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Abstract

Whenever a visual perception system is employed in

safety-critical applications such as automated driving, a

thorough, task-oriented experimental evaluation is neces-

sary to guarantee safe system behavior. While most stan-

dard evaluation methods in computer vision provide a good

comparability on benchmarks, they tend to fall short on as-

sessing the system performance that is actually relevant for

the given task. In our work, we consider pedestrian detec-

tion as a highly relevant perception task, and we argue that

standard measures such as Intersection over Union (IoU)

give insufficient results, mainly because they are insensi-

tive to important physical cues including distance, speed,

and direction of motion. Therefore, we investigate so-called

relevance metrics, where specific domain knowledge is ex-

ploited to obtain a task-oriented performance measure fo-

cusing on distance in this initial work. Our experimental

setup is based on the CARLA simulator and allows a con-

trolled evaluation of the impact of that domain knowledge.

Our first results indicate a linear decrease of the IoU re-

lated to the pedestrians’ distance, leading to the proposal

of a first relevance metric that is also conditioned on the

distance.

1. Introduction

Automated driving applications impose high demands

on the safety of perception functions [4] as an automated

vehicle requires precise knowledge of its surroundings for

behaving safely. As one particular example, consider a

camera-based pedestrian detection function in an automated

vehicle that shall recognize and localize pedestrians in cam-

era images. Ideally, such a function should detect every

pedestrian that is contained in an image as a non-detected
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Figure 1: Relationship of a standard computer vision perfor-

mance measure (IoU) for a pedestrian detection task with

instance-wise pedestrian distances based on test data ac-

quired from CARLA. The results show a linear trend for

decrease in performance over distance, leading to the ob-

servation that IoU alone is not sufficient for arguing safety.

pedestrian may lead to a safety-critical situation. Obviously,

not every missed pedestrian leads to a safety-critical situa-

tion. It depends on the (physical) state of the traffic situation

if a misdetection may indeed lead to a safety concern.

Even though misdetections might be evaluated quite dif-

ferently depending on the traffic situation from a safety per-

spective, there is yet an “insufficient consideration of safety

in metrics” [20]. This is because the usual computer vi-

sion metrics for rating the performance of a (deep learning-

based) detector or segmentation algorithm like mean aver-

age performance, intersection over union (IoU), etc. are

generic and, thus, task-agnostic. As an example, metrics



for semantic segmentation treat all classified pixels equally.

As a consequence, incorporating a notion of safety into the

performance evaluation of a perception function requires a

more detailed analysis of the predictions.

On the level of behavior of automated vehicles, domain-

specific threat metrics [7] have been introduced for rating

the criticality of a traffic situation for the planned future be-

havior of a vehicle. These encode knowledge about physics

and possibilities for future behavior for assessing the situa-

tion at hand. As previous works have suggested [11, 20, 19],

we believe that consideration of domain knowledge and the

use of task and domain-specific metrics are necessary for

evaluating the performance of deep learning-based com-

puter vision functions for safety-critical tasks. As for all

production systems, metrics should reflect that the system

performs acceptably in all relevant data slices [3]. We can

see such a refinement of metrics as a better specification

of our system, i.e. we want to avoid underspecification [8].

In our example, it might be permissible to miss some far-

away pedestrians, but the detector needs to be perfect for the

pedestrians that matter from a safety perspective. While our

focus is on better specification and verification of system

performance, previous work has used a similar approach for

identifying corner cases [2], i.e. for falsification.

In this paper, we present initial work towards incorpo-

rating task-oriented domain-knowledge into the assessment

of the detection quality of a deep learning-based perception

function. As a first step, we use the distance of other traffic

participants as a proxy metric for the use of more elaborate

threat metrics, as these threat metrics also rely on such in-

formation [7]. To this end, and as our second contribution,

we present an experimental setup based on the open-source

simulator CARLA [9] that provides the opportunity to per-

form structured and controlled experiments for evaluating

the impact of domain knowledge. In particular, we show

how the acquisition of ground truth data for our analyses

can be compiled by fusing and post-processing the infor-

mation provided by CARLA to assist other researchers.

