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Statistical Error Estimation
Methods for Engineering-
Relevant Quantities From
Scale-Resolving Simulations

Scale-resolving simulations, such as large eddy simulations, have become affordable tools
to investigate the flow in turbomachinery components. The resulting time-resolved flow field
is typically analyzed using first- and second-order statistical moments. However, two
sources of uncertainty are present when statistical moments from scale-resolving simula-
tions are computed: the influence of initial transients and statistical errors due to the
finite number of samples. In this paper, both are systematically analyzed for several quan-
tities of engineering interest using time series from a long-time large eddy simulation of the
low-pressure turbine cascade TI06C. A set of statistical tools to either remove or quantify
these sources of uncertainty is assessed. First, the Marginal Standard Error Rule is used to
detect the end of the initial transient. The method is validated for integral and local quan-
tities and guidelines on how to handle spatially varying initial transients are formulated.
With the initial transient reliably removed, the statistical error is estimated based on stan-
dard error relations considering correlations in the time series. The resulting confidence
intervals are carefully verified for quantities of engineering interest utilizing cumulative
and simple moving averages. Furthermore, the influence of periodic content from large
scale vortex shedding on the error estimation is studied. Based on the confidence intervals,
the required averaging interval to reduce the statistical uncertainty to a specific level is indi-

cated for each considered quantity. [DOI: 10.1115/1.4052402]
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1 Introduction

Computational fluid dynamics (CFD) simulations are a well-
integrated part in the design process of modern turbomachinery
components. The current state-of-the-art technique relies on
solving the steady Reynolds-averaged Navier—Stokes (RANS)
equations with second-order accurate finite volume schemes in
combination with appropriate RANS models, analyzing the
steady-state flow field. Unsteady effects are assessed using unsteady
RANS approaches or, to save computation time, frequency domain
methods such as harmonic balance [1,2]. Yet, all the mentioned
steady and unsteady approaches include RANS models, which are
generally well tuned and mature at and close to the aerodynamic
design points. However, compressors and turbines in off-design
feature a high level of unsteadiness, flow separation, and
laminar-to-turbulent transition, and these effects are typically diffi-
cult to reliably model, cf. Ref. [3]. Methodologies of higher fidelity
are needed in these cases to gain a deeper insight into the flow
physics, to obtain high-quality reference data for the improvement
of RANS models, or even to use them in the design-process
itself. Naturally, scale-resolving simulations (SRS), such as direct
numerical simulation (DNS) or large eddy simulation (LES),
which spatially and temporally resolve all or most of the energetic
content of the turbulent spectrum, are the methods of choice to close
the knowledge gap for applications of engineering interest [4—6].

While scale-resolving simulations are still challenging in terms of
computational requirements for multi-stage turbomachinery com-
ponents, they are already commonly applied to simulate linear
turbine or compressor cascades [7-10]. Due to the statistically
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stationary nature of the flow in linear cascades, main aspects of
engineering interest in the analysis of SRS results are first- and
second-order statistical moments. Quantities such as the averaged
isentropic Mach number around the blade profile, pressure losses
in a wake cut or Reynolds stresses and their budget terms are typi-
cally of interest and used to validate the results against experimental
data or compare them with RANS simulations.

Unfortunately, two fundamental uncertainties are present when
recording such statistical moments from SRS. First of all, the
flow has to have progressed from arbitrary initial conditions to a
fully-developed, statistically stationary state to allow to start the
sampling of the statistical quantities. If the averaging process
starts too early, transient phenomena can significantly influence
the final statistical quantities. If the averaging process starts too
late, high-quality samples are ignored and cost-intensive
CPU-time will be wasted. Therefore, the reliable detection of the
end of the initial transient is crucial. The other uncertainty relates
to the averaging process of a chaotic process itself. Due to the
limited computational resources and time, the statistical quantities
can only be averaged over a finite number of samples and are, there-
fore, subject to statistical errors. These errors are seldom reported in
the literature, but especially for higher-moments or low-frequency
dominated quantities, they can be of a considerable magnitude
depending on the averaging time. To add even more complexity,
the initial transient time and the required number of samples for reli-
able statistical moments highly depend on local timescales and,
hence, on the location in the flow field, e.g., wake or separation
bubble, and on the sampled quantity itself. In order to fairly evaluate
LES results and draw meaningful conclusions, these uncertainties
would optimally be removed by taking an extremely long sample
of data. Usually, this cannot be realized in practice. Hence, the
uncertainties need to be at least quantified to be able to identify sta-
tistically significant differences. Looking at it from another direc-
tion, knowing and quantifying uncertainties of the averaged
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quantities of interest can also be used to reduce the simulation time
by accepting a certain error level. Thus, reliable statistical error
analysis can be one key aspect to make SRS of flows with very
high Reynolds numbers feasible and to pave the way of SRS into
the design process [11-13].

