(aj)−Ψ′(aj + ni) + Ψ′(αjw + xiw)−Ψ′(αjw)

)
if w1 = w2 = w,

N∑
i=1

zij

(
Ψ′(aj)−Ψ′(aj + ni)

)
otherwise,

(3.31)

where Ψ′ is the trigamma function, and:

∂2L(X ,Z|Θ)

∂βjw1∂βjw2
=


N∑
i=1

zij

(xiw
β2
jw

)
if w1 = w2 = w,

0 otherwise,

(3.32)

∂2L(Xj |θ)
∂αjwβjw

=
∂2L(Xj |θ)
∂βjwαjw

= 0 (3.33)
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Appendix 3: Fisher Information Matrix for EMSD

F (θj) is obtained by calculating the negative of the log-likelihood function given by:

−Q(Xj |θj) = ηj(− log Γ(sj)) +

l+ηj−1∑
d=l

log Γ(sj + nd)

−
∑

w:xdw≥1

(
log λjw − log xdw − xdw log(νjw)

)
(3.34)

Then, the first order derivative with respect to λjw, and νjw, w = 1, . . . ,W , also called the Fisher

score function, is:

−∂Q(X ,Z|Θ)

∂λjw
= ηj(−Ψ(sj)) +

l+ηj−1∑
d=l

Ψ(sj + nd)−
l+ηj−1∑
d=l

I(xdw ≥ 1)
1

λjw
(3.35)

−∂Q(X ,Z|Θ)

∂νjw
=

l+ηj−1∑
d=l

I(xdw ≥ 1)
1

νjw
(3.36)

where Ψ is the digamma function. Then,

−∂
2Q(Xj |θ)
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=
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, w1 = w2,
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(3.37)

where Ψ′ is the trigamma function, and:

−∂
2Q(Xj |θ)
∂νjw1νjw2

=


l+ηj−1∑
d=l

I(xdw ≥ 1)
−1

ν2
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(3.38)

−∂
2Q(Xj |θ)
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= −∂
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= 0 (3.39)
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Chapter 4
Hybrid Generative/Discriminative

Approaches Based on Multinomial Scaled

Dirichlet Mixture Models

Developing both generative and discriminative techniques for classification has achieved sig-

nificant progress in the last few years. Considering the capabilities and limitations of both, hybrid

generative discriminative approaches have received increasing attention. Our goal is to combine

the advantages and desirable properties of generative models, i.e., finite mixture, and the Support

Vector Machines (SVMs) as powerful discriminative techniques for modeling count data that ap-

pears in many domains in machine learning and computer vision applications. In particular, we

select accurate kernels generated from mixtures of Multinomial Scaled Dirichlet distribution and its

exponential approximation (EMSD) for support vector machines. We demonstrate the effectiveness

and the merits of the proposed framework through challenging real-world applications, namely; ob-

ject recognition and visual scenes classification. Large scale datasets have been considered in the

empirical study such as Microsoft MOCR, Fruits-360, and MIT places.
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4.1 Introduction

The different approaches to manage, filter and retrieve information can be grouped into two

main categories of approaches: model-based (generative) approaches and discriminative classi-

fiers. The goal of a generative model is to estimate the class-conditional distributions P (X|j)

for j = 1, . . . ,M , where M is the total number of classes, and the prior probabilities (i.e., mixing

weights) pj of each class, which are then used for classification via Bayes’ rule [127]. Examples

include Hidden Markov Models, Bayesian Networks, mixture models, etc. On the other hand, dis-

criminative approaches focus directly on the classification problem (i.e., the problem of primary

interest) by estimating a classification function j = f(X) directly from the data without regard to

the underlying class densities [128]. Discriminative classifiers, such as support vector machines

and neural networks, generally have superior classification performance [129]. However, when the

amount of available labeled training data is small, generative approaches may provide better classifi-

cation results by providing a principled framework for handling uncertainty and missing data [130].

In many settings, traditional generative or discriminative methods either are infeasible or fail to

provide acceptable results and generalization to new data. Instead, researchers have recently turned

to hybrid generative discriminative approaches that can efficiently combine the advantages of both

approaches and then get the best of both worlds [131]. Hybrid approaches can be viewed actually

as the incorporation of prior knowledge about the problem at hand into the training procedure to

obtain the best possible performance [132, 133].

This paper is an extended version of our earlier work based on a novel mixture model that we

called the Multinomial Scaled Dirichlet (MSD) [23]. The proposed model is the composition of the

Scaled Dirichlet distribution and the Multinomial in the same way that the DCM [9], MGD [10],

MBL [11] are the compositions of the Dirichlet, the generalized Dirichlet, and the Beta-Liouville,

respectively, with the Multinomial. The Scaled Dirichlet is a generalization of the Dirichlet distri-

bution, which is the best-known distribution for categorical data modeling, and it has shown to be an

interesting prior to the Multinomial. We have argued, in our previous work, that the finite mixture

of MSD distributions is a more appropriate and flexible generative model than the best state-of-

the-art methods for text data. Moreover, MSD could capture the burstiness phenomenon, i.e., if a
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word appears once it is much more likely to appear again. Indeed, this phenomenon translates to

images represented by a bag-of-features (BOF), as visual elements tend, also, to appear in bursts

[96]. Thus, we extended the previous work to model visual data where burstiness is also important.

Here, we first provide a close approximation to the MSD as a member of the exponential family

of distributions that we called EMSD. Then, we further extend the work by proposing a hybrid

model devoted to the applications in which count data representations are involved. Several well-

motivated SVM kernels have been developed based on MSD/EMSD mixture models. In particular,

we develop a Fisher kernel between two MSD/EMSD distributions and closed-form expressions of

different information-divergence based kernels, namely, Kullback–Leibler kernel, Reńyi kernel, and

Jensen–Shannon kernel.

The remainder of the paper is organized as follows. In Section 4.2, we briefly review generative,

discriminative, and hybrid approaches. In Section 4.3, we present the Multinomial Scaled Dirich-

let mixture model and Expectation-Maximization (EM) algorithm for learning its parameters and

provide the exponential family approximation to the MSD which we call EMSD. The derivation

of different SVM kernels from a mixture of MSD/EMSD distributions is discussed in Section 4.4.

Section 4.5 is devoted to the experimental results. Finally, Section 4.6 concludes the paper.

4.2 Related Works

4.2.1 Generative Models for Count Data

The Multinomial models are simple and convenient to use, thus, they are very popular and often

serve as basic units in complex models. Multinomial distribution, the multivariate generalization of

the Binomial distribution, is widely used in modeling categorical data Consider that we have a set of

N observations X = {X1, . . . , XN}, where each vector Xi represents a given image (or document)

and is described in terms of the counts (or frequencies) of D features, Xi = (xi1, . . . , xiD), where

the features could be, for instance, words in the case of textual documents or visual words in the case

of images. Then, the probability of an object X, represented as a vector of counts, that it follows a
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Multinomial distribution with parameters ρ = (ρ1, . . . , ρD), is given by:

M(X|ρ) =
n!

D∏
d=1

xd!

D∏
d=1

ρxdd (4.1)

where D is the size of the vocabulary, and n =
∑D

d=1 xd is the document length.

The main drawback of Multinomial models is that they make a naive Bayes assumption: that the

probability of each word event in a document is independent of the words context and its position in

the document [52], which is not very accurate. In natural languages, the word frequencies have been

shown to be affected by the phenomenon of burstiness [7, 54]. Thus, modeling the probabilities of

repeat occurrences of words improves the classification performance and information retrieval ac-

curacy. Indeed, Multinomial distributions fail to capture this phenomenon well, as was shown in

[9]. An alternative approach for modeling term frequencies is the Dirichlet Compound Multinomial

(DCM) proposed in [9], where the authors proved that the performance of DCM is comparable to

that obtained with multiple heuristic changes to the Multinomial model. The superior performance

of DCM is obtained by the hierarchical approach, which introduces the prior information into the

construction of the statistical model, where the Dirichlet is generally taken as a prior to the Multino-

mial distribution. The Dirichlet distribution, with a set of parameters α = (α1, . . . , αD), is defined

as:

D(ρ|α) =
Γ(A)

D∏
d=1

Γ(αd)

D∏
d=1

ραd−1
d (4.2)

where A =
∑D

d=1 αd. Then, the DCM is the marginal distribution given by the following integra-

tion:

DCM(X|α) =

∫
ρ
M(X|ρ)D(ρ|α)dρ

=
n!

D∏
d=1

(xd)!

Γ(A)

Γ(
D∑
d=1

xd + αd)

D∏
d=1

Γ(xd + αd)

Γ(αd)
(4.3)

We can note that compared to the Multinomial, the DCM has one extra degree of freedom, since its
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parameters are not constrained to sum up to one, which makes it more practical [61, 63]. Although

the Dirichlet distribution is a natural conjugate prior for the Multinomial likelihood and it exhibits

many convenient mathematical properties, it is not the most appropriate solution. Hence, other

distributions were proposed in the literature to be used as a prior for the Multinomial. Dirichlet

distribution, for instance, has a very restrictive negative covariance structure and the variables with

the same mean must have the same variance [98, 100]. These properties make its use as a prior

in the case of positively correlated data inappropriate. Recent works show that the generalized

Dirichlet has many convenient properties that make it more useful and practical, as a prior to the

Multinomial than the Dirichlet in real-life applications [10, 100]. Bouguila [11] later introduced

another alternative based on Liouville family distributions, which is in contrast with the Dirichlet

and, like the generalized Dirichlet, can have positive or negative covariance. In addition, like the

Dirichlet and the generalized Dirichlet, the Liouville distribution, of the second kind, is a conjugate

to the Multinomial distribution [100]. Other interesting properties of the Liouville distribution are

discussed in [101, 102].

4.2.2 The Generative/Discriminative Learning Approach

Support Vector Machines (SVMs), as a type of classifiers, are well known for supervised learn-

ing and applicable to both classification and regression problems. Since the SVM classifier was

introduced in [129], it gained popularity due to its good generalization, global solution, number

of tuning parameters, and their solid theoretical foundation. The development of efficient SVMs

implementations led to broadening its applications [134–136]. A challenging problem in the case

of SVMs is the choice of the kernel function, which is actually a measure of similarity between

two vectors. In case the data are not linearly separable, it can be mapped into a high dimensional

feature space using a kernel function to simplify the computation of the inner product value of the

transformed data in the feature space [137, 138]. The generally used kernel functions are polyno-

mial, Radial Basis Function (RBF), and sigmoid [139, 140]. Given their good discrimination and

generalization capabilities, SVMs are well known powerful tools for pattern classification. While

the generative models (e.g., mixture models and hidden Markov models) aim to estimate the class-

conditional distributions, the discriminative approaches focus directly on the classification problem
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by estimating a classification function. In most of the applications, it was shown that the classic

SVM kernels are not the best choice, and better results can be achieved when the kernel function

is generated directly from data. One of the most successful approaches is the Fisher kernel initially

proposed in [141], and the main idea is to exploit the geometric structure on the statistical manifold

by mapping a given individual sequence of vectors into a single feature vector, defined in the gradi-

ent log-likelihood space. The fisher kernel has been widely used in the literature. For instance, in

[142] where Gaussian mixture model-based kernel functions used for speech emotion recognition,

in [143, 144] based on a mixture of Dirichlet and generalized Dirichlet for modeling non-Gaussian

data, and in [145] where Fisher kernels extract discriminative embeddings from Hidden Markov

Models (HMMs) of occurrences for quantified self activities and behavior. Moreover, Fisher ker-

nels have been used and shown excellent performance in many applications that involve discrete data

such as handwriting recognition, speech recognition, facial expression analysis, and bioinformatics

based on mixture of Multinomials [146], as well as, spam and text categorization and hierarchical

classification of vacation images based on mixture of Multinomial Dirichlet distributions [147].

An alternative to the Fisher kernel is to generate SVM kernels based on information divergence

between distributions. As a similarity measure between input vectors, a given kernel should capture

the intrinsic properties of the data to classify, and take into account prior knowledge of the prob-

lem domain. In particular, it is a group of kernels obtained by exponentiating divergence measure

between p(X|Θ) and p′(X|Θ′). Several information divergence-based kernels have been previ-

ously proposed. For instance, the authors in [148, 149] have derived a kernel distance based on

the symmetric Kullback-Leibler (KL) divergence [150] between Dirichlet distributions [151], and

between Gaussian mixtures which was applied successfully for speaker identification, image clas-

sification and visual recognition [148]. Moreover, authors in [143, 152] have derived other kernel

distances between Liouville mixtures and Langevin distributions, respectively, based on Renyi and

Jensen–Shannon Kernels [153, 154]. It is noteworthy that the existence of closed-form expressions

for these distances is demonstrated by exploiting the fact that a distribution belongs to the expo-

nential family of distributions, such as Gaussian [155, 156], Beta-Liouville [157] and the Dirichlet

family [143, 158].
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4.3 Finite Multinomial Scaled Dirichlet mixture model

In this section, we first present, in sufficient detail, the Multinomial Scaled Dirichlet mixture

model and EM algorithm for learning its parameters as previously proposed in [23]. Then, we

derive a new distribution that is an approximation to the MSD, which we call EMSD, and it is,

unlike the MSD, a member of the exponential family.

4.3.1 Multinomial Scaled Dirichlet (MSD)

In this work, we look at some limitations of the Dirichlet distribution. For instance, Dirichlet

does not take into account relative positions between categories or Multinomial cells [98]. More-

over, it has a poor parameterization that limits its ability to better model variance and covariance

[97]. Thus, we are proposing the choice of a more flexible prior to the Multinomial that can help to

resolve these issues, which is a generalization of the Dirichlet called Scaled Dirichlet distribution

[98, 103]. The Scaled Dirichlet is a generalization of the Dirichlet distribution, which is the dis-

tribution of a random vector obtained after applying the perturbation and powering operations to a

Dirichlet random composition. These operations define a vector-space structure in the simplex and

play the same role as sum and product by scalars in real space [103].

The Scaled Dirichlet has a set of parameters; α = (α1, . . . , αD) which is the shape parameter,

and β = (β1, . . . , βD) which is the scale parameter. The probability density of the probability

vector ρ = (ρ1, . . . , ρD), is given by [103]:

SD(ρ|α,β) =
Γ(A)

D∏
d=1

Γ(αd)

D∏
d=1

βαd
d ραd−1

d(
D∑
d=1

βdρd

)A (4.4)

whereA =
∑D

d=1 αd, and Γ denotes the Gamma function. The shape parameterα simply describes

the form or shape of the Scaled Dirichlet distribution, and its flexibility is very significant in finding

patterns and shapes inherent in a data set. The scale parameter β controls how the density plot

is spread out where the shape of the density is invariant, irrespective of the value of a constant or

uniform scale parameter. Note that the Dirichlet distribution is a special case of the scaled Dirichlet
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xᵨ α, β  M(X|ᵨ)SD(ᵨ|α, β)P(X)

Figure 4.1: Hierarchical representation of MSD model.

that can be obtained when all elements of the vector β are equal to a common constant. Thus,

the Scaled Dirichlet includes the Dirichlet as a special case. Compared to the Dirichlet, the Scaled

Dirichlet, has D extra parameters, which enhances the model flexibility [106, 107].

Integrating over ρ gives the marginal distribution of X, as follows:

MSD(X|α,β) =

∫
ρ
M(X|ρ)SD(ρ|α,β)dρ

=
n!

D∏
d=1

xd!

Γ(A)

Γ(n+A)
D∏
d=1

βxdd

D∏
d=1

Γ(xd + αd)

Γ(αd)
(4.5)

The last step of equation (4.5) is obtained by using the fact that
∫
ρ SD(ρ|α,β) = 1, and applying

the following empirically tested approximation:(∑D
d=1 βd ρd

)∑D
d=1 xd '

∏D
d=1 β

xd
d , given a common constant value for β. By setting β1 = β2 =

· · · = βD = 1, equation (4.5) is reduced to (4.3), which is the DCM.

In Figure (4.1 ), we present the graphical representation of the MSD model. Like DCM, MSD is

a hierarchical Bayesian modeling framework that can be interpreted as bag-of-bags-of words, where

for a specific document, for instance, the Multinomial is linked to particular sub-topics, and thus,

it makes the emission of some words more likely than others. This gives it the ability to handle

burstiness even for rare words without introducing heuristics [61]. That is, if a rare word appears

once in a document, it is much more likely to appear again.

4.3.2 MSD Mixture Learning

In mixture modeling, we assume that our data population is generated from a mixture of sub pop-

ulations. Given an observed data set X with N data instances {X1, . . . ,XN}, each D-dimensional

vector representing an object Xi = (xi1, . . . , xiD), is drawn from a superposition ofK Multinomial
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Scaled Dirichlet densities of the form:

p(Xi|π,α,β) =
K∑
k=1

πkMSD(Xi|αk,βk) (4.6)

where πk (0 < πk < 1 and
K∑
k=1

πk = 1) are the mixing proportions. Next, we introduce a K-

dimensional binary random vector Zi = (zi1, . . . , ziK) to each data vector Xi, where zik ∈ {0, 1}

and
∑K

k=1 zik = 1. Here, the latent variable Zi works as an indicator variable equals to 1 if Xi

belongs to component k and 0 otherwise.

The complete data at this case are (X ,Z|Θ), where X represents a set of observed variables,

and the set Θ = (α1, . . . , αK , β1, . . . , βK , π1, . . . , πK) denotes all latent variables and parameters.

For learning a mixture model, Expectation Maximization (EM) algorithm can be used to obtain the

maximum likelihood estimates of the parameters [160].

In the E-step of the EM algorithm, we compute the posterior probabilities (i.e., the probability

that a vector Xi belongs to cluster k), as:

ẑik = p(k|Xi, θk) =
πk p(Xi|θk)
K∑
k=1

πk p(Xi|θk)
(4.7)

In the M-step, we update the model parameter estimates according to:

Θ∗ = arg max
Θ
{L(X ,Z|Θ)}

= arg max
Θ

N∑
i=1

K∑
k=1

ẑik log (p(Xi|θk)πk) (4.8)

when maximizing (4.8) we obtain:

πk =
1

N

N∑
i=1

ẑik (4.9)

We can obtain the maximum likelihood parameter estimates for the MSD by taking the deriva-

tive of the log-likelihood function and find ΘMLE when the derivative is equal to zero. However,

we do not obtain a closed-form solution for the αk and βk parameters. We, therefore, use the

75



Algorithm 4: EM for estimating the MSD mixture parameters.
Output: Optimal parameters θ∗

Input: Dataset X with N D-dimensional vectors, a specified number of clusters K
1 Initalization: Apply k-means on the ND-dimensional vectors to obtain initial K clusters ;
2 Initialize the shape parameters αk using method of moments ;
3 Initialize the scale parameter vector βk with a vector of ones;
4 repeat
5 The Expectation Step(E-step);
6 for i = 1 to N do
7 for k = 1 to K do
8 Compute the posterior probabilities p(k|Xi, θk) using equation (4.7);
9 end

10 end
11 for k = 1 to K do
12 Update the mixing proportion πk using equation(4.9) ;
13 Update the θk using Equation (4.10);
14 end

Newton-Raphson method expressed as:

θnewk = θoldk −H−1G (4.10)

where H is the Hessian matrix associated with the complete log-likelihood L(X ,Z|Θ), and G is

the first derivatives vector. To calculate the Hessian matrix, we have to compute the second and

mixed derivatives of the log-likelihood function. The complete block Hessian matrix Hk has to be

transformed to its inverse before it can be used in the Newton-Raphson maximization. To achieve

an optimal performance, a proper initialization is needed to avoid converging to local maxima. To

initialize the πk parameter, we use the K-means algorithm, and to initialize the model parameters,

we make use of the method of moments.

In the case of the Multinomial Scaled Dirichlet distribution, a closed-form solution for its mo-

ment equations does not exist. Thus, we will initialize the αk vector using the moments’ equations

of the DCM distribution [75], while the βk vector will be initialized with equal scaling (a vector

of ones). Parameters will be then updated during the EM iterations to take their natural values in

relation to the observed data. The complete algorithm for learning the MSD mixture parameters is

summarized in (Algorithm 4).
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4.3.3 MSD Approximation to the Exponential Family

Any family of distributions where the support depends on the parameter can not be from an

exponential family. However, it can always be reduced to a member of the exponential families via

a suitable transformation and re-parameterization. A multi-parameter exponential distribution for

random variables X indexed by a parameters set θ, can be written as [67]:

P (X|θ) = H(X) exp{G(θ)T (X) + Φ(θ)} (4.11)

where G(θ) is called the natural parameter, T (X) is the sufficient statistic, H(X) is the underlying

measure, and Φ(θ) is called log normalizer which ensures that the distribution integrates to one.

Given the sparsity nature of data sets represented using bag-of-words, or bag-of-visual-words,

it should be possible to evaluate the probability as a function of non-zero xd values only for compu-

tational efficiency. That is, the value of xd! = 1, βxdd = 1 and Γ(αd+xd)/Γ(αd) = 1 when xd = 0.

The MSD distribution in this case is given by:

MSD(X|α, β) =
n!∏

d:xd≥1

xd!

Γ(A)

Γ(A+ n)
∏

d:xd≥1

βxdd

∏
d:xd≥1

Γ(αd + xd)

Γ(αd)
(4.12)

In case of high dimensional data when the parameters are really small, we can use the approximation

given in [12] to replace Γ(αd+xd)/Γ(αd) by Γ(xd)αd in the previous equation. Using the fact that

if x is an integer then x! = x(x− 1)!, we can further simplify to obtain the new distribution that we

call (EMSD):

EMSD(X) =
n!∏

d:xd≥1

xd

Γ(s)

Γ(s+ n)

∏
d:xd≥1

λd
νxdd

(4.13)

where s =
∑D

d=1 λd. We denote the EMSD parameters as λd instead of αd, and νd instead of βd

to distinguish them from the MSD parameters for clarity. We can rewrite Eq.(4.13) in exponential
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family form as:

EMSD(X) =
( ∏
d:xd≥1

xd

)−1
n!

Γ(s)

Γ(s+ n)

× exp
[ D∑
d=1

I(xd ≥ 1) log(λd)− xd log(νd)
]

(4.14)

where I(xd ≥ 1) is an indicator that represents whether the word d appears at least once in the

vector X.

4.4 A Hybrid of MSD/EMSD Mixture Models and SVM

The motivation of using SVMs for classification problems is well documented and discussed in

[129, 161]. An important issue in applying SVMs is the choice of the kernel function,K : X ×X →

R, for non-separable data [162]. The idea is to capture the intrinsic properties of the data to classify

based on a similarity measure between input vectors taking into account a prior knowledge of the

problem domain. In this section, we develop kernels based on MSD/EMSD mixture models that

address cretin practical limitations of classical kernels and could also be called generative kernels

[163]. Fig. (4.2) shows the proposed hybrid generative/discriminative process graphically. A gen-

erative model can be used in a discriminative context by extracting Fisher Scores, or probability

distances, from the generative model and converting them into a Kernel function. A kernel repre-

sents the data as a matrix of pairwise similarities, which may be used for classification by a kernel

method, such as the support vector machine. We show the capability of the generated kernel func-

tions in real-life applications that require handling bags of count vectors. The generative stage is

done by fitting the MSD/EMSD model directly to the local SIFT feature vectors extracted from the

images (i.e., each image is encoded as a bag of SIFT feature vectors). Consequently, each image

in our data sets is represented by a finite mixture model of MSD/EMSD distributions. The dis-

criminative stage, on the other hand, is represented by computing the Fisher, or probability product,

kernel between each of these mixture models giving us kernel matrices to feed the SVM classifier.

Moreover, we have used the 1-versus-all training approach, and the values for all design parameters

were obtained by performing 10-fold cross-validation.

78



Each image is represented by a 
bag of SIFT descriptors

Extract SIFT feature descriptors

Generative Stage 

P(χ |ϴ )=∑πk P(X|θk)

Fisher/
probability 

distance 
kernels 

SVM
 classifier 

Discriminative Stage 

Figure 4.2: Graphical representation of the proposed hybrid learning approach.

4.4.1 Development of Fisher Kernels

Let O = {O1, . . . ,ON} be a set of multimedia objects (e.g., images), where each image Oi is

defined by a sequence of feature vectorsXOi
= {XOi1, . . . , XOiT }. Each individual objectXOi

has

its own size T as the image can be represented by a bag of pixel vectors of a set of local descriptors

of D dimensions [164, 165]. The Fisher kernel is defined in the gradient log-likelihood space,

and the resulted feature vector is called the Fisher score and defined as UXOi
=

∂P (XOi
|Θ)

∂Θ , where

each component is the derivative of the log-likelihood with respect to a particular parameter. In the

case of a finite mixture model of MSD/EMSD distributions with K components, the corresponding

feature space is (K(2D + 1) − 1)-dimensional. The kernel is then defined as K(X : XOi
) =

UXF (Θ)−1UXOi
, where F (Θ) is the Fisher information matrix whose role is less significant and

then can be approximated by the identity matrix [141].

To simplify the notation, let X = {X1, . . . , XT }, each is a D-dimensional vector1, be our se-

quence of feature vectors assumed to be generated by a finite mixture model withK components, so

the log-likelihood for all the sequences in an object is defined as logP (XOi |Θ) =
∏T
t=1 P (Xt|Θ).

By computing the gradient of logP (X|Θ) =
N∑
i=1

K∑
k=1

ẑik log (p(Xi|θk)πk) with respect to the MSD

1The size of each vector depends on the image representation approach, in our case the vectors are 128-dimensional
given that we are representing each image as a bag of SIFT descriptors [90].
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model parameters, straightforward manipulations give:

∂L(X ,Z|Θ)

∂αkd
=

T∑
t=1

ẑtk

(
Ψ(A)−Ψ(nt +A) + Ψ(xtd + αkd)−Ψ(αkd)

)
∂L(X ,Z|Θ)

∂βkd
=

T∑
t=1

ẑtk

(
−xtd
βkd

)
(4.15)

and with respect to the EMSD model parameters as:

∂L(X ,Z|Θ)

∂λkd
=

T∑
t=1

ztkI(xtd ≥ 1)

T∑
t=1

ztkΨ(sk + nt)−MΨ(sk)

∂L(X ,Z|Θ)

∂νkd
= −

T∑
t=1

ztkI(xtd ≥ 1) (4.16)

where M =
∑T

t=1 ztk is the sum of posterior probability. Furthermore, computing the gradient

πk, k = 1, . . . ,K , which is the same for any mixture model, gives:

∂L(X|Θ)

∂πk
=

T∑
t=1

[ztk
πk
− ztk
π1

]
, k = 2, . . . ,K (4.17)

Considering the unity constraint on mixing weights, we have only K − 1 free parameters, which

explains the fact that the previous gradient equation is defined for k ≥ 2 as π1 can be determined

knowing the values of the other mixing parameters (π1 = 1−
∑K

k=2 πk).