We evaluate our approach on DeepLabv3+ network for

semantic segmentation [5]. We train and evaluate with data

from the CARLA simulator. In particular, we investigate

the impact of distance of pedestrians on the segmentation

quality. Based on this, we derive a first proposal for a task-

oriented metric that incorporates distance as a proxy for rel-

evance of pedestrians. Our evaluation results indicate that

(1) performance of pedestrian detection drops linearly with

distance as shown in Figure 1 and (2) for our test set we

were able to find a threshold for the detection condition such

that every pedestrian within a given distance was detected.

The remainder of this paper is structured as follows.

We present related works in Sec. 2. Sec. 3 introduces our

CARLA setup and Sec. 4 our data acquisition approach

based on our CARLA setup. We present our experimental

results in Sec. 5 before concluding the paper in Sec. 6.

2. Related Work

In the following, we discuss related works introducing a

notion of safety-motivated relevance for the assessment of

the prediction quality of neural networks. In the terminol-

ogy of Sämann et al. [16], such metrics try to bridge the

gap between traditional prediction quality metrics and task-

oriented safety metrics.

As in our approach, distance of objects to the vehicle is

often used as representative for relevance, where lower dis-

tance is often used synonymously to higher relevance which

requires higher detection rates [11]. Bolte et al. [2] present

a corner case detection system where they can also filter

based on relevance. As in our work, they consider mov-

ing objects nearer to the vehicle as more relevant, but they

use the distance of the bounding box from the bottom line

of the image as a proxy metric for a real, measured dis-

tance. While we follow a simulation-based approach, dis-

tances in real data may also be obtained based on measure-

ments with a reference sensor like Lidar as performed in

the A2D2 dataset [12]. We note though that our approach

aims at a single detection framework that is useful for all

distances, and not a specialized method only for certain dis-

tances [18].

Philion et al. [15] define relevance from a planning-

perspective, i.e., a misdetection is relevant if the vehi-

cle’s behavior planner performs a different action based on

ground truth detection compared to the actual detection. In

contrast to our approach, this is an end-2-end metric that

can only be evaluated for an entire AV system rather than a

single component.

Volk et al. [19] define a combined safety metric for eval-

uation perception systems that includes a safety component

based on the responsibility sensitive safety (RSS, [17]) ap-

proach. In contrast to our approach, their detection quality

assessment relies on object tracking metrics evaluated over

consecutive frames, while we focus on single images.

3. Pedestrian-oriented Simulation Setup

In this section we describe our methodology to exploit-

ing synthetically generated pedestrian data from CARLA

to introduce an task-oriented relevance metric. In our Ex-

periment Setup in Section 5.1 we test a DNN-based (Deep

Neural Network) computer vision function that performs se-

mantic segmentation as our system under test (SUT). This

task can be seen as object classification on pixel-level, map-

ping each pixel from the RGB image to a predefined class

ID leveraging semantic class definitions in the style of the

Cityscapes dataset [6]. Therefore, we lay out simulation en-

vironment with focus on pedestrians, followed by bringing

the 3D world actors to the pixel grid.



3.1. CARLA Software Environment

CARLA is as an open-source simulator targeting the de-

velopment and validation of autonomous driving systems.

The platform provides a variety of digital assets including

pedestrians with diverse appearances and several vehicle

models, urban 3D maps, light-effects, and sensors, comple-

mented by a wide blueprint library implementing dynamic

behavior. With a flexible API pedestrians and vehicle actors

can be spawned within the CARLA simulator framework in

a controlled way, setting initial location, waypoints, veloc-

ity, and orientation. We leverage this simulation platform as

it provides a controlled scene creation and image generation

with precise ground truth at a very low cost. However, to be

useful for our purpose, we needed to leverage and wrap the

CARLA API into an own framework as described next.

3.2. Controlled Actor Spawning

Our goal is to evaluate computer vision-based perception

functions, particularly targeting the detection of pedestri-

ans. We claim that for this purpose we need to cover a vari-

ety of visual traffic scenarios within the operational design

domain (ODD). Based on CARLA, we created a framework

that allows us to plugin diverse combinations of scene gen-

erators for the corresponding evaluation purposes. In this

work we focus on the development of an actor spawning

module, giving control over pedestrians, vehicles, and cam-

era positions. To focus on these parameters only we keep

the weather conditions constant. As a result, this setup en-

ables us to identify the effects of physical object properties

on the performance of our investigated perception function

(see Section 5).