Indeed, the aforementioned uncertainties are not exclusive to
scale-resolving simulations. Statistical moments obtained from
experiments suffer from similar error sources, which are, in contrast
to simulations often not as crucial. First, the recording of statistics in
experiments is usually performed over durations much larger than
the turbulent timescales. Thus, the measurement interval can be
planned in advance to be sufficient to reduce the statistical errors
without significantly increasing the cost if the dominant timescales
are faster than minutes or seconds. On the contrary, the main cost
factor in simulations is the simulation time itself, making it very
attractive to have tools available which help decide on the appropri-
ate length of the data acquisition. Second, other sources of uncer-
tainties and systematic measurement errors such as boundary
conditions, invasive measurement techniques, leakage flows, man-
ufacturing tolerances, etc. are often dominant in experiments. These
can easily conceal the small remaining statistical errors. In contrast
to that, setups of different SRS can be aligned with only little effort.
Hence, the comparability of different simulations is generally
enhanced, reducing systematical discrepancies and statistical
€ITOrS emerge.

To the author’s knowledge, limited work has been published in
the LES community and especially for turbomachinery-related
test cases focusing on the systematic detection of the initial transient
and the quantification of the sampling error. In most of the publica-
tions, the reader is left with the information that the quantities have
been averaged over a certain amount of time units after reaching a
statistically steady-state. While this is positive for the reproducibil-
ity, the reader has to believe that the time estimates have been
appropriate to remove or significantly reduce the statistical error
and initialization bias. Besides being only a few, some studies
have been published addressing these issues, but focusing mainly
on academic test cases. For example, Oliver et al. [14] present a sys-
tematic and unified approach to estimate errors from two uncer-
tainty sources, namely the finite statistical sampling and the
discretization of the Navier-Stokes equations, tested on model prob-
lems and the DNS of a channel flow. The sampling error is esti-
mated a posteriori from the correlated time series using classical
standard error relations [15]. Ries et al. [16] apply classical standard
error relations to estimate and reduce the averaging errors and a
windowed test for statistical stationarity to remove the initial transi-
ent for an LES of a pipe flow. Based on the outcome, the authors
choose simulation parameters with minimized uncertainties to
compare different LES models. Talnikar et al. [13] include the sam-
pling error in an optimization to reduce the time-averaged drag from
LES of a channel flow using traveling wave boundary conditions at
the walls. Mockett et al. [17] utilize a window-based estimation of
confidence intervals and the initial transient time. The presented
methods are validated on a time signal of the integral lift coefficient
obtained from a detached eddy simulation of the NACA0021.

In the current work, we focus on the detailed investigation of the
initial transient time and the statistical convergence behavior of
various quantities of engineering interest at different flow field loca-
tions of an LES. As a test vehicle, we use a popular test case for SRS
code validation; the T106C cascade at an exit Reynolds number of
80,000 and exit Mach number of 0.65, which is an advanced test
case in the High-Order CFD Methods workshop series. In
Ref. [18], we investigated the impact of several properties of the
LES setup on the mean quantities and second-order moments,
i.e., the spanwise domain size, the grid resolution and the choice
of boundary conditions.

Here, we concentrate on the uncertainties concerning the time-
averaging, presenting and extensively analyzing a heuristic
method, well-known in the field of statistical simulations, to auto-
matically determine the end of the initial transient of LES data,
namely the marginal standard error rule (MSER) [19]. Moreover,
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we evaluate an established method to estimate the averaging error
for correlated time series based on the standard error and an integral
timescale, cf. Refs. [15,20], for the applicability to time signals
obtained from the LES of the T106C. We put emphasis on the plau-
sibility of the estimations and validate them through varying aver-
aging window positions and sizes.

