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ABSTRACT

Performance Evaluation of Ultra-Dense Networks with Applications in Internet-

of-Things

Mahmoud Kamel, Ph.D.

Concordia University, 2019

The new wireless era in the next decade and beyond would be very different from our

experience nowadays. The fast pace of introducing new technologies, services, and appli-

cations requires the researchers and practitioners in the field be ready by making paradigm

shifts. The stringent requirements on 5G networks, in terms of throughput, latency, and

connectivity, challenge traditional incremental improvement in the network performance.

This urges the development of unconventional solutions such as network densification,

massive multiple-input multiple-output (massive MIMO), cloud-based radio access net-

work (C-RAN), millimeter Waves (mmWaves), non-orthogonal multiple access (NOMA),

full-duplex communication, wireless network virtualization, and proactive content-caching

to name a few.

Ultra-Dense Network (UDN) is one of the preeminent technologies in the racetrack

towards fulfilling the requirements of next generation mobile networks. Dense networks

are featured by the deployment of abundant of small cells in hotspots where immense

traffic is generated. In this context, the density of small cells surpasses the active users

density providing a new wireless environment that has never been experienced in mobile

communication networks. The high density of small cells brings the serving cells much

closer to the end users providing a two-fold gain where better link quality is achieved and

more spatial reuse is accomplished.

In this thesis, we identified the distinguishing features of dense networks which include:

close proximity of many cells to a given user, potential inactivity of most base stations

(BSs)due to lack of users, drastic inter-cell interference in hot-spots, capacity limitation

by virtue of the backhaul bottleneck, and fundamentally different propagation environ-

ments. With these features in mind, we recognized several problems associated with the

performance evaluation of UDN which require a treatment different from traditional cel-

lular networks. Using rigorous advanced mathematical techniques along with extensive
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Monte Carlo simulations, we modelled and analytically studied the problems in question.

Consequently, we developed several mathematical frameworks providing closed-form and

easy-computable mathematical instruments which network designers and operators can

use to tune the networks in order to achieve the optimal performance. Moreover, the in-

vestigations performed in this thesis furnish a solid ground for addressing more problems

to better understand and exploit the UDN technology for higher performance grades.

In Chapter 3, we propose the multiple association in dense network environment where

the BSs are equipped with idle mode capabilities. This provides the user with a “data-

shower,” where the user’s traffic is split into multiple paths, which helps overcoming the

capacity limitations imposed by the backhaul links. We evaluate the performance of the

proposed association scheme considering general fading channel distributions. To this

end, we develop a tractable framework for the computation of the average downlink rate.

In Chapter 4, we study the downlink performance of UDNs considering Stretched

Exponential Path-Loss (SEPL) to capture the short distances of the communication

links. Considering the idle mode probability of small cells, we draw conclusions which

better reflect the performance of network densification considering SEPL model. Our

findings reveal that the idle mode capabilities of the BSs provide a very useful interference

mitigation technique. Another interesting insight is that the system interference in idle-

mode capable UDNs is upper-bounded by the interference generated from the active BSs,

and in turn, this is upper-bounded by the number of active users where more active users

is translated to more interference in the system. This means that the interference becomes

independent of the density of the small cells as this density increases.

In Chapter 5, we provide the derivation of the average secrecy rate in UDNs considering

their distinct traits, namely, idle mode BSs and LOS transmission. To this end, we exploit

the standard moment generating function (MGF)-based approach to derive relatively

simple and easily computable expressions for the average secrecy rate considering the

idle mode probability and Rician fading channel. The result of this investigation avoids

the system level simulations where the performance evaluation complexity can be greatly

reduced with the aid of the derived analytical expressions.

In Chapter 6, we model the uplink coverage of mMTC deployment scenario considering

a UDN environment. The presented analysis reveals the significant and unexpected impact

of the high density of small cells in UDNs on the maximum transmit power of the MTC
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nodes. This finding relaxes the requirements on the maximum transmit power which in

turn allows for less complexity, brings more cost savings, and yields much longer battery

life. This investigation provides accurate, simple, and insightful expressions which shows

the impact of every single system parameter on the network performance allowing for

guided tunability of the network. Moreover, The results signify the asymptotic limits of

the impact of all system parameters on the network performance. This allows for the

efficient operation of the network by designing the system parameters which maximizes

the network performance.

In Chapter 7, we address the impact of the coexistence of MTC and HTC communica-

tions on the network performance in UDNs. In this investigation, we study the downlink

network performance in terms of the coverage probability and the cell load where we

propose two association schemes for the MTC devices, namely, Connect-to-Closest (C2C)

and Connect-to-Active (C2A). The network performance is then analyzed and compared

in both association schemes.

In Chapter 8, we model the uplink coverage of HTC users and MTC devices paired

together in NOMA-based radio access. Closed-form and easy-computable analytical re-

sults are derived for the considered performance metrics, namely the uplink coverage and

the uplink network throughput. The analytical results, which are validated by extensive

Monte Carlo simulations, reveal that increasing the density of small cells and the available

bandwidth significantly improves the network performance. On the other side, the power

control parameters has to be tuned carefully to approach the optimal performance of both

the uplink coverage and the uplink network throughput.
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1. Introduction

1.1 Ultra-Dense Networks (UDNs)

The ever-evolving requirements on mobile communication networks are principally fueled

by three main drivers: deeper coverage, higher capacity, and massive connectivity. The

wireless standards in the next decade (beyond 2020) are facing extremely diverse demands

where both enormous traffic and gigantic number of connections are required [3]. Ap-

plications like Virtual Reality (VR) [4], Augmented Reality (AR) [5], Internet-of-Things

(IoT) [6], social networks, and cloud offices generate mammoth traffic and request massive

number of connections that has been never witnessed or imagined. In this way, UDN is

a key player and we would claim it as the main candidate technology to satisfy the var-

ious requirements. Moving from network-centric mode of operation to user-centric mode

largely supports this claim. In user-centric paradigm, a single user would generate traffic

that needs the entire spectrum of one BS [7]. Moreover, a single household may contain

50+ IoT devices asking for connections [8], let alone the devices in the building and in

the street. Deploying a huge number of small cells in UDN is then in a perfect alignment

with this networking paradigm shift. With a number of BSs that exceeds the number

of active users, each user can connect to one or more BSs harvesting all the spectrum

to his own need. At the same time, this large number of cells provide a uniform and

deep coverage to reach the IoT devices in harsh deployment scenarios (like basements,

underground facilities, and concrete structures). Besides, the surplus availability of small

cells affords massive scalable connectivity for the potential IoT applications.

The concept of Ultra-Dense Network (UDN) represents a new paradigm shift in future

networks. The basic idea is to get the access nodes as close as possible to the end

users. The realization of this is simply done by the dense deployment of small cells in

the hotspots where immense traffic is generated. These small cells are access nodes with
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small transmission power, and hence, a small coverage. These cells are deployed by the

customers in their premises, or by the operators in the streets (e.g., on lampposts, trees,

and walls) and hotspots (e.g., airports, metro/train stations, and markets). Thus, UDN

deployment scenarios introduce a different coverage environment where any given user

would be in close proximity to many cells.

The densification of wireless networks is motivated by the traffic trends measured in

the current decade. For instance, Cisco, in the Cisco Virtual Networking Index, predicts

a 10 fold increase in the mobile data worldwide for the period 2014− 2019 [9]. With the

scarce spectrum resources, one vital and long-term solution is to increase the reuse per

unit area of the existing spectrum. This spectrum reuse is a two fold gain; the spectrum

is increasingly reused, which significantly improves the network capacity, and the link to

the end user becomes shorter which improves the link quality. Obviously, the network

densification cannot continue endlessly. There would be a fundamental limit for network

densification which requires extensive research for realistic system models to capture the

reality of dense networks.

1.2 Internet of Things (IoT)

IoT refers to a network of devices with Internet connectivity to communicate directly with-

out human-intervention in order to provide smart services to users [6]. The connectivity

of such devices eases the collaborative decision making through processing of real-time

data and the improved access to information. The achievements in smart sensors, wire-

less communication technologies [10], context-aware computing, cloud technologies, and

Internet protocols can be considered as the building blocks of IoT architecture [11]. Also,

the research and standardization efforts in machine-to-machine (M2M) communication

plays a significant role in the development of the state-of-the-art of IoT [12]. Applications

in health [13], smart security, and smart cities found their way to the market and realizes

the potential benefits of this technology [14]. In addition, many other applications of IoT

can be enumerated such as agriculture, industry, natural resources (water, forests, etc.)

monitoring, transport system design, and military applications [15].

Many challenges are facing the fruition of IoT technology, namely, addressing and

identification of the connected devices, the standardization of the technology for optimal
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interoperability, the privacy of the information, the security of the sensors or actuators, the

provisioning of wireless backhaul and storage resources for billions of connected devices,

and the energy efficient deployment of edge-devices and communication nodes [15].

Network densification is considered as an enabler for the successful diffusion of IoT

services and application in the society. The availability of nearby communication links

alleviates the strict requirements on the wireless network infrastructure. The deployment

of indoor small cells (picocells and femtocells) stems as an excellent solution for providing

connectivity to home smart devices and offloads a great portion of the traffic from the

macro-cellular network.

1.3 Motivations

Many aspects of Ultra-Dense Networks (UDNs) require comprehensive investigations in

order to accurately evaluate the performance of such networks. The wireless environment

of UDNs has never been experienced before, consequently, this urges identifying what

features make UDN different. In addiction, these features have to be considered in the

modelling of UDN in order to develop tractable results. Thus, the network performance

can be characterized in terms of relevant key performance indicators (KPIs). The funda-

mental distinguishing features of UDN are: i) the close proximity of many cells to a given

user, ii) the high probability for a cell being inactive due to the lack of connected users,

iii) the fundamentally different propagation environment, and iv) the drastic inter-cell

interference in hot-spots.

Considering the above mentioned distinguishing features, we recognized several prob-

lems associated with the performance evaluation of UDN. Accordingly, we defined our

problem as to model dense networks considering the distinct traits of such networks in

order to investigate some of the previously mentioned challenges and to study their im-

pact on the performance of UDNs. In addition, we exploited the UDN features to propose

innovative solutions concerning the user association, physical layer security, and uplink

coverage of MTC devices in UDN environment. Moreover, we addressed the impact of

the coexistence of HTC users and MTC devices on the downlink coverage and downlink

load in UDN environments. Furthermore, we investigated the impact of deploying UDNs

on the coexistence of HTC and MTC considering NOMA in the uplink.
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1.4 Thesis Contributions

Considering the preceding discussion, the main challenges in evaluating the performance

of UDN and exploiting their distinct traits in supporting the applications of Internet of

Things (IoT) are i) capturing of the fundamental differences associated with the deploy-

ment of UDNs in the modeling of such networks, ii) providing tractable mathematical

frameworks to compute the main performance metrics of UDNs, and iii) developing of

association schemes to satisfy the diverse requirements of both Human-Type Communi-

cation (HTC) users and Machine-Type Communication (MTC) devices in a coexisting

scenario. Tackling these challenges provides the ultimate goal of this thesis. The contri-

butions of this thesis are summarized in the following items:

Multiple Association in UDNs. In Chapter 3, we consider the modeling of multi-

ple association in dense network environment where the BSs are equipped with idle mode

capabilities. We evaluate the performance of the proposed association scheme considering

general fading channel distributions. To this end, the MGF-based approach is exploited

to develop a tractable framework for the computation of the average downlink rate. To

highlight the contributions of this investigation, a simple and accurate framework is de-

veloped to compute the average downlink rate of the links connecting the typical user to

the tagged BSs in a multiple association context. The framework considers general mul-

ticell size M , and general fading channel distributions in both the signal and interference

links. Moreover, we develop a recursive form to provide a simpler way for the computation

of the average downlink considering Rayleigh fading channels. The recursion is easy to

manipulate and avoids the tedious work required for the computation of folded integrals

involved in averaging out the downlink rate over the distance distributions and channel

fading distributions.

Downlink Coverage and Capacity Analysis considering SEPL in UDNs. In

Chapter 4, we study the downlink performance of UDNs considering a more accurate path

loss model, i.e., SEPL model. Different from existing research, we further consider the

idle mode probability of small cells in UDNs, thus, we assume that a given user connects

to the nearest BS and if there exist a BS with no connected users, it is turned off to

mitigate its interference. Based on this assumption, we draw different conclusions which

better reflect the performance of network densification considering SEPL model. Our
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findings reveal that the idle mode capabilities of the BSs provide a very useful interfer-

ence mitigation technique besides the energy efficiency of operating such dense networks.

Another interesting insight is that the system interference in idle-mode capable UDNs

is upper-bounded by the interference generated from the active BSs, and in turn this is

upper-bounded by the number of active users where more active users is translated to

more interference in the system. This means that the interference becomes independent

of the density of the small cells as this density increases. In the light of the above dis-

cussion, we conclude that the coverage probability converges to a constant value at very

high small cell densities where this value is a function of the user’s density.

Physical layer security in UDNs. In Chapter 5, the main contribution is the

derivation of the average secrecy rate in UDNs considering their distinct traits, namely,

idle mode BSs and LOS transmission. The high density of small cells makes it quite

probable for a BS to have no connected users. Consequently, turning off those inactive

BSs provides a simple yet effective interference mitigation scheme. Moreover, the close

proximity of the users/Eves to the BSs increases the probability of having a LOS trans-

mission in both the main link and the leakage link. To this end, we exploit the standard

moment generating function (MGF)-based approach to derive relatively simple and easily

computable expressions for the average secrecy rate considering the idle mode probability

and Rician fading channel. The result of this investigation avoids the system level sim-

ulations where the performance evaluation complexity can be greatly reduced with the

aid of the derived analytical expressions. Finally, we highlight that two eavesdropping

scenarios have been considered in the literature; active eavesdropping and passive eaves-

dropping. In active eavesdropping, the instantaneous channel state information (CSI)

of the eavesdropper is known to the transmitter through feedback. Practical scenarios

for this case includes broadcast channels where all users except the intended user can be

dealt as eavesdroppers. In this scenario, perfect secrecy is always guaranteed. In passive

eavesdropping, the CSI of the main channel is available while the CSI of the eavesdrop-

per’s channel is not known. As such, the transmitter selects a constant secrecy rate and

perfect secrecy is not always guaranteed. The considered analysis in this investigation

provides a guaranteed average secrecy rate in the case of active eavesdropping while in

the case of passive eavesdropping it provides statistical characterization of the perfor-

mance of secrecy communication in UDNs. Specifically, one can gain insights of how the
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secrecy performance in UDN scales with the density of various network nodes, namely,

the legitimate users, the eavesdroppers, and the BSs.

Uplink Coverage of mMTC in UDNs. In Chapter 6, we investigate the uplink

coverage of massive Machine-Type Communication (mMTC) considering an Ultra-Dense

Network (UDN) environment. The small-scale fading is modeled using a general (α −

µ) channel model and the large-scale fading is modeled by SEPL to capture the short

distances in Ultra-Dense Networks (UDNs). In particular, the system model captures

the impact of the system parameters which characterizes the environment of massive

machine-type communications (mMTC). The provided analysis reveals the significant

and unexpected impact of the high density of small cells in UDNs on the maximum

transmit power of the MTC nodes. This finding relaxes the requirements on the maximum

transmit power which in turn allows for less complexity, brings more cost savings, and

yields much longer battery life. Thanks to the high density of the serving small cells. This

investigation provides accurate, simple, and insightful expressions. The expressions are

readily readable and shows the impact of every single system parameter on the network

performance allowing for guided tunability of the network. Furthermore, the results signify

the asymptotic limits of the impact of all system parameters on the network performance.

This allows for the efficient operation of the network by designing the system parameters

which maximizes the network performance. Remarkably, there is a critical saturation

point where increasing these system parameters has no further impact on the performance.

Accordingly, this saturation limit can be chosen as a limit for the corresponding system

parameter. Finally, an interesting finding is that the uplink coverage performance in

the considered scenario has two distinct regions of operation, noise-limited region and

interference-limited one where the power control parameters solely controls the border

between the two regions.

Coexistence of MTC and HTC in UDN. In Chapter 7, we address the impact

of the coexistence of MTC and HTC communications on the network performance in

UDNs. In this investigation, we study the downlink network performance in terms of

the coverage probability and the cell load where we proposed two association schemes for

the MTC devices, namely, Connect-to-Closest (C2C) and Connect-to-Active (C2A). The

network performance is then analyzed and compared in both association schemes. The

investigation of the proposed system model shows a tradeoff between the two performance
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metrics with respect to the considered association schemes. Accordingly, this suggests the

design of association schemes to find a balance between them. On the positive side, the

consideration of UDNs to support MTC devices traffic provides a scalable and a viable

solution to the connectivity problem in future massive deployments of MTC devices.

Combined HTC and MTC considering NOMA in UDNs. In Chapter 8, we

investigate a NOMA-based radio access where a pair of HTC user and MTC device is

encouraged to use the same resource block in the uplink simultaneously. This allows

to host the diverse requirements of both types of users while operating the network at

its optimal point. The results confirm this claim where both types of users, i.e., HTC

and MTC, enjoy a high uplink coverage and an enormous uplink network throughput.

The analytical results which is validated by extensive Monte Carlo simulations provide

a mathematical framework to assess the performance of such scenario and to tune the

system parameters to operate the network at an optimal and efficient point. Increasing

the density of small cells and the available bandwidth significantly improves the network

performance. On the other hand, the power control parameters has to be tuned carefully

to approach the optimal performance of both the uplink coverage and the uplink network

throughput.

1.5 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2 we provide a comprehensive

introduction to UDN. Also, we present the state-of-the-art in different research directions

in the context of Ultra-Dense Networks. The multiple association scheme is then proposed

and investigated in Chapter 3. In Chapter 4, we study the coverage and capacity of UDNs

considering SEPL model and idle mode capabilities. The physical layer security in UDN

is studied in Chapter 5 and the uplink coverage of MTC devices is analyzed in Chapter

6. In Chapter 7, the impact of the coexistence of MTC and HTC users on the downlink

coverage and cell load of UDN is studied. The uplink coverage of combined HTC and MTC

considering NOMA is investigated in Chapter 8. Finally, in Chapter 9 the conclusions of

this thesis are drawn and the future trends are discussed.
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2. Background and Literature

Review

The evolution of mobile devices and applications in the current decade have drawn a new

picture for wireless networks, where the concept of Ultra-Dense Network (UDN) repre-

sents a new paradigm shift in future networks [16–19]. The basic idea is straightforward;

bring the access nodes as close as possible to the end users. The realization of this is

simply done by the dense deployment of small cells in the hotspots where immense traffic

is generated. These small cells are access nodes with small transmission power, and hence,

a small footprint. The cells are deployed by the customers in their premises, or by the

operators in the streets (e.g., on lampposts, trees, and walls) and hotspots (e.g., airports,

metro/train stations, and markets), as illustrated in Figure 2.1. Thus, the UDN deploy-

ment scenarios introduce a different coverage environment where any given user would be

in close proximity to many cells.

2.1 Definitions of UDN

Ultra-Dense Networks can be defined as those networks where there are more cells than

active users [20–24]. In other words, λb ≫ λu, where λb is the density of access points, and

λu is the density of users. Another definition of UDN was solely given in terms of the cell

density, irrespective of the users density. Ding et al. [25] provided a quantitative measure

of the density at which a network can be considered ultra-dense (≥ 103 cells/km2). In fact,

the first definition converges to the second given that the active users density considered

in dense urban scenarios is upper bounded by about 600 active users/km2 [26].

Generally, the small cells in UDN can be classified into fully-functioning base stations

(BSs) (picocells and femtocells) and macro-extension access points (relays and Remote
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Figure 2.1: The network is densified by deploying small cells indoors in buildings and stores, and outdoors

on trees, lampposts, and building walls. Small cell networks coexist with macrocells, either in the same

spectrum or on a dedicated carrier.

Radio Heads (RRHs)). The fully-functioning BS is capable of performing all the functions

of a macrocell with a lower power in a smaller coverage area. Specifically, the fully-function

BS performs all the functions of the entire protocol stack [27]. On the other hand, a macro-

extension access node is an extension for the macrocell to effectively extend the signal

coverage, and it performs all or some of the PHY layer functions only. Moreover, the

small cells feature different capabilities, transmission powers, coverage, and deployment

scenarios [28,29]. Table 2.1 summarizes the features of different small cell types. In what

follows we explain the different types of small cells [30]:

• Picocells are small BSs which are installed by operators to cover a small coverage

area in a range of one hundred meters. Usually picocells are deployed in hotspots

(indoor or outdoor) to serve tens of active users by offloading their traffic from

the macrocell. The transmission power of picocells is typically up to 33 dBm, and

they are mainly deployed for capacity purposes. The backhauling of picocells is

similar to that of the macrocells (fiber or microwave links) in order to provide ideal

high-bandwidth low-latency links.

• Femtocells are user-deployed indoor BSs which are installed to cover indoor spots

(homes, offices, and meeting rooms) in order to serve a small set of users. The

transmission power of femtocells typically is less than 20 dBm and the coverage

range is in the order of tens of meters. Thus, a femtocell provides a large indoor

signal strength for the home users where most of the data traffic is generated. The
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Table 2.1: Different Types of Small Cells

Type of small cell Deployment Scenario Coverage Power Access Scenario Backhaul

Picocells (fully-functioning) indoor/outdoor (planned) up to 100 meters
indoor (≤ 100 mW)

outdoor (0.25 – 2 W)
Open Access Ideal

Femtocells (fully-functioning) indoor (unplanned) 10 – 30 meters ≤ 100 mW Open/Closed/Hybrid Access Non-Ideal

Relays (macro-extension) indoor/outdoor (planned) up to 100 meters
indoor (≤ 100 mW)

outdoor (0.25 – 2 W)
Open Access

Wireless

(in-band/out-of-band)

RRHs (macro-extension) outdoor (planned) up to 100 meters outdoor (0.25 – 2 W) Open Access Ideal

femtocells can be connected to the network via any of the consumers’ broadband

connections such as Digital Subscriber Line (DSL), cable, or fiber.

• Relays are operator deployed access points which are usually deployed for cover-

age purposes to cover the dead zones and to improve the edge performance of the

macrocells. They transmit the users data back and forth from and to the macrocell,

featuring what is considered as wireless backhaul. Both relays and picocells have

the same coverage and transmit power, but they mainly differ in three properties.

First, a picocell is a fully-functioning BS while the relay is an extension for the

macrocell. Second, picocells are deployed for capacity, but relays are deployed for

coverage. Finally, the backhaul of the picocell is an ideal backhaul while the relay

backhaul is a wireless in-band or out-of-band backhaul.

• RRHs are RF units which are deployed in order to extend the coverage of a central

BS to a remote geographic location. RRHs are connected to the central BS via high

speed fiber or microwave links [31]. They are deployed for coverage extension of the

macrocell and can be used as a centralized densification alternative as compared to

the distributed densification performed by the picocells or femtocells.

It is important to highlight that indoor small cells (femtocells) operate in three different

access modes: open, closed, and hybrid. In open access mode, all subscribers of a given

operator can access the node, while in closed access mode the access is restricted to a closed

subscriber group (CSG). In hybrid mode, all subscribers can connect to the femtocell with

the priority always given to the subscribers of the CSG. The deployment of small cells

with regular macrocells is termed in the literature and standards as HetNet. HetNets

in general represents a paradigm shift from homogeneous networks [32]. As depicted in

Figure 2.2, UDN serves as another evolution from HetNets.
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2.2 Fundamental Features of UDN

In order to understand the current state of the research activities in UDN, the differ-

ences between dense networks and traditional networks need to be highlighted. These

fundamental differences of UDN from traditional networks can be summarized as follows:

1. Many small cells are in the vicinity of a given user. The network access nodes in

UDN environments are low-power small cells with a small footprint, or in other

words, with a small coverage area. Accordingly, the inter-site distance would be

in the range of meters or tens of meters. This defines a different wireless coverage

environment where many small cells would be in a very close distance to the users.

2. Idle mode capabilities are of a great interest. Due to the high density of small cells,

many small cells would be inactive. This motivates the idle mode concept, where

inactive small cells are turned off to partially or fully mitigate their interference [33].

3. Drastic interference between neighboring cells is a limiting factor. Close proximity

of the small cells to each other in UDN environments generates high interference.

Hence, strict interference management schemes are unavoidable to mitigate the in-

terference of neighboring cells [34–38].

4. Innovative frequency reuse techniques are required. In traditional cellular networks,

the spectrum is reused at the level of a cluster of cells where a reuse pattern is

repeated in each cluster. This reuse scheme touches its limit in code-division mul-

tiple access (CDMA) and orthogonal frequency-division multiple access (OFDMA)

systems where the spectrum is reused in each cell, i.e., the frequency reuse factor

is one. In UDN environments, there would be a need for a paradigm shift in the

frequency reuse concept.

5. Backhauling in UDN environments is challenging. It might be difficult for operators

to guarantee an ideal high-speed low-delay backhaul for each small cell. Also, the

backhaul of a small cell might be the bottleneck of its capacity, where the backhaul

capacity would limit the air-interface capacity [21, 39–43].

6. High probability of Line-of-Sight (LOS) transmissions. In UDN, the distance be-

tween BSs and users is small enough to have a high probability of LOS trans-
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Figure 2.2: The traditional homogeneous network is evolved to HetNet, and in turn the UDN is a densified

HetNet.

missions [25, 44, 45]. Accordingly, the need for a different propagation modelling

becomes a necessity. Moreover, the propagation modelling in UDN should also

consider a Rician channel model for multi-path fading due to the dominant LOS

component in the received signal.

2.3 Horizontal and Vertical Densification

The densification of wireless networks takes place mainly by the deployment of increasing

number of small cells. Accordingly, the network densification comes in two different fla-

vors, either horizontal densification or vertical densification. In horizontal densification,

the access nodes are densified in the horizontal plane, e.g., in the streets or hotspots.

On the other hand, the vertical densification evolves in the elevation plane where the

customers deploy BSs in their apartments, offices, meeting rooms, and buildings interior.

Figure 2.3 depicts vertical and horizontal network densification. The aforementioned

classification highlights three major aspects of the densification schemes, specifically, the

modelling of the densification scheme (vertical/horizontal) to consider appropriate prop-

agation models, the backhauling alternatives for the different densification schemes, and

the performance evaluation of the corresponding densification scheme. Consequently,

the investigation of UDNs requires different modelling for the two densification schemes,

namely vertical and horizontal. In this manner, the three-dimensional (3D) modelling

of the vertically densified networks is inescapable to reflect the reality of such networks.

Only a few papers addressed the 3D modelling of cellular networks [46, 47] over the past

decade. Recently, the modelling of wireless networks in 3D has been addressed in the

work of Gupta et al. considering a UDN context [44]. Furthermore, the modelling and

analysis of coverage in 3D cellular networks is conducted by Pan and Zhu [48]. Conse-

quently, this gives rise to the consideration of 3D-MIMO [49] which might be used as a
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Figure 2.3: Vertical densification versus horizontal densification in small cell networks.

backhauling alternative in vertically densified networks. Also, this in turn motivates the

modelling and analysis of 3D fading channels [50]. Moreover, the performance of network

densification in the vertical plane is different from that of the horizontal plane. In vertical

densification, the area spectral efficiency for the same area improves in high-rise build-

ings with more floors. This suggests incorporating the clutter of the buildings into the

performance evaluation of such densification schemes.

2.4 Centralized and Distributed Densification

In centralized densification, a central entity takes the coordination role between different

elements in order to boost the network performance. This central entity can be a BS

equipped with a massive-MIMO system [51], a BS extended with a Distributed Antenna

System (DAS) [52], or a cloud of base band processing units in a Cloud- Radio Access

Network (Cloud-RAN) [53]. On the other hand, the distributed densification of wireless

nodes in small cell networks or the distributed densification of wireless links in Device-to-

Device (D2D) requires scalable algorithms for the collaboration amongst different nodes.

Densification of wireless networks can be realized either by the deployment of increasing

number of access nodes or by the densification of the number of links per unit area. In the

first approach, the densification of access nodes can be achieved in a distributed manner

by the deployment of small cells (picocells and femtocells) or via a centralized scheme
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using DAS or Cloud-RAN. Also, in the second theme, the increasing of the number of

links per unit area is realized either in a distributed way in D2D communication, or by a

centralized massive-MIMO deployment.

2.5 Motivation Behind Network Densification

The motivation behind densification of wireless networks is the traffic trends measured in

the current decade. For instance, Cisco, in the Cisco Virtual Networking Index, predicts

a 10 fold increase in the mobile data worldwide for the period 2014-2019 [9]. With the

scarce spectrum resources, one vital and long-term solution is to increase the reuse per

unit area of the existing spectrum. This is a two fold gain, the spectrum is increasingly

reused which significantly improves the network capacity, and the link to the end user

becomes shorter which improves the link quality.

2.6 UDN in a Practical Sense

One of the most distinguishing traits of UDNs is the high density of the BSs. A quantita-

tive measure of how high this density can be given in terms of the relative density of the

BSs with regard to the active users’ density (e.g. see Definition 1 in [54] and the refer-

ences therein) which is also consistent with the UDN definition in other references such as

in [21,55–57]. We emphasized in [58] on how to define a UDN, or in other words, at what

level of densification we consider a network as UDN. An early comprehensive simulation

study is conducted in [21] to shed lights on the potential gains of network densification,

where densities as high as 20, 000 cells/km2 are considered while the maximum considered

users’ density was limited to 600 users/km2.

In Apr. 2014, Qualcomm reported in [59] the world’s densest LTE small cell deploy-

ment with equivalent cell density of 1107 cells/km2 with an average site-to-site distance of

22m, minimum site-to-site distance of 7m and a total coverage area of 0.028 km2. Based

on the trial deployments in this report, one could imagine more dense UDN implementa-

tions to come in the near future. In fact, the trends reported for the new technologies,

applications, and services show that the anticipated data rates to fulfill the requirements

will be in the order of multi-Gbps. This requires networks with densities that may appear

impractical for the time being, however, these densities will be very practical in the near
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future. Moreover, we quote Nokia’s definition of a UDN [60] “UDN can be defined as a

network with sites on every lamp post or having indoor sites less than 10m apart”. Ac-

cording to this definition and considering the fact that the active user’s density in dense

urban scenarios is typically bounded by about 600 users/km2 [61], the assumption of BSs

density is higher than the active users’ density in UDN would be fairly practical in future

deployments of UDNs.

2.7 Literature Review

Liu et al. [62] comprehensively surveyed the user association schemes in 5G networks.

They considered the state-of-the-art association mechanisms in three paradigms of the 5G

networks: HetNets, massive MIMO networks, and mmWaves networks. Lie et al. delved

into the aspects of user association in 5G networks where they discussed different mod-

elling techniques, performance metrics, and network topology models. Liu and Wang [63]

investigated a general random cell association scheme to study the fundamental correla-

tion between cell association and void cell probability (AKA idle mode probability). The

findings in [63] reveal accurate bounds for the idle mode probability in a PPP modelled

cellular network where they claim that the existing result [20] is not accurate in a general

setting, or in other words its accuracy is conditioned on the considered association scheme

(e.g., nearest cell association).

Various downlink interference mitigation techniques are investigated by Soret et al. [37]

where two algorithms are proposed, a time domain and a frequency domain small cell in-

terference coordination. They considered four interference scenarios, and they highlighted

the role of the dominant interferer (DI). On the other hand, Polignano et al. [36] addressed

the inter-cell interference dilemma in dense outdoor small cell networks. The impairment

to the user experience due to inter-cell interference is investigated to evaluate the condi-

tions that make the interference coordination preferred to the universal frequency reuse.

In a different direction, an enhanced dynamic cell muting scheme (eDCM) is proposed by

Wang et al. in [38] where the authors exploit the Coordinated MultiPoint (CoMP) frame-

work of LTE Rel-11 to develop a dynamic muting mechanism to mute some resources at

certain small cells for the benefit of other small cells. In their work, the inter-cell coordi-

nation function to generate the muting patterns considers a benefit metric for individual
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users and a proportional fairness scheduling amongst all users.

In a MIMO setting, Tavares et al. [64] utilized MIMO spatial multiplexing to mitigate

the inter-cell interference in small cell networks. Rather than the traditional frequency

reuse planning (FRP), they proposed maximum rank planning (MRP). In their proposal,

the reduction of spatial multiplexing streams increases the probability of higher degree-

of-freedom for the interference rejection receivers to reject the dominant interference.

In a different setting, Li et al. investigated a user-centric inter-cell interference nulling

(ucICIN) scheme [34, 35]. In their work, the authors derived an approximate expression

for the success probability of a typical user. In this model, a user requests the suppression

of the interference of some neighbouring BSs based on their relative distance to the serving

BS. Moreover, the simulation results confirmed the accuracy of the approximation to some

extent. Furthermore, the authors studied the effect of limited channel state information

(CSI) on the performance of the interference nulling technique.

Using game theory concepts, Al-Zahrani et al. [65] exploited game-theoretic approaches

to investigate the cross-tier and co-tier interference management. To overcome the curse

of dimensionality in case of dense networks, the authors modelled their problem using

mean-field game theory. In mean-field game theory [66], a player takes an action based

on the average of the effect of other players’ actions rather than the individual effects. In

another setting, Liu et al. [67] exploited game theoretic approaches combined with graph-

coloring algorithms to model a joint CoMP clustering and inter-cell resource allocation

for interference mitigation. A scalable algorithm is proposed to account for the large

number of cells in a dense network. The distributed two-step algorithm is evaluated

and potential performance improvements are concluded. A power allocation algorithm is

proposed by Yuehong et al. [68] to coordinate the interference especially for the benefit

of edge users. Non-cooperative game theory is applied to find the Nash Equilibrium for

the power allocations in the downlink of a dense network. A non-cooperative game is

formulated by Sun et al. [69] to investigate the role of cluster-based spectrum allocation

and CoMP transmission to mitigate the sever interference in UDNs. In this investigation,

the authors consider the load condition of the cells to associate the users to the best cell

in order to optimize the network performance.