In our setting we solely populated actors using CARLAs

pre-built map Town03, where the camera was attached to

an autopilot vehicle progressing at a constant speed. Since

the number of available spawning locations for vehicles is

limited to 265 road points of our map Town03, we placed

this precise quantity of vehicles inside our simulation using

listed models from the blueprint library.

3.3. Making the Pedestrians Move

To identify the influence of physical properties on the

object perception, given a predefined distance and hip joint

orientation, a controlled and accurate pedestrian placing in

reach of the ego vehicle is implemented. With the creation

of realistic traffic scenarios in mind, we focus primarily on

spawning the pedestrians on the sidewalk. We also con-

tribute occasional waypoints from the road or shoulder lane

type to introduce critical scenarios in our scene creation.

Originally, the spawned pedestrians show static charac-

teristics only. To add dynamic behavior, we attach an AI-

controller (WalkerAIController) to each pedestrian actor.

The aforementioned interface from the blueprint library as-

signs a specific lane type destination, making the walkers

(a) CARLA RGB output

(b) Depth frame containing pixel-wise distance information

(c) Corresponding ground truth with 23 labeled classes

Figure 2: A CARLA traffic scenario with pedestrians placed

on specific lane types (sidewalk, crosswalk, shoulder) at dif-

ferent locations and with random hip joint rotations (see

Section 3.1). Figure a depicts an RGB frame rendered with

the Unreal Engine, while Figure b and Figure c show the

corresponding depth and semantic map.

wander around at random speed, thereby enabling different

body postures as shown in Figure 2a. Inside the simulation,

all actors are associated with a unique identification con-

taining attributes from the blueprint library supplemented

by the actors transformation, velocity and acceleartion.

The current CARLA version 0.9.11 provides a semantic

group segmentation sensor. However, this neither includes

an instance segmentation nor an object detection sensor,

which we need in our evaluation to separate actors in the

image domain. This constraint poses a significant challenge

during data retrieval, namely: How can we distinguish be-



tween actor pixels in the image domain that correspond to

the same class? This will be detailed in the following sec-

tion.

Algorithm 1 Bounding box (BB) retrieval and pedestrian’s

instance-wise depth assessment

Input: DT , Ai, pmax

DT ← unfiltered test dataset, not ∅
Ai ← number of available actors p in sample i

pmax ← upper threshold for each sample i ∈ DT

PT := { i ∈ DT | 1 ≤ Ai ≤ pmax }
Output: Dataframe (Df ) containing all valid p instances

for i ∈ PT do

for p ∈ Ai do

FORWARD PROJECTION

Use camintr with camextr to project BB3D(p) on the

image plane (BB2D(p)).

BOUNDING BOX VALIDATION

if BB2D(p) lies within the image sensor and

pixel(p) acquired from GT > 0 at this location

then

BB2D(p) is valid = True

end if

INSTANCE-WISE DEPTH ASSESSMENT

if BB2D is valid then

BB2D(p) upper-left position, width, and height

to crop corresponding GT, prediction, and

depth map regions.

Binary mask extraction from GT-crop to calcu-

late pixel-wise distance values from depth map

using mean and median distance of p.

Computer vision performance measures (IoU,

Sensitivity) estimation using overlap between

GT and prediction.

else

Continue with next p

end if

Df update using p (mean, and median distance, IoU,

Sensitivity)

end for

File output of Df for correlation analysis

end for

4. Our Data Acquisition Approach

This section describes our data acquisition approach

based on the CARLA setup introduced in the previous sec-

tion. In particular, we describe the settings that we used

(Section 4.1) and our extensions to CARLA that we needed

to implement for compensating the missing instance seg-

mentation in CARLA (Section 4.2). Finally, we provide

some details on the dataset that we recorded for our evalua-

tions (Section 4.3).