4.4.2 Kernels Based on Information Divergence

The main idea of information divergence kernel is to replace the kernel computation in the

original sequence space by computation in the probability density functions (PDFs) space (i.e.,

the kernel becomes a measure of similarity between probability distributions) [149, 166]. Let

X = {X1, . . . ,XN} and X ′ = {X′1, . . . ,X′N} be two sequences of feature vectors represent-

ing two multimedia objects O and O′, respectively, defined on the space Ω (Ω is the D-dimensional

simplex in the case of EMSD distribution). The goal of this section is to generate SVM kernels

based on information divergence to handle the classification of high dimensional positive vectors
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for which the classic widely used kernels are not the best. The symmetric Kullback–Leibler diver-

gence between p(X|Θ) and p′(X|Θ′) is given by:

KKL(p(X|Θ), p′(X|Θ′)) = exp[−A J(p(X|Θ), p′(X|Θ′))] (4.18)

where A is a kernel parameter included for numerical stability, and

J(p(X|Θ), p′(X|Θ′)) = KL(p(X|Θ), p′(X|Θ′)) +KL(p′(X|Θ′), p(X|Θ))

The KL divergence has a closed-form expression in the case of the EMSD distribution and is given

by (see Appendix 1):

KL(p(X|Θ), p′(X|Θ′)) = log

Γ
(∑D

d=1 λd

)
.Γ
(∑D

d=1 λ
′
d + n

)
Γ
(∑D

d=1 λ
′
d

)
.Γ
(∑D

d=1 λd + n
)


+

D∑
d=1

(
Ψ(

D∑
d=1

λd + n)−Ψ(

D∑
d=1

λd)

)
(λd − λ′d) (4.19)

The Reńyi kernel is another approach, based on the symmetric Reńyi divergence [153], which has

been proposed in [149]:

KR(p(X|Θ), p′(X|Θ′)) = exp[−A R(p(X|Θ), p′(X|Θ′))] (4.20)

where:

R(p(X|Θ), p′(X|Θ′)) = Dσ(p(X|Θ) +Dσp
′(X|Θ′))

=
1

σ − 1
log

∫
Ω
p(X|Θ)σp′(X|Θ′)1−σdX

+
1

σ − 1
log

∫
Ω
p′(X|Θ′)σp(X|Θ)1−σdX (4.21)
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where σ > 0 and σ 6= 1 is the order of Reńyi divergence. By substituting Eq.(4.21) into Eq.(4.20),

we obtain the following:

KR(p(X|Θ), p′(X|Θ′)) =

[∫ +∞

0
p(X|Θ)σp′(X|Θ′)1−σdX

×
∫ +∞

0
p′(X|Θ′)σp(X|Θ)1−σdX

]A/(1−σ)

(4.22)

In the case of an EMSD distribution, we can find a closed-form expression for the Reńyi divergence

(see Appendix 2):

∫ +∞

0
p(X|Θ)σp′(X|Θ′)1−σdX =

[ Γ(
∑D

d=1 λd)

Γ(
∑D

d=1 λd + n)

]σ[ Γ(
∑D

d=1 λ
′
d)

Γ(
∑D

d=1 λ
′
d +

∑d
d=1 xd)

]1−σ

×
Γ(
∑D

d=1 λd +
∑D

d=1−σxd)
Γ(
∑D

d=1 λd)

×
Γ(
∑D

d=1 λ
′
d +

∑D
d=1−xd + σxd)

Γ(
∑D

d=1 λ
′
d)

(4.23)

It is noteworthy that this kernel can be viewed as a generalization of the KL kernel since we can

show that the Reńyi divergence is equal to the KL divergence as σ → 1 [149, 153].

The last kernel is the Jensen-Shannon (JS) Kernel, generated according to the Jensen-Shannon

divergence [154], and is given by [149]:

KJS(p(X|Θ), p′(X|Θ′)) = exp[−A JSω(p(X|Θ), p′(X|Θ′))] (4.24)

where:

JSω(p(X|Θ), p′(X|Θ′)) = H[ω p(X|Θ) + (1− ω)p′(X|Θ′)]

− ω H[p(X|Θ)]− (1− ω) H[p′(X|Θ′)] (4.25)

where ω is a parameter, and:

H[p(X|Θ)] = −
∫ +∞

0
p(X|Θ) log p(X|Θ)dX (4.26)
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is the Shannon entropy and we can show, that is given by the following in the case of the EMSD

distribution (see Appendix 3):

H[p(X|Θ)] = − log Γ(

D∑
d=1

λd) + log Γ(

D∑
d=1

λd + n)

−
D∑
d=1

log(λd)
(

Ψ(
D∑
d=1

λd + n)−Ψ(
D∑
d=1

λd)
)

(4.27)

4.5 Experimental results

4.5.1 Object Categorization

In today’s world, large amounts of digital images and videos are increasingly generated. There-

fore, there is an urgent need for the development of automatic methods to analyze and index these

overwhelmingly digital datasets. Given a set of training images represented as pairs (Xi, Ci), where

Xi is the ith feature vector representing image i and Ci is the category of the image i. The main

goal here is to learn a model that affects images to specified categories.

Our evaluation was based on four different image datasets, as follows:

(1) Caltech 101 [167] has 101 assorted object categories collected using Google Image Search.

We use a subset contains 6, 431 images divided into 4 clusters. A sample of this dataset is

shown in Figure (4.3).

(2) Extended-Brown ETHZ [168] consists of five diverse object classes: bottles, swans, mugs,

giraffes, and apple logos (see Figure 4.3) with over 255 test images covering several kinds

of scenes. In total, the objects appear 289 times, as some images contain multiple instances.

While most are photographs, some paintings, drawings, and computer renderings are included

as well.

(3) Microsoft Object Class Recognition Image (MOCR) dataset [169], introduced by the Mi-

crosoft research team in Cambridge, UK, contains 240 photographs belong to nine classes:

building, grass, tree, cow, sky, aeroplane, face, car, and bicycle.
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Caltech (4 classes) ETHZ (5 classes) 

Figure 4.3: Samples from Caltech and ETHZ datasets.

Figure 4.4: Samples from Fruits-360 dataset.

(4) Fruits-360 [170] a new, high-quality, dataset of images containing popular fruits. Currently,

the set contains 55, 244 images of 81 fruits, and it is constantly updated with images of new

fruits. We use a subset of 10 categories, as shown in Figure (4.4).

4.5.1.1 Comparison of Generative and Discriminative Approaches

The objective of our first set of experiments is to show the merits of our generative models,

using the so-called Bag-of-Features (BoF) approach based on the frequency of “visual words” [89]

provided from a visual vocabulary which is obtained by the quantization (or histogramming) of

local feature vectors computed from a set of training images. Each dataset was randomly split

into two halves to construct the visual vocabulary by detecting interest points from these images

and calculate their descriptors using Scale-Invariant Feature Transform (SIFT) [90], in which the

gradient is computed at each pixel in a 16 × 16 window around the detected keypoint, and in each

4 × 4 quadrant, a gradient orientation histogram is formed by adding the weighted gradient value
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Table 4.1: Object categorization performance obtained for the different datasets using different
techniques considering the BOF approach.

Dataset Polynomial RBF Sigmoid MM DCM MSD EMSD

Caltech 88.18 87.95 73.02 89.50 91.22 92.55 94.91

ETHZ 77.78 76.47 74.71 82.64 83.20 85.32 96.88

MOCR 78.12 76.66 74.06 84.39 86.91 88.24 97.62

Fruits-360 68.19 65.00 63.15 83.22 87.12 90.33 95.88

to one of eight orientation histogram resulting in 128-dimensional descriptor vector. Then, the

extracted vectors were clustered by using the K-means algorithm on K visual-words. Each image

in the datasets was then represented by a vector describing the frequencies of a set of visual words,

provided from the constructed visual vocabulary.

A summary of the classification results, measured by the average values of the diagonal entries

of the confusion matrices obtained for the different classification tasks, is shown in Table 4.1. In this

table, we present results obtained by different generative models as well as by SVMs with different

kernels optimized for each dataset, namely polynomial kernel, Radial Basis Function (RBF) kernel,

and sigmoid kernel. We can see that both MSD and EMSD perform better than the two other

generative models, which themselves perform better than SVM with classic kernels. The difference

between MSD and the other approaches is statistically significant (p-values between 0.027 and

0.032). Moreover, it is noteworthy that a Student’s t-test, with 95 percent confidence, shows that

the difference in performance between our proposed model MSD and its exponential approximation

EMSD is statistically significant (i.e., p-values between 0.021 and 0.003 for the different runs).

4.5.1.2 Classification Results Using the Hybrid Approach

The second set of experiments is conducted to validate our generative/discriminative approaches,

and it is an alternative to quantization, which is based on the direct modeling of the generated local

feature vectors by our finite mixture models. Then, the resulted models will be used to generate ker-

nels for classification. The results obtained when we fed SVM classifiers with different kernels gen-

erated from MSD and EMSD are shown in Table 4.2. We can see that the results vary significantly

across kernels. For instance, ETHZ results are between 88.18 and 92.31%, and MOCR results are
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Table 4.2: Object categorization performance comparison for the hybrid learning using different
kernels.

Caltech ETHZ MOCR Fruits-360

MSD-FK 97.57 88.18 89.50 94.15

EMSD-FK 98.38 88.46 89.58 95.45

Kullback 99.48 92.31 91.67 95.45

Reńyi 87.72 92.00 88.52 88.18

Jensen-Sh. 99.53 88.62 89.45 95.15

Table 4.3: Object categorization performance obtained by fitting directly different generative models
to the local descriptors.

Data set MM DCM MSD EMSD

Caltech 86.61 96.10 98.37 88.41

ETHZ 86.84 96.12 96.68 92.75

MOCR 89.84 94.54 97.29 86.66

Fruits-360 88.12 95.16 95.26 88.35

between 88.52 and 91.67%. Furthermore, we can notice that the two information divergence-based

kernels Kullback–Leibler (accuracy 99.48% for Caltech and 95.45% for Fruits-360) and Jensen-

Shannon (accuracy 99.53% for Caltech and 95.15% for Fruits-360) has better, or at least compara-

ble, results than the Fisher Kernels based on MSD and EMSD. However, the Reńyi kernel has shown

a slight degradation in the performance with an accuracy of 87.72% and 88.18% for Caltech and

Fruits-360 datasets, respectively. In particular, the Reńyi kernel has the worst performance among

the tested kernels for all the datasets except for ETHZ, where all information divergence-based

kernels perform slightly better than the MSD Fisher kernel.

Moreover, we compare the hybrid models to their fully generative counterparts, where the clas-

sification was based solely on the generative models. Note that the pure discriminative approach,

i.e., SVM with classic kernels, cannot be applied here since each image is represented now by a

set of vectors). Table 4.3 shows the results of this experiment, where we can see that the proposed

model MSD outperforms the other generative models. Furthermore, our experiments revealed that

EMSD generally achieved better classification results when integrated with SVM than when used

directly for classification purposes (e.g., average classification accuracy of Caltech using EMSD is
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88.41%, and can be enhanced to 99.53% using a Jensen-Shannon generative kernel).

4.5.2 Visual Scenes Modeling and Classification

The accurate organization of images enables increased efficiency of their retrieval and browsing,

which is a challenging major problem in computer vision and important requirements for informa-

tion systems [171]. It has several important applications like automatic linguistic indexing, retrieval,

recommendation, and object detection and recognition [172]. The problem of scenes classification

involves the assignment of an unknown scene to one of several classes based on a set of visual

extracted features such as color, the shape of objects, and textured patterns. The goal of the ex-

perimental study in this section is to assess the effectiveness of the Multinomial Scaled Dirichlet

mixture model and its exponential approximation in classifying visual scenes. Our experiments are

conducted on two datasets contain highly varying outdoor and indoor scenes. The first dataset by

Fei-Fei and Perona [93] contains 13 categories and is only available in grayscale (see Fig. 4.5).

This dataset consists of nine outdoor eight categories (360 coasts, 328 forest, 374 mountain, 410

open country, 260 highway, 308 inside of cities, 356 tall buildings, 292 streets, and 241 suburb

residence) and four indoor categories (174 bedroom, 151 kitchen, 289 living room, and 216 office).

The average size of each image is approximately 250×300 pixels. The second dataset is a subset of

MIT Places (the Scene Recognition Dataset) [173]. MIT Places dataset has over 7 million labeled

pictures of scenes collected using three image search engines (Google Images, Bing Images, and

Flickr). The subset used consists of around 60, 000 images in four categories; two indoor airport

terminal and bookstore, and two outdoor forest path and ocean (see Fig. 4.6). The average size of

each image is approximately 256×256 pixels.

First, each dataset has been randomly split into 80:20 to construct the visual vocabulary, and

then each image was represented by a vector of visual words frequencies to be used for validating

our generative models. Table 4.4 summarizes the average accuracy for classifying visual scenes

datasets using different generative and discriminative approaches. When using the MSD model,

the average classification accuracy for MIT places dataset was 89.15%, which is actually better than

81.35%, and 84.91%, which were achieved when we have used the Multinomial and DCM mixtures,

respectively. It is noteworthy that a Student’s t-test has shown that the differences in performance
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Figure 4.5: Sample images from the first dataset by Fei-Fei and Perona.

Figure 4.6: Sample images from MIT places dataset; Row1: Outdoor images, Row2: Indoor images.

between the MSD and the other generative models are statistically significant. Moreover, for both

datasets, the exponential approximation of MSD has shown significantly better results than the ones

achieved by MSD with an average accuracy of 93.80% and 96.46% for Fei-Fie and MIT datasets, re-

spectively. Both MSD and EMSD perform better than the SVM with the classic kernels, as shown in

Table 4.4. Then, all design parameters were obtained by performing 10-fold cross-validation for the

classification problem when using the different kernels. According to Table 4.5, the average accu-

racies for classifying the Fei-Fei dataset, for instance, were 97.39%, 99.74%, 99.50%, 99.48% and

99.74% using MSD-FK, EMSD-FK, Kullback, Reńyi, and Jensen–Shannon, respectively. These

results show that combining mixture models and SVMs through different information-divergence

Table 4.4: Visual scenes classification performance obtained for the different visual scenes datasets
using different techniques considering the BOF approach.

Dataset Polynomial RBF Sigmoid MM DCM MSD EMSD

Fei-Fei 86.89 86.75 78.65 79.95 84.16 87.76 93.80

MIT places 83.96 86.72 79.16 81.35 84.91 89.15 96.46
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Table 4.5: Visual scenes classification performance comparison using different kernels.

Fei-Fei MIT places

MSD-FK 97.39 98.99

EMSD-FK 99.74 99.95

Kullback 99.50 99.32

Reńyi 99.48 99.08

Jensen-Sh. 99.74 99.52

Table 4.6: Visual scenes classification performance obtained by fitting directly different generative
models to the local descriptors.

Data set MM DCM MSD EMSD

Fei-Fei 87.45 94.84 96.94 94.91

MIT places 91.95 97.29 98.13 97.27

kernels outperform the SVM Fisher kernel based on MSD (the differences are statistically signifi-

cant as shown by a Student’s t-test, p-values between 0.027 and 0.031). However, the differences

are not significant in the different information-divergence kernels.

The last set of experiments is conducted based solely on our generative models by fitting differ-

ent models to the local descriptors directly. The results of this experiment are shown in Table 4.6.

According to the results in Tables 4.5 and 4.6, it is clear that hybrid models improve the classification

accuracy compared to their fully generative counterparts. For instance, the accuracy of classifying

the MIT dataset by fitting EMSD directly to the descriptor is 97.27% compared to 99.95% when

using SVM with a kernel-based on EMSD Fisher score. Moreover, we can see that fitting directly

a generative model to the local SIFT feature vectors achieve significantly better results than the

quantization of these vectors as it was done before (results in Table 4.4). This can be explained

and interpreted by the fact that the constructed generative kernels respect local image structure in

contrast with quantization which does not take into account the spatial information (i.e.,, geometric

information about the positions of the different key points within the histogram bins).
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4.6 Conclusion

In this paper, we have developed hybrid generative/discriminative approaches for count data

modeling and classification through the development of a family of SVM kernels generated from our

recently proposed finite mixture of Multinomial Scaled Dirichlet distributions. These approaches

are motivated by the great number of applications that involve such types of data as well as the

advantages of both SVMs and finite mixture models. In particular, we have introduced a new

mixture model based on the Multinomial Scaled Dirichlet (MSD) and proposed an algorithm to

learn a finite mixture model based on MSD using the EM algorithm. Moreover, we have provided

an exponential family approximation to the MSD to be able to find closed-form expressions for

information-divergence, which is demonstrated by exploiting the fact that a distribution belongs to

the exponential family of distributions. Our experiments have involved object categorization and

visual scenes modeling based on a local representation of images used as input to SVMs via our

developed generative mixture models. The achieved results suggest that an accurate classification

of count data can be achieved by efficient learning of kernels from the available data. The results

have also shown clearly that the proposed MSD, and its approximation EMSD, perform better than

the widely used generative models; namely Multinomial and DCM.

Appendix 1: Proof of Eq.(4.19)- Kullback–Leibler divergence for EMSD

The KL-divergence between two exponential distributions is given by [174]:

KL(p(X|Θ), p′(X|Θ′)) = Φ(θ)− Φ(θ′) + [G(θ)−G(θ′)]trEθ[T (X)] (4.28)

where Eθ is the expectation with respect to p(X|θ). Moreover, we have the following [67]:

Eθ[T (X)] = −Φ′(θ) (4.29)
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Thus, according to Eq.(4.14), we have:

Eθ

[ D∑
d=1

I(xd ≥ 1)
]

= −∂Φ(θ)

∂λd
= Ψ(

D∑
d=1

λd + n)−Ψ(
D∑
d=1

λd)

Eθ

[ D∑
d=1

I(xd ≥ 1)xd

]
= −∂Φ(θ)

∂νd
= 0 (4.30)

where n =
∑D

d=1 xd, and Ψ(.) is the digamma function. By substituting the previous two equations

into Eq.(4.28), we obtain:

KL(p(X|Θ), p′(X|Θ′)) = log

(
Γ
( D∑
d=1

λd

))
− log

(
Γ
( D∑
d=1

λ′d

))

− log

(
Γ
( D∑
d=1

λd + n
))

+ log

(
Γ
( D∑
d=1

λ′d + n
))

+
D∑
d=1

(
Ψ(

D∑
d=1

λd + n)−Ψ(
D∑
d=1

λd)

)
(λd − λ′d)

= log

Γ
(∑D

d=1 λd

)
.Γ
(∑D

d=1 λ
′
d + n

)
Γ
(∑D

d=1 λ
′
d

)
.Γ
(∑D

d=1 λd + n
)


+

D∑
d=1

(
Ψ(

D∑
d=1

λd + n)−Ψ(

D∑
d=1

λd)

)
(λd − λ′d) (4.31)

91



Appendix 2: Proof of Eq.(4.23)- Reńyi divergence for EMSD

In the case of the EMSD distribution, we can show that:

∫ +∞

0
p(X|Θ)σp′(X|Θ′)1−σdX =

[ Γ(
∑D

d=1 λd)

Γ(
∑D

d=1 λd + n)

]σ[ Γ(
∑D

d=1 λ
′
d)

Γ(
∑D

d=1 λ
′
d +

∑d
d=1 xd)

]1−σ

×
∫ +∞

0

[
n!∏D
d=1 xd

D∏
d=1

λd
νxdd

]σ
dX

×
∫ +∞

0

[
n!∏D
d=1 xd

D∏
d=1

λ′d
ν ′d
xd

]1−σ

dX

=
[ Γ(

∑D
d=1 λd)

Γ(
∑D

d=1 λd +
∑D

d=1 xd)

]σ[Γ(
∑D

d=1 λ
′
d)

Γ(s′ + n)

]1−σ

×
∫ +∞

0

n!∏D
d=1 xd

D∏
d=1

λdν
−σxd
d dX

×
∫ +∞

0

n!∏D
d=1 xd

D∏
d=1

λ′dν
′
d
−xd+σxddX (4.32)

We have the PDF of an EMSD distribution that integrates to one which gives:

∫ +∞

0

n!∏D
d=1 xd

D∏
d=1

λd
νxdd

dX =
Γ(
∑D

d=1 λd +
∑D

d=1 xd)

Γ(
∑D

d=1 λd)
(4.33)

By substituting Eq.(4.33) into Eq.(4.32), we obtain:

∫ +∞

0
p(X|Θ)σp′(X|Θ′)1−σdX =

[ Γ(
∑D

d=1 λd)

Γ(
∑D

d=1 λd + n)

]σ[ Γ(
∑D

d=1 λ
′
d)

Γ(
∑D

d=1 λ
′
d +

∑d
d=1 xd)

]1−σ

×
Γ(
∑D

d=1 λd +
∑D

d=1−σxd)
Γ(
∑D

d=1 λd)

×
Γ(
∑D

d=1 λ
′
d +

∑D
d=1−xd + σxd)

Γ(
∑D

d=1 λ
′
d)

(4.34)
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Appendix 3: Proof of Eq.(4.27)- Jensen-Shannon (JS) Kernel for EMSD

H[p(X|Θ)] = −
∫ +∞

0
p(X|Θ) log p(X|Θ)dX

= −
∫ +∞

0
p(X|Θ)

[
log Γ(

D∑
d=1

λd)− log Γ(
D∑
d=1

λd + n)

+

D∑
d=1

log(λd)Eθ[I(xd ≥ 1)]−
D∑
d=1

log(νd)Eθ[I(xd ≥ 1)xd]

]
(4.35)

By substituting Eq.(4.30) into the previous equation, we obtain the following:

H[p(X|Θ)] = − log Γ(

D∑
d=1

λd) + log Γ(

D∑
d=1

λd + n)

−
D∑
d=1

log(λd)
(

Ψ(
D∑
d=1

λd + n)−Ψ(
D∑
d=1

λd)
)

(4.36)
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Chapter 5
High-Dimensional Count Data Clustering

Based on an Exponential Approximation to

the Multinomial Beta-Liouville

Distribution

In this paper, we propose a mixture model for high-dimensional count data clustering based on

an exponential-family approximation of the Multinomial Beta-Liouville distribution, which we call

EMBL. We deal simultaneously with the problems of fitting the model to observed data and select-

ing the number of components. The learning algorithm automatically selects the optimal number of

components and avoids several drawbacks of the standard EM algorithm, including the sensitivity to

initialization and possible convergence to the boundary of the parameter space. We demonstrate the

effectiveness and robustness of the proposed clustering approach through a set of extensive empir-

ical experiments that involve challenging real-world applications. The results reveal that the novel

proposed model strives to achieve higher accuracy compared to the state-of-the-art generative mod-

els for count data. Furthermore, the superior performance of EMBL suggests that its flexibility and

ability to address the burstiness phenomenon successfully and that it is computationally efficient,

especially when dealing with sparse and high-dimensional frequency vectors.
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5.1 Introduction

Clustering, the process of discovering the natural grouping of a set of objects and assigning

observations sharing similar characteristics to subgroups, is a significant task in data analysis and

pattern recognition that attracts great attention of scholars in the last decades[29]. Most of the

clustering methods have been developed for the case of continuous data. However, count data are

naturally appear in numerous fields with several applications in machine learning, and computer

vision (e.g.,[10–12, 175]).

In this work, we derive a new family of distributions that approximates an efficient and flexible

generative model for count data, namely; the Multinomial Beta-Liouville (MBL) distributions, pro-

posed previously by [11], and we call it (EMBL). Then, we deal simultaneously with the problems

of model fitting and selection. We show that the exponential family approximation to MBL can

dramatically improve both the clustering accuracy and computation efficiency in high-dimensional

spaces.

5.1.1 Motivations

The clustering of high-dimensional count data based on the exponential Multinomial Beta-

Liouville investigated in this study is motivated by the following observations.

• Clustering count data is a challenging task due to its high-dimensionality and sparse nature.

• Exponential families of distributions offer several appealing statistical and computational

properties.

• Parameters estimation and performing model selection are important features of mixture

based clustering methods.

• Hybrid learning approaches combine the advantages and desirable properties of both genera-

tive and discriminative techniques.

Motivation 1. In many applications, e.g., text documents clustering, or image database sum-

marization, each document or image is represented by a vector corresponding to the appearance
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frequencies of words or visual words, respectively. Usually, many features occur only once, and

many more do not occur at all, as each observation contains only a small subset of the vocabulary.

Thus, such data are represented as high-dimensional and sparse vectors, a few thousand dimensions

with a sparsity of 95 to 99% [81]. Hierarchical Bayesian modeling frameworks, such as Dirichlet

Compound Multinomial (DCM) [9] and Multinomial Beta-Liouville (MBL) [11] have shown to be

competitive with the best-known clustering methods for count data, but their estimation procedures

are very inefficient when the collection size is large.

Motivation 2. The exponential family of distribution has finite-sized sufficient statistics, mean-

ing that we can compress the data into a fixed-sized summary without loss of information [13, 14].

An efficient exponential-family approximation to the DCM (EDCM) has been previously proposed

by Elkan [12], and it has shown to address the burstiness phenomenon successfully and to be consid-

erably computationally faster than DCM especially when dealing with sparse and high-dimensional

vectors. The fact that MBL distribution is an attractive generative model that is more flexible than

DCM motivates us to approximate it as a member of the exponential family of distributions to reduce

the computation and increase the efficiency in very high-dimensional spaces.

Motivation 3. The Expectation-Maximization (EM) algorithm is a broadly applicable iterative

algorithm for estimating the mixture model parameters [160, 176]. Furthermore, while the major-

ity of model selection methods depend on testing different values of the number of components,

the strategy to start with a large number of components and merge them was found to be more

efficient computationally [177]. We propose to extend the method and algorithm proposed in [1]

to the mixture of EMBL, which deals with fitting the mixture and model selection simultaneously.

Precisely, rather than selecting one among candidates models, this method directly aims at finding

the best overall model in the entire set coinciding with the message length philosophy, and it is less

dependent on the initialization than the standard EM.

Motivation 4. In many settings, traditional generative or discriminative methods either are

infeasible or fail to provide acceptable results and generalization to new data. Instead, hybrid gen-

erative/discriminative techniques have shown to be powerful tools that generally provide lower test

errors and better accuracies than either fully generative or discriminative techniques [25, 147, 178].
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We address the problem of classification, where the data consists of bags of count vectors by incor-

porating an efficient mixture model (i.e., EMBL) into Support Vector Machines (SVMs). The idea

is to capture the intrinsic properties of the data to classify, taking into account prior knowledge of

the problem domain.

5.1.2 Contributions

The growing demand to handle high-dimensional and sparse datasets efficiently motivates us

to propose EMBL in this study. In overall, the contribution in the proposed framework can be

summarized as follows:

• We proposed an exponential approximation to MBL [11] that improves its performance and

computation complexity. Moreover, it provides more flexibility for several applications than

the previous model with similar approach (i.e., EDCM [12]).

• We proposed a learning approach that is robust in terms of initialization and simultaneously

deals with fitting the mixture model to the observed data and selecting the optimal number of

components, which makes it efficient for large datasets.

• We validated the proposed learning algorithm using publicly available and widely used datasets

of different real-world applications that involve high-dimensional count data.

• We build new probabilistic kernels based on information divergences and Fisher score from

the proposed mixture of EMBL for Support Vector Machines (SVMs). By means of standard

face recognition databases, we show that our approach outperforms the widely used discrim-

inative approaches such as SVM with classic kernels and KNN.