In the uplink direction, Cho et al. [70] considered a power control scheme designed

for interference management in a time-division duplex (TDD) setting where the individ-
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ual users tune their transmission power to keep a preset interference threshold to other

BSs. Consequently, each BS schedules the users having the best normalized channel gains

according to the corresponding transmission power. Wang et al. surveyed the backhaul-

ing solutions for 5G small cells from the perspective of radio resource management [71].

They discussed the relation between the emergent backhauling solutions and some radio

resource management (RRM)issues including, but not limited to, cell association, inter-

ference management, scheduling, and inter-cell coordination. In [42], Ge et al. studied

the throughput and energy efficiency of 5G wireless backhaul networks. Specifically, they

adopted two traffic models, namely centralized backhauling model and distributed back-

hauling model. In the centralized model, a given macrocell aggregates the traffic of the

small cells in its coverage area assuming an ideal backhaul link between the macrocell

and each small cell. This assumption is rather ideal in UDN environments since the large

number of small cells in the coverage area of a macrocell makes it almost impossible to

provide the small cell tier with ideal backhaul links. In the distributed model, a small

cell which is connected to the core network via fiber-to-the-cell (FTTC) link collects the

traffic of the small cells in its vicinity through mmWaves communication links.

The wireless backhauling, although non-ideal, emerged as a viable solution for the

backhauling in dense small cell networks. Amin et al. [43] studied the performance of self-

backhauled small cells. In their model, a Long Term Evolution (LTE)macrocell backhauls

High Speed Packet Access (HSPA)small cells. A massive MIMO backhauling solutions

were investigated in [40,41]. Also Chen et al. [39] proposed a hierarchical network model

to investigate the backhauling in small cell networks, where they considered both wired

and wireless backhaul. They derived analytical expressions for the backhaul delay and

the average delay seen by a typical user considering two scenarios, namely, static (i.e., no

mobility case), and extreme mobility case. Björnson et al., by the aid of a stochastic geom-

etry model, studied the energy efficient deployment of dense small cell networks [72, 73].

In their work, they considered the uplink of a multi-cell multi-user MIMO network. The

closed-form expressions obtained via solving the energy efficiency maximization problems

shed lights on the role of all the considered parameters and optimization variables. In a

different setting, Li et al. [74] modelled the downlink of a dense multi-transmission anten-

nae small cell network to quantify the performance in terms of ASE and energy efficiency.

A tractable expression for the outage probability is derived via stochastic geometry ap-

17



proach and then exploited in the computation of the ASE and the energy efficiency. In

this, Liu et al. assessed the effect of deploying more BSs and more transmit antennas per

BS on the aforementioned performance metrics. Moreover, the optimal BS density and

the optimal number of antennas per BS to optimize the energy efficiency is computed.

A comparison between three network densification scenarios is conducted by Yunas et

al. [75]. These scenarios are the densification of the outdoor macrocell tier, the densifica-

tion of the indoor femtocell tier, and the densification of DASs. The results of the study

confirmed that the resources efficiency in terms of spectrum and energy is much higher

in the second and third densification strategies, compared to the first scenario. Conse-

quently, the rule of thumb in network densification is to densify the small cells, not the

macrocells. Moreover, they found out that the densification of indoor femtocells not only

improves the indoor network capacity, but also improves the outdoor network capacity

in case of open access mode (i.e., the indoor femtocells are open to serve outdoor users in

their vicinity). Finally, the results obtained verified the efficacy of the dense deployment

of dynamic DAS in terms of resource efficiency. Another stochastic geometry analytical

study considered the performance of UDN in terms of energy efficiency along with cell av-

erage spectral efficiency and area throughput [76]. Ren et al. [76] concluded that the three

performance indicators cannot be optimized simultaneously, and a tradeoff is unavoidable

to meet the required network performance. Using game-theoretic approach, Samarakoon

et al. [77, 78] investigated a joint power control and user scheduling in dense scenario

to optimize the energy efficiency. They formulated a dynamic stochastic game and an-

alyzed the mean-field equilibrium. In another venue, Yang [79] studied three important

performance metrics in a dense network setting: spectrum, energy, and cost efficiencies.

The author formulated a Nash-product form of the corresponding utility function, and

analyzed the tradeoff equilibrium amongst the considered metrics

The fast discovery of small cells in dense networks is another emerging research direc-

tion. Due to the large number of small cells in the vicinity of a user, there is a need for

optimized cell discovery mechanisms. Many features in UDN, such as idle mode capabili-

ties [33], CoMP [80], load balancing [81], and enhanced Inter-cell Interference Cancellation

(eICIC) [30], require fast and efficient discovery of small cells. In that direction, Prasad

et al. [82] evaluated disparate cell discovery mechanisms especially designed for energy-

efficient detection of small cells. A graph coloring based scheme for small cell discovery
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is proposed and evaluated by Shuai et al. [83]. In this scheme, the small cells in the

same vicinity are clustered into disjoint groups and each cluster takes a turn to transmit

the synchronization sequence. Only minimal changes to the conventional synchroniza-

tion scheme are required, and thus guaranteeing backward compatibility. The scheme

improves the detection probability of small cells.

The dense deployment of indoor and outdoor small cells requires the provisioning of a

new spectrum to alleviate the interference. The spectrum sharing thus stems as a viable

solution. In spectrum sharing, the UDN cells are allocated a spectrum as secondary

users in a cognitive network regime. Another alternative, is the inter-network spectrum

sharing where the spectrum is shared amongst multiple operators [84]. Another key

aspect is the multiple access and resource management in dense small cells. In spite of

the small probability of having multiple users in the coverage area of a small cell in a

dense network, still there would be a chance that many users are served by a small cell in

a given hotspot. The authors in [85] studied the spectrum sharing for UDN in the radar

bands. They modelled a primary/secondary spectrum sharing scenario, where the primary

system is the radar system and the secondary system is the dense small cell network.

They developed deployment regulations, namely, area power regulation and deployment

location regulation, and studied its effectiveness in different environments. Different from

the former cognitive radio regime, Teng et al. [86] considered the inter-network spectrum

sharing, in particular the co-primary spectrum sharing. In co-primary spectrum sharing,

two or more operators pool their licenses to achieve flexible spectrum sharing amongst

their network nodes which is co-located but with only relative displacement. Stefanatos

and Alexiou [22] studied the effect of multiple access and the density of BSs on the

performance of a dense network scenario. They also derived a lower bound for the optimal

number of bandwidth partitions and a closed-form upper bound for the BS density to

guarantee an asymptotically small rate outage probability.

In terms of resources management, Jafari et al. [87] studied the performance of differ-

ent scheduling techniques. In particular, they compared the performance of proportional

fair (PF) scheduler and round robin (RR) scheduler. The key aspect of their model

is to consider the LOS transmission which is more probable in dense networks. Fur-

thermore, Chen et al. [88] investigated a distributed spectrum resource allocation and

proposed a learning algorithm. The algorithm is proven to converge to Nash equilibrium
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and the performance results asserts that co-tier and cross-tier interference is mitigated.

The throughput performance of the proposed system model is investigated and potential

performance improvements verified by simulations. The propagation modelling is a vital

part of the investigation of wireless communication problems. Since the network den-

sification brings the access point closer to the users, the LOS transmission components

become most probable. Hence, the study of dense networks requires a different propaga-

tion model where the LOS transmission is considered. Also, in dense indoor networks,

the cells are deployed in buildings with many floors, thus a three-dimensional propagation

environment should be considered. This suggests two major modifications to the tradi-

tional propagation modelling in macrocellular networks; the consideration of dual-slope

or multi-slope path loss model while the path loss exponent becomes a function of the

distance to the user, and employing Rician fading channel instead of the simple Rayleigh

fading model [87].

In [54], the asymptotic average downlink in a UDN scenario is computed in a closed-

form, however, a Rayleigh fading is considered in a single association scenario. We noted

that the results in [54] cannot be extended to consider either general fading channels or the

multiple association scenario. In [55], the spectral efficiency (SE) is evaluated in closed-

form for single association and a Rayleigh fading channel in UDNs. Closed-form bounds

for average downlink rate are provided in [89] in a single connectivity model considering

Rayleigh fading channel. Although, the analytical results are in closed-form, extending

the results for multiple association and general fading channels is not straightforward.

In [90], simple integrals and closed-form approximations are presented for the average

downlink rate in mmWaves cellular network assuming noise-limited scenario, however, less

tractable results are reported for interference-limited case. Moreover, in [90] the small-

scale fading and single connectivity are considered. Also, the average downlink rate in [91]

considers Rayleigh fading and single connectivity. In [2], the SEPL model is considered

to evaluate the performance of a dense cellular network. However, it is assumed that all

BSs are turned on and each cell has exactly one active user. This implies a very high

number of active users at very high BSs densities, which would not capture the reality

of cellular networks where the number of active users in real traffic scenarios is typically

bounded by 600 users/km2 [61]. We differently assume that a given user connects to the

nearest BS and if there exist a BS with no connected users, it is turned off to mitigate
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its interference. Based on these assumptions, we draw different conclusions which better

reflect the performance of network densification. In [54] a closed-form is provided for the

asymptotic average downlink rate in a UDN scenario, however, a standard decaying path

loss model r−α is used, where r is the link distance and α is the path loss exponent. A

multi-slope path loss model is investigated in [92] where an activity probability of one is

assumed.

The concept of “data-showers” [32] refers to the future possibility for a user to connect

to multiple BSs. This stems from the capacity problem that is facing operators now. The

fast pace of introducing new data-hungry services and applications changes the picture of

wireless networks where there are too many users requiring immense amounts of traffic.

To this end, Dual Connectivity (DC) is an emerging association scheme which is under

investigation in the LTE standard [93]. In DC association, the user connects to a primary

macro cell and a set of secondary small cells. This ensures robustness of the mobility

management of the users since they connect to two cell tiers. The main advantage of this

connectivity scheme is the splitting of users traffic amongst a set of small cells to satisfy

the high demand of the users.

In [94], we introduced a multiple association scenario where a typical user connects

to the nearest M cells in its neighborhood to form what we call a multicell. In [54], the

asymptotic average downlink in a UDN scenario is computed in a closed-form, however,

a Rayleigh fading is considered in a single association scenario. We noted that the results

in [54] cannot be extended to consider either general fading channels or the multiple

association scenario. In [55], the spectral efficiency (SE) is evaluated in closed-form for

single association and a Rayleigh fading channel in UDNs. Closed-form bounds for average

downlink rate are provided in [89] in a single connectivity model considering Rayleigh

fading channel. Although, the analytical results are in closed-form, extending the results

for multiple association and general fading channels is not straightforward. In [90], simple

integrals and closed-form approximations are presented for the average downlink rate

in mmWaves cellular network assuming noise-limited scenario, however, less tractable

results are reported for interference-limited case. Moreover, in [90] the small-scale fading

and single connectivity are considered. Also, the average downlink rate in [91] considers

Rayleigh fading and single connectivity.

In [2], the SEPL model is considered to evaluate the performance of a dense cellular
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network. However, it is assumed that all BSs are turned on and each cell has exactly one

active user. This implies a very high number of active users at very high BSs densities,

which would not capture the reality of cellular networks where the number of active users

in real traffic scenarios is typically bounded by 600 users/km2 [61]. In [54] a closed-

form is provided for the asymptotic average downlink rate in a UDN scenario, however,

a standard decaying path loss model r−α is used, where r is the link distance and α is

the path loss exponent. A multi-slope path loss model is investigated in [92] where an

activity probability of one is assumed.

In [95], the secrecy throughput along with secrecy probability are investigated con-

sidering a heterogeneous network (HetNet). The secrecy outage probability is studied

in a multiple radio access technology (multi-RAT) scenario in [96]. In [97], the secrecy

rate in a multi-tier HetNet is investigated considering generalized fading model; however,

the significant role of the relative density of the users with respect to the small cells’

density is not considered. A dense network environment was assumed in [98] to validate

the approximation of the secrecy outage probability. However, the key features of dense

networks, such as the users’ relative density, the high probability of idle BSs and the high

probability of Line-of-Sight (LOS) transmission [58], were not considered. Furthermore,

the analytical approximations provided in [8] are shown to be loose as the BSs density

gets high, contradicting one of the main aspects of dense networks.

Recently, some researchers investigated the uplink coverage in MTC scenarios (e.g., [99–

102] ). However, UDN characteristics (e.g., high density of small cells, short distance

links, accurate path loss modeling, and general fading channels) have not been considered.

Moreover, the power control of the uplink transmission from MTC devices is overlooked.

In [99], the coverage performance of randomly distributed data collectors, which collect

data of wireless sensors in a single-hop scenario, was investigated, and answers to the

required number of data collectors, the required transmit power of the sensors, and the

impact of the propagation environment were provided. However, a simple path loss model

was considered and power control was not included in the system model. In [100], uplink

coverage performance was addressed in a multi-hop aggregation scenario where power

control was considered but not the features of UDN. Also, a simple power decay path

loss was used for the sake of tractability. The power decay path loss model was adopted

also in [103] which cannot fit precisely the short-range communication scenario of a UDN
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serving a massive MTC deployment. A Device-to-Device MTC scenario was modeled

in [101] where the transmitted packets of the sensors are relayed using D2D to the serving

cell. The authors in [101] adopted a power control mechanism, however, the densification

of the BSs was not considered. In addition, effective capacity was investigated in ultra-

reliable MTC scenario where an optimal power allocation scheme was devised for high

SNR regime [102]. The authors considered a simple point-to-point scenario where neither

the impact of the interference in a dense network nor the influence of power control was

included in the analysis. In [2], SEPL model was adopted in the downlink of a dense

network. Nevertheless, a single user per cell is considered and the uplink coverage is not

investigated.

2.8 Theory and Techniques

2.8.1 Stochastic Geometry

Topological randomness is a characteristic feature of small cells (e.g., femto cells) as a

consequence of their independent and unplanned deployment. Thus, stochastic geometry

emerged as a handy tool that suits the modelling of such networks [104]. The stochastic

modelling of the spatial distribution of small cells has achieved significant results in the

literature (e.g., see [104–106]). In the literature of traditional networks and heterogeneous

networks (HetNets), there are many results have been reported using stochastic geom-

etry [107–109]. Moreover, the application of stochastic geometry is expected to meet

substantial success in dense environments (e.g., see [58] and the references therein).

Locations of small cells can be modeled in two- or three-dimensional Euclidean space,

which is termed as a point process (PP). A PP is a a set of random points existing in

some space which abstract the locations of wireless nodes such as small cells and user

equipment [105]. The Poisson point process (PPP) is one of the most tractable point

processes. In PPP, the number of BSs in a given area A in two-dimensional space or in

a given volume V in three-dimensional space has a Poisson distribution with mean λsA

or λsV , respectively. The parameter λs represents the density of the BSs per unit area or

unit volume. The proprieties of a PPP that model a wireless network can be computed

for a reference point which is termed as “typical user”. The concept of a typical user in

stochastic geometry refers to a user residing at the origin and represents any randomly
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picked user. This allows Palm analysis by the aid of Slivnyak’s theorem [106]. Most of the

properties of a wireless network can be expressed as a function of the distance between

the network nodes and the typical user. Hence, the distance from the typical user to the

nth nearest BS is of a special importance in stochastic modelling of wireless networks.

The close proximity of access nodes in a dense network requires researchers to propose

and investigate a class of distributed clustering techniques to exploit the cooperation

of cells in the cluster. The of such structures requires more advanced techniques from

stochastic geometry. Besides Poisson point process (PPP), there exist many other point

processes that match different applications. Binomial point process (BPP), Hard core

point process (HCPP), and Poisson cluster process (PCP) are a few examples of the

stochastic geometry toolbox [105]

2.8.2 Performance Metrics

In this section, we explain the set of commonly used performance metrics in the modelling

of UDN problems. These metrics are basically related to either the signal to interference-

plus-noise ratio (SINR)(e.g., coverage (success) probability and outage probability) or the

rate (e.g., rate coverage, average spectral efficiency, and ASE).

1. Coverage/Success Probability and Outage Probability/SINR Distribu-

tion: The coverage probability is defined as the probability that the SINR of a

randomly selected user is above a certain threshold. In other words, the link quality

is good enough to proceed to a successful connection. The coverage probability is

also termed as the success probability. On the other hand, the outage probability

or the SINR distribution is the probability that the SINR of an arbitrary user falls

below a minimum threshold. A given user is considered in outage if the SINR of the

link to the serving BS is not enough for a successful connection. The coverage prob-

ability, the success probability, the outage probability, and the SINR distribution

quantify the quality of the link between the user and the serving BS.

2. Rate Coverage and Rate Outage: In small cell networks, a better coverage

performance metric is the rate coverage, which is defined as the probability that the

achievable rate of an arbitrary user is above a certain minimum. Conversely, the

rate outage is the probability that the achievable rate of an arbitrary user falls below
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a certain threshold. It is known that the rate distribution and SINR distribution

are strongly correlated in macrocell homogeneous networks [32]. Conversely, this is

not the case in HetNets and then as well in UDN. In small cell networks, not only

the SINR determines the achievable rate, but also the backhaul capabilities and the

load of individual cells.

3. Average Spectral Efficiency: The average number of transmitted bits per sec-

ondper unit bandwidth represents the efficiency of the spectrum. The efficiency of

the spectrum is a crucial performance metric in 5G networks due to the scarcity of

spectrum along with the high data rate requirements [110]. Also, the cell spectral

efficiency is another form of this metric to measure the performance of a single cell.

4. Area Spectral Efficiency: Densification of cellular networks increases the reuse

of spectrum per unit area. Thus, the ASE is an important metric to quantify the

performance of UDN. ASE is defined as the average achievable data rate per unit

bandwidth per unit area [111].

5. Network Throughput: The network throughput is another metric to quantify

the performance of UDN and is defined as the average number of successfully trans-

mitted bits per sec. per Hz. per unit area [74]. This metric considers the success

probability in the evaluation of the ASE of a given network with a certain BS density

and is defined as

Rn = λspa(1− pout)Ro, (2.1)

0 where λs is the BSs density, pa is the probability of active BSs, pout is the outage

probability, and Ro , log2(1 + γ̂) is the link capacity with a signal-to-interference

ratio (SINR) threshold γ̂.

6. Energy Efficiency: The ratio of the network throughput or the ASE to the power

consumption per unit area is defined as the energy efficiency [73, 74]. The energy

efficiency metric is a performance indicator that measures the benefit-cost ratio by

comparing the achievable rate to the energy costs to achieve this rate [73].

7. Fairness: A crucial performance indicator to the evaluation of a given cell associ-

ation, scheduling, or resource management scheme is the fairness between different
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users. The fairness index measures how likely a given resource allocation scheme is

fair. Jain’s fairness index [112] is a widely-adopted index that computes the fairness

of a set of user rates or resource allocations [62] and is given by

J (r1, · · · , rN) ,
(
∑N

n=1 rn)
2

N
∑N

n=1 r
2
n

, (2.2)

where N is the number of users, and rn is the rate of the n-th user.

It is however important to note that the context of dense networks to a large extent

is different from traditional networks. Thus, the need for other metrics to quantify the

performance of UDN is a significant requirement. Andrews et al. [110] introduced a new

metric, the BS densification gain ρ, which is defined as the ratio between the ratio of the

rates corresponding to two different BS densities and the ratio of the corresponding BS

densities, i.e.,

ρ =
R2/R1

λ2/λ1

=
R2λ1

R1λ2

, (2.3)

where R1 is the rate corresponding to a BS density of λ1, while R2 is the rate if the density

is increased to λ2. In other words, this measure quantifies the payoff ratio in terms of rate

relative to the cost ratio in terms of BS density.
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3. Multiple Association in UDNs

3.1 Introduction

Ultra-Dense Network (UDN) is one of the preeminent technologies in the racetrack towards

fulfilling the requirements of next generation mobile networks [58]. Dense networks are

featured by the deployment of abundant of small cells in hotspots where immense traffic

is generated. Small cells will thus be of a density that may exceed the density of the

active users [113]. On one hand, increasing small cells density improves the signal quality

and the reuse of the spectrum per unit area. On the other hand, providing an economical

backhaul connectivity for this large number of cells per unit area emerges as a severe

problem [39]. In this context, wireless backhauling is considered to address the backhaul

challenges of 5G networks [114].

The capacity of the backhauling solutions in dense networks imposes a limit on the

capacity of the small cells. In other words, the radio interface capacity of the small

cells might be bottlenecked by the capacity of the backhauling solution whether wired or

wireless [21]. Thus, the association of a user to a single base station (BS) restricts the

maximum achievable rate by this user to the capacity of the backhaul link. Moreover,

the delay in the backhauling link can significantly decline the latency performance of the

connected users.

Throughout this chapter, the term multiple association is used to refer to the scenario

where a user connects to multiple BSs. Typically, the number of BSs exceeds the number of

active mobile stations in ultra-dense networks, and in this case one can expect an operating

point where each user equipment (UE) is associated to one cell [21]. However, considering

the fast pace of introducing new services and technologies that are data-hungry, further

expectations rather consider the association of a user to many BSs in its neighborhood.

This would provide the user with cloud-like “data-showers” connections of Gbps rates [32].
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Furthermore, this dramatic increase in link capacities to end users significantly improves

the user experience and make science-fiction communication services like hologram videos

become real [115].

In multiple association, a UE connects to many BSs in its vicinity [116] to form a

multicell [94]. This comes with the price of sophisticated UE which must be equipped with

many RF chains. However, in dense networks, the close proximity of the user to the serving

BSs relaxes the requirements on these RF circuits [117]. In LTE-Advanced Release 10

and beyond, the 3GPP introduced carrier aggregation (CA) technology with the intention

to hit or even exceed the target of 1 Gbps/UE peak data rate [118]. CA is the support

of transmission over wide frequency bandwidths by using multiple available component

carriers. Two different types of CA are introduced, contiguous CA and non-contiguous CA

. In the contiguous CA, the available component carriers (CCs) are adjacent to each other,

which is apparently difficult in the current state of spectrum allocation in mobile spectrum

bands. On the other hand, the non-contiguous CA provides a practical alternative in

which the available CCs do not need to be adjacent. In this case, the deployment of

multiple RF receiving units is unavoidable [118]. Therefore, the multiple association

requirement of many RF chains would not be a limiting factor.

In order to further boost user peak data rates, the 3GPP considered a radical increase

in the spectrum resources available to the network nodes and UE. To this end, massive

CA (MCA) or enhanced CA (eCA) is introduced allowing up to 32 component carriers for

a UE in LTE-A Release 13 compared to only 5 CCs in Releases 10-12. Consequently, the

supported peak downlink data rate is increased to about 25 Gbps [119]. Continuing in

this way forward, more advanced techniques and technologies are introduced in Release

14 and beyond to support advanced CA (ACA) and multi-carrier UDN (MC-UDN) where

many clusters of small cells get much closer to each other forming a continuously dense

areas [119].

The introduction of these radically different techniques motivates a distinct view

of user association in dense networks. This view considers a user-centric association

paradigm where the user is the central point in any considered association scheme. Evi-

dently, this results in unprecedented mobile network environment where there are no more

edge users experiencing weak channels and low service grades. On the contrary, the user

will be always in the center of any cell in the considered association scheme as depicted in
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Figures 3.1 and 3.2. In a continuously dense network, this user-centric association takes

place in order to improve the user experience, which would be the dominant factor in the

network operation of future networks [120]. To conclude, those advancements encourage

and motivate the concept of multiple association of a UE to a cluster of small cells.

3.2 State-of-the-Art

The concept of “data-showers” [32] refers to the future possibility for a user to connect to

multiple BSs. This stems from the capacity problem that is facing operators now. The

fast pace of introducing new data-hungry services and applications changes the picture of

wireless networks where there are too many users requiring immense amounts of traffic.

To this end, Dual Connectivity (DC) is an emerging association scheme which is under

investigation in the LTE standard [93]. In DC association, the user connects to a primary

macro cell and a set of secondary small cells. This ensures robustness of the mobility

management of the users since they connect to two cell tiers. The main advantage of this

connectivity scheme is the splitting of users traffic amongst a set of small cells to satisfy

the high demand of the users.

In [94], we introduced a multiple association scenario where a typical user connects

to the nearest M cells in its neighborhood to form what we call a multicell. In [54], the

asymptotic average downlink in a UDN scenario is computed in a closed-form, however,

a Rayleigh fading is considered in a single association scenario. We noted that the results

in [54] cannot be extended to consider either general fading channels or the multiple

association scenario. In [55], the spectral efficiency (SE) is evaluated in closed-form for

single association and a Rayleigh fading channel in UDNs. Closed-form bounds for average

downlink rate are provided in [89] in a single connectivity model considering Rayleigh

fading channel. Although, the analytical results are in closed-form, extending the results

for multiple association and general fading channels is not straightforward. In [90], simple

integrals and closed-form approximations are presented for the average downlink rate

in mmWaves cellular network assuming noise-limited scenario, however, less tractable

results are reported for interference-limited case. Moreover, in [90] the small-scale fading

and single connectivity are considered. Also, the average downlink rate in [91] considers

Rayleigh fading and single connectivity.
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3.3 Contributions

Different from previous works (e.g., see [1,22,24,54,55,89–91,121]), in this investigation, we

consider the modeling of multiple association in dense network environment where the BSs

are equipped with idle mode capabilities. We evaluate the performance of the proposed

association scheme considering general fading channel distributions. To this end, the

MGF-based approach is exploited to develop a tractable framework for the computation

of the average downlink rate. To highlight the contributions of this investigation, a simple

and accurate framework is developed to compute the average downlink rate of the links

connecting the typical user to the tagged BSs in a multiple association context. The

framework considers general multicell size M , and general fading channel distributions in

both the signal and interference links. Moreover, we develop a recursive form to provide

a simpler way for the computation of the average downlink considering Rayleigh fading

channels. The recursion is easy to manipulate and avoids the tedious work required for

the computation of folded integrals involved in averaging out the downlink rate over the

distance distributions and channel fading distributions.

3.4 System Model

Tagged 

Base Station

Idle 

Base Station

Active

Base Station

Typical

User

Figure 3.1: The typical user at the origin is associated to the tagged (serving) BS that provides the

maximum long-term averaged received power. In UDN environments, the tagged BS would be at a close

proximity to the typical user with a high probability of Line-of-Sight (LOS) transmission in the useful

signal link. Only active cells contribute to the aggregate interference seen by the typical user in the

interference signal.
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Figure 3.2: In multiple association, the typical user connects to the set of the M -th nearest BSs according

to the maximum long-term averaged received power from the BSs in its neighborhood.

We consider the downlink of a UDN comprised of a single tier of small cells. UDNs are

characterized by the high density of small cells relative to the density of active users [58].

We employ techniques from stochastic geometry [105, 106, 109, 122] to lay out a general

mathematical framework for the evaluation of the network performance. Throughout

our study, we consider the characterization of the network performance in the context of

multiple association of a user to many BSs.

3.4.1 Network Model

We consider a single tier of small cells modeled as an independent homogenous PPP

Φs with density λs on two-dimensional plane. A realization of BSs locations is drawn

from Φs as {b1, b2, . . .} where bi is the location of the i-th BS. The users form another

independent homogenous PPP positions Φu = {u1, u2, . . .} with a density λu where uj is

the location of the j-th user. In general, we assume that λs ≫ λu which implies that

many BSs are in idle mode by virtue of the lack of connected users [21]. BSs in the idle

mode are turned off to fully mitigate their interference. Without loss of generality, we

elaborate in the analysis of this investigation considering a typical mobile user Uo located

at the origin [105]. A typical user in stochastic geometry refers to a user residing at the

origin where the properties of the point process (PP) can be computed. To explain, the

typical user is assumed to be a representative to all users. Also, each BS transmits with a

power Ps and operates in open access mode [28]. Consequently, the typical user is allowed

to connect to any BS in the network without any access restrictions as imposed by the

Closed Subscriber Group (CSG) mode.
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3.4.2 Spectrum Allocation Model

We consider that M orthogonal component carriers each of bandwidth B Hz are available

in the system. Each BS of the M BSs comprising the multicell is allocated a single com-

ponent carrier, i.e. no carrier aggregation is implemented in the small cells. Moreover, we

assume that the capacity of the small cell is mainly limited by its backhaul link capacity,

hence, suitable component carrier bandwidth should be chosen. These orthogonal com-

ponent carriers carry M simultaneous data streams from the cells of the multicell to the

user in the downlink. Thus, the aggregate downlink rate of any user is no longer directly

limited by the backhaul capacity of any of the cells in the multicell. In fact, the aggregate

rate is mainly limited by the size of the multicell M , and this in turn is limited by the

complexity constraints of the user equipment.

We also assume that the bandwidth allocation of the small cells in a multicell is

managed by the macrocell covering the area where these small cells are deployed. This

is known in the literature and LTE Release 12 as “dual connectivity” [93] where the user

can connect to a macrocell (primary cell) for coverage and mobility and connects to one

or more small cells (secondary cells) for capacity enhancement. In this way, the macrocell

provides the signaling and control required to manage the association of the user to the

cells of the multicell and the bandwidth allocation as well. In addition, we assume that

a BS serves only one user on a single component carrier and if another user attempts to

connect to an active cell the admission control rejects the connection and this user can

connect to other nearby small cells.

3.4.3 Propagation Model

To maintain the generic structure of the proposed framework, we consider a general prop-

agation environment which is comprised of two components, namely, a large scale fading

component and a small scale fading component. On one hand, the large scale fading is

modeled by a general decaying power law with a path loss exponent (α > 2) [123]. In this

model, the received signal power at a distance d from a BS is Psd
−α. On the other hand,

all small cells are assumed to have multipath fading channels that are independent and

identically distributed (i.i.d). The fading channel distribution for the serving BSs go is in

general different from that of the interfering BSs gb [1].
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3.4.4 Association Model

Two modes of cell association are considered in this study; single association where a

given user associates to only one BS, and multiple association where a user can connect

to more than one cell in its vicinity. We refer to the BSs connected to the typical user Uo

as tagged BSs. Let Bo denote the tagged BS in case of single association and Bk the k-th

tagged BS in multiple association where k ∈ {1, 2, . . . ,M}. The association criterion in

both modes depends on the maximum long-term averaged received power of the received

signal at Uo. Accordingly, Uo connects to the BSs that provide the maximum average

received power, or in other words the nearest BSs. The distance between Uo and the

tagged BS Bk is in general random due to the randomness of the positions of the BSs.

This applies to the distance between Uo and the interfering BSs as well. This randomness

in the distance requires the use of the distance distribution functions while computing the

average performance metrics such as the average ergodic downlink rate.

3.4.5 Problem Statement and Performance Metrics

Having considered the described network, channel, and association models, the signal to

interference-plus-noise ratio (SINR)of the downlink from the tagged BS Bk to the typical

user Uo is computed as:

SINRM
k =

S(rk)

σ2 + I(rM)
, (3.1)

where M is the multicell size i.e., the number of BSs connected to the typical user and

k = 1, 2, · · · ,M . Also, S(rk) = Psgor
−α
k is the signal power of the link between Uo and

Bk, σ2 is the noise power, and I(rM) =
∑

b∈Φc
a/Vo

Psgbr
−α
b is the aggregate interference

power from the set Φc
a of all active cells on a given component carrier c, except the set of

tagged BSs Vo. An active cell is a cell with one user connected, and the tagged BSs are

those BSs belonging to the same multicell.

In multiple association, rk is the distance from the Uo to the k-th tagged BS Bk, while

rM is the distance to the M -th tagged BS in a multicell of size M . rM represents the radius

of the exclusion region of the typical user [123]. The exclusion zone refers to a circular area

around the typical user where no interfering BSs exist. In other words, all interfering BSs

with respect to Uo lie outside a disk of radius rM . The distances rk and rM are random
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variables with a probability distribution function Frk(k) and FrM (M), respectively. The

aforementioned distance distribution function can be in general expressed as:

Frn(n) =
2(πλs)

n

Γ(n)
rn

2n−1 e−λsπrn2

, (3.2)

where Γ(n) =
∫∞
0

tne−tdt is the gamma function, and for integer positive n, Γ(n) =

(n− 1)!. In single association, (3.1) is simplified to

SINR =
S(r)

σ2 + I(r)
, (3.3)

where M = k = 1 and both are omitted for brevity, and r is the distance between Uo and

Bo.

In this investigation, we adopt two performance metrics to evaluate the performance

of the considered system model: the average (ergodic) downlink rate of the individual

connection(s) from the tagged BSs to Uo, denoted as RM
k , and the network aggregate

average rate (NAAR), denoted as Rnaar. The rate of the downlink connection between

Uo and its tagged BS Bk in a multicell of size M is computed as:

RM
k = ln(1 + SINRM

k ) nats/sec/Hz. (3.4)

The average rate is then computed by averaging the rate in (3.4) over the fading channels

and the distances to serving BSs and interfering BSs. Denote by G(·) the fixed associa-

tion average rate which is the rate averaged over the fading channels of the useful and

interfering links go, gb, respectively, conditioned on a fixed association distance and it can

be expressed as:

G(rk, rM) = Ego,gb

{
ln
(
1 +

Psgor
−α
k

σ2 + I(rM)

)}
, (3.5)

and the overall average downlink rate is then given by

RM
k = Erk,rk+1,...,rM {G(rk, rM)} , (3.6)

where the expectation is computed with respect to the marginal distribution of the dis-

tances rk, rk+1, . . . , rM . In single association, the average rate is simplified to

R = Er {G(r)} (3.7)

where

G(r) = Ego,gb

{
ln
(
1 +

Psgor
−α

σ2 + I(r)

)}
. (3.8)
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The network aggregate average rate Rnaar is the aggregate average downlink rate of

all users in a given area normalized by the area and is then can be defined as:

Rnaar = λu

M∑
k=1

BRM
k . (3.9)

3.5 Analytical Results

3.5.1 Single Association in UDNs

In this section, we study the association of the typical user to the tagged BS in a single

association context. Considering general fading channels in both signal and interference

links, we exploit the standard MGF approach to compute the average downlink rate.