4.1. Camera Types and Settings

To obtain the image data from the surroundings we use

a specific actor type from the blueprint library to stream

data at each simulation step. Our first camera is the RGB

sensor with a bit depth of 8 bit. Due to the Depth cam-

era, raw data of our scene is acquired and stored as pixel-

wise distance information to the camera, representing the z-

buffer. Our third Semantic Segmentation camera performs

the aforementioned semantic segmentation task classifying

each pixel of non-occluded objects in the image.

All three cameras (RGB, Depth, and Semantic Segme-

nation) from Figure 2 are attached to our ego vehicle with a

resolution of 2048×1024 and 90◦ horizontal field of view.

The intrinsic camera parameters, including e.g. focal length,

are obtained from CARLA. We define the extrinsic param-

eters (camextr), placing the camera with 1◦ pitch, 10◦ yaw,

and 1.5 meters height. camintr and camextr are used to define

the camera model that will be used in Section 4.2 to perform

the forward projection onto the image domain.

For the calculation of our relevance metrics on pedes-

trian instances we require, however, instance segmentation

which assesses different IDs to overlapping instances of the

same semantic class, delivering distinguishable pedestrian

pixels. While generating our CARLA image database, we

limit ourselves to a maximum of 20 pedestrians per frame,

positioned within a range of 2 to 120 meters in reference to

the ego vehicle, offering hip joint rotations from 0◦ to 180◦.

4.2. From CARLA to Image Domain

Since CARLA neither provides a specific camera sensor

for instance segmentation nor object detection in the image

domain, we introduce an approximation to map CARLA’s

3D pedestrian bounding boxes BB3D to the 2D pixel grid

BB2D of the RGB camera. To acquire the pixel coordinates

of the pedestrian bounding boxes we use the forward pro-

jector model transformation from [10]. Applying the afore-

mentioned camera model (camintr and camextr ), followed by

a validation check with the semantic ground truth, we dis-

card invalid or entirely occluded pedestrians, as described

in Algorithm 1. Since CARLA provides active actor IDs

regardless being visible in the current frame we leverage

semantic segmentation ground truth (GT) to affirm pedes-

trians pixel presence within the questioned bounding box

projection before calculating computer vision performance

measures like IoU, sensitivity, etc..

4.3. Dataset Details

We split the generated data into training, validation and

testing samples as shown in Table 1. Note that for the

testing dataset, we filtered by the number of pedestrians



per frame to alleviate crowded samples. In particular, we

only considered images containing a maximum number of

7 pedestrians (pmax, c.f . Algorithm 1 from Section 4.2) per

frame, counting 1196 pedestrian instances in total. This op-

eration reduced the test split from an original size of 665 im-

ages to a total of 486 images (DT and PT in Algorithm 1).

Train Validation Test

3450 500 486 (665)

Table 1: Overview of the synthetic dataset split. The sam-

ples across the splits were acquired from CARLA’s Town03

using all 265 spawning points to record the scenery, where

the change of ego vehicle’s spawning point enabled a ran-

dom rearrangement of pedestrians from 2 to 120 meters.

Figure 3 shows the distribution of pixel-wise distances

for each dataset, which are fairly similar across the split. As

outlined in Section 3.3, unfortunately, without an instance

segmentation sensor, and the resulting bounding box map-

ping inaccuracies, we focus on group segmentation rather

than creating a pedestrian count statistics. However, the

instance-wise distance distribution among the dataset splits

could be considered further, evaluating different pedestrian

statistics in the future.
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Figure 3: Distribution of pixel-wise distances in our syn-

thetic dataset splits targeting the pedestrian class. As a re-

sult of near range pedestrians covering a larger pixel area,

the histogram denotes peaks within a range of 0 to 10 me-

ters. However, to discuss and mitigate data imbalance from

pedestrian count perspective, instance segmentation is re-

quired to provide a detailed pedestrian distribution across

the splits.

5. Experiments

The basis for the evaluation is the synthetic image data

from Section 4.3. We perform dedicated experiments to

investigate the correlation between physical attributes and

widely used computer vision performance metrics. In the

following, we first describe our experiment setup before

showing our results.

5.1. Experiment Setup

Since we focus on effects of varying pedestrian dis-

tances, we eliminate variations on camera parameters and

weather, i.e. all scenes are at day-time. 1

Our DNN uses DeepLabv3+ [5] architecture with the

ResNet-101 backbone, incorporating an output stride of 16

with batch normalization.