5.1.3 Organization

The structure of the rest of the paper is as follows. Section 5.2 reviews prior work related to

this study. Section 5.3 derives the new family of distribution (EMBL), and explains the proposed

algorithm for fitting a mixture of EMBL and estimate the optimal number of components. Then,

experiments over real-world applications that involve high dimensional and sparse count data, are

carried out in Sections 5.4, and the conclusions are drawn in Section 5.5.
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5.2 Related Works

Finite mixtures are widely acknowledged in many areas, such as pattern recognition, computer

vision, and machine learning. They are flexible and powerful probabilistic model-based approach

to unsupervised learning (i.e., clustering) of multivariate data [176, 179]. An essential problem

with these approaches is to develop a probabilistic model that represents the data well by taking

into account its nature. For instance, modeling the dependency of word repetitive occurrences in

a text document improves the classification performance and information retrieval accuracy. Hier-

archical Bayesian modeling was proposed as an appropriate and efficient solution to address this

phenomenon by introducing the Dirichlet distribution as a prior to the Multinomial, which results in

the Dirichlet Compound Multinomial (DCM) [9]. The Dirichlet, however, has some drawbacks, in-

cluding its very restrictive negative covariance structure, inconsiderate relations between categories,

and its poor parameterization [63, 100].

Model selection is a significant aspect of mixture modeling. The majority of model selection

methods that have been proposed in the literature can be generally classified, from a computational

point of view, into stochastic and deterministic methods. Traditionally, deterministic methods start

by obtaining a set of candidates models assumed to contain the true/optimal number of clusters.

According to information theory, the optimal number of clusters K is the candidate value, which

minimizes the amount of information to transmit a dataset X efficiently from a sender to a receiver

[71]. These model selection criteria are efficient techniques and have shown to give good results

with mixtures models. However, their main drawbacks include the problem that might emerge

with running the EM algorithm multiple times to obtain the whole set of candidates. Moreover,

they select the number of components that optimally approximate the density and not necessarily

the true number of classes present in the dataset [180]. Thus, the strategy to start with a large

number of components and merge them was found to be more efficient computationally [177]. A

practical algorithm using this strategy was proposed in [1], starting with a very large number of

components and iteratively annihilates the weak components, i.e., not supported by the data, and

redistributes the observations, where the termination criterion is based Minimum Message Length

(MML) philosophy [69, 71].

98



Another important aspect is fitting finite mixture models where the standard method used is

the Maximum Likelihood Estimate (MLE) through the Expectation-Maximization (EM) algorithm.

EM is a broadly applicable iterative algorithm for computing maximum likelihood estimates from

incomplete data with an unobserved latent variables [108, 160, 176]. The main drawback of the

EM algorithm is that the multi-modal nature of the likelihood function makes it highly dependent

on initialization [108]. Several time-consuming solutions, proposed in the literature, have been

used solely or jointly. Examples of the common strategies include using multiple random starts

and choosing the one with the highest likelihood [181, 182], and initialization by clustering algo-

rithms, such as K-means, which itself has initialization issues [3, 181]. Moreover, the Split and

Merge Expectation-Maximization (SMEM) algorithm has been proposed in [183] to overcome the

local maxima problem in parameter estimation of finite mixture models. Another approach is the

Deterministic Annealing (DA) that has been applied successfully with hard-clustering algorithms

[184, 185]. and has shown to provide good results even with non-Gaussian mixtures (see for exam-

ple; [10–12]). Furthermore, the authors in [1], and [186] have proposed different robust algorithms

with respect to initialization based on the component-wise EM procedure (CEM) [187].

5.3 The proposed Model

In this section, we first briefly recall the properties of the Multinomial Beta-Liouville (MBL)

Distribution; then, we present the novel approximation that we call (EMBL). Afterward, we explain

in detail the proposed algorithm for selecting the number of components and fitting a mixture of

EMBLs. Lastly, we discuss the properties that make our proposed model efficient for clustering

high-dimensional count data.

5.3.1 Multinomial Beta-Liouville (MBL) Distribution

The Liouville family of the second kind includes the Dirichlet distribution as a special case if all

variables in the Liouville random vector have the same normalized variance, and the density gen-

erator variate has a Beta distribution [100]. Choosing the Beta distribution as a generating density
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resulting in which is commonly called the Beta-Liouville distribution [104]. Consider, for exam-

ple, a text document, or an image, which is represented as a sequence of frequencies of words, or

visual words, appearances denoted by X = (x1, . . . , xD+1). Like the Dirichlet, the Beta-Liouville

is a conjugate prior to the multinomial distribution, however, while a Dirichlet has only one degree

of freedom (by selecting the value of the shape parameter α), the two more parameters in Beta-

Liouville can be used to adjust the spread of the distribution which makes it more practical and

provides better modeling capabilities. The probability density function of the Multinomial Beta-

Liouville (MBL) distribution with parameters ξ = (α1, . . . , αD, α, β), proposed in [11], is given

by:

MBL(X|ξ) =
Γ
(

(
∑D+1

d=1 xd) + 1
)

∏D+1
d=1 Γ(xd + 1)

×
Γ(
∑D

d=1 αd)Γ(α+ β)Γ(α′)Γ(β′)
∏D
d=1 Γ(α′d)

Γ(
∑D

d=1 α
′
d)Γ(α′ + β′)Γ(α)Γ(β)

∏D
d=1 Γ(αd)

(5.1)

where α′d = αd + xd, α′ = α+
∑D

d=1 xd, and β′ = β + xD+1.

Indeed, MBL has shown to achieve high clustering accuracy, comparably to Multinomial Scaled

Dirichlet (MSD) [23], and Multinomial Generalized Dirichlet (MGD) [10], as well as it outper-

forms other widely used mixture models, such as mixtures of Multinomials and Dirichlet Com-

pound Multinomial (DCM) [9]. However, MBL does not belong to the exponential family, and it is

not efficient in high-dimensional spaces where many parameters need to be estimated. Inspired by

the superior performance of the exponential approximation to DCM (EDCM) [12], in terms of both

accuracy and computational efficiency, this work aims to combine the advantages of exponential

approximation to distribution to reduce the computation time and the flexibility and efficiency of

MBL to model high-dimensional and sparse count data.

5.3.2 The Exponential Multinomial Beta-Liouville (EMBL)

In this section, we derive a family of distributions that is an exponential family and is also an

approximation to the MBL family, and we call it EMBL distributions. Given the sparsity nature of

datasets represented using bag-of-words or bag-of-visual-words, it should be possible to evaluate
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the probability as a function of non-zero xd values only for computational efficiency. That is, the

value of Γ(xd+1) = 1 when xd = 0. Moreover, we found empirically that α� 1 and β ' 1 based

on fitting MBL on different tested datasets. Thus, we can use the following fact by [12] for a small

values for the parameters α, such that:

lim
α→0

Γ(α+ β)

Γ(α)
− αΓ(β) = 0, (5.2)

We can thus replace Γ(α + β) by αΓ(β)Γ(α) in Eq.(5.1), we can write the MBL density function

as:

MBL(X|ξ) ≈
Γ((
∑D+1

d=1 xd) + 1)∏
d:xd≥1 xd!

× Γ(s)Γ(α′)Γ(β′)α

Γ(s+ n)Γ(α′ + β′)

∏
d:xd≥1

Γ(α′d)

Γ(αd)
(5.3)

where n =
∑D+1

d=1 xd and s =
∑D

d=1 αd.

Recalling that α′d = αd + xd, and considering that αd is actually very small in case of high

dimensions [64], we can use the previous fact in Eq.(5.2) as a highly accurate approximation to

replace Γ(αd + xd)/Γ(αd) by αdΓ(xd). Now, we can obtain the EMBL distribution using the fact

that Γ(x) = (x− 1)!, as:

EMBL(X|ξ) = n!
Γ(s)Γ(α′)Γ(β′)α

Γ(s+ n)Γ(α′ + β′)

∏
d:xd≥1

αd
xd

(5.4)

In practice the probabilities given by Eq.(5.4) are very close to those given by Eq.(5.1). Indeed,

EMBL is a good approximation for real count data because of it sparsity nature or small counts for

most words, as well as, it shows consistent burstiness behavior. We can notice from Eq.(5.4) that

a probability of a document, or an image, is proportional to
∏
d:xd≥1 αd/xd. Hence, EMBL shares

the same insights gains from the EDCM, which also can be carried over to the MBL, including that

the first appearance of a word d reduces the probability of a document by αd and that this form

distinguishes between word types and word tokens; for details see ([12], Section 3).
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A member of an exponential family of distributions for random variables X indexed by a pa-

rameters set ξ, can be written as:

P (X|θ) = h(x)g(ξ) exp{Φ(ξ)f(x)} (5.5)

where Φ(ξ) is called the natural parameter, f(x) is the sufficient statistic, h(x) is the underlying

measure and g(ξ) is called log normalizer which ensures that the distribution integrates to one [14].

We can write EMBL in this form as:

EMBL ∝

 ∏
d:xd≥1

x−1
d

n!
Γ(s)Γ(α′)Γ(β′)α

Γ(s+ n)Γ(α′ + β′)

× exp

[
D∑
d=1

I(xd ≥ 1) log(αd)

]
(5.6)

where I(xd ≥ 1), the sufficient statistic, is an indicator that represents whether the word d appears at

least once in the vector X. Having the distribution in exponential form provides a numerous of the

desirable statistical and computational properties of exponential family of distributions including

the sufficiency that retains the essential information in a dataset regarding the parameters which

reduce the complexity and computational efforts especially for sparse high-dimensional data.

5.3.3 The Learning Approach for EMBL Mixture Model

5.3.3.1 Estimating the Number of Components

For real-world clustering problems, it is important to estimate the true number of mixture com-

ponents to achieve a superior performance. Formally, let X = {X1, . . . ,XN} be a set of data

controlled by a mixture of EMBL distributions with parameters ξ, where each observation is an

independent count vector, the complete data likelihood corresponding to a K-component EMBL

mixture is given by:

Q(X|ξ) =

N∏
i=1

( K∑
j=1

πj EMBL(Xi|ξj)
)

(5.7)
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where π = (π1, . . . , πK) represents the vector of mixing probabilities which are positive and sum to

one. According to information theory, the optimal number of clustersK is the candidate value which

minimizes the amount of information, measured in nats using the natural logarithm, to transmit X

efficiently from a sender to a receiver [71, 188]. The problem of estimating the parameters can be

formulated into a transmission encoding problem. Thus, the criterion is to minimize the two-part

message to be transmitted whose length is given by:

length(X , ξ) = length(ξ) + length(X|ξ) (5.8)

Before the transmission, the observations and the parameters have to be quantized to finite

precision. This quantization sets a trade-off between the two terms of the previous equation, which

corresponds to the minimum message length criterion. The formula for the message length for a

mixture of distributions, with Np free parameters, is given by [40, 41]:

ξMML = argmin
ξ

{
− log(P (ξ))− log(P (X|ξ)) +

1

2
log |F (ξ)|+ Np

2

(
1 + log

1

12

)}
(5.9)

where F (ξ) is the expected Fisher Information Matrix (FIM), and P (X|ξ) is the complete data

likelihood. In the case of EMBL mixture, the complete FIM has a block-diagonal structure as:

F (ξ) = N block-diag{π1F (ξ1), . . . , πKF (ξK),M} (5.10)

where F (ξj) is the Fisher matrix for a single observation known to have been produced by the jth

component, and M is the Fisher matrix of a multinomial distribution which is determinant is given

by |M | = (π1π2 . . . πK)−1 [179]. In case of mixture models, we make a general assumption that

the parameters of the different components as a prior are independent from the mixing probabilities,

and the components of P (ξj) are independent as well [73], that is:

P (ξ) = P (π1, . . . , πK)
K∏
j=1

P (ξj)

Giving the lack of knowledge about mixture parameters, we adopt the standard non-informative
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Jeffreys’ prior [189], as:

P (ξj) ∝
√
|F (ξj)| (5.11)

P (π1, . . . , πK) ∝
√
|M | = (π1π2 . . . πK)−1/2 (5.12)

With choosing these prior distributions and noticing that for a K-component EMBL, the number of

free parameters Np = K(C) + K and C = D + 2 is the number of parameters specifying each

component, we obtain the following optimization problem:

ξMML = argmin
ξ

{
C

2

K∑
j=1

log πj − log(Q(X|ξ)) +
K(C) +K

2

(
1 + log

N

12

)}
(5.13)

5.3.3.2 The Component-wise Expectation Maximization (CEM)

Starting with a large value ofK may lead to several empty components and there will be no need

to estimate, and transmit, their parameters. Thus, we adopt the component-wise EM procedure

(CEM) [187], as proposed in [1], where we run both E and M steps for one component before

moving to the next one. We may notice that Eq.(5.13) does not make sense if any of the πj is

allowed to be null. That is, we first evaluate the posterior probability ẑij for each competent in the

E-step, as in the standard EM, according to a Bayes law:

ẑ
(t)
ij =

P (Xi|ξ(t)
j ) π

(t)
j

K∑
j=1

P (Xi|ξ(t)
j ) π

(t)
j

, (5.14)

Then, we need to estimate the mixture proportion for that component as:

π̂j
(t+1) =

max
{

0,
(∑N

i=1 ẑ
(t)
ij

)
− C

2

}
∑K

j=1 max
{

0,
(∑N

i=1 ẑ
(t)
ij

)
− C

2

} , (5.15)

Any weak component, not supported by the data, with π̂j(t+1) = 0 will be annihilated and does

not contribute to the log-likelihood, thus, their parameters become irrelevant. Immediately, the

annihilated component probability mass is redistributed to the other components increases their
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chance to survive.

Let K+ denotes the number of non-zero components. When one component j ∈ K+, namely

those for which π̂j(t+1) > 0, their parameters updates should be performed by maximizing the log-

likelihood of expected complete-data. For, αjd, the updates are closed-form expression obtained by

setting the partial derivative of the log-likelihood to zero and solving for αjd which gives:

α
(t+1)
jd =

∑N
i=1 ẑ

(t)
ij I(xid ≥ 1)∑N

i=1 ẑ
(t)
ij

(
Ψ(sj + ni)−Ψ(sj)

) (5.16)

Then, we can compute sj =
∑

d αjd by summing each side of Eq.(5.16) over all words, giving:

s
(t+1)
j =

∑D
d=1

∑N
i=1 ẑ

(t)
ij I(xid ≥ 1)∑N

i=1 ẑ
(t)
ij

(
Ψ(sj + ni)−Ψ(sj)

) (5.17)

The numerator in this case is the number of times a word d appears at least once in any vector of

the dataset. Note that this equation can be solved numerically efficiently as it involves only a single

unknown sj . Having sj in hand, Eq.(5.16) can be used directly to compute each individual αjd.

We cannot solve the M-step for the αj and βj parameters analytically (i.e., a closed-form so-

lution does not exist). Thus, we have to update these parameters in accordance with the Newton

Raphson method:

ξ
(t+1)
j = ξ

(t)
j −H

−1
(ξj)G (5.18)

where H is the Hessian matrix associated with the complete data log-likelihood which needs to be

transformed to its inverse, and G is the gradient vector associated with the first order derivatives

(see Appendix 1).

5.3.3.3 The Complete Algorithm for EMBL Mixture Model Learning

The proposed unsupervised learning approach is outlined in Algorithm 5. In practice, we ini-

tialize the π(0)
j parameter using the K-means algorithm, and the model parameters α(0)

j , β
(0)
j , α

(0)
jd

were initialized randomly. Parameters will be then updated during the CEM iterations to take their
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natural values in relation to the observed data. Furthermore, the upper and lower number of com-

ponents are provided, and in our experiments, we have set Kmin = 2, and Kmax = 100. The

algorithm will rerun until K+ ≥ Kmin, where each iteration will run the component-wise EM until

convergence. When the irrelevant components, with π̂j(t+1) = 0 annihilated, the parameters are

updated accordingly, and the MML criterion is re-evaluated for non-zero components only. Since

each update to the parameters resulting from the E step followed by the M step is guaranteed to

increase the log-likelihood function, which is equivalent to minimizing the length of the two-part

message, the algorithm is deemed to have converged when the change in the message length, or

alternatively in the log-likelihood function, becomes insignificant.

Algorithm 5: The complete algorithm for EMBL mixture learning with model selection.
Output: The optimal number of components K∗, best mixture model parameters ξbest
Input: X = {X1, . . . , XN}, Kmin, Kmax, ξ(0) = {ξ1, . . . , ξKmax} where

ξj = {π(0)
j , α

(0)
j , β

(0)
j , α

(0)
jd }

D
d=1

1 Set: t← 0, K+ = Kmax, LENmin = +∞;
2 while Convergance criteria is no reached do
3 while K+ ≥ Kmin do
4 for j = 1 to K+ do
5 for i = 1 to N do
6 Compute the posterior probabilities ẑ(t+1)

ij = p(j|Xi, ξi) using Eq.(5.14);
7 end
8 Update the mixing proportion π̂j(t+1) using Eq.(5.15);
9 if π̂j(t+1) > 0 then

10 Evaluate ξ(t+1)
j : α(t+1)

jd , s
(t+1)
j using Eqs. (5.16, 5.17), and α(t+1)

j , β
(t+1)
j

using Eq. (5.18);
11 else
12 K+ = K+ − 1;
13 end
14 end
15 Compute optimal length for the non-zero components LEN (t+1)

MML using Eq.(5.13) ;

16 if LEN (t+1)
MML < LENmin then

17 Set LENmin = LEN
(t+1)
MML;

18 Set ξbest = ξ(t+1);
19 end
20 Set t← t+ 1 ;
21 end
22 end
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5.3.4 Perspectives on the Proposed Model Efficiency

Generally speaking, a sufficient statistic is supposed to contain by itself all of the information

about the unknown parameters that the entire sample could have provided. In other words, the

essential in a dataset can be characterized by the sufficiency, so we can reduce the computation

time by throwing away the inessential data. The intuitive notion of sufficiency is that f(x) contains

all of the essential information in X regarding ξ. So only the sufficient statistic will be retained

for estimating the parameters [14, 190, 191], which makes the proposed model computationally

efficient, especially in high-dimensional spaces. Empirically, the proposed model has shown to

be more efficient than the original MBL in terms of both computation time and memory usage.

In Figure 5.1, we performed a visual complexity analysis on different datasets (described below

in Section 5.4)), namely, IMDB, Swedish Leafs, High Five, and Caltech Faces. The complexity

estimation, indeed, depends on the size of the dataset (i.e., number of observations N ), and the

number of components K. Thus, the overall computation complexity for one iteration of EMBL is

O(NK).

(a.1) (b.1) (c.1)                                                                     (d.1)

(a.2) (b.2) (c.2)                                                                     (d.2)

Figure 5.1: Visualizing the performance of the proposed algorithm (EMBL) and original MBL
against different input sizes considering memory usage (top row), and run time (bottom row) for (a)
text dataset (IMDB: N = 25, 000K = 2), (b) shape dataset (Swedish Leafs N = 600K = 15), (c)
video dataset (High FiveN = 100K = 4), and (d) image dataset (Caltech FacesN = 200K = 2).

Furthermore, the proposed model based on MBL is an efficient generative model for count data

for several reasons. First, it is a fixable alternative to the Dirichlet Compound Multinomial (DCM)

[9, 63] that shares the same advantages over a generic multinomial (MN) distribution, which is

typically used to model count data. More precisely, it can handle the burstiness phenomenon and

the overdispersion, which MN fails to handle given its independency assumption [192]. Moreover,
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like the generalized Dirichlet, it can overcome the main restrictions of the Dirichlet distribution,

including the negative-correlation and the equal-confidence requirements. Finally, MBL and EMBL

are attractive generative models that have fewer parameters than the other hierarchical Bayesian

frameworks which use other generalization of Dirichlet as prior for the Multinomial; i.e., MSD [23],

and MGD [10] with comparable performance. Another important feature of the proposed algorithm

is that it is less initialization dependent comparing to the standard EM. Given that it starts with a

large number of components, which is usually much larger than the optimal number, we avoid the

local maxima of the likelihood that arises when there are too many components in one region of the

space and too few in another [1, 183]. The second point of view is that the component annihilation in

M-step (Eq. 5.15) makes the algorithm automatically avoids the possibility of convergence toward

a singular estimate at the parameter space boundary [1]. Furthermore, although CEM seems to

be much computationally heavier than standard EM, due to the multiple E-step to recompute the

posterior probabilities, it is actually not [180, 187].

On the other hand, the proposed algorithm has some limitations as follows. First, we consider

the maximum likelihood estimation approach for learning the parameters, where the learning pro-

cess can be extended to Bayesian or variational estimation, which computes (an approximation to)

the entire posterior distribution of the parameters and latent variables. Second, we assumed that

the data is static, while in many real-world applications, data are received in online mode; thus, the

online clustering approach supports life-long learning. In addition, our model is based on clustering

the data into a finite number of components, while it would be better to make it infinite (i.e., to let

the number of mixture components increases as new vectors arrive). Finally, we considered that all

non-zero features have the same weight, but in practice, some features are not contributing to (or

even degrading) the clustering process. Thus, future work may consider a feature selection approach

to select the best features subset for improving the performance further.

5.4 Experimental Results

Information explosion is not only creating massive amounts of data but also a diverse format

of data. For instance, social media platforms offer many possibilities of data formats, including
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textual data, pictures, videos, sounds, and geolocations. Analyzing different types of data can help

in gaining insights into issues, trends, influential actors, and other kinds of information. Thus,

in our experiments, we have considered different datasets to prove the merits of the work and its

usefulness in real-world applications. The first application concerns text classification, in particular,

sentiment analysis. The second one involves shape clustering using the shape context descriptor.

In the third application, we focus on the problem of recognizing human interaction in realistic

videos from movies and TV shows. Finally, we address the problem of distinguishing genders from

human faces, by developing flexible probabilistic SVMs kernels based on the proposed mixture

of EMBLs. All the experiments were conducted using optimized MATLAB R2017a codes on an

Intel(R) Core(TM) i7-6700 Processor PC with the Windows 7 Enterprise Service Pack 1 operating

system with a 16 GB main memory. The results that we will present in the following represent the

average over 20 runs of the different learning algorithms.

5.4.1 Sentiment Analysis

With the explosive growth of social media (e.g., reviews, forum discussions, blogs, micro-blogs,

Twitter, comments, and postings in social network sites) on the Web, individual customers and or-

ganizations increasingly rely on the content in these media for decision making. Sentiment analysis,

also called opinion mining, involves analyzing evaluations, attitudes, and emotions, expressed in a

piece of text, towards entities such as products, services, or movies [193]. We investigate sentiment

analysis at the document level, such that our task is to classify whether a whole opinion document

expresses a positive or negative sentiment. The challenges in sentiment analysis, as a text cluster-

ing application, include that the reviews are usually limited in length, have many misspellings, and

shortened forms of words. Thus, the vocabulary size is very large, and the count vector that repre-

sents each review will be highly sparse. Our experiments aim at comparing the proposed algorithm

to other clustering methods such as the Spherical k-Means (SKM), the Gaussian mixture model

(GMM), and the mixture of Multinomials (MM) to give a baseline of the difficulty of the problem.

Moreover, we compare to other hierarchical Bayesian modeling frameworks including mixtures of

DCM [9], EDCM [12], MGD [10], MBL [11], and MSD [23], that have been previously proposed
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Table 5.1: Clustering results for the IMDB dataset using EMBL mixture.

Model Precision Recall F-score Mutual info. time
SKM 55.90±0.03 55.91±0.07 55.90±0.02 0.5800±0.03 252.76
GMM 61.40±0.05 61.40±0.04 61.40±0.03 0.6719±0.07 169.48
MM 64.18±0.05 64.40±0.06 64.29±0.02 0.6520±0.03 143.52
DCM 71.14±0.05 89.45±0.05 79.25±0.02 0.8578±0.09 227.11
MSD 76.44±0.02 84.54±0.04 80.29±0.03 0.8432±0.03 254.46
MGD 75.55±0.02 81.43±0.07 78.38±0.02 0.8992±0.05 338.26
MBL 83.69±0.02 83.99±0.03 83.84±0.02 0.8927±0.06 139.91
EDCM 78.54±0.09 89.33±0.14 83.59±0.04 0.8861±0.07 32.07
EMBL 83.75±0.02 84.60±0.02 84.17±0.05 0.8940±0.06 45.60

for modeling count data. The performances of the different mixture models are compared accord-

ing to the macro averaged recall, precision, and F-score values, whose definitions can be found,

for instance, in [194], as well as the mutual information [65]. Moreover, we reported the time (in

seconds) for a single run to the convergence of an optimized MATLAB code.

We have used different large scale datasets that have been recently constructed, namely; IMDB

movie reviews [115], Amazon, and Yelp reviews [195]. Ratings on IMDB are given as star values

∈ {1, 2, . . . , 10}, which were linearly mapped to [0, 1] to use as document labels; negative and pos-

itive, respectively. We used a union of the training and testing sets having around 25, 000 samples

from each positive/negative group with 76, 340 unique words in total. The Amazon reviews dataset

consists of reviews that span a period of 18 years, and it includes product and user information,

ratings, and a plain text review. The Amazon reviews full score dataset is constructed by randomly

taking 600, 000 for training samples and 130, 000 testing samples for each review score from 1 to

5. We used a union of the training and testing sets having a total of 50, 000 samples from all the five

groups with a vocabulary size of 55, 383 unique words. The Yelp dataset contains a polarity label

by considering stars 1 and 2 negative, and 3 and 4 positive reviews about local businesses. The full

dataset has 280, 000 for training samples and 19, 000 test samples in each polarity. We considered

a subset with a total of 20, 000 sentiments randomly, and equally, selected from each polarity with

85, 638 unique words.

The clustering results for the three datasets are given in Tables (5.1-5.3). According to the F
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Table 5.2: Clustering results for the Amazon dataset using EMBL mixture.

Model Precision Recall F-score Mutual info. time
SKM 62.53±0.02 65.23±0.03 63.85±0.02 0.7280±0.02 138.70
GMM 64.65±0.02 74.04±0.02 69.03±0.03 0.5366±0.03 122.43
MM 50.83±0.02 51.99±0.04 51.91±0.02 0.6847±0.05 94.91
DCM 55.65±0.05 63.94±0.02 59.51±0.02 0.8045±0.02 180.42
MSD 83.56±0.02 83.57±0.03 83.57±0.02 0.8468±0.04 148.26
MGD 82.52±0.03 82.53±0.01 82.53±0.01 0.8241±0.02 240.86
MBL 82.37±0.02 82.78±0.02 82.57±0.02 0.8303±0.03 101.46
EDCM 80.65±0.03 80.88±0.01 80.77±0.03 0.8114±0.05 30.50
EMBL 82.20±0.03 82.42±0.02 82.31±0.03 0.8295±0.01 35.17

Table 5.3: Clustering results for the Yelp dataset using EMBL mixture.

Model Precision Recall F-score Mutual info. time
SKM 74.08±0.02 74.08±0.02 74.08±0.02 0.6209±0.04 63.45
GMM 63.21±0.02 77.00±0.02 69.42±0.02 0.7271±0.04 60.87
MM 89.12±0.01 89.20±0.02 89.16±0.02 0.8527±0.03 18.45
DCM 91.01±0.03 91.01±0.03 91.01±0.03 0.8311±0.02 58.57
MSD 91.01±0.03 91.01±0.03 91.01±0.03 0.8911±0.02 36.13
MGD 91.00±0.07 91.01±0.04 91.00±0.03 0.8909±0.03 123.15
MBL 90.47±0.04 90.66±0.01 90.57±0.01 0.8978±0.02 50.65
EDCM 89.25±0.02 89.28±0.02 89.27±0.02 0.8328±0.04 10.86
EMBL 94.05±0.02 94.41±0.01 94.72±0.02 0.8945±0.02 14.00

measures in these tables, we can see that the mixture of EMBL behaves similarly to MBL, MGD,

and MSD, which themselves outperform the other compared models. However, it has shown to

be much faster (i.e., on average, the proposed algorithm is 3-8 times faster than the other models

with comparable performance). Although the EDCM is computationally efficient, the mixture of

EMBL outperforms EDCM, as shown by the F measures and mutual information in the tables.