While the analytical result is simple and easily computable using standard mathematical

packages (e.g., Matlab), it is also significantly accurate and matches the simulation results

as we shall discuss in the simulation results section.

We consider an association policy based on the long-term averaged maximum-received

power, where the typical user at the origin associates to the nearest BS as depicted in

Figure 3.1. The average rate of the downlink R is expressed as [122]:

R = Er {G(r)}

=

∫ ∞

0

2λsπr
2e−λsπr2G(r)dr (3.10)

In the following theorem we give an expression for the average rate of the downlink

in terms of small cells density, active users density, and signal and interference fading

channels. We consider the use of the MGF-based approach [1] for the sake of reduced

computational complexity.

Theorem 1. The average downlink rate of a typical user associated to its nearest base

station over general fading channels in both signal and interference links is given by:

R =

∫ ∞

0

1−Mo(γy)

y
Q(y) dy (3.11)

where γ = Ps/σ
2 is the signal-to-noise ratio (SNR), Mo(s) = E(esgo) is the MGF of the
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signal fading channel

Q(y) =
1

WI(γy)
− αy

WI(γy)
A(y) (3.12)

A(y) =

∫ ∞

0

rα−1e−rαye−πλsr2WI(γy) dr (3.13)

WI(z) = po + (1− po)ZI(z) (3.14)

ZI(z) = MI(z) + TI(z) (3.15)

TI(z) = Γ(1− 2
α
)

∞∑
j=0

zj+1M(j)
I (z)

[
Γ(2− 2

α
+ j)

]−1 (3.16)

M(j)
I (z) = E

{
gj+1
b e−zgb

}
(3.17)

and MI(s) = E(esgb) is the MGF of the interference fading channel.

Proof. Considering the expectation in the fixed association average rate in (3.7), this

expectation can be rewritten as:

G(r) = E
{

ln
(
1 +

X

1 + Y

)}
(3.18)

where X = (Psgor
−α)/σ2 and Y = (I(r))/σ2, and by using [124, Lemma 1] with N =

M = 1 we obtain

G(r) = E
{

ln
(
1 +

X

1 + Y

)}
=

∫ ∞

0

(MY (z)−MX,Y (z))
e−z

z
dz

(a)
=

∫ ∞

0

MY (z) (1−MX(z))
e−z

z
dz (3.19)

where X and Y are arbitrary non-negative random variables, MX(z) and MY (z) are the

respective MGF of these random variables, MX,Y (z) is the MGF of X+Y , i.e., MX,Y (z) =

E
{
ez(X+Y )

}
, and (a) holds if X and Y are independent.

Now, the expectation in (3.7) can be expressed as:

G(r) =
∫ ∞

0

MI(γz; r)
(
1−Mo(γr

−αz)
) e−z

z
dz (3.20)

where γ = Ps/σ
2 is the SNR, and Mo(·) is the moment generating function of the useful

signal fading channel. MI(.; r) is the MGF of the aggregate interference in the downlink,

which is generated by all interferes that lie outside a disk of radius r and centered at the
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typical user. A closed form expression for MI(.; r) is derived in [1, Eq. 36], however in

this derivation the aggregate interference is considered as the sum of interference from all

BSs except the tagged BS, which is the nearest one to the user.

This is not the case in UDN, where many BSs will be turned off due to inactivity [58].

Here, we consider the interference generated from the active BSs which are using the same

component carrier only. According to the investigated system model, a given BS is active

if one user is associated to it. The probability of BS activation is pa = 1− po, where po is

the idle mode probability and is given by [20, 23]:

po =

(
3.5κ

1 + 3.5κ

)3.5

. (3.21)

where κ , λs/λu is the densification ratio of the small cell network.

In fact, the interferers point process is generally not homogenous. This is due to

the location dependency of the BS activation probability [54]. However, considering the

special features of UDN, this location dependency disappears since the variance in the

cell sizes vanishes with the increasing density of the small cells. Using the approximation

in [54, Lemma (1)], we can approximate the interferers process to be homogenous PPP.

Accordingly, we use the idle mode probability po to perform an independent thinning of

the small cells point process Φs to form the thinned PPP Φa. Thus, Φa represents the

PPP of the active cells, where Φa ≡ Φc
a since all cells are using the same channel c in the

case of single association. Since we assume that a small cell in idle mode is turned off

to fully mitigate its interference, therefore we account only for the interference generated

from the active small cells in the computation of the interference. The interfering small

cells which are active and transmit at the same time with the tagged base station of the

typical user form a thinned version of the original PPP [106]. This thinned PP has the

same distribution of the original one with a density paλs. By using [1, Eq. (36)] and

considering the thinned PPP Φa, MI(.; r) is expressed as:

MI(z; r) = exp
{
πpaλsr

2
}

exp
{
−πpaλsr

2MI(zr
−α)
}

× exp
{
−πpaλsr

2TI(zr
−α)
}

(3.22)

Now, we substitute (3.22) in (5.10) and then in (3.10). To simplify, we perform a

change of variables y = zr−α, and apply integration by parts to (3.10) to obtain (3.11),

which completes the proof. �
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The result in Theorem (1) generalizes the results in [1, Theorem (1)] considering the

realistic impact of high small cells density in UDNs. In particular, the average downlink

rate expression in (3.11) is expressed in terms of the function WI(z) instead of ZI(z).

However, one can show that WI(z) converges to ZI(z) when the idle mode probability po

is zero, which is the case in traditional cellular networks where the density of the cells are

low or moderate with regard to the density of the active users.

In most cases, cellular networks are limited by interference rather than noise and this

is the typical scenario especially in UDNs. Thus, the noise becomes very small compared

to the aggregate interference, this yields to γ = Ps/σ
2 → ∞. Considering this remark,

Theorem 1 can be simplified to the following corollary:

Corollary 1. Considering a UDN environment which is limited by interference rather

than noise, the average rate of the downlink in (3.11) simplifies to

R̂ = R|γ→∞ =

∫ ∞

0

1−Mo(z)

zWI(z)
dz (3.23)

Proof. Manipulating Q(y) by using the change of variables z = γy, and taking the limit

as γ → ∞, Q(γ−1z) evaluates to 1/WI(z). Thus completing the proof. �

It is interesting to note that the results in Theorem 1 and Corollary 1 extend the

results in [1] to account for the BS density. In the numerical evaluations section, we

discuss the effect of the network densification on the average rate of the downlink.

In this section, we studied the single association in a UDN context as a special case

of a more general scenario. In the general scenario, we assume that the typical user can

associate to M BSs in its vicinity. We investigate this scenario in the following section to

give the general solution parametrized with the multicell size M . In this way, the special

case of single association can be deduced from the general solution by setting M = 1.

3.5.2 Multiple Association in UDNs

3.5.2.1 Average Downlink Rate in the General Case

In this section, we consider the association of the typical user to the nearest M BSs

in the vicinity. The association of the typical user to the tagged BSs follows the same

criteria as in the single association. However, instead of connecting to the BS providing

the maximum average received power, the typical user connects to M BSs providing the
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strongest average received power. The average downlink rate RM
k in (3.6) of the link from

the k-th tagged BS, k ∈ {1, 2, . . . ,M}, to the typical user involves averaging the downlink

rate over all fading channels and random distances.

The function G(rk, rM) in (3.5) represents the downlink rate averaged over the fading

channel distributions go, gb of the serving BS and the interfering BSs, respectively. S(rk)

is the signal power of the connection between the typical user residing at the origin and

the kth serving BS in the multicell, BSk. The serving BS is at a random distance rk

from the typical user, and the channel fading distribution of this link is gk. We consider

a general fading distribution in this investigation where all the fading channels of serving

BS 1, · · · ,M are identical and independent from each other and also independent from

the fading distribution of the interfering BSs. For the sake of simplicity, we denote by go

the fading distribution of the link from Uo to any serving BS in the set of serving BSs

Vs ⊂ Φs . However, the fading distribution of the interfering BSs gb although independent

from go but in general they are not identical, i.e., gb can follow any general distribution.

The interference signal power I(rM) on a given component carrier considers all the

interference links using this component carrier outside the multicell. We assume that

all the serving BS in a multicell are using orthogonal component carriers in order to

mitigate the interference. In other words, the interference experienced by the typical user

is generated by all the interferers using a certain component carrier that lie outside a disk

of radius rM , and centered at the typical user. This region around the typical user is

called the exclusion region [123]. In the scenario of multiple association, we consider the

allocation of orthogonal channels to the links from the cells of the multicell to a given

user. Intuitively, each multicell has only one cell that contributes to the interference on

a given channel. In other words, a multicell appears from the interference point of view

as a single interfering cell on one of the available channels. The only difference in this

case is that the active BS that contributes to the interference on a given channel is not

always the nearest BS to the typical user as in the case of traditional single association,

it can be the first, the second, up to the M -th nearest BS. Moreover, it is equally likely

to have this active BS at different relative distance from the typical user. Considering

the displacement theorem [125, 126], assume that each active user location is displaced

randomly and independently to the location of one of the activated BSs in a multicell, the

interfering BSs process thus forms another homogeneous PPP with a density λu. Recall
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that the active BSs density paλs converges to the density of the users λu at very high

BSs density λs. Considering the above discussion, we perform independent thinning for

the small cells process Φs by the probability of active BS pa = 1 − po, where po is the

idle mode probability. The thinned PPP Φc
a ⊂ Φs is the set of all active BS allocated the

same component carrier c in the region outside the exclusion region from rM to infinity.

The density of this thinned process is λa = paλs.

The computation of the average downlink rate involves averaging over the positions

of the serving and the interfering small cells. For this reason, we consider the joint

distribution function of the distances from the typical user to the cells in the multicell

denoted as F(r1, . . . , rM) and is given by [127].

F(r1, . . . , rM) = (2πλs)
M r1 . . . rM e−λsπr2M (3.24)

where 0 ≤ r1 ≤ r2 ≤ . . . ≤ rk ≤ . . . ≤ rM ≤ ∞. This can be interpreted as follows. The

distance from the typical user to the 1st nearest BS, r1, is a continuous random variable

ranging from 0 to r2. Subsequently, r2 is the random distance from the typical user to the

2nd nearest BS and ranges from 0 to r3. In general, the distance to the kth nearest BS

is bounded in the interval [0, rk+1]. Moreover, we denote by F(rk, . . . , rM) the marginal

joint distribution function of the distances rk, . . . , rM . This can be expressed as:

F(rk, . . . , rM) =∫ rk

0

∫ rk−1

0

· · ·
∫ r1

0

F(r1, . . . , rM)dr1 . . . drk−1

=
(2πλs)

M

2k−1Γ(k)
r2k−1
k . . . rM e−λsπr2M (3.25)

The averaging in (3.6) is carried out over all the distances from the typical user to

the serving BSs in the multicell. For this purpose, we use the marginal joint probability

distribution function F(rk, . . . , rM). Finally, the probability distribution of the distance

to the nth nearest BS can be obtained by integrating successively the joint distribution

in (3.24) w.r.t r1 from 0 to r2, w.r.t r2 from 0 to r3 up to rn−1 from 0 to rn. This yields

to [127]:

Fr(n) =
2(πλs)

n

Γ(n)
r2n−1 e−λsπr2 (3.26)

In the following theorem, we provide a framework to compute the average downlink rate

in (3.6).
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Theorem 2. Assuming general fading channels in both the signal and interference links,

the average downlink rate of a typical user associated to its kth nearest BS in a multicell

of size M where k = 1, 2, · · · ,M is given by

RM
k = (2πλs)M

2k−1Γ(k)

∫ ∞

0

∫ ∞

0

rMI(rM)e−λsπr2MWI(Mγy) e
−yrαM

y
drMdy (3.27)

where:

I(rk) = 1−Mo(βr
−α
k ) (3.28)

I(rk+1) =

∫ rk+1

0

r2k−1
k I(rk)drk (3.29)

I(rj) =
∫ rj

0

rj−1I(rj−1)drj−1, j ∈ {k + 2, . . . ,M} (3.30)

Proof. Using [124, Lemma 1], the fixed association average rate G(rk, rM) can be expressed

as:

G(rk, rM) = Ego,gb

{
ln
(
1 +

S(rk)

σ2
N + I(rM)

)}
=

∫ ∞

0

MI(γz; rM)
(
1−Mo(γr

−α
k z)

) e−z

z
dz (3.31)

Considering [123, Eq.(18)] and [1, Eq.(36)], the aggregate interference moment generating

function MI(.; rM) can be expressed as:

MI(s; rM) = exp
{
πpaλsr

2
M

}
exp

{
−πpaλsr

2
MMI(sr

−α
M )
}

exp
{
−πpaλsr

2
MTI(sr

−α
M )
}

= exp
{
πpaλsr

2
M

(
1−ZI(sr

−α
M )
)}

(3.32)

Now, we can compute the average downlink rate RM
k . Substituting (3.32) in (3.31) and

then substituting (3.31) along with (3.25) in (3.6)

RM
k =

∫ ∞

0

∫ rM

0

· · ·
∫ rk+1

0

F(rk, . . . , rM) G(rk, rM)drk . . . drM

= (2πλs)M

2k−1Γ(k)

∫ ∞

0

∫ rM

0

· · ·
∫ rk+1

0

r2k−1
k . . . rM

(∫ ∞

0

eπpaλsr2MWI(γzr
−α
M )
(
1−Mo(γzr

−α
k )
)

e−z

z
dz
)

drk . . . drM
(a)
= (2πλs)M

2k−1Γ(k)

∫ ∞

0

∫ ∞

0

∫ rM

0

· · ·
∫ rk+1

0

r2k−1
k . . . rMe−λsπr2MWI(γy)

e−yrαM

y

(
1−Mo(βr

−α
k )
)

drk . . . drMdy

(3.33)

where β = γyrαM and WI(z) = po + (1 − po)ZI(z). Note that, step (a) follows from

changing the order of integration, and by the change of variables y = zr−α
M .
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To compute the integral in (3.33), we evaluate this folded integral successively w.r.t

the distances (rk, rk+1, . . . , rM). Denote by I(rj) this successive integration up to the

distance rj−1, j ∈ {k + 2, . . . ,M}. This integral can be expressed as:

I(rj) =
∫ rj

0

rj−1I(rj−1)drj−1 (3.34)

where the seeds of the above recursive integral are I(rk) and I(rk+1) and are expressed

as

I(rk) = 1−Mo(βr
−α
k ) (3.35)

I(rk+1) =

∫ rk+1

0

r2k−1
k

(
1−Mo(βr

−α
k )
)

drk (3.36)

The average downlink rate in (3.6) is then simplified to:

RM
k = (2πλs)M

2k−1Γ(k)

∫ ∞

0

∫ ∞

0

rMI(rM)e−λsπr2MWI(γy)
e−yrαM

y
drMdy. (3.37)

This completes the proof. �

The mathematical framework in Theorem 2 considers general channel fading distribu-

tions. Consequently, the average downlink rate RM
k can be computed for general signal

and interference fading channels. Therefore, one can employ a fading channel for the

useful link that is suitable for dense network environments, where the serving BSs would

be at very close distances to the active users. In the propagation environments where

Rayleigh fading channel would be considered in dense network (e.g., indoor coverage),

a simpler form of the solution can be derived. In the following theorem we consider a

Rayleigh channel fading distribution in the useful link which yields to a more tractable

solution.

Theorem 3. Assuming a Rayleigh fading channel in the signal link, the average rate of

the downlink of a typical user associated to its kth nearest BS in a multicell of size M

where k = 1, 2, · · · ,M is given by

RM
k =

∫ ∞

0

GM
k (γy)P(y)

y
dy (3.38)

where:

P(y) =
1

[WI(γy)]M
− αy

WI(γy)
H(y) (3.39)

H(y) =

∫ ∞

0

rα−1
M e−rαMye−πλsr2MWI(γy)

M−1∑
n=0

[πλsr
2
MWI(γy)]

n

n!
drM (3.40)
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Proof. Let the useful link experiences a Rayleigh fading, the MGF of the fading channel

is then Mo = (1 + z)−1 [128, Table 2.2]. We begin using the mathematical framework of

Theorem (2) by computing the integral I(rk+1)

I(rk+1) =

∫ rk+1

0

r2k−1
k

(
1−Mo(βr

−α
k )
)

drk.

(a)
=

1

2k
r2kk+1 2F1

(
1,

2k

α
;
2k

α
+ 1;−

rαk+1

β

)
(3.41)

where 2F1(·, ·, ·, ·) is the Gauss hypergeometric function [129, Ch. (15)]. Step (a) follows

from simple manipulation and evaluating the integral.

We proceed by evaluating the next integral in the folded integrals

I(rk+2) =

∫ rk+2

0

rk+1I(rk+1)drk+1

= 1
2k

∫ rk+2

0

r
2(k+1)−1
k+1 Υ(rk+1, 2k)drk+1

= (1
2
)2
(

1
(k+1)k

)
r
2(k+1)
k+2 ((k + 1)Υ(rk+2, 2k)− kΥ(rk+2, 2(k + 1)))

= (1
2
)2
(

1
(k+1)k

)
r
2(k+1)
k+2 Υ(1)(rk+2, k) (3.42)

where

Υ(r, n) = 2F1

(
1, n

α
; n
α
+ 1;− rα

β

)
(3.43)

Υ(1)(r, k) = (k + 1)Υ(r, 2k)− kΥ(r, 2(k + 1)) (3.44)

We notice that the parametrized Gauss hypergeometric function Υ(·, n) appears with

different values for the parameter n in the integral w.r.t the next distance. To show this,

we evaluate the next integral

I(rk+3) =

∫ rk+3

0

rk+2I(rk+2)drk+2

= (1
2
)2
(

1
(k+1)k

)∫ rk+3

0

r
2(k+2)−1
k+2 Υ(1)(rk+2, k)drk+2

= (1
2
)3
(

1
(k+2)(k+1)k

)
r
2(k+2)
k+3

(
1
2
(k + 2)Υ(1)(rk+3, k)− 1

2
kΥ(1)(rk+3, k + 1)

)
= (1

2
)3
(

1
(k+2)(k+1)k

)
r
2(k+2)
k+3 Υ(2)(rk+3, k) (3.45)

where

Υ(2)(r, k) = 1
2
(k + 2)Υ(1)(r, k)− 1

2
kΥ(1)(r, k + 1) (3.46)
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Subsequently, we can compute the integrals up to I(rM)

I(rM) =

∫ rM

0

rM−1I(rM−1)drM−1

= (1
2
)M−k Γ(k)

Γ(M)
r
2(M−1)
M GM

k (γy) (3.47)

The function GM
k (·) plays a central role in the characterization of the average downlink

rate. This function depends mainly on the fading distribution of the channel between

the typical user and the serving BS, the size of the multicell M , and the index of the

serving BS k. We shall discuss the role of this function and evaluate its special cases in

the following section.

Substituting (3.47) in (3.37) we obtain

RM
k = 2

Γ(M)
(πλs)

M

∫ ∞

0

∫ ∞

0

r2M−1
M e−λsπr2MWI(Mγy) e−yrαM

y
GM

k (γy)drMdy (3.48)

Finally, by evaluating the inner integral w.r.t rM using integration by parts, the integral

in (3.48) simplifies to (3.38). �

Corollary 2. Considering a UDN environment which is limited by interference rather

than noise, the average rate of the downlink in (3.38) simplifies to

R̂M
k = RM

k |γ→∞ =

∫ ∞

0

GM
k (z)

z[WI(z)]M
dz (3.49)

Proof. Manipulating P(y) by using the change of variables z = γy, and taking the limit

as γ → ∞, P(γ−1z) is reduced to 1/[WI(z)]
M , which completes the proof. �

It is interesting to highlight that the result of the single association in (3.23) is a

special case of the above result in (3.49) by setting M = 1, k = 1, and considering that

G1
1(z) = 1−Mo(z)

3.5.2.2 Evaluation of the Function GM
k (·)

The function GM
k (·) is essential to compute the average downlink rate in Theorem (3)

and Corollary (2). In this section, we provide a recursive integral to evaluate the function

GM
k (·). This recursive integral significantly simplifies the computation of a closed-form

of GM
k (·) for arbitrary M,k. In addition, we provide a general integral form to further

simplify the computations of the recursive integral.
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Corollary 3. The function GM
k (z) can be evaluated to a closed-form by using the recursive

integral

GM
k (z) = 2k

r2kk+1

∫ rk+1

0

r2k−1
k GM

k+1(rk)drk (3.50)

The seed of this recursive integral is GM
M(rM) and it is expressed as:

GM
M(rM) = 1−Mo(r

−α
M β(rM)) (3.51)

where in the case of a Rayleigh fading channel Mo(z) = (1 + z)−1 and β(rk) = zrαk .

Moreover, evaluating this recursive integral involves integrals of the form

J =

∫
rmΥ(r, n)dz, (3.52)

which evaluates to

J = rm+1

(m+1)−n

(
Υ(r, n)− n

m+1
Υ(r,m+ 1)

)
(3.53)

Proof. We begin by computing RM
M from (3.33)

RM
M = 2(πλs)M

Γ(M)

∫ ∞

0

∫ ∞

0

r2M−1
M e−λsπr2MWI(Mγy) e

−yrαM

y

(
1−Mo(βr

−α
M )
)

drMdy (3.54)

comparing the result in (3.54) to (3.48), we can express GM
M as

GM
M = 1−Mo(βr

−α
k ) (3.55)

Proceeding in a similar manner and computing RM
M−1 from (3.33)

RM
M−1 =

2(πλs)M

Γ(M)

∫ ∞

0

∫ ∞

0

r2M−1
M

e−yrαM

y
e−λsπr2MWI(γy)×

2(M−1)

r
2(M−1)
M

(∫ rM

0

r
2(M−1)−1
M−1

(
1−Mo(βr

−α
M−1)

)
drM−1

)
drMdy (3.56)

Now, the comparison of the above result to (3.48) yields

GM
M−1 =

2(M−1)

r
2(M−1)
M

∫ rM

0

r
2(M−1)−1
M−1 GM

M(rM−1)drM−1 (3.57)

Continuing by computing RM
M−2 from (3.33), we obtain

RM
M−2 =

2(πλs)M

Γ(M)

∫ ∞

0

∫ ∞

0

r2M−1
M

e−yrαM

y
e−λsπr2MWI(γy)×∫ rM−1

0

2(M−1)

r
2(M−1)
M

(
2(M−2)

r
2(M−2)
M−1

(∫ rM−1

0

r
2(M−2)−1
M−2 GM

M(rM−2)drM−2

)
drM−1

)
drMdy (3.58)
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By comparing (3.58) to (3.48) we obtain

GM
M−2 =

2(M−1)

r
2(M−1)
M

∫ rM

0

r
2(M−1)−1
M−1 GM

M−1(rM−2)drM−1 (3.59)

Evidently, from the results (3.55), (3.57), (3.59) one can find the general result in

(3.50). In case of Rayleigh fading channels, Mo(βr
−α
k ) = 1

1+βr−α
k

and the evaluation of

GM
k for k ∈ {1, 2, . . . ,M−2} involves integrals of the hypergeometric function 2F1(·, ·, ·, ·)

of the form in (3.52) which evaluates to the general form in (3.53). This completes the

proof. �

In the following section we show some case studies of the function GM
k (z).

3.5.2.3 Case Study of the Function GM
k (·) (Rayleigh Fading)

In this section, we exploit the result in Corollary 3 to show how to use the recursive form

in (3.50). We give four examples for the cases where k ∈ {M,M − 1,M − 2,M − 3}. The

result in Corollary 3 is for Rayleigh fading channel where a closed-form simple result is

provided in each case.

Case k = M

The function GM
M(z) can be computed by using (3.51). In this case it is given by

GM
M(rM) = 1−Mo(r

−α
M β(rM)) =

β(rM)

β(rM) + rαM

=
zrαM

zrαM + rαM
(3.60)

This yields to the general form of GM
M(z)

GM
M(z) =

z

z + 1
(3.61)
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Case k = M − 1

In this case, we substitute k = M − 1 in (3.50)

GM
M−1(z) =

2(M−1)

r
2(M−1)
M

∫ rM

0

r
2(M−1)−1
M−1 GM

M(rM)drM

= 2(M−1)

r
2(M−1)
M

∫ rM

0

βr
2(M−1)−1
M−1

rM + β

= 2(M−1)

r
2(M−1)
M

r
2(M−1)
M

2(M−1) 2F1

(
1, n

α
; n
α
+ 1;− rαM

β

)
(a)
= 2F1

(
1, 2(M−1)

α
; 2(M−1)

α
+ 1;−1

z

)
= Υg(z, 2(M − 1)) (3.62)

In step (a), we substitute β = β(rM) = zrαM .

Case k = M − 2

Similarly, we substitute k = M − 2 in (3.50)

GM
M−2(z) =

2(M−2)

r
2(M−2)
M−1

∫ rM−1

0

r
2(M−2)−1
M−2 GM

M−1(rM−1)drM−1

= 2(M−2)

r
2(M−2)
M−1

∫ rM−1

0

r
2(M−2)−1
M−2 2F1

(
1, 2(M−1)

α
; 2(M−1)

α
+ 1;− rαM−1

β

)
drM−1

(a)
= (M − 1)Υg(z, 2(M − 2))− (M − 2)Υg(z, 2(M − 1))

= Υ(1)
g (z,M − 2) (3.63)

We used the recursive form in (3.53) to evaluate the integral in step (a) where m =

2(M − 2)− 1 and n = 2(M − 1). Also, we substitute β = β(rM−1) = zrαM−1

Case k = M − 3

In this case, we substitute k = M − 3 in (3.50) and use (3.53) with m = 2(M − 3) − 1.

Since GM
M−2 is composed of two Υ(·, ·) with respective parameters n = 2(M − 1) and

n = 2(M − 2), we use the respective n with each instance. This yields to

GM
M−3(z) =

1
2
(M − 1)Υ(1)

g (z,M − 3)− 1
2
(M − 3)Υ(1)

g (z,M − 2)

= Υ(2)
g (z,M − 3) (3.64)

The provided case studies allow the numerical computation of multicell sizes up to M =

4. Extending these results to higher sizes, i.e., (M > 4), can be done following the same

approach. The function GM
k is tabulated in Table 3.1 for M ≤ 4 and k ∈ {1, 2, . . . ,M}.
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Table 3.1: Some examples for the function GM
k (Rayleigh Fading)

GM
M(z) z

z+1

G2
1(z) 2F1(1,

2
α
, 2
α
+ 1,−1

z
)

G3
2(z) 2F1(1,

4
α
, 4
α
+ 1,−1

z
)

G3
1(z) 2 2F1(1,

2
α
, 2
α
+ 1,−1

z
)− 2F1(1,

4
α
, 4
α
+ 1,−1

z
)

G4
3(z) 2F1(1,

6
α
, 6
α
+ 1,−1

z
)

G4
2(z) 3 2F1(1,

4
α
, 4
α
+ 1,−1

z
)− 2 2F1(1,

6
α
, 6
α
+ 1,−1

z
)

G4
1(z) 3 2F1(1,

2
α
, 2
α
+ 1,−1

z
)− 3 2F1(1,

4
α
, 4
α
+ 1,−1

z
)+

2F1(1,
6
α
, 6
α
+ 1,−1

z
)

Also, it is important to realize that the function Υ(r, .) and Υg(z, .) have similar structure

except that the latter is a simplified version of the former. This simplification takes place

by substituting β = zrα in Υ(r, .). Another key point is that the function GM
k is a weighted

sum of the basis function Υg(z, n) for different values of the parameter n.

3.5.2.4 Network Aggregate Average Rate (NAAR)

The network aggregate average rate, denoted by Rnaar, is defined as the aggregate average

downlink rate of all users in a given area normalized by this area and is expressed in (3.9).

To further simplify, considering the interference-limited scenario in UDN:

Rnaar = λu

M∑
k=1

BR̂M
k

= λuB

M∑
k=1

∫ ∞

0

GM
k (z)

z[WI(z)]M
dz

= λuB

∫ ∞

0

M∑
k=1

GM
k (z)

z[WI(z)]M
dz

= λuB

∫ ∞

0

∑M
k=1 G

M
k (z)

z[WI(z)]M
dz

= λuB

∫ ∞

0

GM(z)

z[WI(z)]M
dz. (3.65)
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Considering Rayleigh fading and using Corollary 3, GM(z) can be further simplified to:

GM(z) =
M∑
k=1

GM
k (z)

=
z

z + 1
+ (M − 1) 2F1(1,

2
α
, 2
α
+ 1,−1

z
) (3.66)

3.6 Simulation Results

In this section, we assess the accuracy of the presented analytical framework through

simulations. We also show the impact of different system parameters on the average

downlink rate. To this end, we consider a simulation environment where the small cells’

positions and the users’ positions are drawn from PPP with the respective densities. Also,

we generate independent channel fading gains which follow Rayleigh and Rician fading

distributions to show the effect of the channel on the average downlink rate. Moreover,

we study the impact of the multicell size M on the network performance in terms of the

average downlink rate.

3.6.1 Impact of the multicell size

Figure 3.3 depicts the average downlink rate of the connections to the BSs in a multicell of

size 4. The rate is an increasing function of the small cells density. However, in the prop-

agation environments of higher pathloss exponents, the average downlink rate improves

significantly. This can be explained in the light of the fact that higher pathloss exponents

translate into less interference impact due to the high attenuation of the interference

signals.

On the other side, the average rate of the link to the farthest BSs is less than that of

the nearest BS which reflects the fact that the link to the farther BSs is always weaker

than the link to the nearest BS. At the same time, the rate of the connections to the

farther BSs is considerably high especially at higher cell densities. Undoubtedly, connect-

ing using the whole available bandwidth to the nearest BS provides the user with the

maximum rate. However, this capacity would be censored by the limits on the backhaul

capacity of this individual cell. In this way, the splitting of the user traffic to different

BSs in its neighborhood provides the user with a data-shower where each data path is

limited by the corresponding backhaul capacity of this cell only. To further show the
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Figure 3.3: Average downlink rate with the small cells density over Rayleigh fading in multiple association

for different pathloss exponents. Multicell size 4 is considered with user density λu = 500 users/Km2.

The analytical results are computed using Corollary (2).

impact of the multicell size on the performance, Figure 3.4 depicts the network aggregate

average rate for different multicell sizes. The results show significant improvement in

the network performance with larger multicell sizes. However, this comes with a price,

i.e., the increasing complexity of the user equipment.

3.6.2 Impact of the small cells density

Figure 3.5 depicts the impact of the small cells density on the average downlink rate.

The results show the significant boost in the average downlink rate with the increasing

small cells density for different pathloss exponents. This improvement shed lights on the

important impact of the idle mode capabilities on mitigating the interference in dense

networks. In other words, turning off the idle BSs is vital for the fruition of the gains

of network densification. In Figure 3.5, we compare with the results presented in [1] to

show the impact of this important parameter on the performance of the network. In

addition, Figure 3.4 depicts the significant improvement in the network aggregate average

rate with the higher small cell densities. Higher BSs density brings the user much closer

to the serving BSs. Consequently, the link quality improves significantly leading to the
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Figure 3.4: Network aggregate average rate with the small cells density over Rayleigh fading in multiple

association for different pathloss exponents. A user density λu = 500 users/Km2 and various multicell

sizes are considered. The analytical results are computed using Corollary (2) and Eq. (3.65) and (3.66).

considerable increase in the average downlink rate and the network aggregate average

rate.

3.6.3 Impact of the users density

Figure 3.6 shows how the average downlink rate decreases with the users density. This is

a result of the activation of more BSs as the density of users increases. More active cells

yield to more interference in the system, and hence the SINR is severely affected. However,

in a realistic situation the density of active users is moderate and in the range of 300 −

600 users/km2 [21]. In this scenario, the impact of the activation of many cells in multiple

association can be considered marginal. However, if we considered the network aggregate

average rate as depicted in Figure 3.6, the network performance improves significantly

with higher users density. More users in the network activate more BSs which enhances

the frequency reuse of the available bandwidth. Although, with more active BSs the

network experiences more interference, aggregating more component carriers for each

user and reusing the available bandwidth more compensates for the negative impact of

the interference.
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Figure 3.5: Average downlink rate in single association with the small cells density for Rayleigh fading

channel in multiple association for different pathloss exponents. User density λu = 500 users/Km2 is

considered. The results are compared with the results in [1], and the analytical results are computed

using Corollary (2).

3.6.4 Impact of the fading channels

In order to study the impact of fading channels on the average downlink rate, we con-

sidered the comparison between Rayleigh fading and Rician fading distributions. To this

end, we considered the MGF of a Rayleigh fading channel Mo = (1 + z)−1 [128, Table

(2.2)]. Correspondingly, we consider the approximation of Rice fading channels using

Nakagami-m fading which is a more general fading distribution whose parameters can

be adjusted to fit different fading scenarios [130]. The MGF of Nakagami-m fading is

Mo = (1 + z/m)−m [128, Table (2.2)] where for Rayleigh fading distribution m = 1.

Remarkably, the Nakagami-m distribution usually gives accurate representation of land-

mobile and indoor-mobile multipath propagation which is most appropriate in UDNs [128].

Interestingly, there is a one-to-one mapping between the m parameter and the Rician K

factor
(
m = (K+1)2

2K+1

)
, which allows Nakagami-m distribution to closely approximate the

Rice distribution [128]. On the positive side, considering the Nakagami-m approximation

to the Rician fading slightly contribute to the complexity of the numerical computations

of the average downlink rate. In this simulation scenario, we considered K = 32 [87, Eq.
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Figure 3.6: Downlink rate with the users density over Rayleigh fading in multiple association for different

pathloss exponents. Multicell size 2 is considered with small cells density λs = 104 cells/Km2. The

analytical results are computed using Corollary (2).
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Figure 3.7: Network aggregate average rate with the users density over Rayleigh fading in multiple

association for different pathloss exponents. Different multicell sizes and a small cells density λs =

10000 cells/Km2 are considered. The analytical results are computed using Corollary (2). and Eq. (3.65)

and (3.66) .
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Figure 3.8: Average downlink rate in single association with the small cells density for different fading

channels. Pathloss exponent α = 4 is considered with user density λu = 500 users/Km2.