DeepLabv3+ is trained on image crops, i.e. during train-

ing we randomly sample sub-images from the 2048×1024

high resolution CARLA image to create 513×513 crops as

input to the DNN.

For the implementation we use PyTorch [14] and train

our DNN on the basis of mini-batch Stochastic Gradient

Descent (SGD) with a momentum of 0.9, l2 weight decay

of 5e-4 and a base learning rate (lrbase) of 3e-4 applying a

learning rate scheduler using Equation 1 from [21]

lr = lrbase

(

1−
iterglobal

epochtotaliternum

)0.9

(1)

to calculate the current learning rate (lr) for the given global

step (iterglobal). In total we train our DNN for 100 epochs

(epochtotal) with a mini-batch size of 4 samples resulting in

882 iterations (iternum) per epoch.

The DNN achieves an accuracy of 96.5% on the vali-

dation set using 513×513 random crops like during train-

ing and 84.8% accuracy on the full resolution test set. A

more detailed overview of the training and validation phase

is listed in Table 2.

Dataset Overall Acc. Class Acc. mIoU

Training 97% 80.2% 75.8%

Validation 96.5% 78.8% 74.3%

Testing 84.8% 67.1% 53.9%

Table 2: DeepLabv3+ (ResNet-101) performance overview

on the train and validation set on the basis of 513×513 ran-

dom crops, and the test set containing full resolution sam-

ples. The overall class accuracy indicates a non-biased class

occurrence across the splits, otherwise the evaluation would

denote a great performance drop.

1Experiments with different weather and lightning conditions are an

easy extension of our framework and will be addressed in future work.



5.2. Results

To demonstrate the effectiveness of our approach, in this

section we report on our experiments designed to investi-

gate the relationship between domain-knowledge and de-

tection quality of our SUT.

Correlation between domain-knowledge as instance-

wise distance with IoU detection quality measure. As

a first step, we investigate the correlation between distance

and performance of our DNN. Figure 1 plots IoU, as our

performance metrics of choice, over distance. The horizon-

tal dotted line shows the average IoU over the test set if we

do not consider the distance. In contrast, we see in the dark

solid line the mean IoU at a given distance. 2 Illustrating the

trendline by linregress from scipy, we can see a decreasing

linear trend of IoU with increasing distance, i.e. at close dis-

tances the DNN performs considerably better than average,

while for larger distances, e.g. ≈ 100m, we would need to

consider a performance drop. Hence, we can see that de-

tailed performance evaluation is required for distance and

needs to be studied closely for the considered task. Ad-

ditionally, the plot visualizes the distribution of IoU with

the (lower) 20% quantile and the upper 80% quantile, also

showing the same trend. In the following, we further study

this dependency of distance on IoU for individual samples.

Interpretation of the raw performance data from

a verification-perspective. Figure 4 shows the raw

intersection-over-union (IoU) evaluation of the semantic

segmentation predictions for all pedestrians in the test data

set. The visualized data is not averaged allowing us to take

a verification perspective in contrast to a global statistical

perspective [13]. By the term verification perspective we

do not mean formal proof, but rather testing where each test

must be passed. The basis of a verification perspective is a

specification describing the required performance in detail.

To this end, consider the following simple example of a con-

crete specification for the detection of a pedestrian given in

Example 1.

Example 1 A pedestrian is detected if at least one of its

pixels is classified as the pedestrian class according to the

semantic segmentation map.

We can check this specification on the test set for every

pedestrian, since we have a post-processing script for identi-

fying the correspondence between pixels and pedestrian in-

stances (see Section 4.2).3 We evaluate such specifications

2In the plot we aggregate windows of 50 samples and compute the mean

as well as the quantiles. The trendline is computed using linregress from

the scipy.stats Python package.
3Note that for test evaluation, the SUT does not need to be capable of

distinguishing between pedestrian instances, this distinction is only needed
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Figure 4: Unfiltered data of intersection over union (IoU)

wrt. to distance of all pedestrian of the whole dataset.