Moreover, a comparative study between the proposed framework and other approaches for text

clustering from the state-of-the-art is depicted in Table 5.4. These successful approaches include

the character level Convolutional model (CNN-char) [195], long short-term memory with Gated

Recurrent Neural Network (LSTM-GRNN) [196], the very deep convolutional network (VDCNN)
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Table 5.4: Comparison of our method to the best published results (avg accuracy %) from previous
works for sentiment analysis.

Datasets

IMDB Amazon Yelp

CNN-char [195] - 59.6 62.00
SVM + Bigrams [196] 40.90 - 62.40
LSTM-GRNN [196] 45.30 - 67.60
Fast text + bigrams [197] - 60.20 95.70
VDCNN [198] - 63.00 95.70
HN-ATT [199] 49.40 63.60 71.00
Mixture of exponential MBL 84.14 82.31 94.72

of [198], and the hierarchical attention networks (HN-ATT) by [199]. According to the reported

results, the proposed framework gives a superior performance.

5.4.2 Shape Clustering Using Shape Context

In today’s world, large amounts of digital images and videos are increasingly generated, which

induce an urgent need for the development of automatic methods to analyze and index these over-

whelmingly digital datasets. The shape is well-known to be a strong discriminating feature; thus, it

is an important cue for several computer vision applications such as object recognition, matching,

content-based image retrieval, and indexing (see, for instance, [200–202]). A great deal of material

dealing with shape modeling has been published, and several shape descriptors have been proposed

in the past, yet they can be grouped into three main categories [203]: contour-based descriptors,

image-based descriptors, and skeleton-based descriptors. Contour-based descriptors are based on

the mapping of the contour of a given object to some representation from which a shape descriptor

is derived.

In our experiments, we have used an interesting descriptor, called shape context, which has

been proposed by [204]. In this approach, an object is assumed to be essentially captured by a finite

set of its points N sampled from the internal or external contours on the object. These points are

considered as locations of edge pixels as found by an edge detector. To detect the edges, we first

applied a Gaussian filter to smooth the image in order to remove the noise and find the intensity

gradients of the image. Then, we applied non-maximum suppression to thin the resulting edges
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Table 5.5: Shape clustering performance (avg. accuracy %) using different generative models.

Dataset MM DCM MSD MGD MBL EDCM EMBL

MPEG 75.90 76.92 77.89 77.89 78.05 83.86 85.50
Leafs 87.99 88.87 89.40 89.05 89.02 94.45 96.50

and discard any weak edges according to a specific threshold. The shape context is then obtained

as a vector of the relative positions between each point and the other N − 1 points. As choosing

more points will result in an accurate representation of the shape, we sampled 200 points from the

internal and external boundary of each shape image, and for each point’s shape context, we used

five bins for the log-distance and 12 bins for relative orientation, which leads to 60 bit vectors for

each point. Then, as done in [205], we considered each context vector as a visual word and created

the Bag-of-Features (BoF) [89].

In order to illustrate the effectiveness and efficiency of the proposed model in clustering shapes,

experiments were conducted on different datasets include: MPEG7CE-1 Set B shapes dataset

[206], and Swedish Leaf dataset [207]. Samples from both datasets are shown in Fig. 5.2. MPEG7

CE-1 Set B consists of 1400 shapes representing 70 real-life objects, with 20 similar shapes for

each class. The challenge is this dataset that includes rotation, scaling, skew, stretching, defection,

indentation, and articulation of shape. The Swedish leaf dataset is challenging because of its high

inter-species similarity. It consists of 1125 different species of leaves in 15 categories with minimal

contour-based differences. The majority of the published papers in shape categorization focused

on proposing and evaluating different descriptors. For a fair comparison, we tested different gen-

erative models using the same data representation approach, as described above. A summary of

the clustering accuracy is presented in Table 5.5. We note that our method performs comparably

to the best generative model with a similar approach (i.e., EDCM). It is interesting that EMBL is

significantly better than the corresponding model (MBL) and other models that behave similarly in

shape discrimination.

The results from the literature on the Swedish leaf database were summarized in Table 5.6. As

shown in Table 5.6, the accuracy of recognizing the leaf type using our approach is higher than

SSLDP [208], and MSDM [209], and almost comparable to the other methods, with an accuracy of

96.50%, which is a promising result considering that our approach is completely unsupervised.
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Figure 5.2: (a) MPEG7CE-1 Set B dataset representative shapes,(b) Leaf dataset representative
shapes.

Table 5.6: Comparison of our method with the state of the art for the Swedish leaf database.

Methods Accuracy

SSODP [210] 97.14 %
SSLDP [208] 95.82 %
MSDM [209] 93.60%
I-IDSC [211] 97.07%
MARCH [212] 97.33%
Mixture of exponential MBL 96.50%

5.4.3 Recognition of Human Interactions in Films and TV Shows

Human activity and action recognition is a popular topic in computer vision. Previous works

have focused on recognizing individual actions such as running, walking, etc. The objective of

this application is to show the efficiency of our model in recognizing natural human actions in

diverse and realistic video settings. In particular, we address the problem of recognizing interactions

between two people in realistic scenarios, which is useful in video retrieval tasks. We have used

two challenging datasets from feature films and TV shows with different human interactions. Each

video in each dataset is represented as a vector of count data using the extension of the Bag of words

paradigm to videos. In particular, we start by detecting the Spatio Temporal Interest Points (STIP),

where the local neighborhood has significant variations in both spatial and temporal domains [213].

Then, we used 3D SIFT descriptor [214] that has shown to accurately captures the Spatio-temporal

nature of the video data. Each dataset is split evenly into two groups, for constructing the codebook

and representation.
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Figure 5.3: Average and Intra-class accuracy for both actions in Kiss and Slap dataset.

The Kiss and Slap dataset [215] consists of actions performed in a range of film genres con-

sisting of classic old movies such as “A Philadelphia Story”,“The Three Stooges”, and “Gone With

the Wind”, comedies such as “Meet the Parents”, and romantic films such as “Connie and Carla”.

This dataset provided a representative pool of natural samples of action classes such as Kissing (92

samples), and Hitting/slapping (112 samples) appeared in a wide range of scenes and viewpoints

and were performed by different actors. We compared our proposed approach and different gen-

erative models to a previous work using Spatio Temporal Regularity Flow (SPREF) [215]. Figure

5.3 shows the average percentage of correctly classified clips for each interaction class, where we

can see clearly that the proposed model provides the highest average accuracy for both classes and

notably outperforms the other models. Moreover, the average run time for recognizing human inter-

action using the proposed exponential MBL is 0.737 seconds, which is around 5 times faster than

the corresponding MBL model that takes 3.832 seconds for the same task.

TV Human Interactions Dataset [216] was created by the Visual Geometry Group in 2010

from over 20 different TV shows. In the context of human interaction recognition, several challenges

must be addressed, including, for example, the background clutter, the varying number of people in

the scene, camera motion, and changes of camera viewpoints. Two hundred of the clips contain one

of four interactions: handshake (HS), high five (HF), hug (HG), and kiss (KS), each appearing in

50 videos (snapshots samples of each interaction are shown in 5.4). Each video clip length ranges

from 30 to 600 frames. A summary of the average precision for learning the human interaction in

the High Five dataset, as well as the average run-time, are shown in Table 5.7. Significantly, the
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Table 5.7: Average precision results and time for recognizing human interaction in High Five dataset
using different generative models .

Model HS HF HG KS AVG Time (s)

MM 0.2000 0.4000 0.0400 0.4800 0.2800 0.160
DCM 0.4903 0.7941 0.4758 0.4398 0.5500 20.84
MSD 1.0000 1.0000 0.9600 0.8000 0.9400 23.00
MGD 0.6814 0.6635 0.6551 0.6000 0.6500 20.47
MBL 0.9200 0.7600 0.7200 1.0000 0.8500 20.97
EDCM 1.0000 0.9600 1.0000 0.8400 0.9500 0.449
EMBL 1.0000 1.0000 1.0000 0.9600 0.9900 0.437

mixture of EMBL outperforms the similar approach of EDCM, which itself outperforms the other

models in recognizing the human interaction in all the classes.

Figure 5.4: High Five dataset snapshots with different scale and camera views.

Table 5.8 compares our method with state of the art. High Five typically serves as a good

testbed for various structure model applied for action recognition. The previously published results

are around 50-60%. With our framework, we achieve 99.00% on this challenging dataset.

Table 5.8: Comparison of our method with the state of the art for High Five dataset.

Average Precision

SVM [217] 27.48%
BoF+Structured SVM [217] 54.76%
Propagate Hough Voting [218] 56.00%
Spectral Divisive K-Means [219] 64.00%
Feature Encoding [220] 69.40%
Space-Time Tree Ensemble [221] 64.40%
Mixture of exponential MBL 99.00%
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5.4.4 Distinguishing Male and Female Faces Using Generative Kernels

5.4.4.1 Learning Approach and Datasets

Considering the capabilities and limitations of both generative and discriminative approaches,

there have been hybrid methods to combine the advantages and desirable properties of both [131,

141]. While the generative models (e.g., mixture models and hidden Markov models) aim to es-

timate the class-conditional distributions, the discriminative approaches focus directly on the clas-

sification problem by estimating a classification function. Given their good discrimination and

generalization capabilities, Support Vector Machines (SVMs) are well known powerful tools for

pattern classification. Indeed, the performance of an SVM largely depends on the kernel function

it adopts. Thus, an important issue in applying this classifier is the choice of the kernel function,

K : X × X → R for non-separable data [222]. The idea is to capture the intrinsic properties of

the data to classify based on a similarity measure between input vectors taking into account a prior

knowledge of the problem domain. In this section, we develop kernels based on EMBL mixture

models, and could also be called generative kernels [163], that address some practical limitations of

classical kernels (e.g., linear, radial basis function, and polynomial). We show the capability of the

generated kernel function in the problem of recognizing human faces that require handling bags of

count vectors.

We used three standard and challenging face recognition databases, as follows. The first is

AR face dataset [223], which has 4,000 color images corresponding to 126 people’s faces (70 men

and 56 women). Images feature frontal view faces with different facial expressions, illumination

conditions, and occlusions (sunglasses and scarf). Second dataset is the one created by AT&T lab-

oratories Cambridge [224]. It contains a set of an upright, frontal position face images in grayscale

with ten different images of each of 40 distinct subjects, e.g., open / closed eyes, smiling / not

smiling, and glasses / no glasses. The last dataset is Caltech faces by California Institute of Tech-

nology1, consists of 450 face images of around 27 unique people (both genders) with different

lighting/expressions/backgrounds. In the following, we present the different kernels generated from

our proposed model.
1http://www.vision.caltech.edu/html-files/archive.html
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AR database Caltech database

Figure 5.5: Samples from the face recognition datasets.

Fisher Kernels The Fisher kernel is mainly based on exploiting the geometric structure on the

statistical manifold by mapping each individual sequence into a single feature vector, defined in

the gradient log-likelihood space, as initially proposed in [141]. Let O = {O1, . . . ,ON} to be a

set of multimedia objects (e.g., images), where each image On is defined by a sequence of feature

vectors of count data XOn = {XOn1, . . . , XOnT }. Each individual object XOn has its own size T

as the image can be represented by a bag of pixel vectors of a set of local descriptors [164, 165].

The resulted feature vector is called the Fisher score and defined as: UXOn
=

∂p(XOn |Θ)
∂Θ , where

each component is the derivative of the log-likelihood with respect to a particular parameter. In

the case of finite mixture model of EMBLs; the corresponding feature space is (K(D + 3) − 1)-

dimensional. The kernel is then defined as: K(X : XOn
) = UXF (Θ)−1UXOn

, where F (Θ) is

the Fisher information matrix whose role is less significant and then can be approximated by the

identity matrix [141]. The gradient of logP ((X|Θ) with respect to the EMBL model parameters, is

calculated by straightforward manipulations as shown in Eq.(5.16), (5.27), and (5.28). Furthermore,

computing the gradient πj , j = 1, . . . ,K , which is the same for any mixture model, gives:

∂ log(X|Θ)

∂πj
=

T∑
t=1

[ztj
πj
− ztj
π1

]
, j = 2, . . . ,K (5.19)

Considering the unity constraint on mixing weights, we have only K − 1 free parameters, which

explains the fact that the previous gradient equation is defined for k ≥ 2 as π1 can be determined

knowing the values of the other mixing parameters (π1 = 1−
∑K

j=2 πj).
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Bhattacharyya Kernel We generate a probability product kernel where the kernel in the origi-

nal sequence is replaced by computing the probability density functions (PDFs) space [149, 166].

Let X , and X ′ be two sequences of feature vectors representing two multimedia objects defined

on the space Ω ( where Ω is the D-dimensional simplex in the case of EMBL distribution). That

is, the kernel becomes a measure of similarity between probability distributions as the following :

K(X ,X ′) ⇒ Kρ(p(X), p′(X ′)) =
∫
ρ p(X)ρ, p′(X ′)ρdX , where ρ is a parameter. An important

special case of probability product kernels (when ρ = 1/2) is the Bhattacharyya kernel, originally

proposed by [225] which, despite its cubic complexity, has the main advantage of nonlinear flexi-

bility [166]. The Bhattacharyya kernel is defined as follows:

KBH
(
p(X|θj), p(X|θl)

)
=

∫ +∞

0

√
p(X|θj), p(X|θl)dX (5.20)

Given the fact the EMBL belongs to the exponential family of distribution, we could find a closed

form for this kernel, which is given in (Appendix 2).

Information Divergence Kernels Another alternative for generative SVM kernels is the one

based on the information divergence distance such as the Kullback–Leibler (KL) kernel [148].

Probabilistic kernels based on the symmetric Kullback–Leibler divergence have been successfully

applied for different multimedia classification tasks based on both Gaussian and non-Gaussian mix-

tures [25, 144, 150]. The symmetric Kullback–Leibler divergence between p(X|Θj) and p(X|Θl)

is given by:

KKL
(
p(X|θj), p(X|θl)

)
= exp[−A J(p(X|θj), p(X|θl))] (5.21)

where A is a kernel parameter included for numerical stability, and

J(p(X|θj), p(X|θl)) = KL(p(X|θj), p(X|θl)) +KL(p(X|θl), p(X|θj))

The KL divergence has a closed-form expression in the case of the EMBL distribution and is given

in (Appendix 3).
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Rényi and Jensen-Shannon Kernels We also derive two other special probabilistic kernels that

are considered as a generalization of the symmetric Kullback-Leibler kernel, namely; the Reńyi and

Jensen-Shannon kernels [149]. The Rényi kernel is based on the symmetric Reńyi divergence [153],

as:

KR
(
p(X|θj), p(X|θl)

)
=

[∫ +∞

0
p(X|θj)σp(X|θl)1−σdX

×
∫ +∞

0
p(X|θl)σp(X|θj)1−σdX

]A/(1−σ)

(5.22)

where σ > 0 and σ 6= 1 is the order of Rényi divergence. In the case of an EMBL distribution, we

can find a closed-form expression for the Rényi divergence, as shown in (Appendix 4).

The second kernel is the Jensen-Shannon (JS) Kernel, generated according to the Jensen-Shannon

divergence [154], and is given by [149]:

KJS
(
p(X|θj), p(X|θl)

)
= exp[−A JSω(p(X|θj), p(X|θl))] (5.23)

where:

JSω(p(X|θj), p(X|θl)) = H [ω p(X|θj) + (1− ω)p(X|θl)]

− ω H [p(X|θj)]− (1− ω) H [p(X|θl)] (5.24)

where ω is a parameter, and:

H[p(X|θj)] = −
∫ +∞

0
p(X|θj) log p(X|θj)dX (5.25)

is the Shannon entropy and we can show, that in the case of the EMBL distribution, a closed-form

is existed (see Appendix 5).
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5.4.4.2 Generative Models Validation via BOF Approach

The objective of our first set of experiments is to show the merits of our generative model using

the Bag-of-Features (BoF) approach [89]. Each dataset was randomly split into two halves to con-

struct visual vocabulary and representation. Each image is then represented by a vector describing

the frequencies of a set of visual words, provided from the constructed visual vocabulary. For this

objective, we compare our proposed model to different generative models. Moreover, we compare

the classification results obtained by KNN, by setting the number of neighbors K to 3, 5 and 9, as

well as, SVMs with different classic kernels optimized for each dataset namely polynomial kernel

(SVM-p), sigmoid kernel (SVM-s), and RBF kernel (SVMr). A summary of the classification and

clustering results obtained for the different tasks is shown in Table 5.9 and Figure 5.6, respectively.

Table 5.9 summarizes the classification results, measured by the average values of the diagonal en-

tries of the confusion matrices, obtained for the different classification approaches. The best results

for SVM were obtained using the polynomial kernel with an average accuracy of 88.89%, 87.14%,

and 87.18% for AR, AT&T, and Caltech database, respectively. Moreover, the KNN with K = 3

has also shown good performance on the three tested databases.

Table 5.9: Classification performance obtained for the different face datasets using different tech-
niques considering the BOF approach.

Dataset SVM-p SVM-s SVM-r KNN(K=3) KNN(K=5) KNN(K=9)

AR 88.89 76.09 84.44 85.15 82.74 73.67
AT&T 87.14 80.00 74.29 90.23 87.93 87.36
Caltech 87.18 76.92 82.05 83.08 80.00 74.36

A comparison of the clustering results using different generative models is shown in Figure

5.6. We can see that both EDCM and EMBL perform better than the two other generative models,

which themselves perform better than SVM with classic kernels. Moreover, EMBL is able to better

differentiate between male and female faces across the different tested databases. The average

accuracy obtained using a mixture of EMBLs is 98.31%, 98.96%, and 90.78% for AR, AT&T, and

Caltech database, respectively.
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Figure 5.6: Clustering performance obtained for the different datasets using different techniques
considering the BOF approach in different face recognition datasets.

5.4.4.3 Classification Results Using Generative/Discriminative Approach

In our experiments, here, we replaced the visual words generation by fitting directly our gener-

ative model, EMBL, to the local SIFT feature vectors extracted from the images (i.e., each image

is encoded as a bag of SIFT feature vectors). Consequently, each image was represented by a finite

mixture model, which can be viewed actually as the generative stage. Then, the kernel matrices were

calculated to feed the SVM classifier, which represents our discriminative stage. Moreover, the val-

ues for all design parameters were obtained by performing 5-fold cross-validation. In Table 5.10, we

compare the different generated kernels based on EMBL mixture, and the previously applied kernel

for discrete data generated, in the same way, from DCM mixture namely the Fisher kernel [147],

and the different information divergence and fisher score kernels based on MSD/EMSD [25]. It is

actually obvious from this table that our developed hybrid model is an adequate SVM kernel that is

able to incorporate prior knowledge about the nature of data involved in the problem at hand and,

therefore, permits good data discrimination. Results obtained when generating SVM kernels using

MSD/EMSD, and MBL/EMBL mixture models were comparable and impressive if we take into

account the difficulty of the problem. The best results across the different datasets obtained using

the EMBL fisher kernel and the Jensen-Shannon based on EMBL. Moreover, we can notice that the

Fisher kernels based on the exponential distributions (i.e., EMSD, and EMBL) generally perform

slightly better than the ones based on the corresponding model MSD and MBL, respectively.

In general, we can say that for all the tested datasets, we have obtained excellent and promising
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Table 5.10: Performance (%) for gender faces distinguishing comparison of different generative
kernels.

Datasets

AR AT&T Caltech
DCM + Fisher Kernel 79.27 85.00 84.04
MSD + Fisher Kernel 88.46 89.88 87.94
EMSD + Fisher Kernel 95.53 96.39 89.81
EMSD + Kullback–Leibler 98.36 98.61 95.80
EMSD + Rényi Kernel 93.22 91.67 88.64
EMSD + Jensen-Shannon 99.62 97.50 92.22
MBL + Fisher Kernel 88.85 92.50 86.11
EMBL + Fisher Kernel 99.89 99.89 98.89
EMBL + Bhattacharyya Kernel 99.89 99.58 96.99
EMBL + Kullback–Leibler 99.06 98.75 97.78
EMBL + Rényi Kernel 99.81 97.50 97.44
EMBL + Jensen-Shannon 99.89 99.89 98.75

classification results as compared to the results using widely used discriminative approaches, i.e.,

SVM with classic kernels and KNN. Moreover, our proposed hybrid frameworks are able to provide

strongly acceptable results when compared to their generative counterparts, as we can see from the

results in Table 5.11 which was based solely on the generative models2.

Table 5.11: Clustering performance by fitting directly the different generative models to faces
datasets.

Dataset MM DCM MSD MGD MBL EDCM EMBL

AR 65.90 85.09 87.04 85.32 85.56 80.17 85.44
AT&T 69.96 77.50 89.31 89.45 89.25 85.70 85.50
Caltech 74.94 87.14 87.90 85.73 87.56 87.68 85.38

Furthermore, we compared the obtained results with other methods from the literature for AR

faces dataset, in Table 5.12. According to the considered measure, i.e., classification accuracy,

our approach achieves competitive results to the state-of-the-art as we can notice that the proposed

methods attain the highest accuracy rate.
2Note that the pure discriminative approach, i.e., SVM with classic kernels, cannot be applied here, since each image

is represented now by a set of vectors)
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Table 5.12: Comparison of our method with the state of the art for the AR face dataset.

Methods Accuracy

CRC RLS [226] 93.70%
MRL [227] 92.83%
Progressive CNN [228] 85.62%
EMSD + Jensen-Shannon 99.62%
EMBL + Fisher, Jensen-Shannon, Bhattacharyya Kernel 99.89%
EMBL + Rényi Kernel 99.81%

5.5 Conclusion

A novel clustering framework for high-dimensional and sparse count data has been proposed in

this work. The proposed model is based on an exponential-family approximation of the Multinomial

Beta-Liouville distribution, which we call EMBL. The goal is to provide a more flexible framework

than the previously proposed EDCM that has shown to be efficient in high-dimensional spaces.

We proposed a robust learning algorithm for addressing the problems of parameters estimation and

model selection simultaneously. The proposed approach successfully selected the optimal number

of components, that agrees with the prespecified one, in different datasets. Experiments with differ-

ent real-world applications using standard and widely used datasets have shown the effectiveness of

the proposed approach.

Appendix 1: Newton Raphson Approach for EMBL

The complete data log-likelihood following EMBL mixture, is given by:

logQ(X|ξ) =

N∑
i=1

K∑
j=1

ẑij

(
log(ni!) + log Γ(sj) + log Γ(α′j)

+ log Γ(β′j) + log(αj)− log Γ(sj + ni)− log Γ(α′j + β′j)

+

D∑
d=1

I(xid ≥ 1)
(

log(αjd)− log(xid)
))

(5.26)
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We compute the first derivative of log likelihood for Q(X|ξ) with respect to αj and βj as:

∂ logQ(X|ξ)
∂αj

=
N∑
i=1

ẑij

(
Ψ(α′j) +

1

αj
−Ψ(α′j + β′j)

)
(5.27)

∂ logQ(X|ξ)
∂βj

=
N∑
i=1

ẑij

(
Ψ(β′j)−Ψ(α′j + β′j)

)
(5.28)

where Ψ(.) is the digamma function (the logarithmic derivative of the Gamma function).

The Hessian matrix is based on the second-order derivatives calculated as follows:

∂2 logQ(X|ξ)
∂α2

j

=
N∑
i=1

ẑij

(
Ψ′(α′j)−

1

α2
j

−Ψ′(α′j + β′j)

)
(5.29)

∂2 logQ(X|ξ)
∂β2

j

=
N∑
i=1

ẑij

(
Ψ′(β′j)−Ψ′(α′j + β′j)

)
(5.30)

∂2 logQ(X|ξ)
∂αjβj

=
N∑
i=1

ẑij

(
−Ψ′(α′j + β′j)

)
(5.31)

where Ψ′(.) is the trigamma function. After calculating the derivatives using Equations (5.27)-

(5.31), the parameters updates will be evaluated using Newton Raphson technique.