(3)] where the average distance to the tagged BS (server) in dense networks is usually in

the considered range of d < 18 m.

In Figure 3.8, the average downlink rate is plotted considering Rician and Rayleigh

fading channels in the signal link. Due to the proximity of the users to the tagged BS,

the probability of LOS transmission considerably increases. As depicted in Figure 3.8,

the average downlink rate in the case of Rician fading channel is significantly higher than

the case of Rayleigh fading channel.

3.7 Conclusions

We developed a mathematical framework for the computation of the average downlink

rate of the connections from the typical user to many BSs in its neighborhood. The

framework provides a high degree of accuracy as confirmed by our extensive simulations

for the considered system model. The performance of the multiple association sheds light

on the gains and losses of such association scheme. Although the average rate decreases

when connecting to farther cells, this is compensated by expanding beyond the bottleneck

of the limited backhaul capacity. The aggregate downlink rate of the connections to many

cells exceeds the limits imposed by the backhaul capacity of the individual cells. Moreover,
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considering general channel fading distributions in both the signal and the interference

links provides a way to handle different propagation environment in dense networks. In

addition, the presented framework provides a starting point to fully characterize the

performance of multiple association in dense networks in subsequent investigations.
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4. Coverage and Capacity Analysis

considering SEPL in UDNs

4.1 Introduction

Network densification is widely believed, by both industry and academia, as the potential

technology that would satisfy the stringent requirements of the 5G networks [58,59,110].

According to [131], the capacity of wireless communication has expanded 1 million times

in 50 years (1950 − 2000), Astonishingly, the gain achieved by spatial reuse through

network densification was 2700x, where other factors such as: wider spectrum, better

medium access/modulation techniques and better coding techniques, have contributed by

15x, 5x and 5x, respectively [21]. Based on this successful history, Ultra-Dense Networks

(UDNs) are expected to dominate other solutions in approaching the 5G networks in the

near future. In UDNs, a surplus of small cells is deployed in the hotspots where enormous

amounts of traffic is generated. Increasing the density of small cells brings the serving

cells much closer to the end users which provides a two-fold gain where better link quality

is achieved and more spatial reuse is accomplished. This scenario would define a new

wireless environment that has never been experienced in mobile communication where

the density of base stations (BSs) outpaces the density of active users [54, 58].

Evidently, the network densification cannot grow indefinitely and there will be funda-

mental limits [132] and more importantly economical and business limits on the density

of UDNs [24]. Nevertheless, the high density of BSs in UDNs is the most distinguishing

feature of such networks. Quantifying how dense is a UDN can be determined in terms

of the relative density of the BSs with regard to the active users’ density (e.g. see Defini-

tion 1 in [54] and the references therein). In 2014, Qualcomm has provided a prototype

implementation for an early UDN. In particular, the world’s densest LTE small cell de-
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ployment was reported by Qualcomm in [59] with cell density of 1107 cells/km2, average

site-to-site distance of 22m, minimum site-to-site distance of 7m and a total coverage area

of 0.028 km2. Moreover, the trends reported for the surge in mobile traffic demands urge

more dense network deployments to come in the near future.

Considering the realistic modeling of the special features of UDN, in this work we em-

ployed a Stretched Exponential Path-Loss (SEPL) model where the signal power decays

with the distance r as e−αrβ . SEPL model accurately captures the signal propagation prop-

erties in UDN environments featuring short distances between the (serving/interfering)

BSs and the associated users. A recent study considers this path loss model which is better

fit to the propagation environment in UDNs (e.g., see [2, Table I] where a comprehensive

survey of several path loss models is provided).

BSs equipped with idle mode capability turn off to mitigate the interference [21] in

case there are no connected users. The control of this capability can be classified into user

equipment driven, small cell driven, and core network driven approaches [133]. Energy

efficient operation of the network and interference mitigation are of the main benefits

of such capability. In this chapter, we study the impact of idle mode capability on

the network performance considering a SEPL model. We provide an accurate analytical

model to compute the coverage probability and the network capacity in terms of network

throughput and area spectral efficiency (ASE).

The deployment of small cells is usually done by consumers in case of indoor femtocells

and by operators in case of outdoor picocells. In both cases, the small cells are placed

randomly due to the less restrictive network planning guidelines. In quest of an accurate

modelling for such location randomness, stochastic geometry stems as a perfect tool (e.g.,

see [104–106]). The modelling and analytical tools provided by stochastic geometry are

widely used in investigating problems in cellular, heterogeneous, and dense networks [104].

Small cells’ locations in two-dimensional or three-dimensional space are modeled as a point

process (PP) where the Homogeneous Poisson Point Process (HPPP) is one of the most

tractable PP. In HPPP, the number of points in some area A has a Poisson distribution

with an average of λA, where λ is the cells’ density. Moreover, the points abstracting the

small cells are uniformly distributed in this area [106].
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4.2 State-of-the-Art and Contributions

In this chapter, we study the downlink performance of UDNs considering a more accurate

path loss model, i.e., SEPL model. In [2], the SEPL model is considered to evaluate

the performance of a dense cellular network. However, it is assumed that all BSs are

turned on and each cell has exactly one active user. This implies a very high number of

active users at very high BSs densities, which would not capture the reality of cellular

networks where the number of active users in real traffic scenarios is typically bounded by

600 users/km2 [61]. In [54] a closed-form is provided for the asymptotic average downlink

rate in a UDN scenario, however, a standard decaying path loss model r−α is used, where

r is the link distance and α is the path loss exponent. A multi-slope path loss model is

investigated in [92] where an activity probability of one is assumed.

We differently consider the idle mode probability of small cells in UDNs, thus, we

assume that a given user connects to the nearest BS and if there exist a BS with no

connected users, it is turned off to mitigate its interference. Based on this assumption, we

draw different conclusions which better reflect the performance of network densification

considering SEPL model. Our findings reveal that the idle mode capabilities of the BSs

provide a very useful interference mitigation technique besides the energy efficiency of

operating such dense networks. Another very interesting insight is that the system inter-

ference in idle-mode capable UDNs is upper-bounded by the interference generated from

the active BSs, and in turn this is upper-bounded by the number of active users where

more active users is translated to more interference in the system. This means that the

interference becomes independent of the density of the small cells as this density increases.

In the light of the above discussion, we conclude that the coverage probability converges

to a constant value at very high small cell densities where this value is a function of the

user’s density.

4.3 System Model

In this investigation, we consider a dense network comprised of a single tier of small

cells where we assume that the BSs are equipped with advanced idle mode capabilities

to perfectly mitigate their interference in case of inactivity due to lack of connected
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users. The BSs spatial locations are modeled as a Homogeneous Poisson Point Process

(HPPP) Φs with density λs. The users also form another HPPP Φu with density λu.

We assume that in UDN the density of BSs is higher than the density of the active users,

i.e., λs ≫ λu leaving many of the BSs in idle mode where no users are connected [21]. All

BSs and users are assumed to be equipped with a single antenna, the BSs transmit with

a unit power, and all component carriers are utilized in each cell, i.e., frequency reuse

factor of one. We evaluate the performance metrics for a typical mobile user located at

the origin, and without loss of generality, this represents the average of the performance

for all users and is allowed by Slivnyak’s theorem [105]. The typical user connects to the

BS providing the maximum average received power, i.e., the closest BS. We refer to the

serving BS of the typical user as the tagged BS bo. Notably, the distance R from any BS

(serving or interfering) to the typical user is a random variable due to the randomness of

BSs locations. The probability distribution function (PDF) of this distance is expressed

as [20]:

fR(r) = 2πλsre
−πλsr2 (4.1)

Moreover, we consider a propagation environment that consists of large scale fading

attenuation as well as small scale fading effects. The large scale fading component is

modeled by a stretched exponential decaying power law with parameters (α and β) [2],

thus the received signal power at a distance r from a BS transmitting with a unit power is

e−αrβ . All small cells are assumed to have multipath fading channels that are independent

and identically distributed (i.i.d) to model the small scale fading and are assumed to follow

Rayleigh distribution. Hence, the power fading channel gain of the serving BS, ho, and

interfering BSs, hb follow exponential distribution with mean one (∼ Exp(1)).

We consider the interference-limited scenario which is the typical scenario in UDN.

Accordingly, the downlink signal to interference ratio (SIR) can be expressed as:

SIR =
S
Ia

=
hoe

−αrβ∑
b∈Φa/bo

hbe−αrβb
(4.2)

where Φa ⊂ Φs is the interfering BSs point process which is the set of all active cells.

In this study, we consider three performance metrics:

1. Downlink Coverage Probability Pc(τ): The coverage probability is defined as:

Pc(τ) = P {SIR ≥ τ} (4.3)
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where τ is the coverage threshold.

2. Network Throughput Ra: The network throughput is defined as [74]:

Ra = λaPc(τ) ln(1 + τ) nats/sec/Hz, (4.4)

where λa = paλs is the density of the active BSs represented by the point process

Φa.

3. Area Spectral Efficiency Ase: The area spectral efficiency is defined as [2]:

Ase = E [λa ln(1 + SIR)] nats/sec/Hz (4.5)

where the expectation is with respect to the channel fading gains and the random

distances of the links to the serving and interfering BSs (e.g., see the definition of

SIR in (7.1)).

4.4 Analytical Results

4.4.1 Downlink Coverage

In this section, we analyze the downlink coverage probability of an interference-limited

UDN as defined in (7.4). In the following theorem we present the main result considering

a SEPL model with general parameters α and β.

Theorem 1. The downlink coverage probability of a UDN satisfying the system model

presented in Section 4.3 is given by:

Pc(τ) = 2πλs

∞∫
0

re−πλsr2LIa(τe
αrβ)dr (4.6)

where:

LIa(τe
αrβ) = exp

(−1)
2
β
2πpaλsτ

βα
2
β

1∫
0

(
ln(x)− αrβ

) 2−β
β

1 + τx
dx

 (4.7)

Theorem 1 provides a general result, yet not simple to draw conclusions or intuitive

insights. For the sake of simplicity, in the following Corollary, we study a less general

case with the special values β = 2
n+1

where n ∈ {0, 1, 2, 3, · · · } which corresponds to the

values β = 2, 1, 2
3
, 1
2
, · · · .
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Corollary 1. Considering the special case β = 2
n+1

where n ∈ {0, 1, 2, 3, · · · }, the downlink

coverage probability stated in Theorem 1 simplifies to

Pc(τ) = 2πλs

∞∫
0

r exp
{

n+1∑
k=0

paλsak(τ)r
2k

n+1

}
dr (4.8)

where

ak(τ) =


π(n+1)!
k!αn−k+1 Li(n−k+1)(−τ), 0 ≤ k ≤ n.

− π
pa
, k = n+ 1.

(4.9)

and Li(k)(·) is the kth order poly-logarithmic function [134], which can be expressed as:

Li(n−k+1)(τ) = − τ

Γ(n− k + 1)

∞∫
0

xn−k

ex − τ
dx (4.10)

Remark 1: The downlink coverage probability reduces to its simplest form at β = 2

which corresponds to n = 0, and it is expressed as:

Pc(τ) = exp
{
−πpaλs

α
ln(1 + τ)

}
. (4.11)

This follows from Corollary 1 by simple manipulations.

Remark 2: The idle mode capabilities of the BSs provide a very useful interference

mitigation technique besides the energy efficiency of operating such dense networks. More

interestingly, the results in Theorem 1 and Corollary 1 provide insights for the impact of

the idle mode probability on the coverage probability. The term paλs shows up in the

expressions of the coverage probability in (7.8), (7.9), (7.12) where it represents the density

of the active BSs, or in other words, the interfering BSs. As the density of the small cells

λs increases, the term paλs converges to the user’s density λu, i.e., lim
λs→∞

paλs = λu. This

provides a very interesting insight; the system interference in idle-mode capable UDNs

is upper-bounded by the interference generated from the active BSs, and in turn this

is upper-bounded by the number of active users where more active users is translated to

more interference in the system. This means that the interference becomes independent of

the density of the small cells as this density increases. In the light of the above discussion,

we conclude that the coverage probability converges to a constant value at very high small

cell densities where this value is a function of the user’s density.
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4.4.2 Network Throughput

The network throughput can be expressed as a function of the coverage probability as

given by the definition in (4.4). In the following corollary, we provide an expression for

the network throughput in a general case and two special cases.

Corollary 2. The network throughput of a UDN satisfying the system model presented

in Section 4.3 is given by:

Ra = 2πpaλ
2
s ln(1 + τ)

∞∫
0

re−πλsr2LIa(τe
αrβ)dr, (4.12)

where LIa(·) is given in (7.8). Moreover, in the special case β = 2
n+1

where n ∈

{0, 1, 2, 3, · · · }, the network throughput further simplifies to

Ra = 2πpaλ
2
s ln(1 + τ)

∞∫
0

r exp
{

n+1∑
k=0

paλsak(τ)r
2k

n+1

}
dr (4.13)

where ak(·) is given in (7.10). Furthermore, for the special value β = 2, the network

throughput can be reduced to

Ra = paλs ln(1 + τ) exp
{
−πpaλs

α
ln(1 + τ)

}
(4.14)

4.4.3 Area Spectral Efficiency

In the following theorem, we provide the main result of area spectral efficiency.

Theorem 2. The area spectral efficiency of a UDN satisfying the system model presented

in Section 4.3 is given by:

Ase = 2πpaλ
2
s

∞∫
0

∞∫
0

re−πλsr2LIa(we
αrβ)

1

w + 1
drdw, (4.15)

where LIa(·) is given in (7.8).

The area spectral efficiency expression in Theorem 2 requires three folded integrals for

the evaluation of numerical result. In quest of more tractable results where insights can

be read out, we provide the following corollary.
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Corollary 3. Considering the special case β = 2
n+1

where n ∈ {0, 1, 2, 3, · · · }, The area

spectral efficiency stated in Theorem 2 simplifies to

Ase = 2πpaλ
2
s

∞∫
0

∞∫
0

exp
{

n+1∑
k=0

paλsak(w)r
2k

n+1

}
rdrdw
w + 1

(4.16)

where ak(·) is given in (7.10). Moreover, for the special value β = 2, the area spectral

efficiency can be further reduced to

Ase =
α

π
(4.17)

4.5 Simulation Results

In this section, we assess the accuracy of the analytical results by simulating the UDN

model provided in the system model. The network is realized by the generation of HPPP

with corresponding densities for the small cells and the users. We consider a simulation

area of 1 km2 where we generated 1000 spatial realizations of the PPP. The channel

variation is simulated by a realization of 100 time slots drawn from an exponential random

variable with a mean one. We consider a SEPL model e−αrβ to compute the path losses

for the serving BS links as well as the interference links.

Figure 4.1 depicts the downlink coverage probability versus the coverage threshold τ .

The results show that the coverage in UDNs is significantly high even in high coverage

thresholds, thanks to turning off the idle BSs. The impact of mitigating the interference

of the inactive BSs is further highlighted by contrasting it with the coverage probabil-

ity results in [2] where the coverage probability drops significantly in higher coverage

thresholds. The impact of users density is also depicted where higher users’ density is

translated to more active BSs which in turn adds more interference to the system. Thus,

the coverage probability is less in higher users’ density.

This conclusion is further settled by assessing the impact of higher small cells’ densities

on the coverage probability. Figure 4.2 depicts the coverage probability versus the small

cells’ density λs where the coverage probability is very high and almost invariant with

small cells’ density. To explain, turning off the idle BSs defines an upper bound for the

interference where this bound is solely controlled by the user’s density.

The network throughput versus small cell’s density is depicted in Figure 4.3 for differ-

ent users’ density. The results show that the network throughput increases with higher
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Figure 4.1: Downlink coverage probability versus the coverage threshold τ for different user’s density

with small cells’ density λs = 104 cells/km2. The results are compared to the results in [2] which assumes

that all BSs are active and are serving exactly one user each.
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Figure 4.2: Downlink coverage probability versus the small cells’ density λs for different user’s density

and coverage threshold τ = 10 dBs. The results are compared to the results in [2].

small cells’ density, also it improves significantly with higher user’s density. Moreover, the

network throughput saturates at a value which depends on the number of active users.
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To explain, more active users activate more BSs which in turn improves the network

throughput. In Figure 4.4, we compare our results to the results in [2] which show a dif-

ferent behavior, the network throughput is maximized at a certain BSs density and then

drops exponentially to zero with higher small cells’ density. This is due to the increasing

unbounded interference based on the assumptions of [2] where all BSs are turned on and

each BS serves exactly one user. In our work, the consideration of idle mode capabilities

drives to different conclusions. Interestingly, our results converge to the results in [2] at

very high users’ density as indicated.
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Figure 4.3: Network throughput versus the small cells’ density λs for different user’s density and coverage

threshold τ = 10 dBs..

Figure 4.5 depicts the area spectral efficiency versus the small cells’ density for different

users’ density considering the special case β = 1. The results show that the area spectral

efficiency increases with higher small cells’ approaching a saturation value. Also, the ASE

is independent of the users’ density which is also confirmed in the special case β = 2 in

(4.17).

In conclusion, both the ASE and the network throughput saturate at a given small

cell density for the considered path loss model leaving no room for enhancing the network

performance by increasing the small cell density beyond this density. Moreover, turning

off the idle BSs keeps the network performance from dropping to zero at very high cell

densities.
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threshold τ = 10 dBs. The results are compared to the results in [2].

101 102 103 104

Small cell density (cells/km2)

1.9

2

2.1

2.2

2.3

2.4

2.5

A
re
a
sp
ec
tr
al

effi
ci
en
cy

(b
p
s/
H
z/
k
m

2
)

×105 α = 1.037,β = 1

Ref[2] λu = λs

Analysis λu = 100 users/km2

Analysis λu = 600 users/km2
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results are compared to the results in [2].

4.6 Conclusions

We investigated the downlink performance of UDNs where inactive BSs are turned off to

mitigate their interference. We employ SEPL model to capture the propagation environ-

ment in UDN where the serving and interfering BSs are within short distances from the
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user. The idle mode capability imposes an upper-bound on the system interference where

at very high small cells’ densities the number of active BSs converges to the number of

the active users, e.g., each user activates the closest BS to its location. The impact of

bounding the interference on the network performance influences the coverage as well as

the capacity of the network. To summarize, under the utilized assumptions, the cover-

age probability as well as the capacity are invariant with the small cells’ density at high

densities. However, it is strongly tied to the user’s density. Moreover, the coverage prob-

ability and the network throughput never drop to zero at very high BSs density due to

the interference upper-bound set by the density of the active users.
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5. Physical layer security in UDNs

5.1 Introduction

In 5G networks where Internet of Things (IoT) is a key player, low-cost security is in-

evitable [58]. For this reason, Physical Layer Security (PLS) stems as an important and

effective solution. PLS signifies the attempt to achieve information-theoretic security in

digital communication systems by exploiting the randomness in the transmission media.

Particularly, PLS can be realized in wireless networks by designing effective channel cod-

ing techniques [135]. This means that PLS would provide the wireless communication

networks with a cheap security solution in terms of the computational complexity where

there is no need for sophisticated encryption schemes.

In PLS context, the maximum achievable transmission rate to the legitimate user,

at which the eavesdropper is completely confused and cannot decode the messages, is

termed as the secrecy capacity [135]. The close proximity of the users to the serving base

stations (BSs) in Ultra-Dense Network (UDN)environments suggests the positivity of the

secrecy capacity [56, 136]. In this investigation, we aim to investigate the inherent high

secrecy capacity of UDNs which plays a key role in providing a highly secured connectivity

alternative. For a comprehensive survey of PLS in wireless networks, we refer the reader

to [135] and the references therein.

5.2 State-of-the-Art

In [95], the secrecy throughput along with secrecy probability are investigated consider-

ing a heterogeneous network (HetNet). The secrecy outage probability is studied in a

multiple radio access technology (multi-RAT) scenario in [96]. In [97], the secrecy rate

in a multi-tier HetNet is investigated considering generalized fading model; however, the
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significant role of the relative density of the users with respect to the small cells’ den-

sity is not considered. A dense network environment was assumed in [98] to validate

the approximation of the secrecy outage probability. However, the key features of dense

networks, such as the users’ relative density, the high probability of idle BSs and the high

probability of Line-of-Sight (LOS) transmission [58], were not considered. Furthermore,

the analytical approximations provided in [8] are shown to be loose as the BSs density

gets high, contradicting one of the main aspects of dense networks.

5.3 Contributions

The main contribution of this investigation is the derivation of the average secrecy rate

in UDNs considering their distinct traits, namely, idle mode BSs and LOS transmission.

The high density of small cells makes it quite probable for a BS to have no connected

users. Consequently, turning off those inactive BSs provides a simple yet effective inter-

ference mitigation scheme. Moreover, the close proximity of the users/Eves to the BSs

increases the probability of having a LOS transmission in both the main link and the leak-

age link. To this end, we exploit the standard moment generating function (MGF)-based

approach [1] to derive relatively simple and easily computable expressions for the average

secrecy rate considering the idle mode probability and Rician fading channel. The result

of this investigation avoids the system level simulations where the performance evaluation

complexity can be greatly reduced with the aid of the derived analytical expressions. Fi-

nally, we highlight that two eavesdropping scenarios have been considered in the literature;

active eavesdropping and passive eavesdropping. In active eavesdropping, the instanta-

neous channel state information (CSI) of the eavesdropper is known to the transmitter

through feedback. Practical scenarios for this case includes broadcast channels where all

users except the intended user can be dealt as eavesdroppers. In this scenario, perfect

secrecy is always guaranteed. In passive eavesdropping, the CSI of the main channel is

available while the CSI of the eavesdropper’s channel is not known. As such, the transmit-

ter selects a constant secrecy rate and perfect secrecy is not always guaranteed [137]. The

considered analysis in this investigation provides a guaranteed average secrecy rate in the

case of active eavesdropping while in the case of passive eavesdropping it provides statisti-

cal characterization of the performance of secrecy communication in UDNs. Specifically,
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one can gain insights of how the secrecy performance in UDN scales with the density of

various network nodes, namely, the legitimate users, the eavesdroppers, and the BSs.

5.4 System Model

Tagged 

Base Station

Idle 

Base Station

Typical

User

MDE

Active

Base Station

D

D’

Figure 5.1: The main link connects the typical user to the tagged BS and the leakage link connects the

tagged BS to the most detrimental eavesdropper (MDE).

In this investigation, we consider the downlink of a UDN comprised of small cell BSs

which transmit at a power Ps. The BSs locations are spatially distributed according to a

homogeneous PPP Φs with a density λs. The locations of the mobile stations (MSs), which

are assumed to be held by legitimate users, are drawn from another homogeneous PPP

Φu with a density λu which is independent from the BSs PPP. We assume that passive

eavesdroppers (Eves) coexist with the legitimate users and are attempting to intercept

the secret messages intended to these legitimate users. We further assume that the Eves

locations are distributed according to a homogeneous PPP Φe with a density λe which

is also independent from both Φs and Φu. According to the definitions of UDN [58], we

assume that the density of the BSs is much greater than the density of the active MSs,

i.e., λs ≫ λu. Also, we consider scenarios where the density of the Eves is less than the

density of users (i.e., λe < λu) which is mostly the case in various environments. We

utilize a standard propagation model with a path loss (α > 2) where the received signal

power at a distance d from a BS is Pd−α. The small scale channel fading considered in

this study accounts for the fundamental properties of UDNs, where LOS propagation is

most probable. Thus, we assume that the main link hm between the legitimate users and

the BSs is modeled as a Rician channel with a parameter Km. Furthermore, we model
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the leakage link he representing the channel between the Eves and the transmitting BS

with another Rician fading channel with a parameter Ke.

5.5 Analytical Results

In this section, we evaluate the average secrecy rate R̄s = E(Rs) in UDNs. Denote by Rs

the secrecy rate which is given by [136]

Rs = [Rm −Re]
+ (5.1)

where [x]+ = max {x, 0}, Rm is the rate of the main link and Re is the rate of leakage link.

In UDN environments, the probability of nonzero secrecy rate is very high (i.e., P{Rs >

0} > 0.95) [56, 136]. Thus, the secrecy rate can be approximated to:

Rs ≈ Rm −Re (5.2)

and hence, the average secrecy rate is then given by:

R̄s ≈ R̄m − R̄e (5.3)

where R̄m is the average rate of the main link and R̄e is the average rate of the leakage

link.

Having considered this approximation, one can evaluate the average rate of each link

individually. The main link connects the typical user at the origin of the system of

coordinates D with the tagged BS, which is the nearest BS according to the considered

association criterion. Taking another system of coordinates D′, the leakage link is the

link connecting the tagged BS at the origin of the new coordinates to the nearest Eve

or in other words the most detrimental eavesdropper (MDE) as depicted in Figure 5.1.

We assume non-colluding Eves in this investigation [135], where each Eve decodes the

intercepted messages of the legitimate users independently, i.e., there no cooperation

between the Eves. Thus, the worst case information leakage considers only the MDE.

In what follows, we proceed in the analysis starting with the leakage link, and following

similar line of thought, we provide the analysis of the main link.

5.5.1 Leakage Link

In the system of coordinates D′, we consider the tagged BS as a typical point where the

nearest Eve is considered as the MDE. The average rate of the leakage link from this
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typical BS to the MDE can be expressed as:

R̄e = 2πλe

∫ ∞

0

ζe−πλeζ2E
{

ln
(
1 +

Psheoζ
−α

σ2 + Ie(ζ)

)}
dζ (5.4)

where E{·} denotes the expectation operator, heo is the channel gain of the leakage

link, ζ is the distance between the typical BS bo and the nearest Eve, and Ie(ζ) =∑
b∈Φa/bo(ζ)

Pshebζ
−α
b is the aggregate interference in the leakage link from all active BSs

except the tagged BS, bo. We consider BSs equipped with idle mode capability where

an idle BS is turned off to mitigate its interference. In this scenario, the PPP Φa ⊂ Φs

is a thinned version of the small cells point process Φs with a probability of activation

pa = 1 − po where po is the idle mode probability. It is worth mentioning that Ie(ζ)

approximates the interference seen by the MDE to the interference at the typical BS.

In the following theorem, we provide a tractable expression for the average rate of the

leakage link. UDN environments are rather interference limited. Thus, we consider eval-

uating the rate of the leakage link where the noise is negligible relative to the interference

(i.e., σ2 → 0). This assumption always holds in dense cellular networks (λs > 10−3) for

any pathloss exponent, and for traditional sparse cellular networks (λs < 10−4) for low

pathloss exponents (α < 4) [1].

Theorem 1. The average rate of the leakage link from the tagged base station of the

typical user to the most detrimental eavesdropper (MDE) in the downlink considering

interference limited scenarios can be approximated as:

R̄e ≈
∫ ∞

0

1−Meo(z)

zJIe(z)
dz (5.5)

where:

JIe(z) = 1− (1− po)
λs

λe

+ (1− po)
λs

λe

ZIe(z) (5.6)

ZIe(z) = MIe(z) + TIe(z) (5.7)

TIe(z) = Γ(1− 2
α
)

∞∑
j=0

zj+1M(j)
Ie
(z)
[
Γ(2− 2

α
+ j)

]−1 (5.8)

M(j)
Ie
(z) = E

{
hj+1
eb e−zheb

}
(5.9)

and, Meo(z) is the MGF of the useful signal fading channel heo in the leakage link.

Proof. Using the standard MGF approach [1] and considering [124, Lemma 1] with N =
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M = 1, the expectation in (5.4) can be expressed as:

E
{

ln
(
1 +

Psheoζ
−α

σ2 + Ie(ζ)

)}
=

∫ ∞

0

MIe(γz; ζ)
(
1−Meo(γζ

−αz)
) e−z

z
dz (5.10)

where γ = Ps/σ
2 is the signal-to-noise ratio (SNR), MIe(.; ζ) is the MGF of the approx-

imated aggregate interference in the leakage link. This interference is approximated as

the interference generated by all interferes that lie outside a disk of radius ζ and centered

at the tagged BS of the typical user. A closed form expression for MIe(.; ζ) is derived

in [1, Eq. (36)]. In here, we consider a UDN which is featured by the high density of the

small cells and hence a high probability of idle BSs po. Therefore, we consider the active

BSs only in the evaluation of the aggregate interference [58]. A given BS is active if at

least one user is associated to it. The probability of BS activation pa = 1 − po, where

po =
(

3.5κ
1+3.5κ

)3.5 is the idle mode probability where κ , λs/λu is the densification ratio of

the small cell network. By using [1, Eq. (36)] and considering the thinned PPP Φa ⊂ Φs,

MIe(.; ζ) is expressed as:

MIe(z; ζ) = exp
{
πpaλsζ

2
}

exp
{
−πpaλsζ

2MI(zζ
−α)
}

× exp
{
−πpaλsζ

2TI(zζ
−α)
}
. (5.11)

Now, we substitute (5.11) in (5.10) and then in (5.4). To simplify, we perform a change

of variables y = zζ−α, and apply integration by parts to (5.4) and taking the limit as

σ2 → 0 to obtain (5.5) which completes the proof. �

5.5.2 Main Link

We consider a user association policy based on the long-term maximum averaged-received

power, where the typical user at the origin of the system of coordinates D associates to

the nearest BS as depicted in Figure 5.1. The average rate of the main link R̄m can be

expressed as:

R̄m = 2πλs

∫ ∞

0

re−πλsr2E
{

ln
(
1 +

Pshmor
−α

σ2 + Im(r)

)}
dr (5.12)

where hmo is the channel gain of the main link, r is the distance between the typical

user and the nearest BS bo, and Im(r) =
∑

b∈Φa/bo(r)
Pshmbr

−α
b is the aggregate interference

of the active BSs in the main link considering interference limited network.
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In the following theorem, we provide an expression for the average downlink rate in

the main link.

Theorem 2. The average downlink rate in the main link from the tagged base station to

the typical user considering interference limited scenarios can be given as:

R̄m =

∫ ∞

0

1−Mmo(z)

zWIm(z)
dz (5.13)

where:

WIm(z) = po + (1− po)ZIm(z) (5.14)

ZIm(z) = MIm(z) + TIm(z) (5.15)

TIm(z) = Γ(1− 2
α
)

∞∑
j=0

zj+1M(j)
Im
(z)[

Γ(2− 2
α
+ j)

] (5.16)

M(j)
Im
(z) = E

{
hj+1
mb e

−zhmb
}

(5.17)

and, Mmo(z) is the MGF of the useful signal fading channel hmo in the main link.

Proof. Following similar arguments as in the proof of Theorem (1) we arrive at the result

in (5.13). �

Finally, one can find the approximate average secrecy in (5.3) by combining the results

in (5.5) and (5.13). The rate expressions of the main and the leakage links are integrals

which involve special functions. However, the numerical computation of these integrals is

quite straightforward and it can be done efficiently using commercial software packages

(e.g., Matlab).

Moreover, it is worth mentioning that the average secrecy rate in terms of the average

main link rate and the average leakage link rate is a function of the eavesdroppers density

λe, the legitimate users density λu and the BSs density λs. Thus, the nodes’ densities are

the key system parameters.

5.6 Simulation Results

In this section, we assess the accuracy of the provided expressions for the average secrecy

rate in the investigated system model via simulations. Considering the PPP of the BSs,

the legitimate users, and the eavesdroppers; we generate 1000 spatial realization of the
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positions with the corresponding densities in a square area of a side 500 m. The channel

variations are simulated by generating 100 time slots with channel gains drawn from

Rician channel with different values for the K parameter to represent the main link and

the leakage link. We assume interference-limited networks, i.e., σ2 → 0.

Figure 5.2 depicts the average secrecy rate versus the small cells density for different

relative densities of the Eves. We consider a Rician channel in the main link and Rayleigh

fading in the leakage link. The results show that the average secrecy rate significantly

improves with higher cell density which confirms the inherent physical layer security of

dense networks. Moreover, the results show that the approximation in the analytical result

improves in higher cell densities. To explain, the positivity of the secrecy rate becomes

almost sure at very high small cell density which improves the positivity approximation.

The slight variation in the average secrecy rate with the relative density of the Eves is

due to the assumption that the Eves experience Rayleigh fading channel. In this scenario,

the leakage rate varies slightly in the considered Eve’s relative density range as depicted

in Figure 5.6.

In Figures 5.3 and 5.4, we consider Rician fading in both the main and the leakage links

with different values for the corresponding K parameter. Although the average secrecy

rate degrades slightly in both cases, the results unveil that the secrecy feature of UDNs is

a strong function in the small cell density where the average secrecy rate is high in higher

small cell densities even with a LOS channel for the Eve. The average secrecy rate is

depicted in Figure 5.5 versus the users density for different small cell densities considering

Rician fading in both the main and the leakage links. The results show that the average

secrecy rate degrades with higher users density. As the users density increases, more BSs

are activated adding up to the aggregate interference in the main link which negatively

impacts the main link average rate. Moreover, in the considered scenario, the Eves density

is proportional to the users density and increasing the users density means higher Eves

density, and hence higher information leakage. As a final investigation, Figure 5.6 depicts

the average rate of the leakage link versus the Eves relative density for different small

cell density. The results show the significant increase of the leakage link rate with higher

Eves relative densities where Rayleigh fading is considered in the leakage link.
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Figure 5.2: The average downlink secrecy rate versus small cell density considering Rician channel in the

main and Rayleigh channel in the leakage link (Km = 32,Ke = 0, λu = 600 users/km2). Lines show the

analytical results computed using Theorems 1 and 2, and Markers show simulation results.
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Figure 5.3: The average downlink secrecy rate versus small cell density considering Rician channel in

both the main and the leakage links (Km = 32,Ke = 16, λu = 600 users/km2). Lines show the analytical

results computed using Theorems 1 and 2, and Markers show simulation results.
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Figure 5.4: The average downlink secrecy rate versus small cell density considering Rician channel in

both the main and the leakage links (Km = 32,Ke = 32, λu = 600 users/km2). Lines show the analytical

results computed using Theorems 1 and 2, and Markers show simulation results.
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Figure 5.5: The average downlink secrecy rate versus users density considering Rician channel in both the

main and the leakage links (Km = 32,Ke = 16, λe = 0.5λu). Lines show the analytical results computed

using Theorems 1 and 2, and Markers show simulation results.