We remark that, apart from integral quantities such as blade forces
or boundary values, all presented analyses are purely based on time
signals probed at specific locations without exploiting spatial averag-
ing. For statistically two-dimensional problems, such as the LES of
the T106C cascade, an additional averaging in the spanwise direction
could indeed reduce the statistical error if the domain size was suffi-
ciently large such that the two-point correlation decays below zero.
The latter however, cannot be guaranteed for either quantities or
areas in the flow which are affected by the strong 2D vortex shedding
[18]. In the wake measurement plane, only the spanwise velocity
component decorrelates completely within the computed domain,
allowing the statistical error or number of required samples to be
reduced by a factor of 2 at most. However, for configurations with
end walls featuring pronounced three-dimensional effects, spatial
averaging cannot be exploited at all. Therefore, we limit the pre-
sented analysis to the general case, knowing that for this particular
test case class a further reduction of the statistical errors could be
achieved using spatial averaging.

2 Methodology

2.1 Identification of the Initial Transient. Finding and
removing the initial transient from the analyzed time signal is an
essential part in the process of quantifying the statistical convergence
of a simulation. Often, the duration of the initial transient is judged by
intuitive inspection of time signals of representative quantities such
as total pressure on the inflow/outflow planes or acting forces on the
blade surface. This can however produce inconsistent results
between publications, which was studied for example by Ref. [21].
In this study, scientists were asked to visually identify the equilib-
rium time in molecular dynamics simulations and it was found that
there is no mutual consent between the participants and, moreover,
the appearance of the plot has a significant impact on the predictions.
Several non-visual and automatable techniques can be found in the
literature, cf. Ref. [22] for an overview. Following Ref. [22], the tech-
niques can be sorted into five classes, namely graphical methods,
heuristic approaches, statistical methods, initialization bias tests
and hybrid methods. For the purpose of this paper, heuristic
methods, which provide relatively simple rules to determine the trun-
cation point, seem to be most suitable. We choose the MSER pro-
posed by Ref. [19], which offers a good trade-off between
computational efficiency and accuracy, cf. Refs. [23,24]. The
method is designed to select a truncation point that minimizes the
width of the confidence interval about the truncated sample mean.

Given a finite number of samples N of the time series obtained
from an LES {g; : i=0, ..., N— 1}, the final sample of the initial
transient dy ,,(g) is determined by solving the following minimiza-
tion problem:

0<d<M i—d

. 1 &,
dy y(g) = argmin [m Z(gi - gN,d)z:| (D

where gy 4 is the truncated mean defined as

1 N-1
YT < Y )
8N N—d;g (@)

Here, M is the number of realizations of the function to be mini-
mized, which has been set to the total number of samples N in
the original formulation. In the current work, we assume that the
initial transient is only present in a small portion of the signal and
set M =NJ/2 to speed-up the computation [24]. In the remainder of
the paper, the term to be minimized in Eq. (1) is referred to as the
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truncated mean-square error (MSE). We remark that newer ver-
sions of the MSER, namely the MSER-5 [23,25] and the
MSER-5Y [26], have been developed in the meantime. Instead of
the raw time signal, the MSER-5 uses non-overlapping batch
means with size 5 as the input signal in Eq. (1). This leads to a
reduction of the sample size and, therefore, improves the computa-
tional speed of the algorithm. As the authors stated, the batch size of
5 is “somewhat arbitrary” [24], but showed the best results for the
considered problems. However, with increasing batch sizes, the
estimation of the truncated MSE becomes less accurate. Especially
for signals which have a flat region around the minimum of the trun-
cated MSE, these inaccuracies affect the determined initial transient
times. Regarding the signals analyzed in Sec. 4.1.3, 97% of the
initial transient times determined by MSER and MSER-5 deviate
by less than 0.1¢#.. Extreme deviations are found up to 5¢.. In the
scope of the current paper, we aim for the most accurate solution
and use the original MSER formulation applied to the raw time
signal with a carefully chosen sampling frequency, which is also
used to compute the sampling error. The improvements of the
MSER-5Y focus on problems that occur if the initial transient is
detected in the second half of the signal, i.e. dy, > N/2. This
was not the case in the current study.

2.2 Sampling Error. Assuming we have successfully
removed the initial transient of the time signal and the signal is sta-
tistically stationary, the sampling error could be easily estimated if
the data points were independent and identically distributed (IID)
using standard error relations. However, the single samples in
signals obtained from scale-resolving simulations are generally
not independent because they represent the temporal evolution
determined by the Navier—Stokes equations. One possible approach
is to sample the time signal with enough separation between the
samples so that they can be treated as independent and apply stan-
dard relations for IID random variables, cf. Ref. [27]. This approach
can, however, lead to either an underestimation of the sampling
error if the sample separation is too small. If the sample separation
is too large, the sampling error will be overestimated as valid
samples are ignored.