Appendix 2: The Bahhtacharyya Kernel for EMBL

It is possible to compute the Bhattacharyya kernel in closed form for densities that belong to the

exponential family of distributions, as:

KBH = exp

[
1

2
Φ(θj) +

1

2
Φ(θl)− Φ

(
1

2
θj +

1

2
θl

)]
(5.32)
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In the case of EMBL, we can show that:

KBH = exp

[
1

2

(
log Γ(sj) + log Γ(α′j) + log Γ(β′j) + log(αj)− log Γ(sj + n)− log Γ(α′j + β′j)

)
+

1

2

(
log Γ(sl) + log Γ(α′l) + log Γ(β′l) + log(αl)− log Γ(sl + n)− log Γ(α′l + β′l)

)
− log Γ

(
D∑
d=1

(1

2
αjd +

1

2
αld
))
− log Γ

(1

2
α′j +

1

2
α′l
)
− log Γ

(1

2
β′j +

1

2
β′l
)

− log
(1

2
αj +

1

2
αl
)

+ log Γ

(
1

2

(
sj + n+ sl + n

))
+ log Γ

(
1

2

(
α′j + β′j + αl + βl

))]

=

{
Γ

(
1

2

( D∑
d=1

αjd + n+
D∑
d=1

αld + n
))

+ Γ

(
1

2

(
α′j + β′j + αl + βl

))
√√√√√Γ

( D∑
d=1

αjd

)
Γ
( D∑
d=1

αjl

)
Γ
(
α′j

)
Γ
(
α′l

)
Γ
(
β′j

)
Γ
(
β′l

)
αjαl

}/
{

Γ

(
D∑
d=1

(1

2

(
αjd + αld

)))
Γ
(1

2

(
α′j + α′l

))
Γ
(1

2

(
β′j + β′l

))(1

2

(
αj + αl

))
√√√√√Γ(

D∑
d=1

αjd + n)Γ(
D∑
d=1

αld + n)Γ(α′j + β′j)Γ(α′l + β′l)

}
. (5.33)

Appendix 3: The KL-divergence for EMBL

The KL-divergence between two exponential distributions is given by [174]:

KL(p(X|θj), p(X|θl)) = Φ(θj)− Φ(θl) + [G(θj)−G(θl)]
trEθj [T (X)] (5.34)

where Eθ is the expectation with respect to p(X|θj). Moreover, we have the following [67]:

Eθ[T (X)] = −Φ′(θj) (5.35)
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Thus, according to Eq.(5.6), we have:

Eθj

[ D∑
d=1

I(xd ≥ 1)
]

= −∂Φ(θj)

∂αd
= Ψ(

D∑
d=1

αjd + n)−Ψ(
D∑
d=1

αjd) (5.36)

where n =
∑D

d=1 xd, and Ψ(.) is the digamma function. By substituting the previous two equations

into Eq.(5.34), we obtain:

KL(p(X|θj), p(X|θl)) = log Γ
( D∑
d=1

αjd

)
− log Γ

( D∑
d=1

αld

)
+ log Γ(α′j)− log Γ(α′l)

+ log Γ(β′j)− log Γ(β′l) + log(αj)− log(αl)− log Γ
( D∑
d=1

αjd + n
)

+ log Γ
( D∑
d=1

αld + n
)

− log Γ(α′j + β′j) + log Γ(α′l + β′l) +

D∑
d=1

(
Ψ(

D∑
d=1

αjd + n)−Ψ(

D∑
d=1

αjd)

)
(αjd − αld)

= log

Γ
(∑D

d=1 αjd

)
Γ
(∑D

d=1 αld + n
)

Γ(α′l + β′l)Γ(α′j)Γ(β′j)(αj)

Γ
(∑D

d=1 αld

)
Γ
(∑D

d=1 αjd + n
)

Γ(α′j + β′j)Γ(α′l)Γ(β′l)(αl)


+

D∑
d=1

(
Ψ(

D∑
d=1

αjd + n)−Ψ(

D∑
d=1

αjd)

)
(αjd − αld). (5.37)

Appendix 4: Reńyi Kernel for EMBL

In the case of the EMBL distribution, we can show that:

∫ +∞

0
p(X|θj)σp(X|θl)1−σdX =

[
Γ(
∑D

d=1 αjd)Γ(α′j)Γ(β′j)αj

Γ(
∑D

d=1 αjd + n)Γ(α′j + β′j)

]σ

=

[
Γ(
∑D

d=1 αld)Γ(α′l)Γ(β′l)αl

Γ(
∑D

d=1 αld + n)Γ(α′l + β′l)

]1−σ

×
∫ +∞

0

n!∏D
d=1 xd

(
D∏
d=1

(αjd)
σ (αld)

1−σ

)
(5.38)

We have the PDF of an EMBL distribution that integrates to one which gives:

∫ +∞

0

n!∏D
d=1 xd

D∏
d=1

(αjd) =
Γ(
∑D

d=1 αjd + n)Γ(α′j + β′j)

Γ(
∑D

d=1 αjd)Γ(α′j)Γ(β′j)αj
(5.39)
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By substituting Eq.(5.39) into Eq.(5.38), we obtain:

∫ +∞

0
p(X|θj)σp(X|θl)1−σdX =[

Γ(
∑D

d=1 αjd)Γ(α′j)Γ(β′j)αj

Γ(
∑D

d=1 αjd + n)Γ(α′j + β′j)

]σ[
Γ(
∑D

d=1 αld)Γ(α′l)Γ(β′l)αl

Γ(
∑D

d=1 αld + n)Γ(α′l + β′l)

]1−σ

×
Γ(
∑D

d=1 σαjd + n)Γ(α′j + β′j)

Γ(
∑D

d=1 σαjd)Γ(α′j)Γ(β′j)αj
×

Γ(
∑D

d=1(1− σ)αld + n)Γ(α′l + β′l)

Γ(
∑D

d=1(1− σ)αld)Γ(α′j)Γ(β′l)αl
(5.40)

Appendix 5: Shannon Entropy for EMBL

H[p(X|θj)] = −
∫ +∞

0
p(X|θj)

[
log Γ(

D∑
d=1

αjd) + log Γ(α′j) + log Γ(β′j) + log(αj)

− log Γ(

D∑
d=1

αjd + n)− log Γ(α′j + β′j) +

D∑
d=1

(
log(αjd)

)
Eθ[I(xid ≥ 1)]

]
(5.41)

By substituting Eq.(5.36) into the previous equation, we obtain the following:

H[p(X|θj)] = − log Γ(
D∑
d=1

αjd)− log Γ(α′j)− log Γ(β′j)− log(αj) + log Γ(
D∑
d=1

αjd + n)

+ log Γ(α′j + β′j)−
D∑
d=1

log(αjd)
(
ψ(

D∑
d=1

αjd + n)− ψ(

D∑
d=1

αjd)
)

(5.42)
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Chapter 6
Sparse Count Data Clustering Using an

Exponential Approximation to Generalized

Dirichlet Multinomial Distributions

Clustering frequency vectors is a challenging task on large datasets considering its high dimen-

sionality and sparsity nature. Generalized Dirichlet Multinomial (GDM) distribution is a competi-

tive generative model for count data in terms of accuracy, but its parameters estimation process is

slow. The exponential-family approximation of the multivariate Polya distribution has shown to be

efficient to train and cluster data directly, without dimensionality reduction. In this paper, we derive

a new family of distributions that approximates the GDM distributions, and we call it (EGDM). A

mixture model is developed based on the new exponential family of distributions, and its parameters

are learned through the Deterministic Annealing Expectation-Maximization (DAEM) approach as

a new clustering algorithm for count data. Moreover, we propose the use of the Minimum Message

Length (MML) criterion for selecting the optimal number of components to best describe the data

with a finite EGDM mixture model. A set of empirical experiments, which concern text, image, and

video clustering, has been conducted to evaluate the proposed approach performance. Results show

that the new model attains a superior performance, and it is considerably faster than the correspond-

ing method for GDM distributions.
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6.1 Introduction

Count data appear in many domains in machine learning and computer vision applications.

Consider, for example, text documents clustering, or image database summarization where each

document or image is represented by a vector corresponding to the appearance frequencies of words

or visual words, respectively. Real texts systematically exhibit the burstiness phenomenon, i.e., if a

word appears once in a document, it is much more likely to appear again [7, 54]. Indeed, this phe-

nomenon is not limited to text and can also be observed in images with visual words [96]. Moreover,

in bag-of-words, or bag-of-visual-words, representation, many features occur only once, and many

more do not occur at all, as each observation contains only a small subset of the vocabulary. This is

referred to as the sparsity nature resulting in many of the entries being zero. Thus, text documents

and images are represented as high-dimensional and sparse vectors, a few thousand dimensions with

a sparsity of 95 to 99% [81]. The sparseness of data is heavily studied in the literature, where many

techniques have been proposed to optimize data representation for a more efficient and accurate

clustering [229].

Hierarchical Bayesian modeling frameworks have the ability to model the dependency of word

repetitive occurrences “burstiness”. In such frameworks, the Dirichlet distribution is usually used as

a conjugate prior distribution for the multinomial, which has numerous computational advantages

[55]. The resulting model is the Dirichlet Compound Multinomial (DCM) [9]. The hierarchical

approach of DCM considers the count vector for each document, or image, to be generated by a

multinomial distribution in which parameters are generated by the Dirichlet distribution. The hier-

archical Bayesian model called Generalized Dirichlet Multinomial (GDM), that is the composition

of the generalized Dirichlet distribution and the multinomial, is an interesting alternative to the

DCM. Indeed, several limitations of the Dirichlet can be handled by using the generalized Dirichlet

distribution, which has many convenient properties that make it more useful and practical, as a prior

to the multinomial, than the Dirichlet in real-life applications [10, 100]. However, the estimation

procedure for GDM is very inefficient when the collection size is large. Thus, the present paper

proposes that the GDM distribution can be approximated as a member of the exponential family of

distributions to reduce the computation in very high-dimensional spaces.
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This research work is motivated by the fact that GDM shares similar problems to the ones with

DCM, including that it does not belong to the exponential family, its expression lacks intuitiveness,

and its parameters cannot be estimated quickly. The author in [12] has shown that the estimation

algorithm of the exponential-family approximation to the DCM, EDCM, is much faster than the cor-

responding algorithm based on DCM. Moreover, it models the burstiness well even for rare words,

which has been indicated by the lower perplexity always achieved when using the EDCM mixtures.

Thus, we derive a new distribution that is a close approximation to the GDM. The proposed distri-

bution is a member of the exponential family of distributions that we called EGDM. Furthermore,

we developed a clustering framework via a mixture of EGDMs. For learning the parameters of

an EGDM mixture, we propose the use of the Deterministic Annealing Expectation-Maximization

(DAEM) algorithm to avoid the initialization dependency problem of the standard EM. By means of

real-life applications, we show that the DAEM algorithm with EGDM distribution is a competitive

algorithm for clustering high-dimensional and sparse count data efficiently. Moreover, as the model

selection is a crucial issue in mixture modeling [40, 41], we develop an MML criterion to determine

the number of components that best describes the data in a finite EGDM mixture. Based on the

EGDM mixture and the MML criterion, we proposed a probabilistic model for different challeng-

ing clustering tasks, namely, text documents modeling, image database categorization, and human

action recognition.

The structure of the rest of this paper is organized as follows. First, Section 6.2 presents some

related works and the motivation for this research. Section 6.3 reviews the Generalized Dirichlet

Multinomial (GDM) distribution and its properties. Next, Section 6.4 discusses the GDM approx-

imation in detail where we derive a new family of distributions that we called EGDM. Section 6.5

applies DAEM to learn EGDM mixture parameters and proposes an MML criterion for selecting the

optimal number of components. Section 6.6 demonstrates the capabilities of the proposed approach

in several applications and provides powerful evidence of the EGDM performance. Finally, Section

6.7 gives the concluding remarks.
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6.2 Related Works and Motivation

Exponential families of distributions offer several appealing statistical and computational prop-

erties [65]. For instance, sufficiency retains the essential information in a dataset regarding the

parameters which reduce the computation time, especially for sparse high-dimensional data. Elkan

[12] proposed EDCM as an efficient approximation to the Dirichlet compound multinomial (the

multivariate Polya distribution) [9]. EDCM models address the burstiness phenomenon success-

fully, and they are computationally faster than DCM, especially when dealing with sparse and high-

dimensional vectors. EDCM has been used later to improve the modeling accuracy of different

fields (for example, [230, 231]).

Despite the fact that Dirichlet distribution is flexible and has several interesting properties such

as the estimation consistency, it is a conjugate prior to the multinomial, and its simplicity, it has

several limitations. For instance, in the case of positively correlated data, the use of Dirichlet dis-

tribution is inappropriate, given that it has a very restrictive negative covariance structure. Another

limitation of the Dirichlet distribution includes that the variables with the same mean must have

the same variance [100]. All these disadvantages can be handled by using the generalized Dirichlet

distribution, which is a more suitable prior to the multinomial, than the Dirichlet in real-life appli-

cations given that it has many convenient properties. The composition of the generalized Dirich-

let distribution and the multinomial, introduced by Bouguila [10], is a more flexible and efficient

alternative to the DCM. Indeed, the Generalized Dirichlet Multinomial (GDM) has shown to be

an effective model that captures the burstiness and achieves high clustering accuracy in different

applications such as image database summarization, handwritten digit recognition, text document

clustering, and consumption behavior prediction [10, 175, 232]. GDM has shown a success also in

regression models given its ability to learn the complex correlation between counts [233]. Hence,

it would be interesting to approximate GDM distribution as a member of the exponential family of

distributions to reduce the computation in very high-dimensional spaces.

On the other hand, model-based clustering involves assigning the cluster membership proba-

bilistically as the model tries to fit the data that are assumed to be coming from a mixture of proba-

bility distributions [234, 235]. Thus, a particular clustering method is supposed to work well when
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the model best fits the dataset. One of the challenges in cluster analysis is determining the number

of clusters that best describes the data. This issue has been discussed in [3, 176, 236]. Several

information-theory based approaches have been proposed in the literature, including the Minimum

Message Length (MML) [1, 56], Akaike’s Information Criterion (AIC) [57], the Minimum Descrip-

tion Length (MDL) [58], the Mixture of MDL (MMDL) [1]. A detailed survey of selection criteria

methods can be found in [3].

Among the different proposed approaches, MML and MDL have been found to give the same

result for Gaussian distributions [182], (a comparison between them was conducted in [71, 237]).

However, the MML criterion has shown better results compared to the AIC and MDL criteria for

artificial mixtures of Gaussians [40]. MML has been used with good results in the case of many

mixture models [60]. Specifically, it has been implemented in the case of Gaussian, Poisson, and von

Mises circular mixtures [41], also in spatially correlated classes of Gaussian distributions [238], and

recently for discrete data with a mixture of Multinomials [239]. Moreover, recent work has shown

that an MML-based approach with a finite EDCM mixture offers strong modeling capabilities for

many real-world applications that involve high-dimensional count data [22].

6.3 The Generalized Dirichlet Multinomial Distribution

The Generalized Dirichlet (GD) distribution was introduced in [240], and it is mainly motivated

by limitations of the Dirichlet distribution in modeling the covariances. Indeed, the variables in a

Dirichlet random vector are all negatively correlated, and this is called a negative-correlation re-

quirement. Moreover, in Dirichlet distribution, there is only one degree of freedom (by selecting the

value of shape parameter), which is used to adjust the spread of a Dirichlet prior. Thus, adding indi-

vidual variance information for each entry of the random vector is not possible [241]. Furthermore,

additional strenuous constraints are set on the variances and the covariances in case of using the

mean probabilities to solve the parameters of a Dirichlet distribution [242, 243]. Another limitation

of Dirichlet distribution is the equal-confidence requirement [100]. Generally, a random variable

with a small normalized variance is less uncertain than a random variable with a large normalized

variance. However, the normalized variance for all variables in a Dirichlet random vector will be
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the same. The Dirichlet distribution, despite these limitations, is commonly used as a prior to the

Multinomial because of its computational efficiency. The generalized Dirichlet distribution, in fact,

can release the constraints of the Dirichlet distribution; thus, it has shown to be a more appropriate

prior for naive Bayesian classifiers [10, 100]. Moreover, the independence property of GD distri-

bution, defined by the ability to sample each entry of the random vector from independent Beta

distributions, provides more flexibility than the Dirichlet distribution [241].

InW -dimensional space, the generalized Dirichlet distribution with parametersα = (α1, . . . , αW ),

and β = (β1, . . . , βW ), is defined as [100]:

GD(ρ|α, β) =
W∏
w=1

Γ(αw + βw)

Γ(αw)Γ(βw)
ραw−1
w

(
1−

w∑
l=1

ρl

)γw
(6.1)

where 0 < ρw < 1, γw = βw − αw+1 − βw+1, for w = 1, . . . ,W − 1, and γW = βW − 1.

The mean and the variance of the generalized Dirichlet distribution satisfy the following conditions

[240, 244]:

E(Pw) =
αw

αw + βw

w−1∏
l=1

βl
αl + βl

, (6.2)

V ar(Pw) = E(Pw)

(
αw + 1

αw + βw + 1

w−1∏
l=1

βl + 1

αl + βl + 1
− E(Pw)

)
, (6.3)

and the covariance between Pw1 and Pw2 is:

Cov(Pw1, Pw2) =E(Pw2)

(
αw1

αw1 + βw1 + 1

w1−1∏
l=1

βl + 1

αl + βl + 1
− E(Pw1)

)
(6.4)

The correlations between counts can be positive or negative. Thus, the generalized Dirich-

let distribution can release the negative-correlation requirement [243]. Moreover, the generalized

Dirichlet includes the Dirichlet as a special case, by taking βw = αw+1 + βw+1. That is, the vari-

ables in a generalized Dirichlet vector can have different normalized variances, and the GD will

be reduced to a Dirichlet distribution only when all variables have the same normalized variance,

which can release the equal-confidence requirement [243].
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Similar to the Dirichlet, the generalized Dirichlet is also a conjugate to the multinomial distri-

bution, but it is more flexible for several applications given that it remains W degrees of freedom

[245]. The composition of the generalized Dirichlet and the multinomial gives the GDM [10].

Define X = (x1, . . . , xW+1) as a sparse vector of counts representing a document, or an image,

where xw corresponds to the frequency of the appearance of a word, or visual word, w, the GDM

distribution is given by:

GDM(X|α, β) =
Γ(n+ 1)∏W+1

w=1 Γ(xw + 1)

W∏
w=1

Γ(αw + βw)

Γ(αw)Γ(βw)

W∏
w=1

Γ(α′w)Γ(β′w)

Γ(α′w + β′w)
, (6.5)

where n =
∑W+1

w=1 xw, α′w = αw + xw, and β′w = βw + xw+1 + · · · + xW+1, for w = 1, . . . ,W .

It is important to note that the generalized Dirichlet is a tree of Beta distributions, and the GDM is

a tree of 2-D DCMs [232]. Moreover, it is worth mentioning the generation of a document (or an

image) using GDM is done in the following way: a sample is drawn from the generalized Dirichlet

distribution to generate a Multinomial distribution, and then a document (or an image) is generated

by the multinomial distribution. The GDM density function is thus, obtained by integrating over all

possible Multinomials.

6.4 Exponential-Family Approximation to GDM

In this section, we derive a new family of distributions that is an approximation to the GDM. We

called the proposed approximation EGDM, and it is, unlike the GDM, a member of the exponential

family.

6.4.1 The Exponential Family of Distributions

The exponential family, a unified family of distributions, is practically convenient and widely

used in spaces parameterized by finite dimensional vectors. The reasons for its popularity, spe-

cially in machine learning, include a number of important and useful calculations in statistics that

contribute to both convenience and larger scale understanding [14]. A K-parameter exponential
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distribution for random variables X, can be written as:

P (X|θ) = h(x) exp
{ K∑
l=1

Φl(θ)fl(x)− g(θ)
}

(6.6)

where Φl(θ) is called the natural parameter, fl(x) is the sufficient statistic, h(x) is the underlying

measure and g(θ) is called log normalizer which ensures that the distribution integrates to one [65].

A sufficient statistic is supposed to contain by itself all of the information about the unknown

parameters that the entire sample could have provided. In other words, sufficiency characterizes

what is essential in a dataset, or alternatively, what is inessential and can, therefore, be thrown away

to reduce the computation time [190]. This captures the intuitive notion that fl(x) contains all of the

essential information in X regarding θl. Thus, we retain only the sufficient statistic for the purpose

of estimating the parameters [13, 14]. Any family of distributions where the support depends on the

parameter can not be from an exponential family. However, it can be reduced to a member of the

exponential families via a suitable transformation and re-parameterization.

6.4.2 Approximating the GDM

Given the sparsity of datasets represented using bag-of-words, or bag-of-visual-words, it should

be possible to approximate the probability as a function of non-zero xw values only for computa-

tional efficiency. That is, when xw = 0 the value Γ(xw + 1) = 1. The GDM distribution, in this

case, is given by:

GDM(X) =
Γ(n+ 1)∏

w:xw≥1 Γ(xw + 1)

∏
w:xw≥1

Γ(αw + βw)

Γ(αw)Γ(βw)

∏
w:xw≥1

Γ(α′w)Γ(β′w)

Γ(α′w + β′w)
, (6.7)

Fitting a GDM by a maximum likelihood to a set of observations, we found experimentally that

αw � βw � 1 for almost all words w based on different datasets (see Section 6.6). In case of high

dimensional data, where the parameters are really small, it is useful to use the following fact for

x ≥ 1 [12]:

lim
α→0

Γ(α+ x)

Γ(α)
− αΓ(x) = 0, (6.8)

As αw is much less than βw, we can use the previous fact to replace Γ(αw + βw) in Eq.(6.7)
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with αwΓ(βw)Γ(αw). Moreover, using the fact that if x is an integer then Γ(x) = (x− 1)!, we can

approximate the GDM and rewrite its density function as:

GDM(X) ≈ n!∏
w:xw≥1

xw!

∏
w:xw≥1

αw
∏

w:xw≥1

Γ(α′w)Γ(β′w)

Γ(α′w + β′w)
, (6.9)

We reduce this approximated form of GDM to a member of exponential family using some proper-

ties of logarithm and Gamma function (see Appendix 1) to obtain the new distribution, that we call

(EGDM), in the exponential family form as:

EGDM(X) =
( ∏
w:xw≥1

xw

)−1 ∏
w:xw≥1

Γ(zw)

Γ(xw + zw)
n!

× exp
[ W∑
w=1

I(xw ≥ 1) log
αwβw

(αw + βw)

]
. (6.10)

where I(xw ≥ 1) is an indicator that represents whether a word w appears at least once in the vector

X.

Besides the desirable computational properties obtained by having the distribution in exponen-

tial family form, as discussed earlier, the proposed EGDM (Eq. 6.10) has an advantage of avoiding

the complications of evaluating the Gamma function and its derivatives in estimating the parame-

ters of the original GDM (Eq. 6.5). In addition, this form shows that following EGDM multiple

appearances of the same word are allowed to have a higher probability. Furthermore, this form

supports modeling both frequencies of natural languages, word types, and word tokens, which is

beneficial for capturing the statistical properties [66]. Similar to DCM and EDCM, the maximum

likelihood estimates of GDM and EGDM are sensitive to which words appear in which documents,

while Multinomial ignores the type-token distinction (i.e., the Multinomial parameters are the same

regardless documents boundaries in the collection).

6.5 Estimation and Selection for a Finite mixture of EGDMs

In this section, we discuss the proposed DAEM algorithm for estimating the EGDM mixture

model parameters. Afterward, we develop an MML criterion for determining the optimal number
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of components in the EGDM mixture and give the complete algorithm for estimation and selection.

6.5.1 Maximum Likelihood Estimation

In mixture modeling, the data are assumed to be generated from a mixture of sub popula-

tions. Let X to be an observed dataset with N data instances X = {X1, . . . , XN}, where Xi =

(xi1, . . . , xiW+1) is drawn from a superposition of M EGDM densities of the form:

P (Xi|π, θ) =
M∑
j=1

πj EGDM(Xi|θj). (6.11)

where πj (0 < πj < 1 and
∑M

j=1 πj = 1) are the mixing proportions. Each EGDM(X|θj) repre-

sents a mixture component j that has its own parameters θj = {αj , βj}, whereαj = (αj1, . . . , αjW ),

and βj = (βj1, . . . , βjW ).

For every observed data point Xi, there is a corresponding latent variable Zi = (zi1, . . . , ziM ).

The set Z = {Z1, . . . ,ZN} denotes the missing group-indicator vectors for data elements in the

jth cluster. The value of zij satisfies zij ∈ {0, 1}, such that a particular element zij is equal to one,

and all other elements are equal to 0. The complete data are considered to be (X ,Z|Θ), where Θ is

the set of all latent variables and parameters. The complete data log-likelihood corresponding to a

mixture model, with M components, is given by:

L(X ,Z|Θ) =
N∑
i=1

M∑
j=1

zij

(
logP (Xi|θj) + log πj

)
. (6.12)

For learning a mixture model, the Expectation-Maximization (EM) algorithm is the most popu-

lar approach, which generates a sequence of models with non-decreasing log-likelihood on the data.

Researchers proposed different extensions to overcome the problems associated with EM. Among

the successful extensions, the deterministic annealing method (DAEM) [53] has been efficiently

used to avoid initialization dependency and poor local maxima. Some interesting justifications

about using the deterministic annealing procedure include that in the annealing process, the func-

tion is smoothed to have only one global optimum point by beginning at a high temperature. As

the temperature decreases, the function shape gradually approaches the original objective, so the
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DAEM continually tracks the new optimum point until it finds the best one. Moreover, exploring

a larger region of parameter space through the slow EM convergence is an important factor in the

good performance of soft clustering algorithms [110]. Practically, slower convergence makes the

weights zij further away from zero and one, thus they reflect the membership uncertainty more

realistically [12].

The deterministic annealing approach uses multiple phases, each with a value of computational

temperature parameter. Each phase in the deterministic annealing approach runs the EM algorithm

until convergence, where the final estimated model parameters Θ in each phase are used as initial

values in the next one. In EM, the estimation of the parameters is done by iteratively proceeding

two steps, E-step and M-step, using the notion of incomplete data, which produces a sequence

of estimates {Θ(t), t = 0, 1, 2, . . . }. When applying the deterministic annealing procedure, the

posterior probabilities will be computed in the E-step as:

ẑ
(t)
ij =

(
P (Xi|θ(t)

j ) π
(t)
j

)τ
M∑
j=1

(
P (Xi|θ(t)

j ) π
(t)
j

)τ (6.13)

where τ = 1
T , and T corresponds to the computational temperature. In the M-step, the parameters

estimates will be updated according to:

Θ̂(t+1) = arg max
Θ
L(X ,Z|Θ,Θ(t)). (6.14)

when maximizing (6.14), we obtain:

π̂
(t+1)
j =

1

N

N∑
i=1

ẑ
(t)
ij . (6.15)

The maximum likelihood parameter estimate is obtained by taking the derivative of the log-

likelihood function and find Θ when the derivative is equal to zero. However, a closed-form solution

for the αj and βj parameters does not exist, thus, we use the Newton-Raphson method such that:

θ̂
(t+1)
j = θ

(t)
j −H

(
θ

(t)
j

)−1 ∂L(X ,Z|Θ(t))

∂θ
(t)
j

, (6.16)
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where H
(
θ

(t)
j

)−1
is the inverse of the Hessian matrix which is based on the second-order deriva-

tives (see Appendix 2). Each update to the parameters resulting from the E step followed by the M

step is guaranteed to increase the log-likelihood function. Hence, the algorithm is deemed to have

converged when the change in the log-likelihood function, becomes insignificant.

6.5.2 MML Criterion for EGDM

Let X = {X1, . . . ,XN} be a set of data controlled by a mixture of EGDM distributions with

parameters Θ = {θ1, . . . , θM}, where M is the number of clusters and θj denotes jth component

set of parameters. According to information theory, the candidate value M is considered as an

optimal number of clusters if it yields the minimum amount of information, measured in nats using

the natural logarithm, that is needed for transmitting the dataset X efficiently from a sender to a

receiver [71]. In case of mixture model, where the number of free parameters to be estimated is Np,

the formula for the message length is given by [40, 41]:

MessLength ' − log(h(Θ))− log(P (X|Θ))

+
1

2
log(|F (Θ)|) +

Np

2
(1 + log(kNp)) (6.17)

where h(Θ) is the prior probability, P (X|Θ) is the likelihood for the complete dataset, |F (Θ)| is

the determinant of the expected Fisher information matrix, and Np = M(2W ) + 1 is the number

of free parameters for EGDM. In general, kNp is the optimal quantization lattice constant for RNp

[72]. When Np = 1 the value of k1 = 1/12 ' 0.083, and as Np grows, kNp tends to the asymptotic

value given by 1
2πe ' 0.05855 which can be approximated by 1

12 [41]. The following sections

show, in detail, the derivation of the MML equation proposed to determine the number of EGDM

components.

6.5.2.1 Fisher Information

Fisher information of a mixture model is given by calculating the determinant of the Hessian

matrix of minus complete log-likelihood [41]. In case of EGDM mixture, the complete-data Fisher

information matrix has a block-diagonal structure. Generally, the prior information of different
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parameters α, β and π, as well as the parameters associated with each component, are assumed to

be independent. Thus, the Fisher information determinant for the complete-data is given by [1, 40]:

|F (Θ)| ' |F (π)|
M∏
j=1

|F (αj, βj)| (6.18)

We can consider the Fisher information of mixing proportions as a series of trails, where each has

M possible outcomes. For each component j, the number of trails is a multinomial distribution with

parameters (π1, . . . , πM ), and the determinant |F (π)| is, thus, given by [40]:

|F (π)| = N
M∏
j=1

πj

(6.19)

where N is the number of data instances.