5.7 Conclusions

The high secrecy capacity of UDN networks is an inherent feature by virtue of the high

density of the cells. Users in dense networks connect via strong connections to very close77
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Figure 5.6: The average rate of the leakage link versus relative density of Eves (λu = 600 users/km2
,Ke =

0 ).

cells. The close proximity of the small cells to the users induces a secure environment

where the cells can whisper encoded messages to the legitimate users confusing the Eves

and providing the users with high average secrecy rate. The average secrecy rate in UDNs

is an increasing function in the small cells density even with the consideration of LOS

transmission in the leakage link. On the contrary, the average secrecy rate decreases

in environments with high users density where the activation of more BSs results in

increasing the interference in the main link which in turn negatively impacts the average

secrecy rate.

78



6. Uplink Coverage of mMTC in

UDNs

6.1 Introduction

Smart living is the core of a set of trending concepts and technologies. Smart city, smart

building, and smart home are all synonyms in the sense of having the same essential ele-

ment: devices that sense the surrounding environment to extract data, compute a given

logic on this data, and communicate the data with other devices through a shared cloud.

In this way, Machine-Type Communication (MTC) is the umbrella encompassing these

devices with the aforementioned capabilities. Ensuring the versatility of these devices,

to cover a wide range of applications that is not even imaginable, is not an easy task.

To this end, the MTC nodes are usually powered by long-lasting batteries and in some-

times equipped with actuators to provide control [138]. Fostering the low cost of MTC

nodes dictates their features. Limited communication capabilities, limited computation

resources, and limited power consumption are amongst the most distinguishing features

of such devices [139]. These features in turn give rise to a set of challenges to the large

scale application of MTC. Challenges include connectivity, coverage, and security. Re-

ported predictions assert that gigantic number of MTC nodes will connect to the cloud

in order to report their measurements. Consequently, significant improvements to the

connectivity procedures in both PHY and MAC layers would be required [140].

The nature of mMTC deployment scenarios suggests a set of considerations with regard

to the analysis of the network performance. The limited complexity of the mMTC nodes

presumes a strict maximum transmission power. This is due to the limitations on the

RF chain of the mMTC nodes. Also, the limited power consumption imposed by the

battery requires the consideration of a power control scheme. Moreover, power control
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in the uplink is effective in mitigating the excessive interference in massive deployment

scenarios. In addition, the scalable connectivity is an essential requirement in any future

mMTC deployment. Thus, a dense network to collect the uplink traffic can provide

seamless scalability [99]. Accordingly, the distinguishing features of dense networks must

be considered in the network performance analysis.

Many challenges are facing the maturity of MTC applications including connectivity,

coverage, and security. Massive numbers of MTC devices are expected to report their

measurements to the network requiring the network to significantly improve the connec-

tivity procedures in both PHY and MAC layers [140,141]. The diversity of the deployment

scenarios also calls for extending the coverage of the network to reach nodes in dead zones

like basements, forests, and underground facilities. Last but not least, the privacy and

integrity of the exchanged information require a new vision to the security procedures

especially with low complexity/cost MTC nodes.

The traffic characteristics in mMTC are a direct consequence to its inherent features

[142]. In particular, the uplink traffic load is much higher than the downlink traffic

which is different from the scenario of the Human-Type Communication (HTC). In some

applications (e.g., smart metering), the traffic is periodic and sporadic where at any

given time only a fraction of the deployed devices will be actively transmitting data.

In some other scenarios (e.g., monitoring), the traffic is very low in normal conditions

and bursty at the detection of events. Finally, the mobility of MTC nodes spans a wide

range of speeds. In most scenarios the devices are stationary. In wearables, the mobility is

moderate (e.g., like the mobility of HTC). At the other extreme (e.g., high-speed vehicular

applications), MTC devices undergo very high mobility conditions.

6.2 State-of-the-Art

One of the main challenges of a cellular network serving MTC devices is the coverage.

In most applications, MTC nodes transmit in the uplink. Although many coverage en-

hancements (CE) for the Long-Term Evolution (LTE) standard are proposed by the third

generation partnership project (3GPP) [143], the uplink coverage analysis of such scenar-

ios has not received much attention. Moreover, while network densification is a trend in

both academia and industry, the significant role UDNs can play in fostering the diverse
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application scenarios of MTC is often overlooked [144]. At the same time, the analytical

framework of the deployment of UDNs in MTC scenarios requires a different propaga-

tion environment modelling where short-range communication links are dominant. In

addition, the adoption of a power control technique in the uplink transmission of the

battery-powered MTC devices is unavoidable [145].

Recently, some researchers investigated the uplink coverage in MTC scenarios (e.g., [99–

102] ). However, UDN characteristics (e.g., high density of small cells, short distance

links, accurate path loss modeling, and general fading channels) have not been considered.

Moreover, the power control of the uplink transmission from MTC devices is overlooked.

In [99], the coverage performance of randomly distributed data collectors, which collect

data of wireless sensors in a single-hop scenario, was investigated, and answers to the

required number of data collectors, the required transmit power of the sensors, and the

impact of the propagation environment were provided. However, a simple path loss model

was considered and power control was not included in the system model. In [100], uplink

coverage performance was addressed in a multi-hop aggregation scenario where power

control was considered but not the features of UDN. Also, a simple power decay path

loss was used for the sake of tractability. The power decay path loss model was adopted

also in [103] which cannot fit precisely the short-range communication scenario of a UDN

serving a massive MTC deployment. A Device-to-Device MTC scenario was modeled

in [101] where the transmitted packets of the sensors are relayed using D2D to the serving

cell. The authors in [101] adopted a power control mechanism, however, the densification

of the BSs was not considered. In addition, effective capacity was investigated in ultra-

reliable MTC scenario where an optimal power allocation scheme was devised for high

SNR regime [102]. The authors considered a simple point-to-point scenario where neither

the impact of the interference in a dense network nor the influence of power control was

included in the analysis. In [2], SEPL model was adopted in the downlink of a dense

network. Nevertheless, a single user per cell is considered and the uplink coverage is not

investigated.
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6.3 Contributions

Motivated by the challenges facing the successful deployment of mMTC, we model the up-

link coverage of mMTC deployment scenario considering a UDN environment. Stochastic

geometry techniques are adopted for the modelling of the scenario under investigation

considering the natural randomness of the deployment of both small cells and MTC de-

vices.

Different from previous works [2, 99–103,146], in what follows we summarize the con-

tributions of this investigation:

• The small-scale fading is modeled using a general α−µ channel model. We then, in

quest for tractable and insightful expressions, studied the special case of Rayleigh

fading. More tractable results for the general α− µ channel model scenario can be

considered in extended versions of this investigation.

• The Stretched Exponential Path Loss (SEPL) is considered to capture the short

distances in Ultra-Dense Networks (UDNs). SEPL model can be seen as a limiting

case of the multi-slope model (recommended by the 3GPP LTE standard [147]) with

an infinite number of slopes.

• The system model captures the impact of the system parameters which characterizes

the environment of massive machine-type communications (mMTC) including the

density of the MTC node λm, the activity ratio of the MTC nodes ρm, the minimum

uplink transmit power Po , and the maximum uplink transmit power Pm. Also,

the model captures the impact of the system bandwidth expressed in terms of the

number of resource blocks NRB.

• The provided analysis reveals the significant and unexpected impact of the high

density of small cells in UDNs on the maximum transmit power of the MTC nodes.

This finding relaxes the requirements on the maximum transmit power which in

turn allows for less complexity, brings more cost savings, and yields much longer

battery life.

• This investigation provides accurate, simple, and insightful expressions. The expres-

sions are readily readable and shows the impact of every single system parameter

on the network performance allowing for guided tunability of the network.
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• The results signify the asymptotic limits of the impact of all system parameters

on the network performance. This allows for the efficient operation of the network

by designing the system parameters which maximizes the network performance. In

particular, the results show the upper bounds of the system parameters such as

the density of small cells, the system bandwidth, the power truncation threshold ,

and the maximum transmit power where the performance saturates and no longer

improves with increasing this system parameter. Accordingly, this saturation limit

can be chosen as a limit for the corresponding system parameter.

6.4 System Model

In this section, we present the aspects of the considered system model.

6.4.1 Network Model

We consider the uplink transmission of measurement reports and readings of mMTC nodes

in IoT applications. A UDN comprised of a surplus of small cells is assumed to collect the

transmitted data from the MTC nodes. Using stochastic geometry [104], the BSs of the

UDN are modeled as a Homogeneous Poisson Point Process (HPPP), Φs, with a density

λs which is independent of the MTC nodes. MTC nodes are modeled as independent

HPPP, Φm, with a density of λm. The characteristics of the traffic in IoT applications

suggest a sporadic nature with a long duty cycle. Accordingly, only a fraction ρm ∈ [0, 1]

of the MTC nodes is assumed to be active and transmitting data at any given time. In

general, ρm is a random variable and can be modeled by the Beta distribution Beta(x, y)

where x = 3 and y = 4 [142]. Due to the complexity constraints on the mMTC nodes,

each node is equipped with a single antenna. A node is associated to the BS with the

strongest average received power, i.e., the closest BS.

6.4.2 Propagation Model

The considered propagation environment consists of two components: large-scale fading

component modeled by a stretched exponential path loss (SEPL) and a small-scale multi-

path fading component modeled by (α − µ) channel fading model [148]. In the SEPL

model [2], the transmit signal power decays with the distance r as e−arβ . The SEPL model
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accurately captures the signal propagation properties in UDN environments featuring

short distances (5m − 350m) between the (serving/interfering) BSs and the associated

users [149]. A recent study shows that the SEPL model fits accurately to the propagation

environment in UDNs (e.g., see [2, Table I] where a comprehensive survey of several path

loss models is provided). The parameters of the SEPL model, i.e., (a and β), are used

to tune the model to capture different propagation scenarios. In particular, this model

describes propagation environments where obstructions are the main cause of attenuation,

with a being the average multiplicative attenuation, and rβ represents the scaling of the

number of obstructions in the bath [2]. Interestingly, the special values of (a and β) given

by (0.3 and 2/3) and (0.94 and 1/2) provide limiting cases of the multi-slope propagation

which is a piecewise propagation model with accurate results confirmed by measurements.

Accordingly, this model is adopted by the 3GPP standardization community [150].

The α−µ distribution is a general fading model which includes many important fading

models as special cases, namely, Gamma distribution, Nakagami-m distribution, Weibull

distribution, Rayleigh distribution, and Rician distribution. The Cumulative Distribution

Function (CDF) of the fading channel gain is given by:

FX(x) =
γ(µ, µxα/2)

Γ(µ)
, (6.1)

where Γ(n) =
∫∞
0

tne−tdt is the gamma function, and for integer positive n, Γ(n) = (n−1)!

and γ(n, x) =
∫ x

0
tne−tdt is the lower incomplete gamma function. In Table 6.1 some

special cases of the α− µ distribution are presented.

Table 6.1: Special Cases of α− µ Distribution

α µ distribution

α 1 Weibull

2 1 Rayleigh

2 m Nakagami-m

2 1/2 one-sided Gaussian

2 (K+1)2

2K+1
Rician

Denote by ho the fading channel gain of the useful signal link between the mMTC
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node and the serving BS, which is modeled using the general α − µ distribution. Also,

denote by hu the fading channel gain of the interfering nodes connecting to other cells

which is modeled as a Rayleigh fading channel. We assume that the channel fading gains

of all interfering nodes are independent and identically distributed (i.i.d), i.e., channel

gains are independent of each other and independent of the locations of the nodes.

It is worth mentioning that shadowing is not considered in this investigation where we

focus on the impact of the UDN system parameters, the power control parameters, and

the IoT deployment scenario on the system performance.

6.4.3 Power Control Model

Each MTC node transmits in the uplink with a maximum power Pm to satisfy the limited

transmission power constraints. The nodes employ a truncated channel inversion (TCI)

power control policy. In TCI power control, a node transmits with a power P where

the setting of the power takes into consideration the path loss in order to invert the

channel with a truncation cutoff threshold set to Po, with Po > Psensitivity being the

average received power at the BS and Psensitivity being the minimum received power of

the BS. In other words, if the transmit power required to invert the channel exceeds the

maximum transmit power Pm, the MTC node is considered to be in a power control

outage. Accordingly, the setting of the uplink transmit power in each MTC nodes is given

by:

P =

 Poe
arβ if Po ≤ Poe

arβ ≤ Pm,

0 otherwise.
(6.2)

Practically, the MTC node estimates the path loss to the serving cell earβ through

measuring the reference signals’ received power and by knowing the reference signals’

transmission power from the system information sent on the control channels [145]. In

addition, the power control parameters Po and Pm are known parameters where Po is

broadcasted on the control channel of the serving cell and Pm is a design parameter of

the MTC nodes. Interestingly, the 3GPP LTE standard adopted another power control

scheme where no truncation occurs [145]. In other words, the setting of the power P =

min(Poe
arβ , Pm) takes place. In this investigation, we adopted the TCI power control

scheme for the sake of tractability. However, we provide the power control outage for

both techniques in Section 6.5.1 and show in the simulation results’ section that there is
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no difference between the two power control schemes in terms of the power control outage.

Due to the randomness of the locations of both the serving cells and the connected

MTC devices, the link distances in both the main links and the interfering links are all

random. Consequently, the transmit power P of any given MTC node can be modelled

by a random variable which ranges from Po to Pm. Section 6.5.1 is devoted to studying

the statistical properties of this random quantity which plays a main role in the coverage

performance of the network which is then investigated in Section 6.5.2.

6.4.4 Interference Model

We assume that each BS has NRB uplink orthogonal resource blocks (RBs), each of a

bandwidth BRB where a node transmits its data using only one resource block at any given

time. The MTC node selects an orthogonal resource randomly in a uniformly distributed

manner from the NRB resources with a probability of 1/NRB. Furthermore, MTC nodes

transmit to the small cells using time slotted Random Access CHannel (RACH). This is

more suitable to model the uplink transmission traffic, that is sporadic in nature, from a

massive number of nodes [141]. Accordingly, we assume that the interference generated

from mMTC nodes connecting to the same BS (i.e., intra-cell interference) is perfectly

mitigated via advanced physical and access layer techniques. These techniques are tailored

to the specific requirements of mMTC deployment scenarios (e.g., see the techniques

discussed in [141]). In other words, only the inter-cell interference is accounted for in

the analysis, and further analysis of the system considering the intra-cell interference is

left for future investigation. Moreover, the inter-cell interference from each node on the

tagged channel at the tagged BS is restricted to be less than Po. This can be explained

considering the assumed association criteria. Since each node is connected to the nearest

BS, and the transmission power is adjusted such that the received power at the serving

cell is Po, consequently, the received interference at any BS will be upper bounded by Po

as illustrated in Fig. 6.1.

6.4.5 Communication Model

We differentiate between two categories of MTC services, namely, massive MTC and

critical MTC [151]. This investigation focuses on the massive MTC. MTC nodes com-

municate their message to the network in three different ways: (i) direct communication
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Signal

Intra-cell Interference

Inter-cell Interference

Figure 6.1: The interference from the nodes in the same cell is handled via advanced PHY layer and

MAC layer techniques. Thus, we consider only the inter-cell interference which is limited to be less than

Po from each node due to the employed power control technique.

mMTC-D in which the node connects directly to the BS, (ii) aggregation mode mMTC-A

where an MTC node or an HTC user aggregates the traffic and transmits to the BS,

and (iii) device-to-device mode where an MTC node connects to another MTC node and

transfers its message to it [139]. Particularly, in this investigation, we focus on the direct

communication mode mainly because in UDNs, due to the high density of BSs, the di-

rect communication mode is the most attractive scenario where plenty of small cells are

deployed and ready to collect the traffic of the mMTC nodes [99].

6.4.6 Uplink Coverage

The harsh deployment conditions of the mMTC nodes in most applications call for cov-

erage enhancements. Extended coverage of 15− 20 dB is an essential requirement of the

3GPP LTE standard Release 14 [145] and former releases. At the same time, it is desirable

to minimize the transmission power of the mMTC nodes aiming at longer battery-life.

These contradicting targets make the uplink coverage one of the main limiting factors to

the fruition of mMTC wide deployment [139]. One can define coverage as the fraction

of nodes that experience a signal with a given quality measured in terms of the signal to
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interference-plus-noise ratio (SINR) or the fraction of time a given node experience the

aforementioned signal quality. Supported by the above discussion, we consider the uplink

coverage as the performance metric in this investigation.

The SINR of the signal received at the typical BS located at the origin from the tagged

node is given by:

SINR =
Poho

σ2 + I
, (6.3)

where σ2 is the noise power, and I is the aggregate interference on the tagged resource

block in the uplink. This aggregate interference I is expressed as:

I =
∑

u∈Φ̄m/uo

Puhue
−arβu1(Pue

−arβu < Po), (6.4)

with Pu being the transmission power from node u, hu is the channel fading gain, and Φ̄m

is the set of all interfering nodes transmitting on the tagged resource block and interfering

with the transmission of the tagged MTC node uo from outside its serving cell. Also, 1(·)

is the indicator function which takes the value 1 if the argument (·) is true and zero

otherwise. Here, the uplink coverage probability is defined as:

Pcov = P {SINR > τ} , (6.5)

with τ being the SINR threshold where it represents the SINR at which the uplink trans-

mitted signal of an MTC device can be decoded successfully at the BS providing a pre-

determined level of Quality-of-Service (QoS).

6.5 Analytical Results

6.5.1 Power Control Outage

The transmission power of an active mMTC undergoes a truncated channel inversion

(TCI) power control. In TCI power control, a node is declared in power outage if the

required transmission power is greater than the available maximum transmission power

Pm [103]. The transmission power of a node is thus adjusted such that the received power

at the serving BS is Po, i.e., the cutoff threshold. In accordance, the transmission power

P of any active mMTC node is a random variable where P ∈ [Po, Pm]. The transmission

power Po corresponds to a node which is very close to the BS, i.e., r ∼ 0, while the

transmission power Pm corresponds to the farthest node a BS can serve.
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In this section, we characterize the statistical properties of the transmission power P .

We provide the probability distribution function (PDF) of the transmission power and the

expectation of the log-relative-power defined as ln
(

P
Po

)
which appears in the expressions

of the coverage probability in the next section.

A given mMTC node is declared in truncation outage if the transmission power re-

quired to reach the closest BS exceeds the available maximum transmission power Pm.

Accordingly, the outage probability due to the power truncation forced by the power

control mechanism can be computed as:

Opower = P {r > rm} . (6.6)

Since the transmission power at a given distance r is P = Poe
arβ , MTC node experience

outage due to power truncation if the required power to transmit is more than the max-

imum available transmission power Pm or equivalently, the node is at a distance farther

than rm where rm = ln
1
β

(
Pm

Po

) 1
a . Since the CDF of r is FR(r) = 1 − e−πλsr2 [58], hence,

the power truncation outage probability can be expressed as:

Opower = P {r > rm} = 1− P {r < rm}

= 1−
(
1− e−πλsr2m

)
= e−πλsr2m . (6.7)

The power truncation outage Opower is a fundamental element of the coverage analysis.

It represents the probability that a node is in a coverage hole due to insufficient trans-

mission power. Obviously, this quantity is a function of the BSs density λs, the path loss

model parameters (a and β), and the power control parameters (Po and Pm). Considering

the no-truncation power control scheme, the power control outage can be expressed as:

Ont = P
{
hoPme

−arβ < Po

}
= 1−

∞∫
0

2πλse
−πλsr2e−(Po/Pm)ear

β

dr. (6.8)

In the next Lemma, we provide the conditional probability distribution function of

the transmission power of the mMTC nodes considering the case of no power truncation

outage. Remarkably, the analysis performed in this investigation considers a generic
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active user which has data to transmit and do not experience outage due to insufficient

transmission power.

Lemma 1. The PDF of the uplink transmission power P of a generic active mMTC

node associated to the nearest BS in a UDN environment considering a truncated channel

inversion power control is expressed as:

fP (x) =
2πλs ln

2
β
−1
(

x
Po

) 1
a

aβx (1−Opower)
e
−πλs ln

2
β
(

x
Po

) 1
a

. (6.9)

Proof. Considering the employed power control mechanism, the transmit power P =

Poe
arβ of any active MTC device is a function of the link distance r to the serving BS

where P ∈ [Po, Pm]. Accordingly, the CDF of the transmission power P can be expressed

as:

FP (x) = P {P ≤ x} = P
{
Poe

arβ ≤ x
}

= P

{
r ≤ ln1/β

(
x

Po

)1/a
}

= FR

(
ln1/β

(
x

Po

)1/a
)
. (6.10)

Considering the CDF of r, the truncated CDF of P can be written as:

FP (x) =
1− e−πλs ln2/β( x

Po
)
1/a

1− e−πλs ln2/β(Pm
Po
)
1/a

, (6.11)

and hence, the PDF of P can be written as:

fP (x) =
dFP (x)

dx

=
2πλs ln

2
β
−1
(

x
Po

) 1
a

aβx (1−Opower)
e
−πλs ln

2
β
(

x
Po

) 1
a

. (6.12)

This completes the proof. �

Having computed the PDF of the transmission power P , we can proceed in the analysis

by evaluating the moments of the log-relative-power. This result is given in the next

Lemma and will be used in the coverage analysis provided in the next section.
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Lemma 2. The conditional expectation of the function lnk(P/Po), k ∈ {0, 1, 2, · · · } is

given by:

EP

[
lnk(P/Po)

]
=

akγ
(
βk
2
+ 1, πλsr

2
m

)
(πλs)

βk
2 (1−Opower)

. (6.13)

Proof. The expectation of the function lnk(P/Po) can be expressed as:

EP

[
lnk(P/Po)

]
=

Pm∫
Po

lnk(x/Po)fP (x|Po ≤ P ≤ Pm)dx (6.14)

a
=

2πλs

aβ (1−Opower)

δ∫
0

(aw)kw2/β−1e−πλsw2/βdw (6.15)

b
=

akγ
(
βk
2
+ 1, πλsr

2
m

)
(πλs)

βk
2 (1−Opower)

, (6.16)

where step (a) is the result of the change of variables x = Poe
aw and δ = rβm. Step (b)

follows from simple manipulation and evaluating the integral. �

The log-relative-power in Lemma 2 is a measure of the transmission power relative

to the cutoff threshold Po. The expected transmission power is thus scaled by the power

coverage (i.e., 1 − Opower). Hence, a higher transmission power at the MTC nodes is

required as the power truncation outage increases. At the same time, as the BSs density

increases, the expected transmission power decreases. This is intuitive where a higher

BSs density means a shorter distance between MTC node and its serving BS, and hence,

a less power to invert the channel.

6.5.2 Uplink Coverage of Direct Communication Mode

In this section, we analyze the uplink coverage in the direct communication model. In

the next theorem, we provide the general results for a generic α− µ fading channel.

Theorem 1. The uplink coverage of an active MTC node transmitting in the uplink in

the direct mode communication model and considering the system model in Section 6.4 is

given by:

Pcov = 1− EI

[
γ (µ,Υ)

Γ(µ)

]
, (6.17)
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and in the special case µ ∈ Z+,

Pcov = EI
[
e−Υeµ−1 (Υ)

]
, (6.18)

where:

Υ =

(
τ

Po

)α/2

(σ2 + I)α/2µ, (6.19)

and en(x) = 1 + x + x2/2! + · · · + xn/n!, n = 0, 1, 2, · · · , are the partial sums of the

exponential series.

Proof. Commencing from the definition of the uplink coverage,

Pcov = P {SINR > τ} = 1− P {SINR < τ}

= 1− P
{
ho <

τ

Po

(σ2 + I)|I
}

a
= 1− EI

γ
(
µ, ( τ

Po
)α/2(σ2 + I)α/2µ

)
Γ(µ)

 , (6.20)

where (a) follows from the CDF of the α− µ distribution given in (6.1). Considering the

identity γ(n+1, x) = n! [1− e−xen(x)] for n ∈ Z+ [152, Eq. 1.2], the coverage probability

in (6.18) can be obtained: �

Evidently, the expression of the uplink coverage in Theorem 1 is intractable. Notwith-

standing this tractability limitation, the above analysis provides an entry level for consid-

ering a general channel fading in the considered investigation. In quest of tractable results,

we derive insightful expressions for the uplink coverage in the special case α = 2, µ = 1

corresponding to Rayleigh fading in the following Theorem.

Theorem 2. The uplink coverage probability of an active mMTC node in a UDN envi-

ronment satisfying the system model in Section 6.4, and considering the special case for

the α − µ distribution where α = 2, µ = 1 which corresponds to Rayleigh fading is given

by:

Pcov = e
−τ
SNR LI(

τ

Po

), (6.21)

where

LI(
τ

Po

) = exp
{
−
(

2π

βa2/β

)(
ρmλm

NRB

)
Ξ

}
, (6.22)
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and

Ξ = EP

 τ∫
0

[ln(P/Po) + ln(τ/y)]
2
β
−1

y + 1
dy

 , (6.23)

and SNR = Po/σ
2 is the signal-to-noise ratio at the BS receiver.

Proof. We begin by substituting the special values α = 2, µ = 1 in (6.18), this yields to:

Pcov = EI

[
exp

{
−(

τ

Po

)(σ2 + I)
}]

= e
−τ
SNRLI(

τ

Po

) (6.24)

The Laplace Transform (LT) of the aggregate uplink interference I is expressed as:

LI(s) = EI
[
e−sI]

= E

exp

−s
∑

u∈Φ̄m/uo

Puhue
−arβu1(Pue

−arβu < Po)




a
= EΦ̄m

 ∏
u∈Φ̄m/uo

EPu,hu

[
exp

{
−sPuhue

−arβu
}
1(Pue

−arβu < Po)
]

b
= exp

−2π
ρmλm

NRB

EP,h


∞∫

ln
1
β ( P

Po
)
1
a

(
1− e−sPhe−arβ

)
rdr




c
= exp

−2π
ρmλm

NRB

EP


∞∫

ln
1
β ( P

Po
)
1
a

(
1− 1

1 + sPe−arβ

)
rdr




d
= exp


(
−2πρmλm

βa2/βNRB

)
EP

 sPo∫
0

[
ln( sP

y
)
] 2

β
−1

y + 1
dy


 (6.25)

Now, we substitute for s = τ
Po

to obtain

LI(
τ

Po

) = exp
{
−
(

2π

βa2/β

)(
ρmλm

NRB

)
Ξ

}
(6.26)

The set Φ̄m is a thinned version of the HPPP Φm with a thinning factor ρm/NRB, where

ρm is the fraction of MTC nodes with data to transmit and 1/NRB is the probability of

any orthogonal channel in the system to be the tagged channel. The interference power

Pu received at the tagged BS serving the tagged node uo from a given node u is restricted

to be less than Po. This is a consequence of the considered association criteria and the

employed power control scheme.
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We assume that the transmission power from all interfering nodes are independent.

Indeed, this assumption can be justified considering the special features of UDN where the

variance in the cell sizes vanishes as the density of the BSs increases. (a) follows from the

independence of the transmission powers Pu, the fading channel gains hu, and the PPP

Φm. (b) follows from the probability generating functional (PGFL) of the PPP [105].

The integral limits in (b) consider the region where the interfering nodes reside. Since the

interference power (i.e., Pe−arβ) is always less than the power truncation cutoff threshold

Po, the interfering nodes are thus located in an open disk with inner radius ri = ln
1
β ( P

Po
)
1
a

and outer radius at ∞. Step (c) follows from the LT of the fading gain h and finally, (d)

results from the change of variables y = sPe−arβ . This completes the proof.

�

The simplified expression of the average coverage probability in (6.21) provides many

insights into the network performance. Apparently, this expression is composed of two

items: the exponential term e
−τ
SNR which represents the noise, and the Laplace Trans-

form (LT) term LI(
τ
Po
) representing the interference. Recall the definition of the SNR,

SNR = Po/σ
2, where the power control truncation threshold Po is the sole system parame-

ter tuning this value. As Po increases (i.e., a higher truncation threshold), this exponential

term increases and approaches its maximum value of one asymptotically leaving the con-

trol to the LT term. One can notice that the uplink coverage performance has two regions:

one region is limited by noise where the noise term dominates the coverage performance

and the other is limited by interference where the interference term prevails. The border

between the two regions is thus determined by the power control truncation threshold Po.

Further discussions and more deep insights regarding the uplink coverage will be discussed

in the simulation results’ section.

An interesting special case of the above result can be obtained by considering the

special value β = 2
n+1

with n being any non-negative integer. This special case covers a

wide range of β (e.g., β = 2, 1, 2
3
, 1
2
, 1
3
, · · · ). In particular, the special values of β = 1

2
and

β = 2
3

provide limiting cases for the multi-slope propagation model, which is recommended

by the 3GPP LTE standard [147]), with an infinite number of slopes. Besides, these

special values match the physical measurements of the communication links in a UDN

environment, i.e., short-distance links [2]. Considering this practical special case, in the

following Corollary, simpler expressions can be derived where insightful conclusions can
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be obtained.

In the following Corollary, we study a special case for the path loss model parameter

β. We consider the special case β = 2
n+1

with n being any non-negative integer. This

special case covers a wide range of β (e.g., β = 2, 1, 2
3
, 1
2
, 1
3
, · · · ) which resembles a multi-

slope propagation model [2]. Moreover, the considered range of values in this special

case matches physical measurements for the short-range communication links [2]. Given

the practicality of the examined special case, simpler expressions can be derived where

insightful conclusions can be obtained.

Corollary 1. Considering the special case β = 2
n+1

where n ∈ Z is any non-negative

integer, Theorem 2 can be simplified to:

Pcov = e
−τ
SNR LI

(
τ

Po

)
, (6.27)

LI

(
τ

Po

)
=

n∏
k=0

exp
{
−ξ(n)

(
n

k

)
EP

[
lnk

(
P

Po

)]
Jn−k(τ)

}
, (6.28)

where

Jv(τ) =

τ∫
0

lnv(τ/y)

y + 1
dy, (6.29)

ξ(n) =
(n+ 1)πρmλm

an+1NRB

, (6.30)

and EP [lnk(P/Po)] is given in Lemma 2.

Proof. We begin by computing the expectation in (6.26) considering the special value

β = 2
n+1

,

EP

 τ∫
0

[ln(P/Po) + ln(τ/y)]n

y + 1
dy

 =

a
=

τ∫
0

∑n
k=0

(
n
k

)
EP [lnk(P/Po)] lnn−k(τ/y)

y + 1
dy

b
=

n∑
k=0

(
n

k

)
EP [lnk(P/Po)]

τ∫
0

lnn−k(τ/y)

y + 1
dy, (6.31)

(a) follows from applying the binomial theorem and (b) follows by a simple arrangement

of terms and change of the order of summation and integration. The proof is completed

by substituting (6.31) in (6.25). �
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By carefully examining the uplink coverage expression in Corollary 1, it can be con-

cluded that the coverage performance improves as the number of orthogonal resources

NRB increases. Also, the performance deteriorates as either the density of the MTC de-

vices λm or the device activity ρm increases. Further, as the BSs density λs increases

the coverage performance improves. Furthermore, one can expect the saturation of the

performance with the increasing number of radio resources, the higher density of BSs, or

the higher power control cutoff, by considering that at some point the system becomes a

noise-limited system rather than an interference-limited system.

In quest of a more simplified result, a closed-form expression for the coverage proba-

bility is derived considering a special case of the SEPL parameter at β = 2, we present

this result in the following Corollary.

Corollary 2. Considering the special case β = 2, Theorem 2 can be further simplified to:

Pcov = e−(
τ

SNR+ξ(0) ln(1+τ)). (6.32)

Proof. The expectation in (6.23) considering the special value β = 2 can be simplified to,

Ξ = EP

 τ∫
0

[ln(P/Po) + ln(τ/y)]
2
β
−1

y + 1
dy

 =

=

τ∫
0

1

y + 1
dy = ln(1 + τ), (6.33)

Substituting (6.33) in (6.26) and setting β = 2 the proof is completed. �

Finally, one more simplification of the presented analysis can be done by averaging

the uplink coverage probability over all values of the mMTC activity probability ρm.

This considers the statistical properties of the activity probability and yields the average

coverage performance for a general mMTC deployment without the need to estimate the

individual activity probability for each case. In the following Corollary, we present this

result.

Corollary 3. The uplink coverage probability in Corollary 1 averaged over all values of

ρm can be expressed as:

P̂cov =
e

−τ
SNR

B(3, 4)G6
×[(

6G2 + 48G + 120
)
e−G +

(
2G3 − 18G2 + 72G − 120

)]
(6.34)
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where:

G =

n∑
k=0

(
n

k

)(
(n+ 1)πλm

an+1NRB

)
EP [lnk(P/Po)] Jn−k(τ) (6.35)

and B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the beta function

Proof. Due to the sporadic nature of the traffic in mMTC, only a fraction ρm ∈ [0, 1] of

the entire population of the mMTC nodes will be active and transmitting at any given

time. Generally, ρm is a random variable and can be modeled by the Beta distribution

Beta(x, y) where x = 3 and y = 4 [142]. By rearranging the terms in (6.28), the average

probability of coverage P̂cov can be written as

P̂cov = Eρm {Pcov} = Eρm

{
e

−τ
SNR e−ρmG

}
= e

−τ
SNR

1∫
0

e−xGfρm(x)dx

= e
−τ
SNR

1∫
0

e−xG 1

B(3, 4)
x2(1− x)3dx (6.36)

By evaluating the integral in (6.36), we arrive at the result of the Corollary. This completes

the proof. �

6.6 Simulation Results

In this section, we assess the accuracy of the analytical results when compared to sim-

ulations. We present numerical results considering a wide range of the system parame-

ters including BSs density, mMTC devices density and activity ratio, maximum available

transmission power, power truncation cutoff threshold, parameters of the path loss model,

and the number of orthogonal resource blocks. We realize the considered scenario by the

generation of Homogeneous Poisson Point Process (HPPP) corresponding to the densities

of the BSs and the mMTC devices along with the activation probability. A simulation

area of 1 km2 is considered where we generated 1000 spatial realizations of the PPP.