In this paper, we follow a more sophisticated approach based on
the direct estimation of the sampling error from correlated data, cf.
Refs. [15,20]. Given the signal obtained from LES {g; : i=0, ...,
N—1}, the sampling error of the population mean u =E|[g] is
defined as

en(8)=g-u A3)

where g = Zf;)l gi1is the sample mean. Due to the finite simulation
time, the population mean u is generally not known. However, for
IID random variables, the MSE of the sample mean g can be esti-
mated as

_ Vary(g)

N “

MSE(g) =E[e}(2)]
where Vary(g) = % Z?;Bl (g,- - g)2 is the biased estimate of the pop-
ulation variance [15]. In order to account for the correlation of the
samples from SRS, a minimal number of samples between two inde-
pendent observations can be defined [20,28] as

N-1
D@ =1+23 (1=2)py.) )
wig)=1+ ;( N)ows

where

1 - _ _
v S (8- 2) (i — 8)
PN-(8) = —— (6)
a Vary(g)
is a straight-forward estimate of the autocorrelation with lag z. Using
this estimation, the autocorrelation typically obtained from SRS of
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blade profile flows tends to be noisy and exhibits oscillations.
Thus, we follow the thoughts in Refs. [20,29] and integrate the auto-
correlation only until the first zero crossing to estimate the number of
samples between independent observations Dy. Moreover, the
sample size of our data is typically significantly larger than the lag
of the first zero crossing. Thus, we assume that z/N is negligible
until the first zero crossing and Eq. (5) finally reduces to

until py <0

Dy@~1+2 > py.e) (7

=1

This leads to the estimation of the MSE for correlated time series used
in the remainder of the paper

where N.g=N/Dy can be interpreted as the effective number of
samples.

Note that different approaches to estimate the autocorrelation are
possible. For example, Oliver et al. [14] fit an autoregressive model
and directly use Eq. (5) to compute the decorrelated sample size.
This can be beneficial for modest samples sizes, i.e., Dy~ N.
However, the number of samples obtained from SRS of turbine cas-
cades is usually several orders of magnitude larger than the esti-
mated number of correlated samples and, thus, no significant
difference in the outcome has been found in the preliminary
studies between fitting an autoregressive model and using Eq. (7).

In the following analysis, we will study the statistical errors of
quantities of engineering interest, always clearly stating the respec-
tive averaging procedure. To keep the overhead in the CFD solver
as low as possible, only time signals of basic quantities are probed,
i.e. primitive variables and their spatial gradients. Time signals of
derived quantities such as the total pressure can be computed in
the post processing step. The errors of the quantities involving aver-
ages from multiple sources such as the isentropic Mach number on
the blade are computed using error propagation neglecting the cor-
relations between the source quantities. We employ the python
package gvar to automatically perform the error propagation for
derived quantities [30]. The error of second-order moments such
as Reynolds stresses is estimated using the variance of the com-
bined signal and the maximum of the number of decorrelated
samples obtained from the respective single signals, see Eq. (7),
yielding

— . max{Dy(g}), Dn(g5)} Vary(g|g5)
6 (Fgp) ~ D NZ} = ©

where the total number of samples N is equal for both signals. The
error of derived quantities, e.g., the turbulent kinetic energy, are
again propagated using gvar. In the further analysis, the estimated
error is used to define a confidence interval (CI) for the statistical
quantity based on the outcome of the central limit theorem. In the
remaining paper, we use the 68 % and the 95 % CI assuming a
normal distribution defined as:

Cleg, ~ [g—leN;g+1eN] (10)

Closes ~ [g— 1.96ey: & + 1.96eN] (11

For the sake of completeness, in modern statistics and analysis of
measurement data, bootstrapping is a prominent alternative to the
classical standard error relations to estimate statistical error and con-
fidence intervals. Especially, since it does not rely on the central
limit theorem, it allows for simple estimations of confidence inter-
vals of complex quantities. Benedict and Gould [31] compare, for
example, the estimated uncertainties from bootstrapping and from
the classical approach for higher-order velocity fluctuations of tur-
bulence measurements made from a flow over a backward-facing
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step using a laser Doppler anemometer. They found that the results
of both error estimation approaches agree well. Thus, we stick to the
classical approach in the remainder of this paper, but recognize that
bootstrapping is an interesting alternative for the desired use case,
which could be investigated in future work.