In case of mixture models, the Fisher information matrix is usually computed after assigning

the data vectors to their respective clusters [1]. Let Xj = {Xl, . . . ,Xl+ηj−1} be the data elements

in the jth cluster where l ≤ N and ηj the number of the observations assigned to the jth cluster

with parameters θj . The negative of the log-likelihood function given the set of parameters vectors

θj = {αj , βj} of a single EGDM distribution can be written as:

−L(Xj |θj) = − log
( l+ηj−1∏

i=l

P (Xi|θj)
)

= −
l+ηj−1∑
i=l

logP (Xi|θj) (6.20)

Each F (θj) is a 2W × 2W - block matrix, thus, we can compute the determinant of each com-

ponent using the solution for block structured matrices provided in [111]. Calculating the Fisher

information for a mixture of EGDMs is possible after getting the Fisher information for each single

component, as following:

log |F (Θ)| = log(N)−
M∑
j=1

log(πj) +

M∑
j=1

log |F (θj)| (6.21)
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6.5.2.2 Prior Distribution

The choice of prior distribution h(Θ) is significant as it controls the MML criterion capabil-

ity. Given that other knowledge about the parameters is not available, a general independency

assumption is usually made in case of mixture models where all parameters including the mixing

probabilities, as prior, are independent from each other [73], such that:

h(Θ) = h(π)
M∏
j=1

h(θj) (6.22)

A Dirichlet distribution with parametersϕ = (ϕ1, . . . , ϕM ), is a natural choice as a prior for the

mixing weights vector π which is defined on the simplex, i.e., following a Multinomial distribution.

We choose a constant Dirichlet parameters (a vector of ones) which gives a uniform prior for the

mixing weights, as follows [40, 41]:

h(π) = Γ(M) = (M − 1)! (6.23)

For αj , βj , we considered similar priors to the generalized Dirichlet parameters. It has been

shown experimentally in [60], that the vector θj can be defined on the simplex {(αj1, βj1, . . . , αjW , βjW ) :∑W
w=1(αjw + βjw) < 2We5}. Considering a symmetric Dirichlet distribution as a prior gives a

uniform value as [60]:

h(θj) =
(2W )!

(2We5)2W
(6.24)

Substituting the prior for the mixing weights Eq.(6.23), and the prior for the parameters vector

Eq.(6.24) in Eq.(6.22) gives the prior probability of a mixture of EGDM distributions. Thus, the log

of the prior distribution is given by:

log(h(Θ)) =

M−1∑
j=1

log(j)− 10MW − 2MW log(2W ) +M

2W∑
w=1

log(w) (6.25)

By substituting Eq.(6.25) and Eq.(6.21) into Eq.(6.17), we obtain the MML criterion for a finite

mixture of EGDM distributions given a candidate value M .

In Algorithm 6, we summarize the algorithm for determining the optimal number of clusters
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and learning the parameters for a finite mixture of EGDM distributions. The input to this algorithm

consists of a dataset of count vectors and a set of candidate values for the number of mixture compo-

nents. Its output is the number of components that best describes the data, as well as the estimated

parameters corresponding to the lowest message length. For each candidate value M , we estimate

the parameters using the DAEM. Experimentally, we have concluded that setting τmin = 0.04 is

enough, and for the temperature schedule, we used const = 5. These reasonable choices correspond

to three-phases annealing, which has shown to give good results, as explained in [10, 12].

Algorithm 6: Estimation and Selection for EGDM mixture model.
Output: The optimal components M∗, best parameters estimates Θ∗

Input: Dataset X , with N W -dimensional vectors, and a set of candidate number of
clusters Mmin, . . . ,Mmax

1 for Mmin ≤M ≤Mmax do
2 Set τ ← τmin(τmin � 1);
3 Assign data objects to M classes using Spherical k-Means;
4 Choose an initial estimate Θ(0). Set t← 0;
5 while τ ≤ 1 do
6 while Convergance creteria is not reached do
7 Set t← t+ 1 ;
8 for i = 1 to N do
9 for j = 1 to M do

10 Compute the posterior probabilities z(t)
ij using (6.13);

11 end
12 end
13 for j = 1 to M do
14 Update the mixing proportion π(t)

j using (6.15);

15 Update the parameters θ(t)
j using (6.16);

16 end
17 end
18 Annealing: increase τ (τ ← τ × const.) ;
19 end
20 Calculate the associated MML criterion: MessLength(M) using (6.17);
21 end
22 Select the optimal Θ∗,M∗ such that: M∗ = arg minM MessLength(M);
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6.6 Experimental Results

In this section, we demonstrate the effectiveness of the proposed approach via three interest-

ing applications; text classification, image categorization, and human action recognition. In our

experiments, we compare the newly proposed family of distributions EGDM with other generative

models that have been used previously for count modeling and clustering. For each dataset, we

run each algorithm 50 times with different random initializations. To give a baseline of the diffi-

culty of the problem, we compare our proposed algorithm to other clustering methods such as the

Spherical k-Means (SKM), the Gaussian mixture model (GMM), and the mixture of Multinomials

(MM). Moreover, we compare to other generative models that have been previously proposed for

modeling count data, including mixtures of Dirichlet Compound Multinomial (DCM) [9], the ex-

ponential approximation to DCM (EDCM) [12], and Multinomial Scaled Dirichlet (MSD) [23]. All

the experiments are done directly (i.e., we do not separate the dataset into training and testing sets).

Moreover, we used the proposed MML criterion to find the optimal number of classes and evalu-

ated the proposed MML criterion capability to select the optimal number of clusters. For validation

purposes, we have considered the true number of classes as well as the true labels of each dataset

as a ground truth. That is, the estimated class labels by our model were compared against the initial

ones to evaluate the model’s performance based on standard classification measures.

6.6.1 Text Documents Modeling

Given the rapid growth of on-line information, the demand for developing efficient methods

for handling and organizing data in the textual format is becoming more crucial. Text clustering is

a significant task for finding interesting information within the World Wide Web, digital libraries,

and electronic mail [246]. The performance of the model is evaluated for text modeling, where

we compared using precision and recall averaged at macro level [247], to assess the overall per-

formance of the tested models across different sets of data. Moreover, we considered the mutual

information (MI) [12, 110], to quantify how much the assigned classes by an algorithm agrees with

the pre-specified ones. The experiments presented below are based on three datasets that have been
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considered in the past (see for example, [11, 77]), namely WebKB41, the ModApte version of the

Reuters-215782, and IMDB3.

The WebKB4 dataset is a subset of the web pages collected by the World Wide Knowledge

Base (Web→Kb) project of the CMU text learning group [248]. The complete dataset gathered

from computer science departments of various universities containing 8, 282 pages were manually

classified into seven categories and characterized by 7, 786 features, and the average length of each

document is 49.7. The considered subset is limited to the four most common categories: Course

(930), Faculty (1124), Project (504), and Student (1641). Reuters-10 is a subset of the well-known

corpus Reuters-21578, contains thousands of documents collected from Reuters newswire in 1987.

The complete dataset is composed of 135 classes with a vocabulary of 15, 996 words and an average

document length of 192.9. The documents in this dataset are multi labeled, as they may belong to

0, 1,, or many categories. The considered subset is composed of the 10 categories having the highest

number of class members (6, 775 and 2, 258 training and testing documents are considered for

this subset, respectively). IMDB (movie reviews) contains positive and negative sentiments [115].

Ratings on IMDB are given as star values ∈ {1, 2, . . . , 10}, which were linearly mapped to [0, 1]

to use as document labels; negative and positive, respectively. We used a union of the training and

testing sets having around 25, 000 samples from each positive/negative group with 76, 340 unique

words in total.

The pre-processing of WebKB4 involves removing all stop and rare words (less than 50 occur-

rences in our experiments) from the vocabularies. Rainbow package [78] is used to perform the

feature selection considering words with the highest average mutual information with the class vari-

able. Each web page is then represented using the vector space model, where each is represented as

a vector containing the frequency of the occurrences of the words. Stop words have already been re-

moved in Reuters-10 collection, so we did not remove any additional words. For sentiment analysis,

certain stop words (e.g., negating words) are indicative, so traditional stop word removal was not

used in the IMDB dataset. Each text file is then represented as a vector containing the occurrence

frequency for each word from the vocabulary.
1http://www.cs.cmu.edu/˜webkb/
2http://kdd.ics.uci.edu/databases/reuters21578
3http://ai.stanford.edu/˜amaas/data/sentiment/
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Table. 6.1 indicates the average performance metrics with standard errors. The reported time

(in seconds) is for a single run to the convergence of an optimized MATLAB2017a code on an

Intel(R) Core(TM) i7-6700 Processor PC has the Windows 7 Enterprise Service Pack 1 operating

system with a 16 GB main memory. Compared to GDM, the EGDM-based clustering is between

7 and 16 times faster for the different datasets. Likewise, the EDCM is 7 and 19 times faster than

the corresponding DCM based on the considered datasets. We can notice that generative models

that provide good results are generally slow, which will increase the complexity in high dimen-

sional spaces. On the other hand, the average precision and recall achieved by EGDM clustering

for WebKB4 are (88.89%) and (88.66%), for the Reuters-10 are (79.94%) and (94.74%), and fi-

nally for IMDB are (81.36%) and (89.55%). The GDM and its approximation clearly outperform

all other models on all the datasets. According to a Student’s t-test, the differences in performance

between the proposed EGDM, and other tested models are statistically significant (p-values are be-

tween 0.0005 and 0.0037). Furthermore, the improvement achieved by EGDM over the similar

approach of EDCM [12] is statistically significant, as shown by a Student’s t-test (p-values are be-

tween 0.0096 and 0.0191). The mutual information gained using EGDM, and EDCM for clustering

the WebKB4 dataset is (0.8957) and (0.7788), and for the Reuters-10 documents are (0.8921) and

(0.7511) using EGDM and GDM, respectively. The differences here are also statistically signifi-

cant. For instance, the p-values of a t-test for the difference between the mutual information gained

using EGDM and other models are 0.0032 and 0.0015 for MI using EDCM, and GDM, respectively.

Thus, the average accuracies, mutual information, and learning time for all the datasets confirm a

competitive performance for EGDM to the widely used generative models for count data that can

handle burstiness.

6.6.2 Image Database Categorization

With the exponential increase of the size of digital image collections, many computer vision

tasks, including object detection, content-based image classification, and retrieval, have been well

studied over the last decades. Recent successful approaches are inspired by the text retrieval sys-

tems, where images are represented as a “Bag of Visual Words” or “Bag of Features”, where the

local image patches are the visual equivalents of individual words [89, 249].
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Table 6.1: Clustering results using EGDM mixture model for the three documents collections.

Dataset Model Precision Recall Mutual info. time
WebKB4 SKM 30.25±0.01 29.55±0.02 0.3555±0.02 31.09

GMM 75.83±0.03 75.30±0.02 0.7926±0.05 23.57
MM 81.32±0.05 82.46±0.08 0.7330±0.06 17.24
DCM 83.72±0.21 84.44±0.27 0.7651±0.43 127.96
MSD 88.17±0.05 88.27±0.06 0.8943±0.03 44.05
GDM 86.38±0.03 87.26±0.05 0.8420±0.18 138.26
EDCM 84.66±0.16 84.50±0.12 0.7788±0.03 16.07
EGDM 88.89±0.04 88.66±0.05 0.8957±0.29 19.26

Reuters-10 SKM 25.08±0.07 27.53±0.05 0.3392±0.02 136.03
GMM 70.99±0.03 89.99±0.04 0.8090±0.05 220.34
MM 72.17±0.04 91.76±0.02 0.8332±0.03 62.93
DCM 74.84±0.05 93.56±0.02 0.8832±0.02 396.20
MSD 75.59±0.01 90.85±0.01 0.8914±0.02 163.97
GDM 75.66±0.02 90.86±0.03 0.7511±0.35 402.50
EDCM 79.36±0.08 94.72±0.07 0.8820±0.45 20.68
EGDM 79.94±0.02 94.74±0.07 0.8921±0.29 25.46

IMDB SKM 55.90±0.03 55.91±0.07 0.5800±0.03 252.76
GMM 61.40±0.05 61.40±0.04 0.6719±0.07 169.48
MM 64.18±0.05 64.40±0.06 0.6520±0.03 143.52
DCM 71.14±0.05 89.45±0.05 0.8578±0.09 227.11
MSD 76.44±0.02 84.54±0.04 0.8432±0.03 254.46
GDM 75.55±0.02 81.43±0.07 0.8992±0.05 338.26
EDCM 78.54±0.09 89.33±0.14 0.8861±0.07 32.07
EGDM 81.36±0.08 89.55±0.04 0.8994±0.22 48.26

Our baseline system builds upon the bag-of-features approach, which has demonstrated ex-

cellent performance in image classification. Bag of Features methods often rely on detecting the

location and scale of localized regions from which image features are extracted. First, a set of inter-

est points are detected and described on each patch independently using the Scale-Invariant Feature

Transform (SIFT) [90]. Then, the set of descriptors is quantized using an unsupervised clustering

approach into a number of homogeneous clusters as proposed in [91], where the centroid of each

cluster is considered as a visual word. Each novel image is then to be represented as a histogram

of frequencies corresponding to assigning the features extracted to the closest visual word using

Euclidean distance.

We evaluated our model performance on three different datasets. The first one is CIFAR-104

4https://www.cs.toronto.edu/˜kriz/cifar.html
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(a). (b).

GDM

EGDM

Figure 6.1: (a) Sample images from CIFAR-10 dataset. (b) Intra-class accuracy obtained by GDM
vs. EGDM for CIFAR-10.

dataset which has been collected by researchers at MIT and NYU over the span of six months [92].

The dataset consists of 60, 000 natural tiny color images of size 32 × 32 collected from several

search engines based on 79, 000 search terms. The images belonging to 10 completely mutually

exclusive categories are split into 50, 000 training images and 10, 000 test images (1, 000 images

per class). Fig. 6.1 (a) presents a random sample with 10 images from each class. The second

dataset is a subset of the extensive Scene UNderstanding (SUN) database [250], that contains 899

categories and 130, 519 images. We use 1, 849 natural scenes belonging to six categories (458

coasts, 228 river, 231 forests, 247 field, 518 mountains, and 167 sky/clouds). Fig. 6.2(a) shows

example images from each class in this dataset. The last dataset is the environmental scene database

by Oliva and Torralba [251] (refereed to as OT). This dataset is composed of about 2, 688 natural

scenes classified as eight categories (360 coasts, 328 forest, 374 mountain, 410 open country, 260

highway, 308 inside of cities, 356 tall buildings, and 292 streets). The average size of each image is

250× 250 pixels.

To obtain the bag-of-features representation in our experiments, we learn 25k, 17k, and 10k

visual vocabulary to construct the codebook for CIFAR-10, SUN and OT dataset, respectively, and

used the Euclidean distance to assign the features to the closest terms in the vocabulary resulting

in frequency vectors. Table. 6.2 shows the clustering performance of the tested methods reported

as the average accuracy plus/minus standard error, as well as the average run time in seconds. The

accuracies achieved using EDCM and EGDM (94%) and using DCM, and GDM (90%) indicate
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Figure 6.2: (a) Sample images from SUN dataset. (b) Confusion matrix for SUN using EGDM.

Table 6.2: The average accuracy and learning time using different methods for image categorization.

MODEL
CIFAR-10 SUN OT

ACCURACY TIME ACCURACY TIME ACCURACY TIME

SKM 24.74±0.03 174.05 25.78±0.04 45.59 29.66±0.02 59.39
GMM 36.24±0.05 450.10 37.95±0.05 69.64 35.12±0.07 47.90
MM 89.05±0.08 332.90 79.50±0.08 58.60 80.20±0.07 51.87
DCM 90.46±0.12 494.81 79.82±0.47 89.23 80.56±0.06 85.54
MSD 90.81±0.07 450.51 80.75±0.05 123.37 80.98±0.06 139.70
GDM 90.50±0.04 636.54 80.17±0.03 119.54 80.60±0.03 104.05
EDCM 94.40±0.36 108.68 93.45±0.41 44.34 80.63±0.04 28.13
EGDM 94.41±0.02 209.72 96.27±0.13 57.18 82.77±0.02 49.33

comparable performance. However, EGDM and EDCM outperform the corresponding GDM and

DCM as the differences are statistically significant, as shown by a Student’s t-test (i.e., p-values

between 0.0082 and 0.0014 for the different runs). Moreover, EGDM and EDCM are 3 and 5

times faster than the corresponding GDM and DCM, respectively. We can notice that DCM, MSD,

and GDM behave similarly in all the tested datasets. However, the clustering accuracy achieved

by GDM is very much improved by the exponential approximation approach (e.g., the accuracy

of categorizing the SUN dataset has increased from (80.17%) to (96.27%) using EGDM mixture).

This difference is statistically significant as shown by a Students t-test (i.e., p-values are between

0.0015 and 0.0035 for the different runs). The intra-class performance for the CIFAR-10 database

using GDM and EGDM is shown in Fig. 6.1(b). The best classified object by EGDM is airplane
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(with a performance of 97.20%) and frog by GDM (with a performance of 94.30%). The cluster-

ing accuracy has been improved for all categories, and the overall performance has a statistically

significant enhancement from (90.50%) for GDM to (94.41%) for EGDM. For the SUN dataset,

we can see from the confusion matrix Fig. 6.2(b), that the most difficult scenes to classify using

EGDM are Sky and River with a performance of (82.9) percent and (93.0) percent, respectively. The

overall accuracy of categorizing SUN using the GDM mixture has been improved from (80.17%) to

(96.27%) using the EGDM clustering approach. This difference is statistically significant, accord-

ing to the Student’s t-test (p-values are between 0.0034 and 0.0024). As shown in Table. 6.2, the

overall accuracy of categorizing OT using the GDM mixture has been improved from (80.60%) to

(82.77%) using the EGDM clustering approach. Moreover, the EGDM model is noticeably faster

than the corresponding GDM for categorizing both SUN and OT datasets. This result once again

demonstrates the merit of using the EGDM algorithm and its superior performance for categorizing

images represented as bag-of-features.

6.6.3 Human Action Recognition

With thousands of videos available due to the improvement of digital technologies, grouping

them according to their contents is highly demanded to be used for organizing, summarizing, and

retrieving this massive amount of data. Video classification is a challenging computer vision task

with many applications. In particular, automatically recognizing human motion and activity in

videos has captured scholars’ interest because of its several critical applications such as motion

capture, sports and entertainment analysis, monitoring and surveillance, and human-computer in-

teraction [252]. The goal of this section is to investigate the effectiveness of the proposed approach

in human action categorization in video sequences. The problem can be formulated as a clustering

task for the extracted frames using the well known BoF approach, which has shown to give excellent

results for human action recognition [253].

Our experiments were conducted on three publicly available datasets: Ballet [254], UCF sports

[215], and YouTube [255]. For representing each dataset as BoF, the samples in each action were

randomly split into 80:20 as training and testing sets. The overall accuracy for human action recog-

nition obtained using the different generative models is shown in Table 6.3. The Ballet dataset
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Table 6.3: The average accuracy and learning time using different methods for human action recog-
nition.

MODEL
BALLET UCF SPORT YOUTUBE

ACCURACY TIME ACCURACY TIME ACCURACY TIME

SKM 19.60±0.04 27.56 23.40±0.02 31.47 23.79±0.04 46.23
GMM 22.03±0.02 41.79 29.20±0.02 60.23 24.11±0.06 84.73
MM 64.95±0.03 64.05 61.72±0.02 112.16 49.62±0.03 123.56
DCM 64.23±0.09 178.24 66.97±0.34 183.50 58.18±0.22 160.83
MSD 66.93±0.05 174.69 65.97±0.03 299.85 58.37±0.04 414.20
GDM 66.16±0.03 241.80 69.77±0.04 393.20 58.51±0.08 438.75
EDCM 76.43±0.22 14.37 82.69±0.02 20.12 80.40±0.06 24.67
EGDM 79.37±0.05 23.05 86.73±0.06 35.25 83.24±0.03 43.88

Figure 6.3: Sample frames from Ballet video dataset.

contains 44 real video sequences that consist of eight actions, such as jumping, turning, leg swing-

ing, and standing (see examples in Fig. 6.3). From the Table, we can see that our approach achieves

the highest accuracy among the compared methods. Clearly, EGDM outperforms both GDM and

EDCM, which itself is better than the DCM and other models for the three tested datasets. The

accuracies for clustering the Ballet dataset are (79.37%) using EGDM, (66.16%) and (76.43%) for

GDM and EDCM, respectively.

The UCF sports dataset contains 150 real videos with the resolution of 720×480. The collec-

tion represents a natural pool of actions featured in a wide range of scenes and viewpoints with

non-uniform backgrounds and moving camera/subjects. It involves 10 categories of human actions

collected from different sports include Diving (14 videos), Golf Swing (18 videos), Kicking (20

videos), Lifting (6 videos), Riding Horse (12 videos), Running (13 videos), Skate Boarding (12
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videos), Swing-Bench (20 videos), Swing-Side (13 videos), and Walking (22 videos). The over-

all accuracy for recognizing human action UCF sports dataset using EGDM mixture is (86.73%)

which is significantly higher than (82.69%), by EDCM and (69.77%) by GDM mixture. Moreover,

the time complexity of the EM algorithm for training EGDM and EDCM mixtures is quite fast.

Comparing to GDM, the running time for EGDM is 10 to 11 times faster, and the EDCM is 6 to 9

times faster than the corresponding DCM. This will cut clustering time dramatically based on the

number of clusters, the number of frames, and the dimension of the data.

The last dataset is YouTube contains 11 action categories: basketball shooting, biking/cycling,

diving, golf swinging, horseback riding, soccer juggling, swinging, tennis swinging, trampoline

jumping, volleyball spiking, and walking with a dog (see samples in Fig. 6.4). This dataset is very

challenging for several reasons, including large variations in camera motion, object appearance and

pose, object scale, viewpoint, cluttered background, illumination conditions, etc. Fig. 6.5 (a) shows

the comparison of the clustering accuracies using EDCM and EGDM. The overall improvement us-

ing EGDM is about 3.4% over EDCM. Most categories obtained improvement in terms of clustering

accuracy except for soccer juggling (shown as s juggling) and tennis swing (t swing). Fig. 6.5 (b)

shows the confusion table for classification using the EGDM. We can see that a lot of t swing is

misclassified into s juggling, and golf swing. Once again, the differences in performance, consid-

ering the overall accuracy, between EGDM and other models are statistically significant for all the

tested datasets, as shown by a Student’s t-test. For instance, EGDM performs significantly better

than the earlier proposed EDCM, which itself significantly outperforms all other tested models (i.e.,

p-values are between 0.0048 and 0.0076, for the different runs).

Indeed, the challenge to handle count data increases as the number of dimensions, classes, and

data instances increases. The exponential approximation to GDM proposed in this work has shown

to cluster such data faster and more efficiently compared to other generative models widely used for

count data, including a similar approach that approximates DCM to the exponential family of distri-

butions. Given the superior performance of the proposed approach in the presented applications and

data examples, we can conclude that a mixture of EGDMs provides a promising clustering method

for high-dimensional sparse count data.
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Figure 6.4: Sample frames from YouTube Action dataset.

(a). (b).

Figure 6.5: (a) Comparison of clustering performance for YouTube dataset using EDCM and
EGDM, the average accuracy are 80.40% and 83.24%, respectively. (b) The confusion matrix for
clustering using the proposed EGDM.

6.6.4 Model Selection Evaluation

We evaluate the performance of the proposed MML approach on all the datasets used for the

different applications according to whether the selected K agrees with the prespecified number of

clusters. For each dataset, we perform the model selection by running MML for a set of candidates

values and consider the best candidate value K∗ that minimizes the message length.

The first row of Fig. 6.6 shows the number of clusters found by the proposed criterion for

WebKB4, Reuters-10, and IMDB datasets, respectively. We can see that the values of the MML

criterion agree with the correct number of clusters for all text datasets. The optimal number of

components found using MML with WebKB4 documents collection is K∗= 4 also agrees with the
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Figure 6.6: Number of clusters found by the MML criterion for the different datasets.

prespecified number of clusters. Moreover, the selected models by MML for the Reuters and IMDB

datasets are K∗= 10 and K∗= 2, respectively, which corresponds to the actual numbers of clusters.

The second row shows that the MML criterion is capable of selecting the optimal number of clusters

to represent image datasets. The numbers of classes that yield to the minimum message length were

K∗= 10, K∗=6 and K∗=8 for CIFAR-10, SUN and OT datasets, respectively, which agree with the

exact prespecified number of classes. The results for the video datasets (shown at the last row of

Fig. 6.6) also demonstrate the effectiveness of the proposed approach, where the correct number

of clusters was found for each dataset. Thus, we can conclude that our algorithm performs well in

determining the number of components that best describes the data.
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6.7 Conclusion

In this work, we have introduced a new distribution that we call (EGDM) based on the ex-

ponential family approximation of the Generalized Dirichlet Multinomial (GDM) to cluster high-

dimensional and sparse count data. The new model successfully and correctly captures the bursti-

ness phenomenon, and it is many times faster and computationally efficient compared to the cor-

responding GDM. For learning the parameters of EGDM mixture and determining the number of

optimal clusters, the Deterministic Annealing Expectation-Maximization (DAEM) algorithm and

Minimum Message Length (MML) criterion have been used, respectively. The effectiveness of the

proposed model was shown experimentally through demanding clustering problems involving text

documents modeling, image categorization, and human action recognition in videos. The model

presented in this chapter is also applicable to many other problems that involve sparse vectors of

count data.

Appendix 1: Proof of Eq.(6.10)- The Exponential GDM

To reduce the approximated density of GDM (Eq.6.9) to a member of exponential family, we

used some properties of logarithm including log(xy) = log x+ log y and log(x/y) = log x− log y,

thus we obtain:

q(X) =
n!∏

w:xw≥1
xw!

∏
w:xw≥1

αw exp
[ ∑
w:xw≥1

log Γ(αw + xw)

+ log Γ(βw + xw+1 + · · ·+ xW+1)

− log Γ(αw + βw + xw + xw+1 + · · ·+ xW+1)
]
, (6.26)
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Let zw = xw+1 + · · · + xW+1 be the cumulative sum, and using the previously mentioned fact in

Eq.(6.8) we can rewrite Eq.(6.26) as:

q(X) ≈ n!∏
w:xw≥1

xw!

∏
w:xw≥1

αw exp
[ ∑
w:xw≥1

(
log Γ(xw)

+ logαwΓ(αw)
)

+
(

log Γ(zw) + log βwΓ(βw)
)
−(

log Γ(xw + zw) + log(αw + βw)Γ(αw + βw)
)]
, (6.27)

In order to have q(X) in the exponential family form, we need to have the support function

independent of the parameters. Utilizing the logarithm and Gamma function properties mentioned

above gives:

q(X) ≈ n!∏
w:xw≥1

xw!

∏
w:xw≥1

αw exp
[ ∑
w:xw≥1

log

(xw − 1)!(zw − 1)!

(xw + zw − 1)!
+

αwΓ(αw)βwΓ(βw)

(αw + βw)Γ(αw + βw)

]
, (6.28)

Using Eq.(6.8) again to approximate Γ(αw + βw) gives:

q(X) ≈
exp[log (xw−1)!(zw−1)!