Moreover, the channel variations are simulated by a realization of a 100 time slots drawn

from an exponential random variable with a mean of one. We consider a BS density of
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λs = 1000 cells/km2, a coverage threshold of τ = 0 dB, power truncation cutoff threshold

of Po = −100 dBm, a maximum transmission power Pm = 20 dBm, an mMTC activation

probability of ρm = 0.1, and SEPL parameters of a = 0.94, β = 0.5. Furthermore, we

assume that the number of available resource blocks for each BS is NRB = 100 and each

MTC device is allocated only one resource block with a bandwidth of 180 kHz, thus the

noise power σ2 = −121.45 dBm.

6.6.1 Simulation Setup

In this section, we assess the accuracy of the analytical results when compared to sim-

ulations. We present numerical results considering a wide range of the system parame-

ters including BSs density, mMTC devices density and activity ratio, maximum available

transmission power, power truncation cutoff threshold, parameters of the path loss model,

and the number of orthogonal resource blocks. We realize the considered scenario by the

generation of Homogeneous Poisson Point Process (HPPP) corresponding to the densi-

ties of the BSs and the mMTC devices along with the activation probability. A square

simulation area of 1 km × 1 km = 1 km2 is considered where we generated 1000 spatial

realizations of the PPP. Moreover, the channel variations are simulated by a realization

of a 100 time slots drawn from an exponential random variable with a mean of one.

We consider a BS density of λs = 1000 cells/km2, a coverage threshold of τ = 0 dB,

power truncation cutoff threshold of Po = −100 dBm, a maximum transmission power

Pm = 20 dBm, an mMTC activation probability of ρm = 0.1, and SEPL parameters of

a = 0.94, β = 0.5. Furthermore, we assume that the number of available resource blocks

for each BS is NRB = 100 and each MTC device is allocated only one resource block with

a bandwidth of 180 kHz, thus the noise power σ2 = −121.45 dBm.

We consider the following simulation procedure to simulate the network environment

modeled in this investigation.

1. A number of BSs is generated following a Poisson distribution with density λs BSs/km2

and distributed uniformly in the simulation area. We consider a high density of the

small cells as a feature of the dense networks.

2. A number of active MTC devices is generated in the same simulation area as well.

The locations of the active MTC devices follow a Poisson distribution with den-

98



sity ρmλm devices/km2. Similarly, the devices are distributed uniformly over the

simulation area.

3. Each active MTC device is associated to the nearest BS and randomly allocated an

orthogonal resource block from the available resource blocks NRB.

4. An MTC is considered in power control outage if the required transmission power

exceeds the maximum transmit power Pm.

5. Independent channel gains are generated for the links between all active devices and

their serving BSs and drawn from an exponential distribution with mean one.

6. The uplink SINR of the link between each active device and its tagged BS is com-

puted.

7. The realization of the BSs and devices PPP is repeated Nm times and the generation

of the independent fading channels is repeated for Nt time slots. In the simulations,

we have considered Nm = 1000 and Nt = 100.

8. As a last step, the average coverage for the respective links between the active MTC

devices and the tagged BSs is calculated as Pavg =
1

NmNt

∑Nm

m=1

∑Nt

t=1 1(SINRm,t > τ).

6.6.2 Power Control Outage

Fig. 6.2 depicts the power control outage for the TCI power control scheme adopted in

this investigation and the no-truncation power control scheme. Interestingly, the power

control outage of both schemes is indistinguishable. The parameters controlling this quan-

tity includes the BSs density λs, the path loss model parameters (a and β), and the power

control parameters (Po and Pm). Notably, this outage vanishes at low density of the BSs.

Accordingly, at higher BSs density, there will be no outage due to the limited transmis-

sion power of MTC nodes. In order to show the impact of the maximum transmission

power Pm on the power control outage, Fig. 6.3 depicts the outage versus the ratio Pm/Po

for different cell density λs. The results show that the outage decreases very fast with

the ratio Pm/Po especially for a high density of small cells. One can conclude that in the

UDN environment, the maximum transmission power Pm is no longer the parameter that

impacts the power control outage of the MTC node, rather it is the density of small cells.
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Fig. 6.4 depicts the power control outage versus the power truncation threshold for differ-

ent density of small cells and different combinations of the SEPL propagation parameters.

The results show that the power control outage significantly increases with higher power

truncation threshold. However, for higher cell densities (λs > 1000 cells / km2), the out-

age is very low even at relatively high truncation threshold for the considered maximum

transmission power Pm. This signifies very interesting conclusions regarding the impact of

the UDN on the system performance. At high density of small cells, the outage due to the

truncation threshold is almost negligible while in the same time increasing the truncation

threshold means higher transmission power and as a byproduct higher SINR and higher

uplink coverage performance.

Figure 6.2: Power control outage for the truncation and no-truncation power control schemes versus the

density of small cells considering different power truncation cutoff threshold Po and different combinations

of the path loss model parameters a and β, (Pm = 20 dBm).

6.6.3 Coverage Threshold

Fig. 6.5 depicts the uplink coverage for a typical active MTC device in a massive de-

ployment scenario versus the coverage threshold τ . The results show the uplink coverage

performance for different MTC population density in two different power truncation cutoff
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Figure 6.3: Power control outage versus the ratio Pm/Po considering different density of small cells λs and

different combinations of the path loss model parameters a and β, (λm = 105 nodes/km2 and ρm = 0.1).

threshold scenarios where the small cells’ density is 1000 BSs/km2. The uplink coverage

is significantly high at relatively low coverage thresholds. The results show that 80% of

the time, the MTC population experiences an SINR of at most 0 dB. It is important

to realize that in most of MTC applications, the nodes may experience poor received

signal due to the harsh deployment conditions (e.g., basements, underground facilities,

and concrete constructions). The coverage performance also shows a tendency to decline

as the density of the mMTC nodes increases which can be intuitively explained by con-

sidering that the number of resource blocks in each small cell is a limited resource. In

other words, as more nodes are deployed, more interference on each uplink resource is

expected. On the other hand, the performance of the uplink coverage improves signif-

icantly with higher power truncation threshold even in high densities of mMTC nodes.

Furthermore, the impact of the mMTC nodes density on the coverage tends to dimin-

ish as the power truncation threshold Po gets smaller. In the limiting case, for a very

small Po, the coverage performance becomes independent of the mMTC devices density

(as seen from the case of Po = −110 dBm compared to Po = −100 dBm). At relatively

low Po, the network becomes noise-limited rather than interference-limited. Lowering Po
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Figure 6.4: Power control ‘ outage versus the power truncation threshold Po considering different density

of small cells λs and different combinations of the path loss model parameters a and β, (Pm = 20 dBm,

λm = 105 nodes/km2, and ρm = 0.1).

is translated to a lower transmission power which in turn limits the interference seen in

the uplink. Moreover, the noise power becomes of a comparable value to the received

signal. Consequently, the impact of the increased density becomes negligible in terms of

accumulated interference. On the contrary, higher Po means higher transmission power

and as a byproduct higher SINR. It is worth mentioning also that the high density of the

small cells yields shorter distances to MTC devices which significantly reduces the impact

of the inter-cell interference.

In Fig. 6.6, the coverage probability is plotted in two different combinations of the path

loss model parameters. The coverage probability shows a slight change in both scenarios

while the choice of the propagation parameters provides two realistic combinations which

match the physical measurements [2].

6.6.4 Density of Small Cells

UDN is featured by the high density of small cells. In Fig. 6.7, we assess the impact of

the density of the BSs on the uplink coverage performance where it is depicted versus
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Figure 6.5: Coverage probability versus coverage threshold considering different MTC node density λm

and different power truncation threshold Po

the density of BSs for different densities of MTC devices. A coverage threshold of τ = 0

dB and two different power control truncation thresholds Po = −100 dBm and Po =

−110 dBm are considered. The dramatic improvement of the uplink coverage with the

increasing density of BSs suggests a significant impact of the density on the network

performance. However, the coverage probability saturates and reaches a maximum at

a given BSs density which is distinct for different density of MTC devices and different

power truncation threshold. The increasing density of small cells brings the BSs closer

to the MTC devices which in turn lowers the required transmit power of these devices.

Accordingly, the aggregate interference in the network diminishes leaving the devices

with increasing uplink coverage probability. This coverage probability is higher for larger

power control truncation threshold since this provides a higher received signal strength as

compared to the aggregate interference. Since the aggregate interference gets lower with

higher density of BSs, at some point the aggregate interference becomes less than the

noise and the network performance switches to the noise-limited region. At this point,

the density of the BSs no longer affects the network performance and the uplink coverage

saturates. Consequently, network designers can decide the density of a UDN to provide
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Figure 6.6: Coverage probability versus coverage threshold considering different MTC node density λm

and different combinations of the path loss model parameters a and β

a predetermined coverage for a given density of MTC devices and a given power control

truncation threshold.

In Fig. 6.8, the uplink coverage performance is depicted for two different combinations

of the path loss model. In this scenario, the path loss model has a significant impact on

the uplink coverage for different BSs density. Obviously, the small cells’ density directly

affects the link distance between the MTC node and the BS. This explains the significant

impact of the path loss model parameters on the coverage probability when depicted

against the BSs density.

6.6.5 Density of mMTC Devices

Considering different small cells’ density and two different power truncation thresholds,

Fig. 6.9 depicts the uplink coverage probability versus the mMTC devices’ density at a

coverage threshold of 0 dB The results show that the coverage probability significantly

declines with the density of the MTC nodes in low small cells’ density. This behavior is

completely altered in higher BSs densities where the coverage probability decreases with

the MTC devices’ density in a much slower pace than in higher small cells’ densities. In
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Figure 6.7: Coverage probability versus small cells’ density considering different MTC node density λm

and different power truncation threshold Po

Fig. 6.10, the coverage performance is plotted for different combinations of the path loss

parameters. In conclusion, higher MTC devices’ density along with higher small cells’

density translates to links with a shorter distance where the path loss parameters come

to the scene to impact the uplink coverage performance.

6.6.6 Orthogonal Resource Blocks

Fig. 6.11 depicts the uplink coverage probability versus the number of orthogonal channels

for different MTC devices’ density at a coverage threshold of 0 dB. The results show that

increasing the bandwidth significantly improves the coverage. However, this is tightly

related to the density of the MTC devices. At lower MTC nodes’ densities, there is a

maximum number of orthogonal resources beyond which no significant improvement in

the uplink coverage is achieved.
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Figure 6.8: Coverage probability versus small cells’ density considering different MTC node density λm

and different combinations of the path loss model parameters a and β
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Figure 6.9: Coverage probability versus mMTC devices’ density considering different small cells’ density

λs and different power truncation threshold Po
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Figure 6.10: Coverage probability versus mMTC devices’ density considering different small cells’ density

λs and different combinations of the path loss model parameters a and β

6.6.7 Power Truncation Cutoff Threshold

To zoom in on the impact of the power truncation threshold on the uplink coverage prob-

ability, Fig. 6.12 depicts the coverage probability versus the power truncation threshold

for different MTC devices’ density. We consider two different densities of small cells and

the coverage probability is computed at a coverage threshold of 0 dB.

Confirming the previously discussed finding, lowering the power control cutoff thresh-

old Po negatively impacts the uplink coverage until it becomes indifferent to the density

of MTC devices. On the other side, increasing Po dramatically improves the uplink cov-

erage. Even though, at some critical point, the uplink coverage performance is no longer

affected by the increase of the cutoff threshold Po where this critical saturation point

is a function of both the density of the small cells and the MTC devices. This can be

explained by recalling our finding that the uplink coverage performance has two regions:

a noise-limited region and an interference-limited one with Po being the system parameter

that controls the boundary between them.
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Figure 6.11: Coverage probability versus the number of orthogonal resources considering different mMTC

devices’ density λm and different power truncation threshold Po

6.6.8 Maximum Transmission Power

Fig. 6.13 depicts the uplink coverage probability versus the maximum transmission power

for different densities of MTC devices. We consider two different combinations of the

SEPL model. The results show that the coverage probability does not vary with the

maximum transmission power in a wide range (0 to 20 dBm). This can be justified by

noting that as the density of small cells increases, the distance between the MTC nodes

and its serving cells shrinks. Hence, the transmission power required to satisfy the power

control cutoff threshold becomes smaller. Accordingly, a higher maximum transmission

power will not affect the coverage probability as long as the transmitted signal can be

received at the serving BS with the designated cutoff power.

Considering small cells in UDNs as a future possibility for serving massive MTC

brings many opportunities. Firstly, the maximum transmission power can be reduced

significantly from the current standard. One can suggest as low as 0-10 dBm (which cor-

responds to 1-10 mW)). This is due to the short link distance between the serving cell and

the MTC nodes. Accordingly, this allows for more cost savings in the fabrication of the
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Figure 6.12: Coverage probability versus power truncation threshold considering different mMTC devices’

density λm and different number of orthogonal resources NRB

MTC nodes. Secondly, the reduction in transmit power significantly extends the battery

life which can be increased to several tens of years instead of a maximum of 10 years in the

current NB-IoT standard (LTE Release 13 and beyond) [145]. To summarize, aiming at a

much lower transmit power from the current standard will have a double-fold gain: lower

cost and longer battery life. Here, we propose that UDNs can provide this reduction of

transmission power by providing short links to the massive MTC nodes, especially indoor.

6.7 Conclusion

We investigated the uplink coverage of mMTC devices deployed in massive amounts con-

sidering UDN environment. The special features of UDN is considered in the analysis.

The uplink coverage is challenging in MTC applications due to the limited energy of the

battery-powered MTC devices and the harsh deployment scenarios. The significant im-

pact of the density of small cells, the available bandwidth, and the power control cutoff

threshold on the uplink coverage performance is assessed by both analytical and simu-

lation results. Remarkably, there is a critical saturation point where increasing these
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Figure 6.13: Coverage probability versus maximum transmission power considering different mMTC

devices’ density λm and different power truncation threshold Po (Small cells’ density λs = 1000 cells/km2.

system parameters has no further impact on the performance. One interesting finding is

that the uplink coverage performance has two distinct regions of operation, noise-limited

region and interference-limited one. Another important finding is that the uplink coverage

performance of a massive MTC deployment scenario in UDN environment is no longer

affected by the maximum transmit power of the device, thanks to the high density of the

serving small cells.
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7. Coexistence of MTC and HTC in

UDN

7.1 Introduction

The coexistence of Machine-Type Communication (MTC) communication and Human-

Type Communication (HTC) communication is inevitable in 5G networks where Cellular

Internet of Things (C-IoT) [153] emerges as a promising alternative to support IoT

services [144]. Ultra-Dense Network (UDN) is widely believed to be a key enabling tech-

nology in 5G networks to support dense MTC communication as well as high traffic load

HTC communication [58]. The network densification in UDNs brings the cells much closer

to the users which improves their link quality. In addition, the increasing frequency reuse

significantly improves the network throughput available to the end users. However, this

comes with the cost of severe interference experienced by the users due to the increasing

number of base stations (BSs) . The mitigation of this excessive interference is crucial

to the fruition of network densification. One simple interference mitigation scheme is to

turn off the inactive BSs due to lack of connected users [154], which is termed as idle

mode capability.

The key requirements of Cellular Internet of Things (C-IoT) which have been ad-

dressed in LTE Release 13 are cost reduction, reduced power consumption and enhanced

coverage [153]. Massive deployment of MTC devices is a main feature of the future ap-

plications of IoT. Accordingly, connectivity would be a major problem where millions of

MTC devices can exist in the coverage area of one macrocell. In this scenario, UDNs will

play a dominant role to provide a scalable connectivity solution. Offloading of such im-

mense connectivity load to the dense small cell network emerges as a viable solution. The

traffic of MTC communications is featuring special characteristics. In particular, MTC
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traffic is mostly in the uplink with very short messages to report a reading of a sensor or

a smart meter [144]. Moreover, in many scenarios, the traffic of MTC devices is sporadic

with a long duty cycle. Accordingly, only a ratio of the population of MTC devices will

be active and transmitting at any given time. In addition, due to the harsh deployment

scenarios of some IoT applications, MTC devices may experience poor signal quality.

Hence, the enhanced coverage is a basic requirement in C-IoT where 15−20 dB improved

coverage would be required when compared to regular HTC communication [153].

7.2 State-of-the-Art and Contributions

While some recent studies considered the impact of Machine-Type Communication (MTC) traf-

fic on Human-Type Communication (HTC) users in LTE [155], traditional cellular net-

works [156] and fiber-wireless (FiWi) smart grid communications [157], to the best of our

knowledge, we are the first to address the impact of the coexistence of MTC and HTC

communications on the network performance in UDNs. In this investigation, we study

the downlink network performance in terms of the coverage probability and the cell load

where we proposed two association schemes for the MTC devices, namely, Connect-to-

Closest (C2C) and Connect-to-Active (C2A). The network performance is then analyzed

and compared in both association schemes.

7.3 System Model

We consider a dense small cell network comprised of BSs equipped with advanced idle

mode capabilities. The BSs turn off if no users are connected in order to mitigate their

interference. We consider the standard tools of stochastic geometry to model the network

nodes [104] where the locations of the BSs, HTC users, MTC devices are modeled as

independent Homogeneous Poisson Point Process (HPPP) Φs, Φh and Φm with a density

λs, λh and λm, respectively. All BSs, HTC users and MTC devices are assumed to deploy

a single antenna, BSs transmit with a unit power, and all component carriers are utilized

in each cell, i.e., frequency reuse factor of one. Due to the nature of the MTC traffic

which is mainly sporadic with a long duty cycle for transmission [157], we assume that

at any given time only ρm of the MTC devices are ready to transmit. Thus, only ρmλm

of the MTC devices will be active at any given time. We consider ρm as a constant in
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this investigation for simplicity, however, the modelling of ρm as a random variable will

be considered in future research.

We evaluate the performance with regard to a typical user at the origin which rep-

resents the average performance of all users and is allowed with the aid of Slivnyak’s

theorem [105]. Moreover, we consider the analysis of the performance metrics with re-

spect to each type of users, i.e., MTC and HTC. In this case, we consider a typical HTC

user and a typical MTC device each of which is located at the origin in the respective

analysis to evaluate the average performance of each users’ group. HTC users connect to

the BS providing the maximum average received power which is the nearest BS. We con-

sider two association schemes in case of MTC devices and we compare their performance.

In the first association scheme, connect to closest (C2C) BS, an MTC device connects

to the nearest BS and turns it on if it is in idle mode. The second association scheme,

connect to active (C2A) BS, differs only in one aspect, the MTC device connects to the

nearest active BS activated by an HTC user instead of activating the nearest BS to its

location.

The propagation environment considered in this system model consists of two compo-

nents; large scale fading and small scale fading. Large scale fading is modeled by Stretched

Exponential Path-Loss (SEPL) model with parameters (α and β) [158]. In SEPL model,

the transmit signal experiences exponential attenuation with the distance to the transmit-

ter r, thus the received signal power from a BS transmitting with a unit power is e−αrβ .

Small scale fading is modeled by independent and identically distributed (i.i.d) multipath

fading channels which follows Rayleigh distribution. Without loss of generality, we as-

sume similar fading channels for HTC users and MTC devices. Accordingly, the power

fading channel gain of the serving BS, ho, and the interfering BSs, hb, follow exponential

distribution with mean one.

In UDNs, the interference-limited scenario is a typical scenario where the aggregate

interference from active cells is much greater than the noise power. Accordingly, the

downlink signal to interference ratio (SIR) can be expressed as:

SIR =
S
Ia

=
hoe

−αrβ∑
b∈Φa/bo

hbe−αrβb
(7.1)

where Φa ⊂ Φs is the interfering BSs point process which is the set of all active cells. The

BS activation probability is in general location dependent, and hence, the interfering BSs
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form a nonhomogeneous PPP [54]. In UDNs, considering the high density of small cells,

the variance in cell sizes becomes very small and this location dependency vanishes. Based

on this discussion and the approximation proposed in [54, Lemma (1)], we can model the

interfering BSs as a HPPP Φa which represents a thinned version of the original small

cells PPP Φs with a thinning probability pa, and a density paλs. Remarkably, the BS

activation probability can be given in terms of the relative density of the cells to the

density of the users [20]:

pa = 1−
[
1 + 1

3.5κ

]−3.5 (7.2)

where κ = λs

λu
is the network densification ratio and λu is the users’ density.

Interestingly, in the considered association scenarios, the BS activation probability

differs according to the association model. In C2C association, the density of users is

the density of the merged PPP of the HTC users and MTC devices. Considering the

properties of Poisson processes, the users’ density in this case is the sum of the individual

densities, i.e., λu = λh + ρmλm. On the other hand, in C2A association, we consider

only the activated BSs from HTC users. Therefore, the users’ density in this case is λh.

To summarize, we consider two different activation probabilities to perform the thinning

of the interferers process, pcc = 1 − [1 + 1/3.5κcc]
−3.5 in C2C association scheme and

pca = 1 − [1 + 1/3.5κca]
−3.5 in C2A association scheme where κcc = λs/(λh + ρmλm) and

κca = λs/λh.

To evaluate and compare the performance of the two association schemes, we consider

two performance metrics. The first metric is the downlink coverage probability of HTC

users and MTC devices Ph(τh) and Pm(τm), respectively, which can be defined as:

Ph(τh) = P {SIRh ≥ τh} (7.3)

Pm(τm) = P {SIRm ≥ τm} (7.4)

where τh is the coverage threshold and SIRh is the SIR with respect to the HTC users.

Also, τm is the coverage threshold and SIRm is the SIR with respect to the MTC devices.

Notably, we use two different coverage thresholds for the evaluation of the coverage prob-

ability of MTC and HTC users due to the difference in coverage requirements between

them [153]. The second metric we consider is the average cell load of HTC users Lh and

the average cell load of MTC devices Lm which can be defined as:

Lh =
Nh

Ns,HTC

users/cell (7.5)
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Lm =
Nm

Ns,MTC

devices/cell (7.6)

where Nh, Nm, Ns,HTC and Ns,MTC are the average number of HTC users, MTC devices,

BSs serving HTC users and BSs serving MTC devices in a given area, respectively. The

average cell load provides a good measure for the loading of cells of both communication

types assuming the homogenous traffic of HTC users and the homogeneous uplink traffic

of MTC devices in most scenarios. In particular, the average cell load metric addresses

the MTC connectivity load on the cells where the random access in initial cell association

is a major bottleneck [159].

7.4 Analytical Results

7.4.1 Downlink Coverage

General Scenario

In this section, we investigate the downlink coverage probability of MTC and HTC users in

UDNs. To simplify the presentation of results, we consider a general user type with density

λu and general association scheme in the analysis of the downlink coverage probability,

then we specialize the results for MTC and HTC users considering the C2C and C2A

association schemes. In what follows we provide the general result and two special case

simplifications.

Theorem 1. The downlink coverage probability of a general user type in UDNs satisfying

the system model presented in Section 7.3 is given by:

Pc(τ) =

∞∫
0

2πλsre
−πλsr2LIa(τe

αrβ)dr (7.7)

where:

LIa(τe
αrβ) = exp

(−1)
2
β
2πλaτ

βα
2
β

1∫
0

(
ln(x)− αrβ

) 2−β
β

1 + τx
dx

 (7.8)

and λa = paλs.

Proof. We follow a similar approach to the proof provided in [122] considering the SEPL

model and the idle mode capabilities of the BSs. Accordingly, the interfering BSs point
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process Φa in our system model is a thinned version of the small cells point process Φs

with a density paλs where pa depends mainly on the relative density of the small cells to

the users. �

In the following corollary, we simplify the result considering the special value β = 2
n+1

where n ∈ {0, 1, 2, 3, · · · } which corresponds to the values β = 2, 1, 2
3
, 1
2
, · · · .

Corollary 1. Considering the special case β = 2
n+1

where n ∈ {0, 1, 2, 3, · · · }, the downlink

coverage probability stated in Theorem 1 simplifies to

Pc(τ) =

∞∫
0

2πλsre
−πλsr2 exp

{
n∑

k=0

λaak(τ)r
2k

n+1

}
dr (7.9)

where

ak(τ) =
π(n+ 1)!

k!αn−k+1
Li(n−k+1)(−τ) (7.10)

and Li(k)(·) is the kth order poly-logarithmic function [134], which can be expressed as:

Li(n−k+1)(τ) = − τ

Γ(n− k + 1)

∞∫
0

xn−k

ex − τ
dx (7.11)

For the special value β = 2 which corresponds to n = 0, the downlink coverage probability

is further simplified to,

Pc(τ) = exp
{
−πλa

α
ln(1 + τ)

}
. (7.12)

Proof. The proof follows similar steps to the proof presented in [2], however we use the

expression of LIa(τe
αrβ) presented in (7.8). �

In the following subsections we provide the downlink coverage results of HTC users

and MTC devices considering C2C and C2A association schemes. We consider the special

case in (7.12), however the general result can be specialized for the considered association

schemes in a similar manner. The tuning of the general result to match the association

schemes mainly depends on the identification of two parameters in the general result. The

first parameter is λs, the density of the small cells point process from which a given user

selects one for association. The second parameter is λa, the density of interfering BSs.

C2C Association
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In C2C association, MTC devices and HTC users are allowed to connect to the closest

BS which provides the maximum average received power. Consequently, any small cell

can be chosen for association by both HTC users and devices users with a density λs. In

this case, the interfering BSs PPP is a thinned version of the small cells PPP Φs with

a thinning probability pcc, hence, the density of interfering BSs is λa = pccλs. Based on

this, the downlink coverage probability of HTC users is given by:

PC2C
h (τh) = exp

{
−πpccλs

α
ln(1 + τh)

}
. (7.13)

Similarly, the downlink coverage probability of MTC devices is given by:

PC2C
m (τm) = exp

{
−πpccλs

α
ln(1 + τm)

}
. (7.14)

C2A Association

In C2A association, an HTC user connects to the closest BS if it is active or activate

it if it is in idle mode, whereas MTC devices are allowed only to connect to the active

BSs which are activated by the HTC users. In this scenario, HTC users can connect to

any BS in the small cells PPP Φs with a density of λs. On the other hand, MTC devices

are allowed only to connect to a BS in the active small cells PPP Φa which is a thinned

version of the small cells PPP Φs with a thinning probability pca. Similarly, the interfering

BSs PPP in this scenario is a thinned version of Φs with a probability pca and a density of

interfering BSs λa = pcaλs. As a result, we can express the downlink coverage probability

for HTC users as:

PC2A
h (τh) = exp

{
−πpcaλs

α
ln(1 + τh)

}
. (7.15)

and for MTC devices, the downlink coverage probability is given by:

PC2A
m (τm) = exp

{
−πpcaλs

α
ln(1 + τm)

}
. (7.16)

7.4.2 Average Cell Load

In this section, we turn our attention to another performance metric, the average cell load

measured in the number of connected users to a given cell. In the following theorem we

provide the main results for the average cell load considering both users’ types and the

two investigated association schemes.
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Theorem 2. The average cell load of HTC users in UDNs satisfying the system model

presented in Section 7.3 is given by:

Lh =
λh

paλs

users/cell (7.17)

where pa is given in (7.2) with κ = λs/λh. Similarly, the average cell load of MTC devices

can be expressed as:

Lm =
ρmλm

paλs

users/cell (7.18)

where pa = pcc in case of C2C association and pa = pca in case of C2A association.

Proof. HTC users are drawn form an HPPP Φh with a density λh, hence, the average

number of active HTC users in a given area A is λhA. In a similar way, the average

number of active MTC devices in a given area A is ρmλmA. The number of active BSs

depends mainly on the considered association scheme. In C2C association, the average

number of active BSs in a given area A is pccλsA, and in C2A association this can be

given by pcaλsA. Substituting in the average cell load as defined in (7.5) and (7.6) we

obtain the expressions in (7.17) and (7.18). �

7.5 Simulation Results

In this section, we assess the accuracy of the analytical results by simulating the system

model provided in Section 7.3. The network is realized by the generation of HPPP with

corresponding densities for the small cells, HTC users and MTC devices. We consider

a square area with a side of 300m where we generated 100 spatial realizations of the

PPP. The channel variation is simulated by a realization of 10 time slots drawn from

an exponential random variable with a mean one. We consider a SEPL model e−αrβ to

compute the path losses for the serving BS links as well as the interference links.

7.5.1 Downlink Coverage Probability

Figure 7.1 depicts the downlink coverage probability of HTC users and MTC devices.

We consider different coverage thresholds τh and τm to highlight the different coverage

requirements for both types of users. The downlink coverage of HTC users improves

significantly when we consider the C2A association scheme. A 5x enhancement is achieved
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Figure 7.1: Downlink coverage probability versus the small cells’ density λs with HTC users’ density of

λh = 300 users/km2 , MTC devices’ density of λm = 1 users/m2 and activity probability of ρm = 0.1.

in the downlink coverage at small cells density of 10, 000 cells/km2. On the other hand,

the coverage probability in case of MTC devices improves in higher small cell densities

considering the C2A association. The significant improvement of the coverage probability

in case of HTC users is due to the mitigation of the severe interference from the large

number of active cells in case of C2C association scheme. This interference mitigation

takes place by turning off most of the BSs that would be activated to serve the MTC

devices in their vicinity. Instead, those MTC devices are associated to the active BSs which

are already activated by the HTC users. In Figure 7.2, the downlink coverage probability

is depicted once again versus the MTC devices’ density. The increasing density of MTC

devices means more activated small cells in case of C2C association. Consequently, the

C2A association scheme shows a similar behavior where the coverage probability improves

significantly, especially, in high MTC devices’ density.

7.5.2 Average Cell Load

The average cell load of HTC and MTC devices is depicted versus the small cells’ density

in Figure 7.3. The results show that the average cell load decreases with higher cell

densities. Intuitively, more small cells translates to less load per cell. However, in C2A
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Figure 7.2: Downlink coverage probability versus the MTC devices’ density λm with small cells’ density

of λs = 0.01 cells/m2, HTC users’ density of λh = 300 users/km2 and activity probability of ρm = 0.1.

association, the average cell load of MTC devices is significantly higher than the case

of C2C association. In C2A association scheme, the MTC devices are only allowed to

connect to the nearest active cell which limits the number of serving cells. On the other

hand, the average cell load considering HTC users is indistinguishable with respect to the

two association schemes. This is intuitive since in both cases the number of HTC serving

BSs depends only on the HTC users’ density.

In Figure 7.4, the average cell load is depicted versus the MTC devices’ density. The

average cell load of MTC devices increases significantly as the MTC density increases

considering the C2A association scheme. On the contrary, in C2C association scheme,

the average cell load increases slightly as the density of MTC devices increases. To explain,

in C2C association, more active MTC devices activate more cells which results in almost

constant average cell load. Moreover, the average cell load of HTC users is independent

of the MTC devices’ density as depicted in Figure 7.4.

7.6 Conclusions

In this investigation, we studied the impact of the coexistence of MTC devices and HTC

users on the performance of UDNs. We investigated two association schemes, namely,
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Figure 7.3: Average cell load versus the small cells’ density λs with HTC users’ density of λh =

300 users/km2 , MTC devices’ density of λm = 1 users/m2 and activity probability of ρm = 0.1.
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Figure 7.4: Average cell load versus the MTC devices’ density λm with small cells’ density of λs =

0.01 cells/m2, HTC users’ density of λh = 300 users/km2 and activity probability of ρm = 0.1.

connect to closest (C2C) BS and connect to active (C2A) BS. The network performance in

terms of downlink coverage probability and average cell load is analyzed and the analytical

results are assessed through simulations. The investigation of the proposed system model

shows a tradeoff between the two performance metrics with respect to the considered
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association schemes. Accordingly, this suggests the design of association schemes to find

a balance between them. On the positive side, the consideration of UDNs to support

MTC devices traffic provides a scalable and a viable solution to the connectivity problem

in future massive deployments of MTC devices.
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8. Uplink Performance of Combined

HTC and MTC considering NOMA

in UDNs

8.1 Introduction

Network densification is a trend in mobile communication since the first generation in

the 80s while considered one of the preeminent technologies to satisfy the stringent re-

quirements in the 5G networks. Ultra-Dense Network (UDN) is then the ultimate of this

trend [58]. In this way, immense number of small cells are deployed in hot-spots where

enormous traffic is generated and massive number of access requests is expected. This

provides full coverage, uniform capacity to HTC users, and massive connectivity to MTC

devices. To this end, advanced access techniques are required to provide such massive

connectivity without jeopardizing the high data rates and bandwidth efficiency, thanks

to NOMA.

Fostering such massive connectivity in MTC use case scenario requires a different ra-

dio access technology (RAT). To this end, NOMA is a very promising technology where

multiple users are encouraged to use a shared frequency resource simultaneously [160].

This provides many useful advantages which include: better connectivity and higher

spectral efficiency when compared to Orthogonal Multiple Access (OMA). However, this

comes at the cost of increased intra-cell interference. Consequently, Successive Interfer-

ence Cancellation (SIC) is employed at the receivers in order to mitigate this excessive

interference [161]. In NOMA, two or more users are grouped together and are allocated

a single radio resource to transmit or receive data. To maximize the multiplexing gain in

NOMA, the grouped users must have a relative difference in their propagation environ-
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ment conditions [160]. In the special case of a 2-UE (User Equipment) pair NOMA, one

of the users must have a much better propagation environment than the other to fully

acquire the gain of NOMA over OMA. In fact, this is a natural scenario when an HTC

user is paired with an MTC device considering the harsh deployment scenarios of MTC

devices (e.g., basements, underground facilities, and concrete constructions). When SIC

is applied, the signal of the stronger user (e.g., HTC user) is decoded first and then sub-

tracted from the composite signal before the signal of the weaker user (e.g., MTC device)

can be decoded.