The method described above can not only be used to estimate the
error for statistical moments of a given signal but can also be
employed to estimate the required number of samples N to obtain
a specified error by rearranging Eq. (8) to

_Dw, (g)Vary, (g)
(@
Note that in this case, Dy, (g) and Vary, (g) are estimated using only
a smaller number of samples N; < N.

(12)

3 LES of the T106C Low-Pressure Turbine Cascade

The T106C low-pressure turbine (LPT) cascade has been used as
a test vehicle for the validation and comparison of numerical simu-
lations from RANS to DNS in various forms of abstraction. The
experiment at the VKI was arranged as a linear cascade of six pris-
matic blades with an aspect ratio of 2.4. The blades with a chord
length of ¢ =93 mm are staggered under an angle of 30.7°, which
leads to an axial chord length of c, =79.9 mm. This highly
loaded case has a pitch to chord ratio of 0.95. At a fixed isentropic
exit Mach number of 0.65, a test matrix of Reynolds numbers
ranging from 80,000 to 250,000 with free-stream turbulence inten-
sities of 0.9%, 1.8%, and 3.2% was published by Michalek et al.
[32]. Here, we consider the case with Reynolds number of 80,000
and a laminar inflow, which were also the boundary conditions of
the case at the High-Order CFD Methods workshops. The selected
operating conditions produce a laminar separation in the aft section
of the suction side. In the separated shear layer, two-dimensional
Kelvin-Helmholtz rollers develop and eventually break down into
three-dimensional turbulent flow. In the averaged flow field, reat-
tachment can be seen very close to the trailing edge (TE). The
wake is dominated by a strong vortex shedding such that two-

Pitchwise periodic

Inflow

Pitchwise periodic

Fig. 1

dimensional structures can be observed far downstream of the
blade.

This laminar inflow case can be compared with the measurement
data with a turbulence intensity of 0.9%. The agreement of results
from scale-resolving simulations with the experiment, however, is
rather poor as was shown in several studies [7,33,34]. Deviations
are present in terms of the blade loading near the leading edge
(LE), a delayed separation bubble and a clear underestimation of
the wake depth. There have been attempts to mitigate the differ-
ences in blade loading by adapting the inflow angle, but discrepan-
cies in the appearance of the separation bubble and the wake depth
remained [7]. We will see that, by using the statistical error analysis
performed in Sec. 4.2, the uncertainty due to the averaging process
can be excluded as a reason for these deviations. Hence, it is rela-
tively safe to assume that systematic issues in the reproduction of
the experiment are the dominant factor, e.g., the assumption of
spanwise periodicity is not justified and the growing endwall
boundary layers affect the measurements at midspan due the rela-
tively small aspect ratio of the cascade [7,18,33]. Despite the
known deficiencies, the test case has been heavily used as a valida-
tion case in the High-Order CFD Methods workshops for different
CFD solvers and the observed differences between numerical
results are far smaller [10,18,34], indicating the relevance of thor-
ough statistical error analysis to compare numerical approaches.
The experimental results are, nevertheless, shown in this paper to
put the numerical results into perspective.

DLR’s flow solver for turbomachinery applications, TRACE,
was used to perform an LES of the above configuration.
TRACE’s finite volume method solves the filtered compressible
Navier—Stokes equations using a second-order accurate, density-
based scheme appl;fing MUSCL reconstruction with x=1/3 [35].
A fraction of 107 of Roe’s numerical flux [36] is added to a
central flux to avoid odd-even decoupling. Time integration is per-
formed using a third-order accurate explicit Runge-Kutta method.
The subgrid stresses are computed by the wall-adapting local eddy-
viscosity (WALE) model [37]. A one-dimensional non-reflecting
boundary condition, which drives the time and surface averaged
boundary state towards prescribed values (stagnation pressure,

Probes:
__— Blade surface

Boundary layer cut

Wake cut

Qutflow

Overview of the computational domain, boundary conditions, instrumentation for time

series in front of turbulent structures visualized by spanwise vorticity for better orientation
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Table 1 Overview of mesh and time-step properties
Number of cells spanwise 90
Total number of cells/10° 14.82
Axt 12.05
max Axdg 17.12
vt 0.21
max yg 0.56
Azt 11.51
max Azdg 30.40

Number of time-steps per 7. 28,569

stagnation temperature and flow angles at inflow, static pressure at
outflow) by means of incoming characteristics, is used for both
inflow and outflow [38].