(xw+zw−1)! ]∏
w:xw≥1

xw!
n! exp

[ ∑
w:xw≥1

(
log(αw) + log

βw
(αw + βw)

)]
. (6.29)

Rewriting Eq.(6.29) using the fact that x! = x(x − 1)!, we can further simplify to obtain the

new distribution that we call (EGDM) in the exponential family form as shown in Eq.(6.10).
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Appendix 2: Newton-Raphson Approach for Estimating EGDM Pa-

rameters

The log-likelihood of one observation Xi, following EGDM, is:

logP (Xi|θj) = log(ni!) +
∑

w:xiw≥1

(
log Γ(ziw)− log Γ(xiw + ziw)

)
+

∑
w:xiw≥1

[
(log(αjw) + log(βjw)− log(αjw + βjw))− log(xiw)

]
(6.30)

By computing the first derivative of L(X ,Z|Θ,Θ(t)) with respect to αjw and βjw, we obtain:

∂L(X ,Z|Θ,Θ(t))

∂αjw
=

N∑
i=1

zij I(xiw ≥ 1)
[ 1

αjw
− 1

αjw + βjw

]
, (6.31)

∂L(X ,Z|Θ,Θ(t))

∂βjw
=

N∑
i=1

zij I(xiw ≥ 1)
[ 1

βjw
− 1

αjw + βjw

]
. (6.32)

The Hessian matrix is based on the second-order derivatives, as flows:

∂2L(X ,Z|Θ,Θ(t))

∂αjw1∂αjw2
=


N∑
i=1

zij I(xiw ≥ 1)
[ 1

(αjw + βjw)2
− 1

α2
jw

]
if w1 = w2 = w,

0 otherwise,

(6.33)

∂2L(X ,Z|Θ,Θ(t))

∂βjw1∂βjw2
=


N∑
i=1

zij I(xiw ≥ 1)
[ 1

(αjw + βjw)2
− 1

β2
jw

]
if w1 = w2 = w,

0 otherwise,

(6.34)

∂2L(X ,Z|Θ,Θ(t))

∂αjw1∂βjw2
=


N∑
i=1

zij I(xiw ≥ 1)
[ 1

(αjw + βjw)2

]
if w1 = w2 = w,

0 otherwise,

(6.35)
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Then, the Hessian matrix has a block-diagonal structure:

H(θj) = block − diag{H1(αj1, βj1), . . . ,HW (αjW , βjW )}, (6.36)

We remark that Hw(αjw, βjw) can be written as:

Hw(αjw, βjw) = D + γ a atr, (6.37)

where:

D = diag
[ N∑
i=1

zij I(xiw ≥ 1)
−1

α2
jw

,
N∑
i=1

zij I(xiw ≥ 1)
−1

β2
jw

]
, (6.38)

and γ =
∑N

i=1 zij I(xiw ≥ 1)
[

1
(αjw+βjw)2

]
, and atr = 1. Then, the inverse of the matrix

Hw(αjw, βjw) is given by [95], [Theorem 8.3.3]:

Hw(αjw, βjw)−1 = D∗ + δ∗ a∗ a∗tr, (6.39)

where:

D∗ = D−1 = diag[1/D1, 1/D2] = diag

[
−α2

jw

N∑
i=1

zijI(xiw ≥ 1)

,
−β2

jw

N∑
i=1

zijI(xiw ≥ 1)

]
, (6.40)

a∗tr = (1/D1, 1/D2) =

(
−α2

jw

N∑
i=1

zijI(xiw ≥ 1)

,
−β2

jw

N∑
i=1

zijI(xiw ≥ 1)

)
, (6.41)
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δ∗ = −γ(1 + γ(1/D1 + 1/D2))−1

=

−
N∑
i=1

zijI(xiw ≥ 1)

(αjw + βjw)2
×

(
1 +

( N∑
i=1

zijI(xiw ≥ 1)

(αjw + βjw)2
×

−α2
jw

N∑
i=1

zijI(xiw ≥ 1)

)

+
( N∑
i=1

zijI(xiw ≥ 1)

(αjw + βjw)2
×

−β2
jw

N∑
i=1

zijI(xiw ≥ 1)

))−1

=

−
N∑
i=1

zijI(xiw ≥ 1)

(αjw + βjw)2

(
1−

α2
jw + β2

jw

(αjw + βjw)2

)−1
. (6.42)
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Chapter 7
A Novel MM Framework for Simultaneous

Feature Selection and Clustering of

High-Dimensional Count Data

Count data are widely used in machine learning and computer vision applications, and they

usually suffer from the well-known curse of dimensionality, which decline the performance of clus-

tering algorithms dramatically. Feature selection is a significant technique for handling a large

number of features, which most are often redundant and noisy. In this work, we propose a proba-

bilistic approach for count data based on the concept of feature saliency in the context of mixture-

based clustering using the generalized Dirichlet multinomial (GDM) distribution. By minimizing

the message length, the saliency of irrelevant features is driven toward zero, which corresponds to

performing feature and model selection simultaneously. Through a set of challenging applications

involving text and images clustering, it is demonstrated that the developed approach performs ef-

fectively in selecting both the optimal number of clusters and the most relevant features and, thus,

improve the clustering performance considerably.
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7.1 Introduction

Feature selection is a traditional and practical approach to handle high-dimensional data [256].

Theoretically, a clustering algorithm supposes to perform better with the more information we have

about each pattern, which seems to suggest using as many features as possible. However, in many

real-world scenarios, most of the features are correlated or redundant and thus are not essential and

discriminative or even noisy and degrade the clustering process [15, 257]. Moreover, processing

high-dimensional data requires significantly increasing time and space. Feature selection aims at

finding the most relevant feature subset from high-dimensional feature space based on certain eval-

uation criteria [15–17]. Thus, feature selection helps in improving the statistical model structure

and overcoming several issues that may be caused by the high dimensionality of the feature space

such as over-fitting, low efficiency, and poor performance [18–20]. Compared to continuous data,

the larger number of features and sparsity nature of discrete data make the feature selection task

more critical. Typical examples that involve thousands of discrete features include gene microbiol-

ogy data [258, 259], social media, and web pages that are generally represented as frequencies of

the corresponding set of keywords [260, 261], and visual items (images and videos) that incorporate

an extensive number of keypoints [262, 263]. The widely used feature selection methods can be

categorized in regard of the way of utilizing label information as supervised algorithms [257, 264],

semi-supervised algorithms [265, 266] and unsupervised algorithms [16, 267–269]. In real-world

applications, high-dimensional unlabeled data are rapidly accumulated, and obtaining labeled data

is both expensive and time-consuming [270, 271]. Consequently, developing unsupervised feature

selection techniques is absolutely promising yet challenging. The problem of feature selection be-

comes more demanding in case neither the class labels nor the number of clusters is known, as the

selection of both the best features and the optimal number of components have to be performed si-

multaneously. To date, the model-based unsupervised feature selection approaches for discrete data

have not been much investigated in the literature yet.

In this work, we propose an unsupervised learning algorithm considering the feature saliencies,

which is able to perform feature selection and clustering for count data simultaneously. The pro-

posed approach is an extension to the approach in [267, 272], which is based on estimating a weight
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for each feature, which is a real-valued quantity in [0, 1] with respect to each mixture component.

For this estimation, we introduce a novel minorization-maximization (MM) algorithm [273, 274],

that generalizes the celebrated EM algorithm [160] and led to simpler derivation, to calculate the

maximum likelihood estimates (MLEs) of parameters. Moreover, we optimize the message length

of the dataset based on the minimum message length (MML) philosophy [71] that helps to define the

number of relevant components. Given the significance of selecting an accurate model that approx-

imates the distribution of the data, we adopted the marginal density called Generalized Dirichlet

Multinomial (GDM) [10], that is the composition of the generalized Dirichlet distribution [240] and

the multinomial. Indeed, GDM distribution is more versatile than other widely-used models for

count data, including the multinomial and Dirichlet Compound Multinomial (DCM) [9], and it has

proved its flexibility and efficiency in several machine learning problems [10, 100, 175]. For model-

ing high dimensional data, considering the conditional independence assumption among features is

a common practice by researchers [267, 275]. Thus, we take advantage of the GDM density version

proposed in [232] based on replacing of gamma functions by rising polynomials.

Our key contributions are highlighted as follows:

• We propose a probabilistic feature selection approach that considers discrete random vari-

ables modeled by a finite mixture of GDM distributions. To the best of our knowledge,

the proposed work is the first model-based feature selection algorithm based on hierarchical

Bayesian model.

• We derive a minorization-maximization MM algorithm for maximum likelihood estimation

of the proposed mixture with feature saliencies where the surrogate function is much simpler

than the log-likelihood, and thus the M step can be solved analytically. The proposed work is

the first to consider MM in case of incomplete count data and with feature selection.

• We propose an unsupervised learning approach that simultaneously deals with fitting the mix-

ture model to the observed data and selecting the number of components, to avoid the situation

that all saliencies take the maximum value and thus allow us to prune the irrelevant feature.

• We validate the proposed model via challenging clustering problems that involve multimedia

data with high-dimensional discrete feature spaces.
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The remaining of this paper is arranged as follows. We briefly overview the related work for

feature selection methods in Section 7.2. Then, we present our proposed formulation in Section 7.3

followed with the developed algorithm for parameters estimation and model selection in Section 7.4.

Extensive experiments are conducted and analyzed in Section 7.5. Finally, Section 7.6 concludes

this work with directions for future work.

7.2 Related Works

In the era of big data today, the rapid growth of data has led to an exponential scale with respect

to dimensionality and sample size. High dimensional data presents several challenges for learning

models in terms of training times, algorithmic complexity, and storage space requirements. Con-

sequently, many dimensionality reduction approaches have been heavily studied in the past years,

including feature selection and feature extraction (see, for instance, [276–278]). Typically, feature

extraction methods, e.g., partial least square (PLS) [279], principal component analysis (PCA) [280]

and latent Dirichlet allocation (LDA) [281], transforms a high dimensional feature space into a dis-

tinct low dimensional space, which implies an information loss that could have been discriminative

[282]. Furthermore, feature extraction approaches suffer from the difficulty of interpretation since

the physical meaning of the original features cannot be retrieved [283, 284]. On the other hand, fea-

ture selection is the process of selecting a representative subset of the collected features to handle

the curse of dimensionality and improve both the efficiency and effectiveness of the learning task

dramatically [15, 285, 286].

The feature selection techniques studied in the literature can be grouped into three categories,

namely, filter [287, 288], wrapper [289, 290], and embedded/hybrid [284, 291, 292]. Filter methods

investigate the feature’s properties using a given dataset in order to evaluate its relevance, where

the problem of model building is handled independently [114, 259, 288]. They are generally sim-

ple, scalable, and timely-efficient. In such methods, a score is assigned to each individual feature

according to certain evaluation criteria such as distance, entropy, dependency, and consistency mea-

sures [114]. Hence, they only select the top-ranked features, and ignore the rest, without considering

the redundancy among features [114, 271]. Furthermore, it is possible that different feature subsets
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seem equally good based on the clustering quality measures; thus, an optimal feature subset may

not be unique [17, 261]. Wrapper methods, on the other hand, perform cross-evaluation and com-

parison among subsets of combined features, where the determination of the most efficient subset

is achieved with regard to a specific learning algorithm [292]. Using the wrapper feature selection,

the classifier is retrained each time a new feature set is generated which has the advantage of the

desirable excessive feature space search to improve the classification accuracy by finding a better

feature subset, yet, wrappers implicate an egregious computational cost especially for data with a

vast number of features [114, 261]. Hybrid methods are filter–wrapper combinations that perform

feature selection as a part of the model construction process, and they are used to benefit from the

time-efficiency of filters and the clustering quality of wrappers [284, 291]. The majority of feature

selection techniques for discrete data that have been discussed in the literature are for supervised

learning and widely adopted in text categorization. Given the sparsity nature of such data, wrapper

methods are extremely costly and inefficient; thus, filter methods are usually preferred. Popular

state-of-the-art filter techniques for text include the TF-IDF measure [294], and filters based on

the information theory measures, including mutual information [295], information gain [296], chi-

square X 2 statistic [297], and GSS coefficient [298], to name a few. Other examples of widely used

filters used in unsupervised feature selection include: feature dependency [299], entropy-based dis-

tance [287], and laplacian score [300]. More details, comparisons and discussions can be found in

[17, 114, 283, 301].

On the other hand, model-based clustering has been widely acknowledged and successfully ap-

plied as a convenient yet flexible formal setting for unsupervised learning. Though several efforts

have been made for developing model-based feature selection approaches to improve the accuracy

of clustering. Most of the previous works are presented with respect to clustering using Gaussian

mixture models (a recent survey of feature selection methods for Gaussian mixture models can be

found at [302]). Moreover, there are some model-based feature selection methods that have been

proposed for non-Gaussian data [303, 304], and few others focused on discrete data (see for in-

stance; [268, 305, 306]). In [305], the authors proposed a Bayesian approach for integrating feature

selection in text document collections clustering based on multinomial mixtures. The authors in
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[306] proposed a feature selection approach using multinomial mixtures learned via maximum like-

lihood estimation without taking the problem of model selection into consideration and applied

only for text. Another interesting related work is the feature weighting using maximum a posteriori

(MAP) and model selection via stochastic complexity proposed in [268] applied to text clustering

and categorization of visual concepts in different image data. This approach combines clustering

and feature weighting and is based on a discrete finite mixture of multinomial distributions. Unlike

most of the feature selection methods that perform hard feature selection, i.e., a feature is either se-

lected or not, the approach in [268] assigns weights to different features to indicate their significance

(feature weighting clustering has been considered in different works to improve the performance,

e.g., [267, 272, 303, 307, 308]). The approach proposed in [267] considers the feature weighting

in an unsupervised setting as a model-selection-type problem with respect to Gaussian mixture-

based clustering. That is, this approach integrates the process of feature saliency estimation into

the model selection and estimation process proposed in [1]. Hence, the obtained method is able to

select the relevant features and determine the optimal number of clusters simultaneously. Adopting

a minimum message length (MML) [41] to select the number of clusters, helps in encouraging the

weights (saliencies) of the irrelevant features to go to zero and, thus, avoid the situation where all

the saliencies take the maximum possible value. The present work extends this approach to the case

of discrete data clustering, taking into account the effective recent extension by Hong et al. [272]

that incorporates defining a new feature saliency with respect to each mixture component, rather

than having the same feature saliencies for the whole model.

7.3 The Proposed Model

In this section, we outline the proposed feature selection approach based on the GDM mixture

model, where we present its intuition and the formal definition. We start by discussing the statistical

properties of the considered density, then we define the concept of feature saliency and give the

complete model.
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7.3.1 An Alternative Representation for Generalized Dirichlet Multinomial (GDM)

The generalized Dirichlet multinomial (GDM) [10] is a composition of the generalized Dirich-

let distribution and the multinomial. GDM is a hierarchical Bayesian framework that generalizes

the Dirichlet Compound Multinomial (DCM), which has shown to outperform the typically used

multinomial (MN) distribution [9, 63]. By considering Generalized Dirichlet (GD) distribution

[240], as a prior to the multinomial, several limitations of the DCM distribution in modeling the co-

variances could be overcome. Precisely, the generalized Dirichlet distribution can release both the

negative-correlation and equal-confidence requirements [243]. Moreover, the independence prop-

erty of GD distribution grants it more flexibility than the Dirichlet, by sampling each entry of the

random vector from independent Beta distributions [241]. Indeed, GDM is an efficient and flexible

generative model that is more appropriate for count data that are usually characterized by burstiness

and overdispersion phenomena [7, 8].

The GD distribution is constructed through breaking the interval [0, 1] into D subintervals of

lengths ρ1, . . . , ρD by choosing D independent beta variates Zl with parameters αl and βl, where

the last length ρD = 1− (ρ1 + · · ·+ ρD−1). The GD density of a vector ρ is given by [100]:

GD(ρ|α, β) =
D∏
l=1

Γ(αl + βl)

Γ(αl)Γ(βl)
ραl−1
l

(
1−

l∑
l=1

ρl

)γl
(7.1)

where γl = βl − αl+1 − βl+1, for l = 1, . . . , D − 1, and γD = βD−1 − 1. As shown in [10],

the generalized Dirichlet is a conjugate prior to the multinomial distribution. Thus, the generalized

Dirichlet multinomial (GDM) is the marginal distribution of a count vector X = (X1, . . . , XD+1)

obtained by integrating over m multinomial trail:

GDM(X|α, β) =

(
m

X

) D∏
l=1

Γ(αl +Xl)

Γ(αl)
× Γ(βl + Yl+1)

Γ(βl)

Γ(αl + βl)

Γ(αl + βl + Yl)
(7.2)

where Yl = Xl + Xl+1 + · · · + XD+1.The generalized Dirichlet multinomial distribution include

the Dirichlet multinomial as a special case. That is, GDM is reduced to DCM by setting βl =

αl+1 + βl+1.
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The occurrence of Gamma function in the density function (Eq.7.2) poses an unappealing fea-

ture in terms of the complication of evaluating the function and derivatives, which can compromise

the performance. Haldane [309] suggested replacing Gamma functions by rising polynomials for an

appreciable gain in simplicity. Moreover, re-parameterizing the density parameters in terms of pro-

portion and overdispersion, suggested in [310], has shown its efficiency in implementing Newton’s

method for maximum likelihood estimation with the beta-binomial distribution [311]. By adopting

this re-parameterization concept in the case of GDM, such that:

θl =
1

αl + βl
, πl =

αl
αl + βl

, l = 1, . . . , D,

and using the fact that Xl + Yl+1 = Yl, Zhou and Lange [232] re-expressed the GDM density as

D-independent beta-binomial:

P(X|θ, π) =

(
m

X

) D∏
l=1

πl . . . [πl + (Xl)θl]× (1− πl) . . . [1− πl + (Yl+1 − 1)θl]

1 . . . [1 + (Yl)θl]
(7.3)

This version of GDM density has been successfully used in estimating the maximum likelihood

[232], where the estimation of the parameters θ = (θ1, . . . , θD) and π = (π1, . . . , πD) is reduced

to the case of D independent beta-binomial estimation problems.

7.3.2 Mixture Model with Feature Saliency

Let X = {X1, . . . , XN} be a dataset of N objects, and each Xi = (Xi1, . . . , XiD+1), is a

D + 1-dimensional count vector. We assume that the features are conditionally independent given

the hidden component label, that is:

P (X|ΘM ) =
N∏
i=1

M∑
j=1

pj

D∏
l=1

P(Xil|θjl, πjl) (7.4)

which is an M -component mixture model, and ΘM = {{πj}, {θj}, (p1, . . . , pM )} is the set of

parameters defining the mixture model, where Xil denotes the lth feature and θjl, and πjl denote

the parameter corresponding to the lth feature in the jth component.

Taking into account the high-dimensionality and sparsity nature of count data, as well as the fact
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that all features are not equally important for clustering, feature selection is a well-known approach

to improve the accuracy of the model [283]. For defining the feature relevancy in our model, we

adopt the concept of feature saliency, which has shown to be appropriate for unsupervised learning

(e.g., [267, 268, 272]). Following the practice in [272], we define a set of binary parameters to

represent the feature relevance Φ = {φ1, . . . , φM} such that φjl = 1 if the lth feature is relevant to

the jth component and φjl = 0 otherwise. Typically, a given feature is assumed to be independent of

the class labels following a common density across classes [305, 312]. Indeed, the common density

reflects our prior knowledge about the distribution of the nonsalient features. Let Ξ = {Λ, µ}

where Λ = (λ1, . . . , λD) , and µ = (µ1, . . . , µD) are the parameters of the generalized Dirichlet

multinomial GDM that is defined as a common density across classes to explain non-salient features,

then P (X ) can be approximated as:

P (X|ΘM ,Φ,Ξ) =
N∏
i=1

M∑
j=1

pj

D∏
l=1

[P(Xil|θjl, πjl)]φjl × [P(Xil|λl, µl)]1−φjl (7.5)

which is reduced to Eq.7.4 when φjl = 1 for each j = 1, . . . ,M and l = 1, . . . , D, i.e., all features

are relevant with respect to all the components. Next, we introduce the component-based feature

saliency as the probability that lth feature is relevant to jth component ρjl = p(φjl = 1). Thus,

Φ is a set of missing variables following a multiple Bernoulli distribution p(Φ) =
∏D
l=1 ρ

φjl
jl (1 −

ρjl)
1−φjl , we can write the mixture density as:

P (X|ΘM ,Φ,Ξ) =

N∏
i=1

M∑
j=1

pj

D∏
l=1

[ρjlP(Xil|θjl, πjl)]φjl × [(1− ρjl)P(Xil|λl, µl)]1−φjl (7.6)

By marginalizing the previous equation over Φ, and considering that φjl is binary, we obtain our

mixture model with feature saliency/weighting, as:

P (X|Θ) =

N∏
i=1

M∑
j=1

pj

D∏
l=1

[
ρjlP(Xil|θjl, πjl) + (1− ρjl)P(Xil|λl, µl)

]
(7.7)

where Θ = {{πjl}, {θjl}, {pj}, {ρjl}, {λl}, {µl}} is the set of all the parameters of the model.
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The generative interpretation of our proposed model is as follows. The model starts with se-

lecting the component label j by sampling from the GDM distribution with mixing parameters

p1, . . . , pM , then each featureXi1, . . . , XiD has a binomial experiment with two possible outcomes:

we use the jth mixture component to generate the lth feature, or we use the common component to

generate it. That is, the probability of feature relevancy depends on the mixture component. More-

over, the proposed model has the advantage of avoiding data overfitting as the added parameters

grants it additional degrees of freedom.

7.4 Model Learning

7.4.1 Parameters Estimation

Define Z = {Z1, . . . , ZN}, Zi = (zi1, . . . , ziM ) as the hidden class labels with zij = 1 if

X belongs to class j and 0 otherwise. Then, letting (X ,Z) be the complete dataset, the data log-

likelihood is given by:

logP (X ,Z|Θ) =

N∑
i=1

M∑
j=1

zij log

[
pj

D∏
l=1

[
ρjlP(Xil|θjl, πjl) + (1− ρjl)P(Xil|λl, µl)

]]
(7.8)

Model fitting is one of the objectives of mixture model-based clustering achieved by inferring Θ

from a given dataset X . Then, the clustering is obtained by assigning each data point to a different

component, i.e., the component with the highest posterior probability of membership. Thus, we

need to find the component index corresponding to the highest value of the posterior probability

value pij , which is the probability that Xi is generated from the jth component of the mixture, as:

pij = P (Xi, zij = 1, zik,k 6=i = 0|p, ρ, θ, π, λ, µ)

= pj

D∏
l=1

[
ρjlP(Xil|θjl, πjl) + (1− ρjl)P(Xil|λl, µl)

]]
(7.9)

The estimation of the model parameters is performed by maximizing Eq.(7.8) given a datasetX .

The widely used as the most effective approach for maximizing the log-likelihood is the expectation-

maximization (EM) algorithm [160], which generates a sequence of models with non-decreasing
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log-likelihood on the data. Indeed, EM is a special case of a more general MM principle initially

introduced by Ortega and Rheinboldt [273]. Several merits can be obtained by considering the MM

principle mainly for attacking optimization problems and computational balance. MM algorithms

have attractive features, including that they are numerically stable, can be coded easily, and its

convergence can be accelerated [232, 274]. The MM principle has been considered in machine

learning and statistical estimation in two different versions: in minimization problems, where the

first M stands for majorize and the second M for minimize [313], and in maximization problems,

where the first M stands for minorize and the second M for maximize [232, 314].

Here, we utilize the MM principle for a maximization problem, precisely to calculate the maxi-

mum likelihood estimates (MLEs) of the proposed model parameters and the posterior modes for the

analysis of incomplete count data. MM algorithm does not depend on the choice of the initial values

and can avoid the complication in calculating the Hessian matrix. Let f(θ) be the objective function

we seek to maximize, which is in our case the complete data log-likelihood given by Eq.(7.8), the

minorization step is performed by construction of the surrogate function g(θ|θn), which is defined

by the following two properties (see Appendix 1):

f(θn) = g(θn|θn), (7.10)

f(θ) ≥ g(θ|θn), θ 6= θn. (7.11)

In the second M, we maximize the surrogate function g(θ|θn) instead of the complete log-

likelihood function f(θ). By treating Z and Φ as hidden variables, the maximization step includes

running the EM algorithm for evaluating the posterior distribution over latent variables and estimate
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the parameters. In E-step, we compute the following quantities [272]:

aijl = P (φjl = 1, Xil|Zi = j) = ρjlP(Xil|θjl, πjl), (7.12)

bijl = P (φjl = 0, Xil|Zi = j) = (1− ρjl)P(Xil|λl, µl), (7.13)

cijl = P (Xil|Zi = j) = aijl + bijl, (7.14)

ωij = P (Zi = j|Xi) =
pj
∏
l cijl∑

j pj
∏
l cijl

, (7.15)

υijl = P (Zi = j, φjl = 1|Xi) =
aijl
cijl

ωij , (7.16)

νijl = P (Zi = j, φjl = 0|Xi) = ωij − υijl (7.17)

Then, in M-step the parameters estimation is performed according to:

p̂j =
1

N

N∑
i=1

ωij , (7.18)

ρ̂jl =

∑N
i=1 υijl∑N
i=1 ωij

(7.19)

Such that we calculate feature saliencies specific to each model component. Equating the partial

derivative of the surrogate function (see Eq.(7.33) in Appendix 1) with respect to each parameter to

0 yields the following updates:

π̂jl =
∑
i

υijl

(∑
k

rlkπjl
πjl + kθjl

)
/

(∑
k

[ rlkπjl
πjl + kθjl

+
sl+1k(1− θjl)
1− πjl + kθjl

])
(7.20)

θ̂jl =
∑
i

υijl

(∑
k

[ rlkkθjl
πjl + kθjl

+
sl+1kkθjl

1− πjl + kθjl

])
/

(∑
k

slk
1 + kθjl

)
(7.21)

µ̂l =
∑
i

(
∑
j

νijl)

(∑
k

rlkµl
µl + kλl

)
/

(∑
k

[ rlkµl
µl + kλl

+
sl+1k(1− λl)
1− µl + kλl

])
(7.22)
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λ̂l =
∑
i

(
∑
j

νijl)

(∑
k

[ rlkkλl
µl + kλl

+
sl+1kkλl

1− µl + kλl

])
/

(∑
k

slk
1 + kλl

)
(7.23)

In these equations, the variable υijl measures the importance of the ith pattern to the jth com-

ponent in case of using the lth feature. similar interpretation can be applied to the common distri-

bution, i.e., same relationship exists between
∑

i υijl and λl, µl. Moreover, the estimation of ρjl is

proportional to
∑

i υijl explained by how likely it is that φjl equals to one with respect to a mixture

component j. To avoid underflow in likelihood computations, all probabilities are represented as

logarithms. Moreover, to avoid overflow without losing precision, we followed the practice in [12]

where class responsibilities ωij are computed as:

ωij =
exp

(
log pj +

∑D
l=1 log(cijl)− ε

)
∑

j exp
(

log pj +
∑D

l=1 log(cijl)− ε
) (7.24)

where ε = maxj{log pj +
∑D

l=1 log(cijl)} − 100.

7.4.2 Model Selection

The minimum message length (MML) criterion for a mixture of distributions is [40, 41]:

Θ̂MML = argmin
Θ

{
− log(P (Θ))− log(P (X|Θ)) +

1

2
log |F (Θ)|+ Np

2

(
1 + log

1

12

)}
(7.25)

where Θ is the set of the model parameters, Np is the dimension of Θ, P (X|Θ) is the complete data

likelihood, and F (Θ) = −E[D2
θ logP (X|Θ)] is the expected Fisher Information Matrix (FIM)

which is the negative expected value of the Hessian of the log-likelihood. In our case, the FIM

is very difficult to obtain analytically. Thus, we adopted the approach [1, 267] by approximating

the information matrix of complete data log-likelihood as a block diagonal matrix of size (M +

D + MDR + DS), where R and S are the number of θjl, πjl and λl, µl parameters, respectively.