with respect to known influence factors on performance. In

the following, we use distance as an initial influence factor,

which leads to the results shown in Figure 1. Based on these

results, we can build a first, yet simple metric that couples

distance and specification in terms of IoU. Using this in-

terpretation, in Figure 4 we can see that up to the distance

of approximately 50 meters not a single pedestrian was en-

tirely missed in the test set, i.e. at least one pixel of the

pedestrian were correctly classified as the target class. This

view may be useful for portraying the semantic segmenta-

tion task as an object detector. To reduce sensitivity and

thus the false positive rate, and the noise rate, we may use a

threshold (δ) for the IoU that allows to control what percent-

age of pedestrian pixels needs to be classified correctly. To

mitigate noisy detections for further experiments, i.e. single

false positive pixels, constrains of a minimum pixel number

n should be implemented. Hence, our follow up compo-

nent necessitates bounding boxes containing at least n pix-

els raising the IoU’s lower bound to e.g. 40%.

We define a metric called dIoUδ as follows on the set of

pedestrians P , where each pedestrian p ∈ P has an associ-

ated distance dist(p) and IoU(p) (the blue line in Figure 4).

IoUdist(d) = min {IoU(p) | dist(p) ≤ d ∧ p ∈ P} (2)

dIoUδ = max {d | IoUdist(d) ≥ δ} (3)

The first line determines for a distance d the smallest IoU

of any pedestrian up to that distance, i.e. a lower bound.

The second line looks at a particular threshold δ and deter-

mines the maximum distance at which the lower bound of

for resolving the correspondence in the semantic (group) segmentation

ground truth, but not for the prediction.



the pedestrian IoU is larger or equal. This maximum dis-

tance is our metric dIoUδ .

Let us look at the concrete example in Figure 4. We can

see that using a threshold of IoU ≥ 0.15, no pedestrian

was missed within a distance of 54 meters, i.e., dIoU0.15 =
54m and using a threshold of IoU ≥ 0.5, no pedestrian was

missed within 33 meters, i.e., dIoU0.5 = 33m.

By integrating the relevance aspect into the metric in

Equation (3), i.e. here the distance, we can identify more

precisely where the specification is fulfilled. This, in turn,

allows to better understand whether the performance is ac-

ceptable for the task at hand. Of course, dIoUδ is only

an initial example of a relevance metric and more elabo-

rate metrics will be needed. For a discussion of the impor-

tance of relevance metrics in a broader context, we refer to

Abrecht et al. [1].

Remark: we found out that the outlier in Figure (4) near

the distance of 52 meters resulted due to a problem of our

data retrieval, as illustrated in Figure 5. We found that the

perception function did not miss the pedestrian and that the

performance of the function is actually superior than de-

picted by Figure (4). However, we decided to base this dis-

cussion on Figure (4), because outliers are common in com-

puter vision functions and therefore this figure suits for il-

lustration. From a verification perspective these are promis-

ing results, and these are made possible by combining the

computer vision performance measure IoU with the task-

oriented distance into a relevance metric.

Figure 5: Downside of the forward projection from Algo-

rithm 1 (see. Section 4.2) as a bounding box approximator.

Corner case scenario illustration. Figure 5 suits for vi-

sualization of a comprised outlier scenario showing the

downside of our bounding box projection approach from

Section 4.2. In this particular setting, due to an enlarged

bounding box width, the projection captures two different

pedestrians at distant locations from each other. Having

a distance difference of approximately 52 meters and be-

ing part of the same bounding box, this inaccuracy results

in an strong outlier (see Figure 4) with 2704 meters2 vari-

ance. We assume that implementing instance segmentation

for subsequent correlation studies, as connecting domain-

knowledge with detection quality measures, it will decrease

the spread by alleviating strong outliers enabling evaluation

of crowded CARLA scenes.

6. Conclusions

In this paper we investigated the use of pedestrian dis-

tance as a proxy for their relevance in the context of a deep

learning-based pedestrian detection. As a basis, we created

a simulation setup based on CARLA for studying the effect

of domain knowledge on performance ratings in controlled

experiments. We used our setup for generating a dataset

with pedestrians in different distances ranging from 2 to 120

meters. Our results on this dataset showed a linear decrease

in performance for pedestrian detection in relation to their

distance to the vehicle. Based on this information, we de-

rived a first metric that characterizes a distance up to which

all pedestrians are detected. Such metric provides more

detailed information on detection performance that might

eventually be used for arguing that the performance of a

perception system is good enough for a specific task.