8.2 State-of-the-Art

Considering NOMA in either UDN or MTC has recently attracted increasing attention

and efforts (eg. see [162–175]). A qualitative general framework of Power-Domain NOMA

(PD-NOMA) and Code-Domain NOMA (CD-NOMA) to serve massive connectivity in

Heterogeneous UDN is proposed in [163]. In [164], an access framework is investigated to

group BSs in a User-Centric UDN deploying NOMA. Also, a resource allocation problem of

the grouped BSs is formulated and solved using tools from optimization theory. In [165],

the interference management problem in UDN is addressed and discussed considering

NOMA. Enabling vehicular networks is one of the main potential applications in 5G

networks, however, the massive connectivity requirements would be one of the limiting

factors [166]. Scheduling and resource allocation of such scenarios is thus investigated

in [166]. Also, NOMA is compared to OMA considering Visible Light communication

(VLC) in UDN [167]. Support of MTC in mmWaves is then investigated in [168], grant-

free NOMA for massive MTC connectivity is addressed in [169, 174], and a multi-user

detection grant-free NOMA considering adaptive compressed sensing is investigated in

[171]. NOMA alongside TDMA are investigated in energy efficient resource allocation

scenario in order to support MTC in [170], and the fundamental limits of deploying

NOMA in cellular massive IoT is discussed and studied in [173].

In [172], the average success probability and the average number of served MTC

devices in aggregation communication mode is investigated where tools from stochastic

geometry are utilized and two resource scheduling strategies are proposed and compared,

namely a random strategy, and a channel-aware strategy. However, only MTC devices
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are considered in this investigation, while the coexistence of HTC users and MTC de-

vices is inevitable in next generation networks, especially UDN. Also, the high density of

BSs is not considered in this study. In [175], the downlink and uplink of NOMA-based

multiple access in a dense network are investigated considering a single type of UE. A

power back-off scheme is employed in the uplink to guarantee a distinctive received power

at the BS form the two paired devices. Although considering a dense network, the dis-

tinguishing features of such network are not addressed by the authors in [175]. Simple

power decay path-loss model is assumed and no idle mode capabilities are considered in

the BSs. Moreover, the impact of serving different types of UEs (e.g., HTC and MTC) is

not investigated.

8.3 Contributions

Different from previous work, in this investigation we model the uplink coverage of HTC

users and MTC devices paired together in NOMA-based radio access. To this end, we

employ techniques from stochastic geometry for accurate modeling of the considered sce-

nario. The inherent randomness of the locations of HTC users, massive MTC devices and

dense small cells, encourages the use of stochastic techniques to approach the investigated

problem. In what follows we summarize the contributions of this study as compared to

previous work in the literature:

• The distinguishing features of UDN are considered in modelling the propagation

environment where a Stretched Exponential Path-Loss (SEPL) model is used to

capture the short-link distances.

• The idle mode of the BSs in UDNs is considered in the analysis where most of the

cells are turned off to mitigate interference.

• An efficient association scheme, namely, connect-to-active (C2A) association is pro-

posed to address the association of the MTC devices to the active cells activated

by the HTC users. Accordingly, HTC users and MTC devices can be paired in

NOMA-based radio access.

• The two types of UEs, i.e., HTC and MTC are fully characterized by their densities

and power control parameters.
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• Closed-form and easy-computable analytical results are derived for the considered

performance metrics.

8.4 System Model

In this section, we present the details of the considered system model

8.4.1 Network Model

The uplink of a UDN is considered where two types of user nodes coexist in the network,

namely, HTC users and MTC devices. In this scenario, both HTC users and MTC devices

represent transmitters while BSs of the UDN act as receivers. We consider a single tier

of small cells where the BSs are distributed according to a Homogeneous Poisson Point

Process (HPPP) Φs with a density λs. Independently from the BSs distribution, the HTC

users and the MTC nodes are modeled as two other independent HPPPs Φh and Φm with

densities λh and λm, respectively. Notably, we assume that λs ≫ λh, λm ≫ λh. With the

aspects of the traffic of MTC devices in mind, we assume that only a fraction ρm ∈ [0, 1]

of the MTC devices are active and are having packets to transmit [142]. All BSs, HTC

users, and MTC nodes are assumed to deploy a single antenna and the whole bandwidth

spectrum is reused in all cells i.e., we assume a frequency reuse factor of one.

8.4.2 Propagation Model

The propagation model considers path loss and fast fading components. The path loss

is modeled by a stretched exponential path-loss (SEPL) where the transmit signal power

decays with the distance r as e−αrβ . This model captures the signal propagation prop-

erties in UDN environments featuring short distances between the (serving/interfering)

BSs and the associated users. Here, α and β are the model parameters which are used to

tune it to capture different propagation environment. SEPL model describes the propa-

gation scenarios where the attenuation is mainly caused by obstacles adding an average

multiplicative attenuation of α, with the number of obstacles in the path scaling as r.

This scaling is determined by the parameter β, where β = 1 provides a linear scaling,

β = 2 provides a quadratic scaling and so on [2]. The 3GPP specifications, however,

recommend the adoption of the multi-slope path loss model for dense networks [147]. In

126



the multi-slope path loss model, different distance ranges are subject to different path loss

exponents. Analytically, the SEPL model provides a better alternative that is continu-

ous and bounded where it can be easily incorporated in stochastic geometry analysis [2].

Moreover, the SEPL model can be seen as a limiting case for the multi-slope model with

an infinite number of slopes.

Each link between an HTC user and a BS is subject to fast fading and is denoted by

ghu. Similarly, denote by gmu the fast fading channel between an MTC node and a BS.

Also, denote by gho and gmo the fading gain of the useful link between an HTC user and

its serving BS and an MTC node and its serving BS, respectively. We assume that the

channel fading gains of all interfering nodes are independent and identically distributed

(i.i.d), i.e., channel gains are independent of each other and independent of the locations

of the nodes. Additionally, we assume that all fading channels follow a Rayleigh fading

model, hence the channel power gains follow an exponential distribution with a mean of

one i.e., exp(1).

8.4.3 Cell Association Model

We assume that HTC users associate to the BS with the strongest long-term average

received power i.e., the nearest BS. A BS is considered in idle mode if no HTC users are

associated to it, consequently, it is turned off to save energy and to mitigate interference.

Accordingly, the BSs point process Φs is thinned with a probability pa = 1 − po forming

another HPPP Φa with a density λa = paλs, where po is the probability of a BS being in

idle mode and it is given by [176]:

po =

(
3.5κ

1 + 3.5κ

)3.5

, (8.1)

where κ = λs

λh
. On the other hand, MTC nodes are allowed only to associate to the active

BSs Φa, we call this Connect-to-Active (C2A) association [177].

8.4.4 Uplink Interference Model

The bandwidth allocated to each BS is divided into NRB uplink orthogonal resource blocks

(RBs), each of a bandwidth BRB. An HTC user associated to a given BS is allocated an

equal fraction 1/Nhtc of the total available uplink resource blocks, where Nhtc is the number

of HTC users associated to this BS. Thus, the allocation of uplink resources for the HTC
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users is orthogonal. In addition, we assume that each HTC user always has data ready

to be send in its queue, i.e., full-buffer traffic model. On the other hand, an MTC node

occupies only one radio block at any given time to transmit the available data packet. This

orthogonal resource block is selected randomly in a uniformly distributed manner from

the NRB available uplink resources with a probability of 1/NRB. It is worth mentioning

that the interference seen in the tagged resource block is from a single HTC user only

in each cell. This is because of the orthogonal allocation of the resources for the HTC

users. Moreover, we assume that the interference generated from MTC nodes connecting

to the same BS (i.e., intra-cell interference) is perfectly mitigated via advanced physical

and access layer techniques. These techniques are tailored to the specific requirements of

MTC deployment scenarios (e.g., see the techniques discussed in [141]). In other words,

only the inter-cell interference is accounted for in the analysis for both HTC users and

MTC nodes.

8.4.5 Power Control Model

Each HTC user transmits in the uplink with a maximum power Pmax
h to satisfy the limited

transmit power constraints. The users thus employ a truncated channel inversion (TCI)

power control policy. In TCI power control, an HTC transmits with a power Ph such

that the average received power at the BS is Pho. The transmission in the uplink is

truncated if the required transmit power to invert the channel is more than the maximum

transmit power Pmax
h . Accordingly, Pho is the receiving power threshold at the BS where

Pho > Psensitivity, with Psensitivity being the minimum received power of the BS. In this

way, a given HTC user is in a power outage if the required transmit power is greater than

Pmax
h . Hence, the transmit power can be expressed as:

Ph =

 Phoe
αRβ

h if Pho ≤ Phoe
αRβ

h ≤ Pmax
h

0 otherwise
(8.2)

Similarly, the MTC nodes undergo TCI power control policy with the power given by:

Pm =

 Pmoe
αRβ

m if Pmo ≤ Pmoe
αRβ

m ≤ Pmax
m

0 otherwise
(8.3)

where Pmo ≪ Pho and Pmax
m ≪ Pmax

h .
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Practically, a UE estimates the path loss to the serving cell earβ through measuring

the reference signals’ received power and by knowing the reference signals’ transmission

power from the system information sent on the control channels [145]. In addition, the

power control parameters Puo and Pmax
u are known parameters where Puo is broadcasted

on the control channel of the serving cell and Pmax
u is a design parameter of this UE,

with u ∈ {m,h}. Interestingly, the 3GPP LTE standard adopts another power control

scheme where no truncation occurs [145]. In other words, the setting of the power Pu =

min(Puoe
arβu , Pmax

u ) takes place. In this investigation, we adopt the TCI power control

scheme for the sake of tractability.

Remarkably, the transmission power of a given node Pu is a random variable due to

the randomness of the link distance ru. Evidently, this is a direct consequence of the

random distribution of the small cells, the HTC users, and the MTC nodes. In Section

8.5.1, we provide a statistical characterization of the transmission power Pu which is an

essential element in studying the uplink coverage of the considered scenario.

8.4.6 Uplink NOMA Model

We assume a fully-loaded system where all active cells perform a 2-UE uplink NOMA,

with one user being the HTC user and the other is the MTC node. In uplink NOMA,

2 UEs are allowed to transmit on the same resource block at the same time, where the

gain of NOMA maximized with a larger difference between the channel conditions and

transmit powers of both users. The pairing of the two users is random pairing, where

the locations of the two UEs forming the NOMA pair are selected randomly from the

HTC users and MTC nodes associated to a given cell. Since an MTC node requires a

single resource block to transmit its packet, a pair of an HTC user and an MTC node is

associated to a tagged resource block. In other words, we assume that on each resource

block there is a NOMA pair that is composed of an HTC user and an MTC node. We

further assume that the HTC user has a better channel condition and transmit power

than the MTC node, i.e., gho > gmo and Ph > Pm. Consequently, the received signal of

the HTC user is always decoded first at the BS with the signal of the MTC device treated

as noise. Using SIC, the signal of the HTC user is perfectly removed from the composite

signal and then the received signal of the MTC node can be decoded.
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8.4.7 Performance Metrics

The SINR of the signal received at the typical BS located at the origin from the tagged

HTC user and the tagged MTC device are given by:

SINRh =
Phogho

Pmogmo + Im + Ih + σ2
(8.4)

SINRm =
Pmogmo

Im + Ih + σ2
(8.5)

where σ2 is the noise power, Ih is the aggregate interference from the HTC users on the

tagged resource block from outside the tagged cell in the uplink, and Im is the aggregate

interference from the MTC devices on the tagged resource block from outside the tagged

cell in the uplink. This aggregate interference Ih and Im can be expressed as:

Im =
∑

j∈Φ̄m/UEm
o

Pmjgmje
−αRβ

m1
(
Pmje

−αRβ
m < Pmo

)
, (8.6)

Ih =
∑

j∈Φ̄h/UEh
o

Phjghje
−αRβ

h1
(
Phje

−αRβ
h < Pho

)
, (8.7)

where Pmj is the transmission power of MTC device j, gmj is its channel fading gain, and

Φ̄m is the set of all interfering MTC devices transmitting on the tagged resource block

and interfering with the transmission of the tagged device UEm
o from outside its serving

cell. Also, Phj is the transmission power of HTC user j, ghj is its channel fading gain,

and Φ̄h is the set of all interfering HTC users transmitting on the tagged resource block

and interfering with the transmission of the tagged device UEh
o from outside its serving

cell. In addition, 1(·) is the indicator function which takes the value 1 if its argument (·)

is true and zero otherwise.

We consider two performance metrics in this investigation, namely, the uplink coverage

probability and the uplink network throughput. In what follows, we discuss the considered

performance metrics.

8.4.7.1 Uplink Coverage

The uplink coverage probability for both types of devices can be defined as:

PU
h (τh) = P {SINRh > τh} , (8.8)

PU
m(τm, τh) = P {SINRm > τm, SINRh > τh} , (8.9)
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The uplink coverage of the MTC devices PU
m(τm, τh) is defined in terms of both the

coverage threshold of both the MTC devices τm and the HTC users τh. This is a con-

sequence of the decoding order of the composite signal received at the BS from a pair

of an HTC user and an MTC device. The received signal of the MTC device cannot be

decoded successfully unless the received signal of the HTC user decoded first. Thus, an

MTC device is in outage if the paired HTC user is in outage.

8.4.7.2 Network Throughput

The network throughput can be defined as [2]:

RU
h (τh) = paλs log2(1 + τh)PU

h (τh), (8.10)

RU
m(τm, τh) = ρmλm log2(1 + τm)PU

m(τm, τh), (8.11)

8.5 Analytical Results

8.5.1 Uplink Power Control Analysis in NOMA

The power control procedure of both HTC users and MTC devices has a significant

impact on the network performance. Power control is a means of interference mitigation

in the uplink, hence, it influences the performance. Both HTC users and MTC devices

undergo a truncated channel inversion (TCI) power control. An active HTC user adjusts

its transmission power such that the received power at the serving BS is Pho. Accordingly,

an HTC user is considered in power outage if the required transmission power Ph exceeds

the available maximum power Pmax
h . Since, the locations of all HTC users and BSs are

drawn from a random process, therefore, the transmission power Ph of any active HTC

user is a random variable where Ph ∈ [Pho, P
max
h ]. The transmission power Pho corresponds

to a user which is very close to the BS, i.e., r ∼ 0, while the transmission power Pmax
h

corresponds to the farthest user a BS can serve. Likewise, an MTC device applies the

same procedure to adjust its transmission power Pm with a cutoff threshold of Pmo and a

maximum transmit power of Pmax
m , i.e., Pm ∈ [Pmo, P

max
m ].

In this section, we characterize the statistical properties of the transmission power of

the typical MTC device and the typical HTC user Pm and Ph, respectively. We provide

the probability distribution function (PDF) of the transmission power and the expectation

131



of the log-relative-power defined as ln
(

Pm
Pmo

)
and ln

(
Ph
Pho

)
which appear in the expressions

of the coverage probability in the next section.

A given HTC user is in power control outage when the transmission power required

to reach the closest BS exceeds the available maximum transmission power Pmax
h . Ac-

cordingly, the outage probability due to the power truncation forced by the power control

mechanism can be computed as:

Oh = P {r > rh} . (8.12)

Since the transmission power at a given distance r is P = Phoe
arβ , an HTC user experi-

ences outage due to power truncation if the required power to transmit is more than the

maximum available transmission power Pmax
h or equivalently, the node is at a distance

farther than rh where rh = ln
1
β

(
Pmax
h

Pho

) 1
a . Since the CDF of r is FR(r) = 1− e−πλsr2 [58],

hence, the power control outage probability can be expressed as:

Oh = P {r > rh} = 1− P {r < rh}

= 1−
(
1− e−πλsr2h

)
= e−πλsr2h . (8.13)

Similarly, the power control outage of an MTC device can be defined as:

Om = P {r > rm} . (8.14)

However, the CDF of r in the case of MTC devices is FR(r) = 1−e−πpaλsr2 since the MTC

devices can connect only to active small cells. Accordingly, the power control outage of

MTC devices can be expressed as:

Om = e−πpaλsr2m . (8.15)

where rm = ln
1
β

(
Pmax
m

Pmo

) 1
a .

In the next Lemma, we provide the conditional probability distribution function (PDF)

of the transmission power of a generic active HTC user.

Lemma 1. The PDF of the uplink transmission power Ph of a generic active HTC user

associated to the nearest BS in a UDN environment considering a truncated channel

inversion power control is expressed as:
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fPh
(x) =

2πλs ln
2
β
−1
(

x
Pho

) 1
α

aβx (1−Oh)
e
−πλs ln

2
β
(

x
Pho

) 1
a

. (8.16)

Proof. The transmission power of a given active HTC user is a function of the distance

to its serving BS due to the employed truncation channel inversion power control. The

transmission power of HTC user at a distance r from the serving BS is Ph = Phoe
arβ .

Moreover, the transmission power is constrained by the maximum transmission power

Pmax
h and is lower bounded by the minimum received power at the BS Pho. The CDF of

the transmission power Ph can be expressed as:

FPh
(x) = P {Ph ≤ x} = P

{
Phoe

arβ ≤ x
}
= P

{
r ≤ ln1/β

(
x

Pho

)1/a
}

= FR

(
ln1/β

(
x

Pho

)1/a
)
. (8.17)

Considering the CDF of r, the truncated CDF of Ph can be written as:

FPh
(x) =

1− e
−πλs ln2/β

(
x

Pho

)1/a

1− e
−πλs ln2/β

(
Pmax
h
Pho

)1/a
(8.18)

and hence, the PDF of Ph can be written as:

fPh(x) =
dFPh

(x)

dx
=

2πλs ln
2
β
−1
(

x
Pho

) 1
α

aβx (1−Oh)
e
−πλs ln

2
β
(

x
Pho

) 1
a

(8.19)

This completes the proof. �

Similarly, in the next Lemma, we provide the conditional probability distribution

function (PDF) of the transmission power of a generic active MTC device.

Lemma 2. The PDF of the uplink transmission power Pm of a generic active MTC

device associated to the nearest BS in a UDN environment considering a truncated channel

inversion power control is expressed as:

fPm(x) =
2πpaλs ln

2
β
−1
(

x
Pmo

) 1
α

aβx (1−Om)
e
−πpaλs ln

2
β
(

x
Pmo

) 1
a

. (8.20)

133



Proof. Similarly, the transmission power of a given active MTC device is a function of the

distance to its serving BS and is given by Pm = Pmoe
arβ . Moreover, Pm ∈ [Pmo, P

max
m ],

therefore, the CDF of the transmission power Pm can be expressed as:

FPm(x) = P {Pm ≤ x} = P
{
Pmoe

arβ ≤ x
}
= P

{
r ≤ ln1/β

(
x

Pmo

)1/a
}

= FR

(
ln1/β

(
x

Pmo

)1/a
)
. (8.21)

Considering the association scheme of the MTC devices, the CDF of r is FR(r) =

1 − e−πpaλsr2 since the MTC devices can connect only to active small cells. Hence, the

truncated CDF of Pm can be written as:

FPm(x) =
1− e−πpaλs ln2/β( x

Pmo
)
1/a

1− e
−πpaλs ln2/β

(
Pmax
m
Pmo

)1/a
(8.22)

and hence, the PDF of Pm can be written as:

fPm(x) =
dFPm(x)

dx
=

2πpaλs ln
2
β
−1
(

x
Pmo

) 1
α

aβx (1−Om)
e
−πpaλs ln

2
β
(

x
Pmo

) 1
a

(8.23)

This completes the proof.

�

In the next two Lemmas, we use the PDF of the transmission power Ph and Pm

computed for both the HTC users and the MTC device, respectively, to proceed in the

analysis. To this end, we evaluate the moments of the log-relative-power lnk(Ph/Pho) and

lnk(Pm/Pmo) of the HTC users and the MTC devices, respectively. These will be used in

the uplink coverage and network throughput analysis provided in the next section.

Lemma 3. The conditional expectation of the function lnk(Ph/Pho), k ∈ {0, 1, 2, · · · } is

given by:

EPh

[
lnk(Ph/Pho)

]
=

akγ
(
βk
2
+ 1, πλsr

2
h

)
(πλs)

βk
2 (1−Oh)

. (8.24)

134



Proof. The expectation of the function lnk(Ph/Pho) can be expressed as:

EPh

[
lnk(Ph/Pho)

]
=

Pmax
m∫

Pho

lnk(x/Pho)fPh
(x)dx (8.25)

a
=

2πλs

aβ (1−Oh)

δ∫
0

(aw)kw2/β−1e−πλsw2/βdw (8.26)

b
=

akγ
(
βk
2
+ 1, πλsr

2
h

)
(πλs)

βk
2 (1−Oh)

, (8.27)

where step (a) is the result of the change of variables x = Phoe
aw and δ = rβh . Step (b)

follows from simple manipulation and evaluating the integral. �

Likewise, we evaluate the moments of the log-relative-power of the transmission power

of an active MTC device Pm.

Lemma 4. The conditional expectation of the function lnk(Pm/Pmo), k ∈ {0, 1, 2, · · · } is

given by:

EPm

[
lnk(Pm/Pmo)

]
=

akγ
(
βk
2
+ 1, πpaλsr

2
m

)
(πpaλs)

βk
2 (1−Om)

. (8.28)

Proof. Following similar steps as in the proof of Lemma 3, we arrive at the result given

in this Lemma. �

The log-relative-power in Lemma 3 and 4 is a measure of the transmission power Ph and

Pm relative to the cutoff threshold Pho and Pmo, respectively. The expected transmission

power is thus scaled by the power control coverage (i.e., 1−Oh and 1−Om, respectively).

Hence, a higher transmission power at the HTC users and the MTC devices is required

as the power control outage increases. At the same time, as the BSs density increases,

the expected transmission power decreases. This is intuitive where a higher BSs density

means a shorter distance between either HTC users or MTC devices and its serving BS,

and hence, a less power to invert the channel.

8.5.2 Uplink NOMA Coverage and Throughput Analysis

In this section, a comprehensive analysis is provided for the performance metrics discussed

in the system model.
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8.5.2.1 Uplink NOMA Coverage Analysis

We start off by analyzing the uplink NOMA coverage in the considered scenario where we

employ random pairing of an HTC user and an MTC device to form a 2-U group. From

now on, we assume that the HTC users enjoy a much favorable propagation environment

than the one corresponding to the paired MTC device. Since, in a typical UDN, the

density of the small cells exceeds the density of the active HTC users, therefore, HTC

users will always be at a close proximity to the serving cell probably with a Line-of-

Sight (LOS) connection. Nevertheless, the MTC devices are usually deployed in harsh

deployment scenarios leaving them with terrible propagation conditions. Focusing on the

aspects of the NOMA-based coexistence of HTC users and MTC devices, we consider

Rayleigh fading for the sake of tractable and insightful results. In the following theorem,

we calculate the average uplink coverage probability for the typical HTC user.

Theorem 1. The uplink coverage probability of the tagged HTC which is paired in a 2-UE

group with a randomly chosen MTC device on the tagged resource block considering the

system model in Section 8.4 is given by:

PU
h (τh) =
µe

− 2δh
SNRhLIh

(
2δh
Pho

)
LIm

(
2δh
Pho

)
+ νe

− τh
SNRhLIh

(
τh
Pho

)
LIm

(
τh
Pho

)
, if τh

Pmo

Pho
< 1

νe
− τh

SNRhLIh

(
τh
Pho

)
LIm

(
τh
Pho

)
, if τh

Pmo

Pho
≥ 1

(8.29)

where δh = τh
1−τh

Pmo
Pho

, SNRh = Pho

σ2 , µ =
τh

Pmo
Pho

−1

τh
Pmo
Pho

+1
, ν = 2

τh
Pmo
Pho

+1
and

LIh(s) = exp

−
(

2π

βα2/β

)
(paλs)EPh

 sPho∫
0

[
ln( sPh

y
)
] 2

β
−1

y + 1
dy


 (8.30)

LIm(s) = exp

−
(

2π

βα2/β

)(
ρmλm

NRB

)
EPm

 sPmo∫
0

[
ln( sPm

y
)
] 2

β
−1

y + 1
dy


 (8.31)

Proof. Since gh > gm, the uplink coverage probability of the typical HTC user paired with

a random MTC device can be computed as follows:

PU
h (τh) = P {SINRh > τh, gh > gm}

= P
{
gh > gm, gh > τh

Pmo

Pho
gm + τh

Pho

(
Ih + Im + σ2

)}
(8.32)
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Firstly, if τh Pmo

Pho
≥ 1, then Ah = τh

Pho
(Pmogm + Ih + Im + σ2) > gm, and hence:

PU
h (τh) = P {gh > Ah} (8.33)

Since gh and gm both follow exponential distribution with mean one, therefore the order

statistics of gh and gm is given by fghgm(gh, gm) = 2fghfgm = 2e−gh−gm [178]. Accordingly,

the uplink coverage probability can be expressed as:

PU
h (τh) = E

 ∞∫
gm=0

∞∫
gh=Ah

fghgm(gh, gm)dghdgm


= 2

∞∫
gm=0

e
−(1+τh

Pmo
Pho

)gmdgmE
[
exp

{
− τh
Pho

(
Ih + Im + σ2

)}]

=
2

τh
Pmo

Pho
+ 1

e
− τh

SNRhLIh

(
τh
Pho

)
LIm

(
τh
Pho

)
, (8.34)

Secondly, in case of τh Pmo

Pho
< 1,

PU
h (τh) = P {gh > gm, gm > Ah}+ P {gh > Ah, gm < Ah}

= E


∞∫

gm=

τh
Pho

(Ih+Im+σ2)

1−τh
Pmo
Pho

∞∫
gh=gm

fghgm(gh, gm)dghdgm

+

τh
Pho

(Ih+Im+σ2)
1−τh

Pmo
Pho∫

gm=0

∞∫
gh=Ah

fghgm(gh, gm)dghdgm


= e

− 2δh
SNRhLIh

(
2δh
Pho

)
LIm

(
2δh
Pho

)
− 2

τh
Pmo

Pho
+ 1

e
− 2δh

SNRhLIh

(
2δh
Pho

)
LIm

(
2δh
Pho

)
+

2

τh
Pmo

Pho
+ 1

e
− τh

SNRhLIh

(
τh
Pho

)
LIm

(
τh
Pho

)
=

τh
Pmo

Pho
− 1

τh
Pmo

Pho
+ 1

e
− 2δh

SNRhLIh

(
2δh
Pho

)
LIm

(
2δh
Pho

)
+

2

τh
Pmo

Pho
+ 1

e
− τh

SNRhLIh

(
τh
Pho

)
LIm

(
τh
Pho

)
(8.35)

Now, we move attention to the Laplace Transform (LT) of the PDF of the aggregate
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uplink interference Ih which is expressed as:

LIh(s) = EIh
[
e−sIh

]
= E

exp

−s
∑

j∈Φ̄h/UEh
o

Phjghje
−αrβ1

(
Phje

−αrβ
)


a
= EΦ̄h

 ∏
j∈Φ̄h/UEh

o

EPh,gh

[
exp

{
−sPhjghje

−arβ
}
1(Phje

−arβ < Po)
]

b
= exp

−2πpaλsEPh,gh


∞∫

ln
1
β (

Ph
Pho

)
1
α

(
1− e−sPhghe

−arβ
)
rdr




c
= exp

−2πpaλsEPh


∞∫

ln
1
β (

Ph
Pho

)
1
α

(
1− 1

1 + sPhe−arβ

)
rdr




d
= exp


(
−2πpaλs

βa2/β

)
EPh

 sPho∫
0

[
ln( sPh

y
)
] 2

β
−1

y + 1
dy


 (8.36)

Since the HTC users are allocated orthogonal resources in each BS, only one HTC

user is considered in the uplink aggregate interference. Accordingly, the set of interfering

users in the uplink on the tagged resource block Φ̄h is a thinned version of the HPPP Φh

with a thinning factor paλs, where pa is the probability of active BSs. We assume that the

transmission power from all interfering users are independent. Indeed, this assumption

can be justified considering the special features of UDN where the variance in the cell

sizes vanishes as the density of the BSs increases. (a) follows from the independence of

the transmission powers Phj, the fading channel gains ghj, and the PPP Φh. (b) follows

from the probability generating functional (PGFL) of the PPP [105]. The integral limits

in (b) consider the region where the interfering nodes reside. Since the interference power

(i.e., Phe
−arβ) is always less than the power truncation cutoff threshold Pho, the interfering

HTC users are thus located in an open disk with inner radius r = ln
1
β ( Ph

Pho
)

1
α and outer

radius at ∞. Step (c) follows from the LT of the fading gain gh and finally, (d) results

from the change of variables y = sPhe
−arβ . This completes the proof.

Similarly, we can derive the Laplace Transform (LT) of the PDF of the aggregate
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uplink interference Im which is expressed as:

LIm(s) = EIm
[
e−sIm

]
= exp


(
−2πρmλm

βa2/βNRB

)
EPm

 sPmo∫
0

[
ln( sPm

y
)
] 2

β
−1

y + 1
dy


 (8.37)

By combining the results in (8.34), (8.35), (8.36), and (8.37) the proof is complete.

�

Theorem 1 presents an interesting result where the uplink coverage of the HTC users

has two distinct regions of operation with regard to the coverage threshold τh with the

boundary set as τh = Pho

Pmo
. Interestingly, this boundary is a function of the ratio of the

power control cutoff threshold of the HTC users and the MTC devices which highlights

the significant impact of the power control procedure on the network performance. More-

over, the uplink coverage consists of three components representing the effect of the noise,

the uplink interference of the HTC users, and the uplink interference of the MTC devices.

While the exponential noise term is a function of two system parameters, namely, the

coverage threshold and the HTC power control cutoff threshold, further, the HTC in-

terference term Lh shows the impact of the SEPL model (α and β), the BSs activity

probability pa, and the density of the small cells λs. Note that limλs→∞ paλs = λh which

also establishes the connection between the uplink coverage performance and the density

of the active HTC users. On the other hand, the MTC interference term Lm represents

the impact of the density of the active MTC devices ρmλm and the available bandwidth

NRB. For the sake of more simplification, in the following corollaries, we consider some

special cases of the SEPL model parameter β where these special cases provide a tractable

alternative for the multi-slope path loss model recommended by the 3GPP. [2, 147].

Corollary 1. In the special case β = 2
n+1

, where n ∈ Z is any non-negative integer, the

uplink coverage given in Theorem 1 can be simplified to:

PU
h (τh) =


µe

− 2δh
SNRhLIh

(
2δh
Pho

)
LIm

(
2δh
Pho

)
+ νe

− τh
SNRhLIh

(
τh
Pho

)
LIm

(
τh
Pho

)
, if τh

Pmo

Pho
< 1

νe
− τh

SNRhLIh

(
τh
Pho

)
LIm

(
τh
Pho

)
, if τh

Pmo

Pho
≥ 1

(8.38)
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where

LIh(s) = exp
{
−Υ(n)

(
n

k

)
EPh

[
lnk

(
Ph

Pho

)]
Jn−k(sPho)

}
(8.39)

LIm(s) = exp
{
−ξ(n)

(
n

k

)
EPm

[
lnk

(
Pm

Pmo

)]
Jn−k(sPmo)

}
(8.40)

and

Jv(x) =

x∫
0

lnv(x/y)

y + 1
dy, (8.41)

Υ(n) =
(n+ 1)πpaλs

an+1
, (8.42)

ξ(n) =
(n+ 1)πρmλm

an+1NRB

, (8.43)

EPh
[lnk(Ph/Pho)] and EPm [lnk(Pm/Pmo)] are given in Lemma 3 and Lemma 4, respectively

.

Proof. By substituting the value of β = 2
n+1

in (8.30) and (8.31), respectively, we get:

LIh(s) = exp

−
(
(n+ 1)πpaλs

an+1

)
EPh

 sPho∫
0

(
ln( Ph

Pho
) + ln( sPho

y
)
)n

y + 1
dy

 (8.44)

LIm(s) = exp

−
(
(n+ 1)πρmλm

an+1NRB

)
EPm

 sPmo∫
0

(
ln( Pm

Pmo
) + ln( sPmo

y
)
)n

y + 1
dy

 (8.45)

Using the binomial expansion and by simple mathematical manipulation, we arrive at the

result in the Corollary. This completes the proof. �

A closed-form version of the results presented in Theorem 1 can be further derived by

considering the special case β = 2. In the following corollary we lay out this result.

Corollary 2. In the special case β = 2, the uplink coverage given in Theorem 1 can be

simplified to:

PU
h (τh) =
µ exp

{
−
(

2δh
SNRh

+ πpaλs

α
ln (1 + 2δh) +

πρmλm

αNRB
ln
(
1 + 2δh

Pmo

Pho

))}
+

ν exp
{
−
(

τh
SNRh

+ πpaλs

α
ln (1 + τh) +

πρmλm

αNRB
ln
(
1 + τh

Pmo

Pho

))}
, if τh

Pmo

Pho
< 1

ν exp
{
−
(

τh
SNRh

+ πpaλs

α
ln (1 + τh) +

πρmλm

αNRB
ln
(
1 + τh

Pmo

Pho

))}
, if τh

Pmo

Pho
≥ 1
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Proof. By substituting the value of β = 2 in (8.30) and (8.31), respectively, and by

evaluating the resulting integral we arrive at the results in the Corollary. This completes

the proof. �

To complement our analysis, in the following theorem we compute the average uplink

coverage of the typical MTC device which is paired with the typical HTC user in the

same uplink NOMA-group. In uplink NOMA, the signal of the user with stronger channel

conditions, here it is the HTC user, has to be decoded successfully first before decoding

the signal of the weaker user, i.e., the MTC device. Accordingly, the uplink coverage of

the MTC device is a function of the coverage threshold of the HTC user. To clarify this,

in a given NOMA-pair, if the decoding of the HTC user signal failed, so is the decoding

of the MTC device’s signal. Therefore, the coverage requirements of the HTC user has

to be satisfied firstly, and then the decoding of the MTC device signal can be achieved

successfully. Theorem 2 presents this result.