Furthermore, given the lack of knowledge about mixture parameters, we adopt the standard non-

informative Jeffreys’ prior [189], which are proportional to the square root of the determinant of

the corresponding information matrices (see [1, 267] for details). The MML criterion for our model
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consists of minimizing, with respect to Θ, the following cost function:

MessLength = − logP (X|Θ) +
M +D

2
logN

+
R

2

D∑
l=1

M∑
j=1

log(Npjρjl) +
S

2

D∑
l=1

M∑
j=1

log(N(1− ρjl)), (7.26)

where the number of parameters R = S = 2. From a parameter estimation point of view, minimiz-

ing the message length in Eq.(7.26) is equivalent to maximizing the complete data log-likelihood.

Using a Dirichlet-type priors on pj’s and ρjl’s, the M-step (7.18) and (7.19) are replaced by:

p̂j =
max(

∑
i ωij

RD
2 , 0)∑

j max(
∑

i ωij −
RD
2 , 0)

, (7.27)

ρ̂jl =
max(

∑
i υijl −

MR
2 , 0)

max(
∑

i υijl −
MR

0 , 0) + max(
∑

i νijl −
S
2 , 0)

(7.28)

These forms for updating the mixing weights and feature saliencies have a pruning behavior such

that they force some component with a very small weight pj to be pruned, and some of the feature

saliency ρjl to go to zero, so the feature is no longer salient, or one so it can be dropped.

7.4.3 The Complete Unsupervised Feature Saliency Algorithm

The proposed unsupervised algorithm for simultaneous feature selection and clustering is sum-

marized in Algorithm 7. First, a lower bound on the number of components will be specified

Mmin and the algorithm will be initialized with a large number of components1 Mmax making

it less dependent of the initial values of the parameters. The mixing weight {pj}(0) will be ini-

tialized using the K-means algorithm to assign each data point initially to one of the 1, . . . ,Mmax

components, then, the mixture parameters {πjl}(0), {θjl}(0), and common distribution parameters

{λl}(0), {µl}(0) initialization will be given randomly while feature saliency {ρjl}(0) has a fixed ini-

tial value of 0.5. As starting with a large value of M may lead to several empty components, there

will be no need to estimate and transmit their parameters. Thus, we adopt the component-wise EM

procedure (CEM) [187], as proposed in [1, 267], instead of the EM in the maximization step. That
1In our experiments, the values for Mmin and Mmax have been set to 2 and 50, respectively.
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is, while the number of non-zero components M+ ≥ Mmin, the E-step of the algorithm will run

where we evaluate the posterior probabilities for each component and estimate the mixture propor-

tion for that component. Then, if the component becomes irrelevant, with p(t+1)
j = 0, it will be

annihilated; otherwise, their parameter updates should be performed, and the MML criterion is re-

evaluated for non-zero components only. The convergence will be achieved when the change in the

message length LEN , or alternatively in the log-likelihood function, becomes insignificant. Each

computation of LEN requires O(ND(M + 1)) time.

Algorithm 7: The unsupervised feature saliency algorithm using GDM.
Output: Optimal number of components M∗, best mixture parameters {πjl}, {θjl}, best

common density parameters {λl}, {µl}, and feature saliencies {ρjl}.
Input: Dataset X = {X1, . . . , XN}, Mmin, Mmax

1 Initialize: Θ(0) = {{πjl}, {θjl}, {pj}, {ρjl}, {λl}, {µl}}
for j = 1, . . . ,Mmax, l = 1, . . . , D. t← 0, M+ = Mmax, LENmin = +∞. ;

2 while M+ ≥Mmin do
3 repeat till finding the local minimum;
4 for j = 1→M+ do
5 Perform E-step according to Eqs.(7.12) to (7.17) Update the mixing proportion and

feature salincies according to Eqs.(7.27) and (7.28) ;
6 Update the common distribution parameters according to Eqs.(7.22) and (7.23);

7 if p(t+1)
j > 0 then

8 Update the mixture densities parameters according to Eqs.(7.20) and (7.21);
9 else

10 M+ = M+ − 1;
11 end
12 end
13 Compute optimal length for the non-zero components LEN (t+1) according to

Eq.(7.26);
14 if LEN (t+1) < LENmin then
15 Record the current model parameters ;
16 set LENmin = LEN (t+1)

17 end
18 t← t+ 1

19 end
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7.5 Experimental Results

The objective of our experiments is to validate the efficiency of the proposed framework in

clustering high-dimensional count data. We have compared the performance of the proposed GDM

mixture model based on MM updates with and without feature selection to the previously proposed

mixture of GDM based on the maximum likelihood estimation approach [10]. Moreover, we com-

pared with the performance of two widely considered generative models for count data, namely,

the multinomial mixture model (MM) [315], and the mixture of Dirichlet Compound Multinomial

(DCM) [9]. All our experiments have been conducted using optimized R2017a MATLAB codes

on an Intel(R) Core(TM) i7-6700 Processor PC with the Windows 7 Enterprise Service Pack 1

operating system with a 16 GB main memory. In the following sections and through a set of real-

world applications that involve high-dimensional textual and visual data, we will demonstrate the

importance of feature selection in improving clustering results.

7.5.1 Hate Speech and Offensive Language Detection on Twitter

Social networks nowadays are suffering an increase in the offensive, abusive, or hateful language

that exposes sexism, racism, and other types of aggressive and cyberbullying behavior. Thus, there

has been great interest, by both academy and industry, in proposing systems to detect and block

abusive behavior automatically. Several challenges involve abusive content detecting, including the

ambiguity in defining what qualifies as an abuse, which makes extracting ground truth a challenging

task. In addition, the accounts carrying such content are usually controlled by humans using a

massive amount of vocabulary, with a misspelling, abbreviations, and extra letters or punctuation

that can help them to express negative emotions or sarcasm. Another challenge that this behavior is

relatively uncommon where only a few examples can be found from a random collection resulting

in an issue of imbalanced classes. To evaluate our proposed framework in detecting hate speech and

offensive language, we used a recent dataset by Davidson et al. [316] that contains 25k collected

tweets in three categories distinguishing between hate speech (language that is used to express

hatred towards a targeted group based on characteristics like race, ethnicity, religion, gender, and

sexual orientation language or to insult the members of the group), offensive but not hate speech,
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Table 7.1: Clustering results (%) for Twitter dataset over 20 random runs.

Model Precision Recall F-measure BEmicro BEmacro

MM 37.57 36.73 37.64 37.57 58.79
DCM 63.32 59.66 61.44 63.32 78.87
GDM 59.99 74.69 66.54 59.99 83.79
GDM-MM 66.09 77.50 71.34 66.09 82.41
GDM-FS 69.47 83.79 75.96 69.47 84.39

or neither offensive nor hate speech. Each tweet was assigned to one of the classes based on the

majority decision by three or more people. The majority of the tweets in the considered dataset

are categorized as an offensive language (76.8%), where only (5.7%) contains hate speech, and the

reminder (16.6%) considered to be normal (neither offensive nor hate speech) with a total of 67, 094

unique words.

As our data is unbalanced and multi-labeled, it is crucial to take both precision and recall into

consideration to ensure a fair measurement of performance. Thus, we combine both measures by

computing the F score, and break-even point where precision and recall are equal averaged at the

micro or macro level, as [9]:

BEmicro =
1

N

M∑
j=1

Nj
TPj

TPj + FPj
(7.29)

BEmacro =
1

M

M∑
j=1

TPj
TPj + FPj

(7.30)

where M is the number of classes, N is the total number of documents, Nj is the number of

documents in class j, TPj and FPj are the number of true and false positives per class, respectively.

Table 7.1 presents the performance of each of the tested models in clustering the tweets into one

of the three labels i.e., hate speech, offensive language, or neither. First, based on the break-point at

the macro level, we can notice that the mixture of GDM has achieved an overall better performance

compared to the multinomial and DCM mixtures. However, as shown in the first confusion matrix

in Fig. 7.1, around 30% of hate speech is misclassified: the precision and recall scores for the

hate class are 0.31 and 0.69, respectively. Tweets with the highest predicted probabilities of being
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Figure 7.1: Confusion matrices for detecting hate speech and offensive language using different
approaches.

hate speech tend to contain multiple racial or homophobic slurs. Furthermore, tweets are classified

as hate when people use hate speech to respond to other hate speakers, for instance, to criticize

someone else racism. The tweets that do not contain any hate speech or offensive language were

also misclassified, where around 28% have been predicted as hate tweets. Compared to Newton’s

method, the MM solution has shown to improve the performance at class level (for two out of the

three classes) where the micro averaged BE has been improved from 59.99% to 66.09%. This can be

explained by the numerical stability of the MM algorithm and by its scalability to high-dimensional

data. We can see from the second confusion matrix in Fig. 7.1 that tweets that contain hate speech

(sexism, racism, and homophobia) are easier to be detected, resulting in improving the hate class

recall from 0.69 to 0.78. Furthermore, from Table 7.1 we observe that the proposed GDM mixture

with feature saliency is significantly superior to the same model with both EM and MM algorithms,

in terms of the clustering accuracy. Given that our proposed framework considers features relevance

to each component of the mixture model, the keywords that characterize each of the hate speech

or abusive/offensive text will get the proper relevance with respect to each component and thus

distinguish between individual clusters. As a result, we can see from the last confusion matrix in

Fig. 7.1 the improved separation of overlapping mixtures, i.e., lower number of tweets in each class

were misclassified.
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Figure 7.2: Sample images from the considered classes in PublicFig+LFW dataset.

7.5.2 Face Identification

Face recognition and verification problems have attracted the scholars’ attention for more than

two decades due to their importance in many real-world applications, including video surveillance,

criminal investigation, and human behavior analysis. Thus, automated face tagging and recogni-

tion forms have been integrated into several consumer platforms such as Google Picasa, Microsoft

Photo Gallery, and social network sites such as Facebook. Indeed, the amount of photo and video

content has grown significantly, making their organization and searching for photos a considerably

challenging task. Moreover, face recognition is being increasingly integrated into more specialized

devices such as smartphones, by Apple and Google, in advanced features such as Android face un-

locks authentification, and Apple iPhoto face detectors. One of the large-scale datasets that have

been recently created for face verification is the PubFig+LFW dataset [317] that combine the Pub-

lic Figures (PubFig) [318] and the Labeled Faces in the Wild (LFW) [319] datasets of real-world

images of public figures (celebrities and politicians) acquired from the web. This dataset has 83

individuals where all the faces from each individual were pre-divided into two-thirds training faces

and one third testing faces. We considered a subset of the PubFig+LFW dataset that consists of the

faces of 10 celebrities. Sample images from the considered subset are illustrated in Fig.7.2.

The face identification results of our proposed framework, as well as a comparison with the

other tested models, are presented in Table 7.2. For most of the classes, the proposed GDM mix-

ture with feature saliency performs slightly better than both GDM with Newton’s method and with

MM solution, where they themselves outperform the multinomial and DCM mixtures. From the
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Table 7.2: Average accuracy (%) per-class for face identification over 20 random runs.

Celebrity MM DCM GDM GDM-MM GDM-FS
Angelina Jolie 67.79 46.15 50.77 50.77 83.08
Barack Obama 72.62 57.76 60.71 65.48 78.57
Brad Pitt 63.04 86.96 76.09 76.09 76.09
Cristiano Ronaldo 70.91 85.45 94.55 94.55 85.45
George Clooney 57.75 64.79 83.10 84.51 71.83
Jennifer Aniston 85.75 80.88 83.82 86.76 92.65
Jennifer Lopez 53.29 53.85 69.23 69.23 71.83
Julia Roberts 57.14 66.67 69.05 69.05 69.05
Shahrukh Khan 72.92 85.42 85.42 85.42 83.33
Shakira 61.67 86.67 65.00 71.67 68.33
Overall Accuracy 66.99 71.47 73.40 75.16 78.37

table, we can notice that overall clustering accuracy has been improved, using the MM solution

with and without considering the feature saliency to 78% and 75%, respectively. This improvement

is statistically significant, as shown by a student t-test (p-values are 0.12 and 0.09 for the different

models). Another improvement gain is the simplicity of MM updates that overcomes its slower

convergence where it often requires several hundred iterations despite saving overall computational

work comparing to the other algorithm (mainly in computing the gamma/digamma/trigamma func-

tions). Moreover, by running our algorithm 20 times, the average number of clusters found was

equal to 10.36± 0.21. This suggests that feature selection may assist the determination of the opti-

mal number of clusters considering that feature selection and clustering are actually strongly related

and can be reinforced by each other.

7.5.3 Race Recognition

Automatic estimation of demographic information including age, gender, and race of a person

from his face image could enhance the performance of face recognition, and it has many potential

significant applications in different fields ranging from forensics to social media. Indeed, several

significant pieces of evidence support the fact that information from various visual cues is utilized

to recognize faces. Furthermore, recognizing race has significant implications for the field of public

health, where information on race and/or ethnicity has been essential in understanding the health
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issues affecting an individual population. We used the UTKFace dataset [320] that consists of

20k+ single face images cropped to 227 × 227 around the face center. This dataset is publicly

available with a good variety of ages, gender, and ethnicity. The race groups are White (53.9%),

Black (4.1%), Asian (15.8%), Indian (15.1%), and Others like Hispanic, Latino, and Middle Eastern

(11.1%). Some sample face images from five race groups across the different genders and age labels

are shown in Fig. 7.3.

Figure 7.3: Sample images from UTK faces dataset.

As can be seen in Table 7.3, our approach using GDM with feature saliency was able to achieve

a high clustering accuracy of 89%, above the 84%, and 85% achieved by GDM with Newton’s

approach and MM solution without FS, respectively. The improvement obtained using the proposed

framework with feature saliency over the other two models is statistically significant according to

the student t-test (i.e., p-values are 0.31 and 0.11 for the difference between the proposed model and

Newton’s method and MM without FS, respectively). In addition, the interclass confusion matrix

obtained using our proposed framework is shown in Fig. 7.4, where one may notice that the most

of the confusion takes place between Asian and White as well as between Indian and White. This

is due to the fact that this dataset is clearly intensely imbalanced, i.e., more than half of the images

are in the White group making, some features of the other groups hard to be defined and probably

confused with the ones from the White group.

Furthermore, we conducted another experiment where we supposed that both the class label

information and the number of clusters were unavailable. Based on our experiments, the average

number of clusters found over 20 runs using different random initial values is 5.11 ± 0.06. Both

the accuracy and selected number of clusters confirmed the efficiency of the proposed model in race
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Table 7.3: Average clustering results (%) for race recognition over 20 random runs.

Model Accuracy (%)
MM 73.96 ± 0.04
DCM 77.01 ± 0.12
GDM 84.50 ± 0.07
GDM-MM 85.80 ± 0.35
GDM-FS 89.01 ± 0.22

Figure 7.4: Confusion matrix obtained by GDM with FS for race recognition in the UTK face
dataset.

recognition based on facial images. It is noteworthy that despite the fact that by initializing a large

number of components the algorithm is less sensitive to the local maxima, the speed of convergence

will likely be similar for all starting values far from the maximum as MM algorithms usually tend

to get close to the answer quickly and then slow down.

7.5.4 Age Estimation

Automatic age estimation is a challenging problem given the fact that persons belonging to

the same age group can be extremely different in their facial appearances, which are affected by

several intrinsic and extrinsic factors. It has recently received considerably increasing attention due

to its significance in many applications such as access control, for instance, where an automatic age

estimation system can prevent minors from purchasing alcohol or cigarette from vending machines.

181



Rather than estimating the precise age, we followed the practice of classifying people into specified

age groups. We implement the age estimation using our proposed model in face datasets. The

first is MORPH [321] that contain around 55k unique images of more than 13, 000 adults with

ages range from 16 to 77. The age groups in this dataset include the young people (age<30), the

middle-aged people (30<=age<50) and the aged (age>=50) people account for 41%, 53%, and

6% of the dataset respectively. Following the strategy in [322, 323] we selected a subset of the

large-scale MORPH dataset with around 20k images, which cover all the age groups. Although

MORPH is the largest and most commonly used dataset for age estimation, it consists of adult faces

only. Thus, we adopted another dataset with a longer age span, namely, the UTKFace dataset [320].

We have created five relatively balanced age groups based on the age labels annotated in this dataset

as: infants (age<=2), children (2<age<=12), youth (12>age<=25), adults (25<age<=50), and

seniors (age>50).

Table 7.4: Average clustering results (%) for age estimation over 20 random runs.

Model MORPH UTK
MM 70.52 66.56
DCM 71.17 69.53
GDM 74.45 72.30
GDM-MM 76.39 75.31
GDM-FS 77.51 78.24

Table 7.4 presents the average accuracy for age estimation in the two tested datasets using the

different models. All experiments were performed 20 times in the different models to obtain the

mean estimation accuracy for the age group as a performance measure. As shown in the table, our

approach obtains the best results among the tested methods in both datasets. For instance, GDM

with FS obtains the highest accuracy in the UTK face dataset, where the accuracy achieved is about

2.93%, 5.94%, 8.71%, and 11.68% higher than those of GDM-MM, GDM-EM, DCM, and MM,

respectively. This improvement is statistically significant, according to the student t-test (p-value is

between 0.18 and 0.23 for the different models).

Furthermore, in a large scale dataset, such as MORPH, although the improvement obtained by
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MM solution over the EM is not statistically significant, the EM algorithm involves solving a non-

trivial maximization problem in the M step. Thus, compromising the relatively faster convergence

with the simplicity of MM updates that converge slowly is crucial. In addition, the performance of

our mixture selection model was evaluated on the two challenging datasets, and the average num-

bers of clusters found over the 20 runs were 3.40 ± 0.03 and 4.98 ± 0.28 for MORPH and UTK

face datasets, respectively. Both clustering accuracy and the selected optimal number of compo-

nents confirmed that our proposed framework is capable of providing promising results in modeling

high-dimensional count data.

7.6 Conclusion

In this paper, we have presented a novel statistical framework that considers various critical

issues in mixture modeling, including high-dimensional features space, choice of the probability

density functions, estimation of the mixture parameters, and automatic determination of the number

of mixture components. The proposed framework has several advantages ranging from avoiding

multiple runs for each candidate model by initializing a large number of components and annihilat-

ing the irrelevant ones, to the simplicity of MM algorithm that avoids the burdensome computation

of inversion of large matrices i.e., the Hessian or Fisher information matrix. Furthermore, our model

differs from most of the existing works on discrete data feature selection, which are mainly carried

out in a supervised learning setting, or considering the generic multinomial model. The developed

framework in this paper is an unsupervised component-based feature selection approach, based on

a mixture of GDM densities, that determines the optimal number of components and the class as-

signment simultaneously. Our experiments have shown that assigning a weight to each feature that

shows its relevance to each class achieves better performance than assuming that all features are

equally important. The efficiency of the proposed framework was demonstrated on textual, and

visual datasets represented as high-dimensional count data.
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Appendix 1: Surrogate Function Construction

The complete data log-likelihood of the proposed model (Eq. 7.7) is given by:

L =
N∑
i=1

M∑
j=1

pj

[
D∑
l=1

log(ρjl) + log(πjl . . . [πjl + (Xil − 1)θjl])

+ log
(

(1− πjl) . . . [1− πjl + (Yil+1 − 1)θjl]
)

− log(1 . . . [1 + (Yil − 1)θjl]) + log(1− ρjl)

+ log(µl . . . [µl + (Xil − 1)λl])

+ log
(

(1− µl) . . . [1− µl + (Yil+1 − 1)λl]
)

− log(1 . . . [1 + (Yil − 1)λl])

]
(7.31)

To construct an MM algorithm, we need to minorize terms such as log(πjl + k), log(µjl + k).

Noticing that the term log(πjl + k) occurs in the log-likelihood if and only if Xil ≥ k + 1 , and the

term log(µjl + k) occurs in the log-likelihood if and only if Yil ≥ k + 1, we define the following

associated counts for l = 1, . . . , D :

rlk =
t∑
i=1

1{Xil≥k+1}, slk =
t∑
i=1

1{Yil≥k+1}

where the index k ranges from 0 to maximi − 1. Recalling that υijl = P (Zi = j, φjl = 1|Xi) and

νijl = P (Zi = j, φjl = 0|Xi), thus, Eq.(7.31) can be re-written as:

L(Θ) =
∑
i

υijl

[
−
∑
l

∑
k

slk log(1 + kθjl) +
∑
l

∑
k

rlk log(πjl + kθjl)

+
∑
l

∑
k

slk log
(

(1− πjl) + kθjl

)]

+
∑
i

(
∑
j

νijl)

[
−
∑
l

∑
k

slk log(1 + kλl) +
∑
l

∑
k

rlk log(µl + kλl)

+
∑
l

∑
k

slk log
(

(1− µl) + kλl

)]
(7.32)

184



Then, we apply the basic minorization functions found by Zhou and Lange (see equations 2.3 and

2.4 in [232]) to the previous equation which yields the surrogate function as:

G(Θ) =
∑
i

υijl

[
−
∑
l

∑
k

slk
k

1 + kθnjl
θjl

+
∑
l

∑
k

rlk

{
πnjl

πnjl + kθnjl
log πjl +

kθnjl
πnjl + kθnjl

log θjl

}

+
∑
l

∑
k

slk

{
1− πnjl

(1− πnjl) + kθnjl
log(1− πjl) +

kθnjl
(1− πnjl) + kθnjl

log kθnjl

}]

+
∑
i

(
∑
j

νijl)

[
−
∑
l

∑
k

slk
k

1 + kλnl
λl

+
∑
l

∑
k

rlk

{
µnl

µnl + kλnl
log µl +

kλnl
µnl + kλnl

log λl

}

+
∑
l

∑
k

slk

{
1− µnl

(1− µnl ) + kλnl
log(1− µl) +

kλnl
(1− µnl ) + kλnl

log kλnl

}]
(7.33)
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Chapter 8
Conclusion

In this thesis, we have developed several approaches for high-dimensional and sparse count

data clustering. Our approaches consider various mixture models of based on hierarchical Bayesian

frameworks, such as the Dirichlet Compound Multinomial (DCM), Multinomial Scaled Dirichlet

(MSD), Multinomial Beta-Liouville (MBL), and Generalized Dirichlet Multinomial (GDM). The

proposed work is motivated by the efficiency of hierarchical Bayesian frameworks in modeling

both the burstiness and overdispersion phenomena which we observe in many practical situations

where the generated data are in the form of vectors of frequencies. Nevertheless, these models do

not belong to the exponential family, and they are not efficient in high-dimensional spaces where

many parameters need to be estimated.

In Chapter 2, we have proposed an MML-based approach to select the model that best represents

the data based on a finite mixture of the exponential approximation to DCM (EDCM). The obtained

results, when applied on real data, show its merits as an unsupervised learning model for clustering

count data. Through a set of experiments, we have shown that the mixture of EDCM distributions

with the proposed MML approach offers strong modeling capabilities for applications that involve

high-dimensional and sparse count data.

A novel model called Multinomial Scaled Dirichlet (MSD), which is a composition of the multi-

nomial and the scaled Dirichlet distributions, has been introduced in Chapter 3 for count data mod-

eling. The approach proposed is motivated by the ability of the hierarchical Bayesian frameworks

to model text data and can be used in many practical situations where the burstiness phenomenon
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appears. Furthermore, we have introduced a new family of distributions (EMSD) based on the

exponential family approximation of the proposed MSD. The deterministic annealing expectation-

maximization (DAEM) algorithm and MML-based criterion have been proposed to estimate the pa-

rameters of the EMSD mixture model, and model selection, respectively. The effectiveness of both

new mixtures was shown through extensive experiments on challenging clustering problems. The

results revealed that MSD mostly outperforms the mixtures of Multinomial and DCM, and achieve

comparable performance to the recently introduced MGD and MBL. On the other hand, EMSD

successfully and correctly captures the burstiness phenomenon while being many times faster and

computationally efficient compared to the corresponding MSD. Our unsupervised algorithm pro-

vides promising results in selecting the optimal number of clusters by optimizing the message length

of the data efficiently. Then, Chapter 4 was devoted to developing hybrid generative discriminative

approaches by combining appropriately the advantages of both the generative and discriminative

models for modeling count data. In particular, we derived probabilistic kernels from our recently

proposed finite mixture of Multinomial Scaled Dirichlet distributions. These approaches are moti-

vated by the great number of applications that involve such types of data as well as the advantages

of both SVMs and finite mixture models. The developed hybrid models are introduced as effective

SVM kernels able to incorporate prior knowledge about the nature of data involved in the problem at

hand and, therefore, permits good data discrimination. The achieved results suggest that an accurate

classification of count data can be achieved by efficient learning of kernels from the available data.

Moreover, given that processing high-dimensional data requires significantly increasing time

and space, we have introduced new exponential-family approximations to the Multinomial Beta-

Liouville (MBL) and the Generalized Dirichlet Multinomial (GDM) in Chapter 5 and Chapter 6,

respectively. The goal is to provide more flexible frameworks than the previously proposed EDCM

that has shown to be efficient in high-dimensional spaces. We investigated different approaches for

model learning: in Chapter 5, we proposed a robust learning algorithm for addressing the problems

of EMBL parameters estimation and model selection simultaneously, wherein Chapter 6 Deter-

ministic Annealing Expectation-Maximization (DAEM) algorithm and Minimum Message Length

(MML) criterion have been used, respectively, for learning the parameters of the EGDM mixture

and determining the number of optimal clusters. Experiments with different real-world applications
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using standard and widely used datasets have shown that the proposed approximations are more

efficient in terms of performance and computational complexity than their corresponding models,

especially when the data are high-dimensional and sparse.

Furthermore, we considered another approach to handle high-dimensional data, namely, feature

selection which is a traditional and effective approach. In Chapter 7 of this thesis, we have de-

veloped a novel unsupervised component-based feature selection approach, based on a mixture of

GDM densities. Our experiments have shown that assigning a weight to each feature that shows its

relevance to each class achieves better performance than assuming that all features are equally im-

portant. The efficiency of the proposed framework was demonstrated on textual, and visual datasets

represented as high-dimensional frequency vectors.

There are several potential future directions that we are going to pursue. One of the most promis-

ing directions for unsupervised learning may lie in deep learning methods. Indeed, deep learning

is one of the most popular methods researched now, which has shown to achieve significant results

in feature representation and classification/ categorization [324–326]. Thus, a potential future work

can be devoted to the development of a deep structured generative model based on the proposed

mixture models as a powerful generalization to multiple layers as it has been done previously for

the Gaussian mixture model [327, 328]. Other directions are towards improving the learning process

of the proposed approaches. For example, a promising future work can be devoted to the develop-

ment of an empirical Bayes approach to learn the model hyperparameters from the data itself or to

consider another principle by deploying variational inference, especially within the formalism of

the exponential family [329]. Another potential future work can be devoted to online learning via

stochastic variational inference [330], and its application to classic but challenging problems such

as novelty detection [37]. Moreover, estimating the feature importance in vectors that contain both

continuous and discrete-valued variables can also be investigated. Finally, we can extend the pro-

posed feature selection approach to handle streaming data as, in many applications, features may

have time-varying degrees of relevance.
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