Since we faced scenario limitations due to unavailable

instance segmentation in CARLA our future work aims to

include an own implementation of that particular sensor, al-

leviating overlapping bounding boxes and mapping inaccu-

racies. Based on resulting distinguishable pedestrian pixels

we strive to extend our relevance metrics using additional

domain-knowledge as orientation, velocity, or more elabo-

rate threat metrics like a Time-To-Collision (TTC) to refine

task-oriented relevance metrics for verification of percep-

tion functions in automated driving.

References

[1] Stephanie Abrecht, Lydia Gauerhof, Christoph Gladisch,

Konrad Groh, Christian Heinzemann, and Matthias Woehrle.

Testing deep learning-based visual perception for automated

driving. Transactions on Cyber-Physical Systems, 2021. to

appear. 7

[2] Jan-Aike Bolte, Andreas Bar, Daniel Lipinski, and Tim Fin-

gscheidt. Towards corner case detection for autonomous

driving. In 2019 IEEE Intelligent Vehicles Symposium (IV),

pages 438–445. IEEE, 2019. 2

[3] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and

D Sculley. The ml test score: A rubric for ml production

readiness and technical debt reduction. In 2017 IEEE Inter-

national Conference on Big Data (Big Data), pages 1123–

1132. IEEE, 2017. 2

[4] Simon Burton, Lydia Gauerhof, and Christian Heinzemann.

Making the case for safety of machine learning in highly

automated driving. In Stefano Tonetta, Erwin Schoitsch,

and Friedemann Bitsch, editors, Computer Safety, Reliabil-

ity, and Security : SAFECOMP 2017 Workshops, volume

10489 of Lecture Notes in Computer Science, pages 5–16.

Springer International Publishing, Cham, 2017. 1



[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Flo-

rian Schroff, and Hartwig Adam. Encoder-decoder with

atrous separable convolution for semantic image segmenta-

tion, 2018. 2, 5

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. CoRR,

abs/1604.01685, 2016. 2

[7] John Dahl, Gabriel Rodrigues de Campos, Claes Olsson, and

Jonas Fredriksson. Collision avoidance: A literature review

on threat-assessment techniques. IEEE Transactions on In-

telligent Vehicles, 4(1):101–113, March 2019. 2

[8] Alexander D’Amour, Katherine Heller, Dan Moldovan,

Ben Adlam, Babak Alipanahi, Alex Beutel, Christina

Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoff-

man, et al. Underspecification presents challenges for

credibility in modern machine learning. arXiv preprint

arXiv:2011.03395, 2020. 2

[9] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. CARLA: An open urban driving

simulator. In Proc. Annual Conf. on Robot Learning, pages

1–16, 2017. 2

[10] Sergio Fernandez and Joaquim Salvi. Planar-based camera-

projector calibration. Seventh International Symposium on

Image and Signal Processing and Analysis (ISPA), 01 2011.

4

[11] Jelena Frtunikj. Practical experience report: Engineering

safe deep neural networks for automated driving systems.

In Alexander Romanovsky, Elena Troubitsyna, and Friede-

mann Bitsch, editors, Computer Safety, Reliability, and Se-

curity, pages 235–244, Cham, 2019. Springer International

Publishing. 2

[12] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,

Xavier Ricou, Rupesh Durgesh, Andrew S. Chung, Lorenz

Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebas-

tian Dorn, Tiffany Fernandez, Martin Jänicke, Sudesh Mi-

rashi, Chiragkumar Savani, Martin Sturm, Oleksandr Voro-

biov, Martin Oelker, Sebastian Garreis, and Peter Schuberth.

A2D2: Audi Autonomous Driving Dataset. 2020. 2

[13] Christoph Gladisch, Christian Heinzemann, Martin Her-

rmann, and Matthias Woehrle. Leveraging combinatorial

testing for safety-critical computer vision datasets. In Work-

shop on Safe Artificial Intelligence for Automated Driving,

2020. 6

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-

perative style, high-performance deep learning library. In H.

Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E.
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