The computational domain is sketched alongside with turbulent
structures visualized by spanwise vorticity in Fig. 1. The inflow
plane is located 0.1 m=1.075¢ upstream of the blade leading
edge which was shown to be sufficient for the non-reflecting bound-
ary conditions used here [18]. To be able to analyze a longer portion
of the wake, the outflow plane is 0.126 m=1.351¢ downstream of
the blade TE. A slice of one blade is computed with periodic bound-
ary conditions in the pitchwise and spanwise directions. We choose
a spanwise extent of 0.3c¢ in contrast to 0.1c in the workshop case
after carefully analyzing the setup of the computation, which
showed a strong dependency of the dynamics in the wake on the
spanwise extent for values lower than 0.3c. Even with a spanwise
extent of 0.4¢, the two-point correlations of the in-plane velocity
components do not go to zero in the measurement plane at
x =xtg + 0.4c,x [18].

The domain was meshed with DLR’s in-house block structured
mesh generation tool PyMesh [39]. Typically, turbine blades are
meshed with an OCGH-topology consisting of an O-type block
around the blade surface, wrapped by a C-type block to ensure a
smoother transition to the H-type blocks downstream of the
blade. H-type blocks are also used upstream and in the blade
passage. The G-type block connects the passage, wake and exit
H-blocks introducing a singularity at which only 3 grid lines
come together in 1 point. For the LES, additional H-type blocks
were inserted downstream of the passage and in the near wake to
ensure a high-quality mesh aligned with the mean flow direction
for a longer section than normally possible in multi-stage configu-
rations. On the suction side, the number of points is roughly 2.5
times larger than on the pressure side. Table 1 summarizes the prop-
erties of the mesh.

4 Analysis of Time Series

In this section, we provide an in-depth analysis of the time-
dependent behavior of the test case shedding light on the initial tran-
sient time and the statistical convergence. Moreover, the applicabil-
ity of the methodology to determine the end of the initial transient
and to evaluate the sampling error for several quantities at different
locations will be reviewed. Time signals at various positions of
several quantities of interest have been probed over 355 convective
times 7, with a sampling frequency of f; = 460.8/t.. To set this in
relation, Tyacke and Tucker [11] proposed an averaging time of 2
to 107, as a best practice guideline for cascade LES. Due to
storage constraints, it is prohibitive to sample well resolved time
series of this length and resolution for the complete 3D domain.
Hence, subsets of the domain are written to HDFS5 files in order
to be later processed using standard pyTHON libraries. Figure 1
shows the positions in the flow field, which are probed for the com-
plete simulation duration. All probes shown here are located at a
single spanwise position, i.e., at the midspan.

4.1 Time of the Initial Transient. When planning the data
acquisition for an LES, one of the first questions that arises is, at
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what point in time the averaging procedure should be started. If the
averaging starts too early, transient effects can significantly influence
the mean results and, therefore, bias the conclusions made from the
LES. If the averaging starts too late, valuable samples are not consid-
ered in the process and, thus, reaching a statistically converged state
requires more computational time. However, we will show in the fol-
lowing section, that the initial transient time varies highly for differ-
ent quantities and different positions in the flow field. So, if one wants
to or has to average multiple quantities at multiple locations with the
same interval, one has to accept that at least one of the two options is
going to occur.

The actual duration of the transient phase depends highly on the
quality of the initialization. In this study, we initialize the simulation
with a converged steady RANS solution. Because no resolved fluc-
tuations are present in the RANS solution, the transient phase con-
sists of 2D vortex shedding which eventually breaks down into 3D
turbulence, and consequently a potential shift in mean quantities. If
one uses a better initialization, e.g., the instantaneous flow field of
LES on a coarser mesh, the initial transient time will probably
decrease, but nonetheless be present.