Theorem 2. The uplink coverage probability of the tagged MTC device which is paired

in a 2-UE group with a randomly chosen HTC user with a coverage threshold τh on the

tagged resource block considering the system model in Section 8.4 is given by:

PU
m(τm, τh) =
νe

− Ψ
SNRhLIm

(
Ψ
Pho

)
LIh

(
Ψ
Pho

)
, if τh

Pmo

Pho
≥ 1

µe
− 2δh

SNRhLIm

(
2δh
Pho

)
LIh

(
2δh
Pho

)
+ νe

− Ψ
SNRhLIm

(
Ψ
Pho

)
LIh

(
Ψ
Pho

)
, if τh Pmo

Pho
< 1, δh

Pho
≥ τm

Pmo

e
−2

τm
SNRmLIm

(
2τm
Pmo

)
LIh

(
2τm
Pmo

)
, if τh Pmo

Pho
< 1, δh

Pho
< τm

Pmo

where SNRm = Pmo

σ2 , and Ψ = τh + τm
Pho

Pmo
+ τmτh

LIh(s) = exp

−
(

2π

βα2/β

)
(paλs)EPh

 sPho∫
0

[
ln( sPh

y
)
] 2

β
−1

y + 1
dy


 (8.46)

LIm(s) = exp

−
(

2π

βα2/β

)(
ρmλm

NRB

)
EPm

 sPmo∫
0

[
ln( sPm

y
)
] 2

β
−1

y + 1
dy


 (8.47)

Proof. Since an HTC user and an MTC device are paired together on a given resource

block, the successful decoding of the HTC packet must happen first before the decoding

of the MTC packet. Consequently, The uplink coverage probability of the typical MTC
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device who is paired with a random HTC user is a function of the coverage threshold of

both devices, thus, it is expressed as:

PU
m(τm, τh) = P {SINRm > τm, SINRh > τh, gh > gm}

= P
{
gh > gm, gh > τh

Pmo

Pho
gm + τh

Pho

(
Ih + Im + σ2

)
, gm >

τm
Pmo

(
Ih + Im + σ2

)}
There are many cases to consider in the computation of this probability. When τh

Pmo

Pho
> 1,

PU
m(τm, τh) = P

{
gh > τh

Pho

(
Pmogm + Ih + Im + σ2

)
, gm >

τm
Pmo

(
Ih + Im + σ2

)}
= E

[∫ ∞

gm= τm
Pmo

(Ih+Im+σ2)

∫ ∞

gh=
τh
Pho

(Pmogm+Ih+Im+σ2)

fghgm(gh, gm)dghdgm

]

=
2

τh
Pmo

Pho
+ 1

E
[
exp

{
− τh
Pho

(
Ih + Im + σ2

)}
exp

{
− τm
Pmo

(
τh
Pmo

Pho

+ 1

)(
Ih + Im + σ2

)}]
=

2

τh
Pmo

Pho
+ 1

e
− Ψ

SNRhLIm

(
Ψ

Pho

)
LIh

(
Ψ

Pho

)
(8.48)

where Ψ = τh + τm
Pho

Pmo
+ τmτh. When τh

Pmo

Pho
≤ 1, there are two cases, firstly, δh

Pho
> τm

Pmo
:

PU
m(τm, τh) = P

{
gh > gm, gm >

δh
Pho

(
Ih + Im + σ2

)}
+ P

{
gh > τh

Pho

(
Pmogm + Ih + Im + σ2

)
,
τm
Pmo

(
Ih + Im + σ2

)
< gm <

δh
Pho

(
Ih + Im + σ2

)}
= E

[∫ ∞

gm=
δh
Pho

(Ih+Im+σ2)

∫ ∞

gh=gm

fghgm(gh, gm)dghdgm

]

+ E

[∫ δh
Pho

(Ih+Im+σ2)

gm= τm
Pmo

(Ih+Im+σ2)

∫ ∞

gh=
τh
Pho

(Pmogm+Ih+Im+σ2)

fghgm(gh, gm)dghdgm

]

=
τh

Pmo

Pho
− 1

τh
Pmo

Pho
+ 1

e
− 2δh

SNRhLIm

(
2δh
Pho

)
LIh

(
2δh
Pho

)
+

2

τh
Pmo

Pho
+ 1

e
− Ψ

SNRhLIm

(
Ψ

Pho

)
LIh

(
Ψ

Pho

)
(8.49)

Secondly, δh
Pho

≤ τm
Pmo

:

PU
m(τm, τh) = P

{
gh > gm, gm >

τm
Pmo

(
Ih + Im + σ2

)}
= E

[∫ ∞

gm= τm
Pmo

(Ih+Im+σ2)

∫ ∞

gh=gm

fghgm(gh, gm)dghdgm

]

= e
− 2τm

SNRmLIm

(
2τm
Pmo

)
LIh

(
2τm
Pmo

)
(8.50)

By combining the results in (8.48), (8.49), and (8.50), we get the result in Theorem 2.

This completes the proof. �
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Different from the uplink coverage of the HTC users, the uplink coverage of the MTC

devices has three regions of operation. Notably, the boundaries of these regions are all

controlled by the ratio of the power truncation cutoff threshold Pho

Pmo
. More tractable

results are then presented in the following corollaries considering the special cases β 2
n+1

and β = 2.

Corollary 3. In the special case β = 2
n+1

, where n ∈ Z is any non-negative integer, the

uplink coverage given in Theorem 2 can be simplified to:

PU
m(τm, τh) =
νe

− Ψ
SNRhLIm

(
Ψ
Pho

)
LIh

(
Ψ
Pho

)
, if τh

Pmo

Pho
≥ 1

µe
− 2δh

SNRhLIm

(
2δh
Pho

)
LIh

(
2δh
Pho

)
+ νe

− Ψ
SNRhLIm

(
Ψ
Pho

)
LIh

(
Ψ
Pho

)
, if τh

Pmo

Pho
< 1, δh

Pho
≥ τm

Pmo

e
−2

τm
SNRmLIm

(
2τm
Pmo

)
LIh

(
2τm
Pmo

)
, if τh

Pmo

Pho
< 1, δh

Pho
< τm

Pmo

where

LIh(s) = exp
{
−Υ(n)

(
n

k

)
EPh

[
lnk

(
Ph

Pho

)]
Jn−k(sPho)

}
(8.51)

LIm(s) = exp
{
−ξ(n)

(
n

k

)
EPm

[
lnk

(
Pm

Pmo

)]
Jn−k(sPmo)

}
(8.52)

and

Jv(x) =

x∫
0

lnv(x/y)

y + 1
dy, (8.53)

ξ(n) =
(n+ 1)πρmλm

an+1NRB

, (8.54)

Υ(n) =
(n+ 1)πpaλs

an+1
, (8.55)

EPh
[lnk(Ph/Pho)] and EPm [lnk(Pm/Pmo)] are given in Lemma 3 and Lemma 4, respectively

.

Proof. Follow similar approach to the proof of Corollary 1. �

Corollary 4. In the special case β = 2, the uplink coverage given in Theorem 2 can be
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simplified to:

PU
m(τm, τh) =

ν exp
{
−
(

Ψ
SNRh

+ πpaλs

α
ln (1 + Ψ) + πρmλm

αNRB
ln
(
1 + ΨPmo

Pho

))}
, if τh

Pmo

Pho
≥ 1

µ exp
{
−
(

2δh
SNRh

+ πpaλs

α
ln (1 + 2δh) +

πρmλm

αNRB
ln
(
1 + 2δh

Pmo

Pho

))}
+

ν exp
{
−
(

Ψ
SNRh

+ πpaλs

α
ln (1 + Ψ) + πρmλm

αNRB
ln
(
1 + ΨPmo

Pho

))}
, if τh

Pmo

Pho
< 1,

δh
Pho

≥ τm
Pmo

exp
{
−
(

2τm
SNRh

+ πpaλs

α
ln
(
1 + 2τm

Pho

Pmo

)
+ πρmλm

αNRB
ln (1 + 2τm)

)}
, if τh

Pmo

Pho
< 1,

δh
Pho

≤ τm
Pmo

Proof. Follow similar approach to the proof of Corollary 2. �

8.5.2.2 Uplink NOMA Network Throughput Analysis

Considering the definition of the network throughput given in Section 8.4, it is given by:

RU
h (τh) = paλs log2(1 + τh)PU

h (τh), (8.56)

RU
m(τm, τh) = ρmλm log2(1 + τm)PU

m(τm, τh), (8.57)

By plugging the expressions of the uplink coverage probability given in Theorem 1 , 2

and Corollaries 1 - 4, we obtain the general form expressions of the network throughput

for HTC and MTC as well as the special cases.

8.6 Simulation Results

To assess the accuracy of the analytical results, system-level Monte Carlo simulations

are performed. The presented numerical results in this section are chosen to show the

impact of all system parameters on the network performance. The system parameters

considered include: the densities of BSs, HTC users, and MTC devices, the activity ratio

of the MTC devices, the power control parameters of HTC users and MTC devices, the

system bandwidth, and the parameters of the path loss model. The network is modeled

by generating Homogeneous Poisson Point Process (HPPP) to abstract the locations of

the BSs, HTC users, and MTC devices. We assume a simulation area of 1 km2 where

1000 spatial realizations are generated. In addition, a 100 channel gain realizations drawn
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from an exponential random variable with a mean of one are generated to simulate the

channel variations. We consider a BS density of λs = 1000 cells/km2, HTC users’ density

of a λh = 500 users/km2, MTC devices’ density of a λm = 2×105 users/km2 with activity

ratio 0.1, a coverage thresholds of τh = 0 dB, τM = −20 dB, power control parameters

for the HTC users Pho = −90 dBm and Pmax
h = 20 dBm, power control parameters

for the MTC devices Pmo = −110 dBm and Pmax
m = 2 dBm , and SEPL parameters of

a = 0.94, β = 0.5. Furthermore, we assume that the number of available resource blocks

for each BS is NRB = 100 and each MTC device is allocated only one resource block with

a bandwidth of 180 kHz, thus the noise power σ2 = −121.45 dBm. On the other hand,

the HTC users are allocated all the available resource blocks.

8.6.1 Simulation Setup

We consider the following simulation procedure to simulate the network environment

modeled in this investigation.

1. A number of BSs is generated following a Poisson distribution with density λs BSs/km2

and distributed uniformly in the simulation area. We consider a high density of the

small cells as a feature of the dense networks.

2. A number of HTC users with density λh users/km2 and MTC devices with den-

sity λm devices/km2 are generated in the same simulation area as well. The loca-

tions of HTC users and MTC devices follow a Poisson distribution . Similarly, the

users/devices are distributed uniformly over the simulation area.

3. Each HTC user is associated to the nearest BS and allocated NRB/K of the resource

blocks where K is the number of the HTC users associated to this BS. Also, each

MTC device is associated to the nearest active BS and randomly paired with an

HTC user and allocated an orthogonal resource block from the available resource

blocks NRB.

4. An HTC user or MTC device is considered active if the required transmission power

is not greater than Pmax
h or Pmax

m , respectively.

5. Independent channel gains are generated for the links between all active HTC uses

and MTC devices and their serving BSs and drawn from an exponential distribution
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with mean one.

6. The uplink SINR of the link between each active HTC user/ MTC device and its

tagged BS is computed. The SINR of an active MTC is only considered in the

computation of the average uplink coverage if the SINR of the paired HTC user

exceeds its uplink coverage QoS target.

7. Also, the uplink network throughput R of each HTC user and MTC device is com-

puted.

8. The realization of the BSs and devices PPP is repeated Nm times and the generation

of the independent fading channels is repeated for Nt time slots. In the simulations,

we have considered Nm = 1000 and Nt = 100.

9. The average uplink coverage for the respective links between the active HTC users

and MTC devices and the tagged BSs is calculated as Pavg =
1

NmNt

∑Nm

m=1

∑Nt

t=1 1(SINRm,t >

τ).

10. Finally, the average uplink network throughput of the HTC users and MTC devices

is computed as Ravg =
1

NmNt

∑Nm

m=1

∑Nt

t=1 Rm,t.

8.6.2 Coverage Threshold

Fig. 8.1 shows the uplink coverage of a typical pair of HTC user and MTC device versus

the coverage threshold τh and τm, respectively, in a NOMA-based deployment scenario.

For the typical MTC device, the performance threshold of the paired HTC user is set to

τh = 0 dB. . Thus, the coverage performance of the typical MTC devices is capped by the

coverage of the paired HTC user where the signal of the MTC device cannot be detected if

the signal of the user is not recoverable at this threshold. The uplink coverage is depicted

for three different densities of the small cells, namely, 103, 5 × 103, and 104 cells/km2

where the performance improves as the density of the small cells gets higher. However,

this improvement shows a tendency to saturate at higher densities. This behaviour is

similar for both MTC devices and HTC users. Remarkably, the uplink coverage of the

HTC users exceeds 85% at a coverage threshold of τh = 0 dB. This shows that the NOMA

based multiple access is not negatively impacting the HTC performance while it provides

a good performance for the paired MTC devices.
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Figure 8.1: Uplink coverage probability versus coverage threshold considering different density of BSs λs

(Density of MTCDs λm = 0.2 devices/m2 and ρm = 0.1).
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Figure 8.2: Uplink network throughput versus coverage threshold considering different density of BSs λs

(Density of MTCDs λm = 0.2 devices/m2 and ρm = 0.1).
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To further evaluate the network performance, the network throughput is plotted

against the coverage threshold in Fig. 8.2 for different densities of small cells. As de-

picted in the figure, the network throughput starts off at zero for very small coverage

thresholds, increases until reaching a maximum value, and then falling down back to zero

at relatively high coverage thresholds. This behaviour can be explained by recalling the

definition of the network throughput where it consists of two components: log2(1 + τ)

which is increasing with the coverage threshold taking values from zero to infinity, and

the coverage probability P(τ) which is, in the contrary, decreasing from one to zero.

The maximum value of the network throughput and the coverage threshold at which this

maximum value is achieved are however different for HTC users from MTC devices, and

different for different densities of small cells. Further examination of the results conveys

more interesting outcomes where the network throughput is slightly improving with the

density of small cells while it is significantly improving at the corresponding maximum

point of each density. More on this in the next section.

8.6.3 Density of Small Cells
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Figure 8.3: Uplink coverage probability versus density of small cells considering different density of HTC

users λh (Density of MTCDs λm = 0.2 devices/m2 and ρm = 0.1).
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Figure 8.4: Uplink network throughput versus density of small cells considering different density of HTC

users λh (Density of MTCDs λm = 0.2 devices/m2 and ρm = 0.1).

Fig. 8.3 further confirms the increase of the uplink coverage of both HTC users and

MTC devices with higher density of small cells. However, this increase comes to and end

saturating at very high BSs’ densities. The higher the density of the cells, the shorter the

distance from both HTC users and MTC devices to the serving BS, and consequently, the

better the uplink coverage performance. In the contrary, the uplink coverage probability

declines with higher density of HTC users at smaller density of cell. However, the pace

of the coverage performance decay with the density of HTC users declines with higher

densities of small cells. More HTC users activates more cells, and since we only consider

the inter-cell interference, increasing the number of HTC users per unit area increases the

uplink interference, and in turn negatively impacts the uplink coverage performance. On

the other hand, at very high densities of small cells, the distance between either the HTC

users or the MTC devices and the serving BS becomes very short giving more advantage

to the increasing signal power over the increasing interference power, until the coverage

becomes indistinguishable for distinct densities of HTC users.

The same performance, in terms of the uplink network throughput, holds for the MTC

devices as depicted Fig. 8.4. Conversely, the network throughput performance is reversed
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Figure 8.5: Uplink coverage probability versus density of HTC users considering different density of small

cells λs (Density of MTCDs λm = 0.2 devices/m2 and ρm = 0.1).

when switching focus to the HTC users. In particular, the uplink network throughput of

MTC devices increases with the density of small cells and decreasing with the density of

HTC users. For the HTC users, the uplink network throughput is still increases with the

density of small cells, but in a much slower rate for smaller densities of HTC users. One

can explain this behaviour by recalling the definition of the uplink network throughput of

the HTC users where it linearly increases with the density of active cells. Remember also

that the number of active cells increases with either increasing of the number of cells or

the number of HTC users per unit area. However, for smaller densities of HTC users, the

number of active cells saturates faster with higher density of BSs reaching a maximum

which is the density of the HTC users itself. This takes place when each user exactly

activates a single cell. Differently, the uplink throughput performance shows a dramatic

increase with the density of the HTC users. For the same reasons mentioned above, a

higher number of HTC users per unit area is translated to a larger number of activated

cells, and hence, a much higher uplink network throughput.
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Figure 8.6: Uplink network throughput versus density of HTC users considering different density of small

cells λs (Density of MTCDs λm = 0.2 devices/m2 and ρm = 0.1).

8.6.4 Density of HTC Users

Focusing on the impact of the HTC density on the uplink network performance, the uplink

coverage probability and the uplink network throughput are depicted in Figures 8.5 and

8.6. The results confirm the previously discussed conclusions. Remarkably, for larger

densities of small cells (≫ 1000 BSs/km2), the uplink coverage probability of HTC users

and the uplink coverage probability of MTC devices get improved with the density of

HTC users approaching a maximum at a certain density of HTC users, then declines at

a faster rate afterwards.

8.6.5 Density of MTC Devices

Fig. 8.7 depicts the uplink coverage probability against the density of MTC devices

considering different densities of small cells. The coverage performance deteriorates with

the increasing number of MTC nodes per unit area since this reflects more interfering

nodes on the tagged resource block. This impact is similar for the HTC users and the

MTC devices. At the same time, increasing the density of small cells significantly improves
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the uplink coverage where more cells means more reuse of the resources, and hence, more

room for the interference generated from the increasing number of MTC nodes for a given

resource block.

While the uplink network throughput of the HTC users depicted in Fig. 8.8 shows

a similar tendency to decrease with the increasing density of MTC devices, instead, the

uplink network throughput of the MTC devices dramatically increases with the increasing

density of the MTC devices. Back to the expression of the uplink throughput of the MTC

devices, it has a linear relation with the density of the MTC devices, which explains the

previously mentioned behaviour.
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Figure 8.7: Uplink coverage probability versus density of MTC devices considering different density of

small cells λs (ρm = 0.1).

8.6.6 Power Truncation Cutoff Threshold

Turning our focus to the power control parameters, in Figures 8.9 and 8.10, we depict

the uplink coverage probability and the uplink network throughput against the ratio

between the power control truncation cutoff threshold of the HTC users and that of the

MTC devices. The results show no difference in the performance of the coverage when

compared to the throughput. Since the uplink network throughput of both HTC users and
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Figure 8.8: Uplink network throughput versus density of MTC devices considering different density of

small cells λs (ρm = 0.1).

MTC devices is only a function of the power control parameters in terms of the coverage

term, the uplink network throughput becomes a scaled version of the uplink coverage

probability of the HTC users and MTC devices with the scale being the density of active

cells or the density of active MTC nodes, respectively.

Either the coverage or the network throughput of the HTC users monotonically in-

creases with the power cutoff ratio reaching a saturation value at a certain ratio. On the

other side, the performance with respect to the MTC devices is entirely different. The

uplink coverage probability and network throughput both increases significantly improves

with increasing the power cutoff ratio until reaching a maximum, then the performance

turns upside down afterwards. Increasing the power control cutoff threshold of the HTC

users, with respect to that of the MTC devices, increases the received signal power of the

HTC users at the serving cell, which in turn improves the uplink coverage and the uplink

network throughput. Besides, deploying more small cells brings the BSs closer to the

HTC users, and hence, reducing their transmit power which significantly decreases the

uplink interference enhancing the coverage and the throughput performance even more.

Moreover, by closely examining this performance, one can notice that the maximum point

is the same for distinct densities of small cells.
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Figure 8.9: Uplink coverage probability versus the ratio of the power control cutoff threshold of HTC users

and MTC devices considering different density of small cells λs (Density of MTCDs λm = 0.2 devices/m2

and ρm = 0.1).
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Figure 8.10: Uplink network throughput versus the ratio of the power control cutoff threshold of

HTC users and MTC devices considering different density of small cells λs (Density of MTCDs

λm = 0.2 devices/m2 and ρm = 0.1).
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8.6.7 Number of Resource Blocks

Fig. 8.11 depicts the uplink coverage against the number of resource blocks consider-

ing three distinct densities of MTC devices, namely, 105 , 5 × 105, and 106 nodes/km2.

The uplink coverage probability improves with larger number of resource blocks due to

decreasing the number of active MTC devices transmitting on a given resource block.

At some point, more resource block no longer improves the coverage performance since

the aggregate interference from the MTC devices becomes very small as compared to

that of the HTC users. Moreover, the coverage performance deteriorates with increas-

ing the density of MTC devices where more interferes contribute to the uplink aggregate

interference.

In Fig. 8.12, the uplink network throughput is depicted versus the number of resource

blocks. Similarly, the network throughput of the HTC users and MTC devices improves

with increasing the number of resource blocks approaching a saturation at the same point

where the coverage saturates. Moreover, the uplink network throughput of the HTC

users decreases with higher density of MTC devices. Nevertheless, the uplink network

throughput significantly improves with the increasing number of MTC devices per unit

area. Recall that the uplink throughput of the MTC devices linearly increases with the

density of active MTC devices, which in turn is a linear function of the density of MTC

devices.

8.7 Conclusions

Inevitable coexistence of HTC users and massive MTC devices is a feature of the next

generation of cellular network. Satisfying the requirements of both deployment scenarios

is challenging. While the HTC users demand an extremely high data rate with relatively

small number of active user, the MTC devices require a massive number of connections

each of which is injecting small packets in a sporadic nature. In this work, we investigate a

NOMA-based radio access where a pair of an HTC user and an MTC device is encouraged

to use the same resource block in the uplink simultaneously. This allows to host the diverse

requirements of both types of users while operating the network at its optimal point. The

results confirm this claim where both types of users, i.e., HTC and MTC, enjoy a high

uplink coverage and an enormous uplink network throughput. The analytical results which
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Figure 8.11: Uplink coverage probability versus the number of resource blocks considering different density

of MTC devices λm (ρm = 0.1).
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Figure 8.12: Uplink network throughput versus the number of resource blocks considering different density

of MTC devices λm (ρm = 0.1).
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are validated by extensive Monte Carlo simulations provide a mathematical framework

to assess the performance of such scenario and to tune the system parameters to operate

the network at an optimal and efficient point. Increasing the density of small cells and

the available bandwidth significantly improves the network performance. On the other

side, the power control parameters has to be tuned carefully to approach the optimal

performance of both the uplink coverage and the uplink network throughput.
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9. Conclusions, Limitations, and

Future Work

9.1 Conclusions

Ultra-dense networks (UDNs) are fundamentally different from traditional mobile net-

works and even Heterogeneous Networks (HetNets). Accordingly, this suggests a distinct

treatment when it comes to the performance evaluation of such networks, i.e., UDNs.

These differences include: close proximity of many cells to a given user, potential inactiv-

ity of most BSs due to lack of users, drastic inter-cell interference in hot-spots, limitation

of the capacity by virtue of the backhaul bottleneck, and fundamentally different propa-

gation environment. In this thesis, we identified the distinguishing traits of UDNs and the

challenges of addressing them in accurate modelling and rigorous performance analysis.

Tackling these challenges has been the main goal of this thesis which leads to a better un-

derstanding of network densification and its potential applications in Internet-of-Things

(IoT) and Physical Layer Security (PLS). Significant contributions have been made in

this thesis, which is evident from the track record of publications that resulted from this

research work. We briefly summarize these achievements:

1. We developed a mathematical framework for the computation of the average down-

link rate of the connections from the typical user to many BSs in its neighborhood.

The framework provides a high degree of accuracy as confirmed by our extensive

simulations for the considered system model. The performance of the multiple as-

sociation sheds light on the gains and losses of such association scheme. Although

the average rate decreases when connecting to farther cells, this is compensated by

expanding beyond the bottleneck of the limited backhaul capacity. The aggregate

downlink rate of the connections to many cells exceeds the limits imposed by the
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backhaul capacity of the individual cells. Moreover, considering general channel

fading distributions in both the signal and the interference links provides a way to

handle different propagation environment in dense networks.

2. We investigated the downlink performance of UDNs where inactive BSs are turned

off to mitigate their interference. We employ Stretched Exponential Path-Loss

(SEPL) model to capture the propagation environment in UDN where the serving

and interfering BSs are within short distances from the user. The idle mode capa-

bility imposes an upper-bound on the system interference where at very high small

cells’ densities the number of active BSs converges to the number of the active users,

e.g., each user activates the closest BS to its location. The impact of bounding the

interference on the network performance influences the coverage as well as the ca-

pacity of the network. To summarize, under the utilized assumptions, the coverage

probability as well as the capacity are invariant with the small cells’ density at high

densities. However, it is strongly tied to the user’s density. Moreover, the coverage

probability and the network throughput never drop to zero at very high BSs density

due to the interference upper-bound set by the density of the active users.

3. We studied the secrecy capacity of UDNs where our findings clearly show the high

secrecy capacity of such networks which is an inherent feature by virtue of the high

density of the small cells. Users in dense networks connect via strong connections

to very close cells. The close proximity of the small cells to the users induces a

secure environment where the cells can whisper encoded messages to the legitimate

users confusing the Eves and providing the users with high average secrecy rate. The

average secrecy rate in UDNs is an increasing function in the small cells density even

with the consideration of LOS transmission in the leakage link. On the contrary,

the average secrecy rate decreases in environments with high users density where

the activation of more BSs results in increasing the interference in the main link

which in turn negatively impacts the average secrecy rate.

4. We investigated the uplink coverage of mMTC devices deployed in massive amounts

considering UDN environment. The special features of UDN is considered in the

analysis. The uplink coverage is challenging in MTC applications due to the limited

energy of the battery-powered MTC devices and the harsh deployment scenarios.
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The significant impact of the density of small cells, the available bandwidth, and

the power control cutoff threshold on the uplink coverage performance is assessed

by both analytical and simulation results. Remarkably, there is a critical saturation

point where increasing these system parameters has no further impact on the per-

formance. One interesting finding is that the uplink coverage performance has two

distinct regions of operation, noise-limited region and interference-limited one. An-

other important finding is that the uplink coverage performance of a massive MTC

deployment scenario in UDN environment is no longer affected by the maximum

transmit power of the device, thanks to the high density of the serving small cells.

This finding relaxes the requirements on the maximum transmit power of the MTC

devices which in turn allows for less complexity, brings more cost savings, and yields

much longer battery life.

5. We studied the impact of the coexistence of MTC devices and HTC users on the

downlink performance of UDNs. We investigated two association schemes, namely,

connect to closest (C2C) BS and connect to active (C2A) BS. The network perfor-

mance in terms of downlink coverage probability and average cell load is analyzed

and the analytical results are assessed through simulations. The investigation of

the proposed system model shows a tradeoff between the two performance metrics

with respect to the considered association schemes. Accordingly, this suggests the

design of association schemes to find a balance between them. On the positive side,

the consideration of UDNs to support MTC devices traffic provides a scalable and a

viable solution to the connectivity problem in future massive deployments of MTC

devices.

6. We investigated the impact of employing advanced radio access techniques on the

uplink performance of UDNs considering the coexistence of HTC users and MTC

devices. To this end, a NOMA-based radio access is studied where a pair of an HTC

user and an MTC device is encouraged to use the same resource block in the uplink

simultaneously. This allows to host the diverse requirements of both types of users

while operating the network at its optimal point. The results confirm this claim

where both types of users, i.e., HTC and MTC, enjoy a high uplink coverage and an

enormous uplink network throughput. The analytical results which are validated by

extensive Monte Carlo simulations provide a mathematical framework to assess the
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performance of such scenario and to tune the system parameters to operate the net-

work at an optimal and efficient point. Increasing the density of small cells and the

available bandwidth significantly improves the network performance. On the other

side, the power control parameters has to be tuned carefully to approach the optimal

performance of both the uplink coverage and the uplink network throughput.

9.2 Limitations

The close evaluation of the performance of UDNs reveals how network densification would

be a candidate technology to satisfy the various diverse requirements of the next genera-

tion of mobile communications, namely 5G. The high density of the small cells results in

high spectrum reuse, close proximity of the BSs to the users, and smooth uniform cover-

age. Consequently, UDNs provide a huge data rate per unit area to satisfy the enhanced

Mobile Broadband (eMBB) use case and a massive connectivity to satisfy the massive

Machine-Type Communications (mMTC) use case. Moreover, further evaluation of the

performance of dense networks would reveal their suitability to satisfy the Ultra-Reliable

Low-Latency Communications (URLLC) use case.

However, the main limitation of UDNs is the restricted mobility where the small

cells in a dense network fail to serve high speed users. The small coverage area of the

individual small cells results in frequent handovers in the case of fast-moving users, which

introduces intolerable signaling overhead in the radio access network. Accordingly, UDN

would not be an option to serve autonomous vehicles, unless they are in parking lots or

in a congested downtown. Notwithstanding, clustering of many small cells provides a

solution to the frequent handovers problem where a cluster of small cells cooperates to

serve a user or a set of users. In this scenario, the handover procedure will simply reduces

to adding or removing cells to a given cluster. Even in this case, only users with slow or

moderate speeds can be accommodated in a dense network.

9.3 Future Work

Further in-depth investigations are required to layout a concrete understanding of the

control parameters to optimize the operation of a dense network. The tradeoffs between

different performance metrics such as the area spectral efficiency, the energy efficiency, the
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coverage/outage probability, and the network throughput require the understanding of the

individual effect of the controlling parameters specifically the density of BSs, the number

of antennae per BS, the transmission power, and the idle mode capabilities. Another

challenge in the accurate modelling of UDNs is the consideration of vertical densification

where the small cell BSs are densified in the elevation plane. In this context, the 3D

modelling of the dense cellular network is crucial to the performance evaluation of such

densification alternative. In this section, we layout some interesting directions of research

to further extend the results contributed in this thesis:

• User Association The user association has been studied extensively in traditional

networks and HetNets. However, in the scenario of dense networks, there are unique

challenges that need to be considered and accurately investigated. This is even more

involving when considering the co-existence of both HTC users and MTC devices.

The drastic interference amongst the nearby cells due to the LOS transmission

requires proposing innovative association rules to exploit the idle mode capabilities

of the small cell BSs. The backhauling is another limiting factor that must be

considered while associating an HTC user or an MTC node to a cell. Another

challenge to the association of users to cells in a dense network is the mobility

management, where fast users would generate many handover events if they are

associated to cells with small coverage area. Effective collaborative-based solutions

are required to account for these unique challenges where dual connectivity provides

a practical alternative.

Another important open problem is the applicability of range expansion in dense

scenarios where the interference would be a limiting factor. The common under-

standing is that 5G networks would be a mix of many radio access technologies

(RATs) such as cellular networks, WiFi, and mmWaves networks. This introduces

another research venue which is the multiple association of a user to many cells in

different RATs. To explain, a user might connect to a macrocell and many small

cells in a cellular network, to a WiFi access point, and to a mmWaves cell simul-

taneously. Moreover, the study of backhaul-aware association in UDN is still an

open problem. Moreover, the consideration of Quality-of-Service (QoS), Quality-

of-Experience (QoE), and Quality-of-Physical Experience (QoPE) [179] in dense

networks is missing in the current published work, although it is very relevant to
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the admission of a user to a given cell.

• Backhauling The backhauling is identified as the bottleneck for the wide deploy-

ment of dense networks. The provisioning of ideal backhaul to all small cells in

a dense network is challenging. Accordingly, the wireless backhauling emerges as

a viable alternative. There are many wireless backhauling techniques including

mmWaves links, relays links, and massive-MIMO backhaul links. Certainly, one

of the open problems is the study of the effect of the wireless backhauling on the

user experience in a dense network environment. Another open problem is the

consideration of realistic traffic distributions and user distributions to evaluate the

performance of wireless backhauling networks in UDN.

• Interference Management Interference management is of a predominant influ-

ence on the operation of a dense network. Imagine a wireless network with immense

number of cells that operate in co-channel scenario. Undoubtedly, the interference

could be the limiting factor on the fruition of such dense network dispelling the den-

sification gains. The coordinated interference management is challenging with such

a large number of neighboring cells. The curse of dimensionality arose uniquely

in dense networks while considering collaborative interference management. The

consideration of idle mode capabilities in modelling interference problems in UDN

would be another interesting problem. The performance evaluation of proactive

turning off of lightly-loaded dominant interferers could yield interesting results.

The reduced distance between the cells in the vicinity of the same user makes the

interferes as strong as the servers due to the LOS components, and this uniquely

challenges the interference management in dense networks. A multi-domain inter-

ference management is another interesting problem, where the interference man-

agement is performed in frequency, time, space domains simultaneously. Also, the

consideration of realistic user and traffic distributions although beneficial, but still

an open problem to consider in dense networks.

• Energy Efficiency The power consumption plays a main role in specifying the

OPEX of a dense network. In spite of the small footprint of a small cell, the aggre-

gate consumed power of a large number of such cells is immense. Energy efficiency

refers to the number of transmitted bits per unit energy. Thus, increasing the en-
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ergy efficiency conflicts with the link quality, and hence the QoS. The maximization

of energy efficiency considering the user experience is an interesting model to be

investigated in UDN. Another setting which has a great impact on the successful

deployment of dense networks is the energy efficient wireless backhauling. Thus

considering a joint backhaul-aware energy efficient association of users to cells in a

dense network would yield interesting results.

• Small Cell Discovery The detection of cells in close proximity of a given user in

a cellular network is crucial to the optimal operation of the network. However, this

becomes more important and much harder in a densified network. Many small cells

are in the vicinity of a user and the efficient detection of them is not an easy task.

The main challenge in this context is how to manage the reuse of synchronization

signals in neighboring small cells, which are in the interference range of each other,

in order to ease the cell discovery task. Optimization of cell discovery in terms of

time and energy-efficiency is an open problem in UDN scenarios. Moreover, the

exploitation of location data and fingerprints in optimizing small cell discovery [82]

is an interesting direction to investigate.

• Propagation Modelling Another open research direction in the study of dense

networks is the consideration of 3D channel modelling. Also, the consideration of

multi-slope path loss models requires further investigation in different densification

contexts. The modelling of channel fading to account for the propagation char-

acteristics in UDN suggests the use of Rician fading model which requires further

rigorous investigation.
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