4.1.1 Integral Forces on the Blade. A typical starting point to
quantify the time of the initial transient found in the literature is to
analyze the temporal evolution of the integrated blade forces F(¢).
The time signal of the normalized force in pitchwise direction
F,(t) up to 100z, is given in Fig. 2(a) and shows a significant
initial range, which differs qualitatively from the remaining time
signal. After a certain point in time, the changes of the force have
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Fig. 2 Initial transient detection for the integrated blade force in
pitchwise direction F(t): (a) time series of the integrated force
including the point of the end of the initial transient and (b) trun-
cated mean of the integrated force
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Table 2 End of initial transient t;,.nsient/tc fOr various quantities
at the inflow and outflow boundary

Quantity

tlransienl/tr

Inflow boundary

Stagnation pressure Do, inlet 8.1
Stagnation temperature To,intet 8.1
Flow angle inlet 8.1
Static pressure Pinlet 8.2
Outflow boundary
Static pressure Poutlet 7.0
Flow angle Xoutlet 7.8
Mass flow Toutlet 6.0

an almost periodic character, oscillating around a mean value.
Using MSER to quantify this point, results in an estimated end of
the initial transient of fyansient = 5.7, Which seems reasonable by
visual judgement. To further analyze the initial transient, Fig. 2(b)
shows the truncated mean of the integrated force, which is the
average of the signal starting from the end of the simulation follow-
ing Eq. (2). One can observe that differences of the truncated mean
to the full mean are very small even if only few convective times are
considered. After the estimated end of the initial transient marked
by the vertical line, we note a significant increase of the truncated
mean despite having already averaged over more than 340 convec-
tive times. The decrease of the truncated mean right before the ver-
tical line is within the order of magnitude of the other variations
and, thus, not considered as a part of the initial transient. Overall,
MSER yields a reliable estimate for this integrated quantity.

4.1.2  Boundary Conditions. The non-reflecting boundary con-
ditions at the inflow and outflow are weakly enforced. Therefore,
the instantaneous surface averaged boundary values can differ
from the boundary values prescribed by the user. Naturally, these
signals also feature an initial transient before reaching a statistically
stationary state as the boundary condition controller reacts to the
changing inner flow field. The initial transient times computed
with Eq. (1) for different quantities at the inflow and outflow bound-
aries are presented in Table 2. Compared to the blade forces, longer
initial transient times can be observed for quantities at the inflow as
well as at the outflow. The defining feature, which needs to develop
from the 2D RANS initialization, is the separation bubble. Until 4z,
the axial velocity in the separation region is strongly correlated in
the spanwise direction because large 2D structures separate from
the blade, which decay into three-dimensional vortices afterwards.
After 4t., the laminar roll-ups begin to become turbulent directly
inside the separation bubble, i.e., separation-induced transition
starts to develop. Thus, the initial transient of the integral blade
force ends shortly after the characteristics of the separation are in
a reasonably steady-state. Then, the information needs to progress
from the aft region on the suction side of the blade to the boundary
planes and, as a consequence, the observed initial transient times at
the in- and outflow are longer. The initial transient time at the inflow
plane is affected by acoustic waves, which move upstream from the
developing separation bubble and are reflected between the blades.
The relevant characteristic at the outflow is the turbulent wake. At
first glance, it is counterintuitive that the initial transient of the tur-
bulent phenomena ends earlier than the laminar one, but we will
make and discuss similar observations when considering signals
inside the domain in the following section. Generally speaking,
due to the low variance present in signals of laminar regions, the
MSER is more sensitive to events which are triggered by the
initial transient progress. On the other hand, developing large fluc-
tuations in turbulent regions tend to cover events from the transient
phase leading to shorter transient time predictions.

4.1.3 Field Values. In addition to the analysis of integral
values, it is instructive to investigate how the estimated end of the
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Fig. 3 Initial transient detection for field values. (a) Estimated
end of the initial transient evaluated on time series data of
static pressure and (b) raw time series of the fluctuating pressure
and truncated MSE used to estimate the end of the initial transi-
ent at positions marked in Fig. 3(a). The truncated MSE is normal-
ized with the minimum of the truncated MSE of signal A. The end
of the initial transient is visualized by a vertical line.

initial transient varies in the flow field. As time series data are
required, only a limited subset of the domain can be used for this
analysis. Figure 3(a) shows the analysis for the static pressure in
the recorded suction side boundary layer probes, a relatively
coarsely sampled region around the TE of the blade and two cuts
through the wake. An instantaneous vorticity field is shown in
grey scale for orientation. Several observations can be made: The
quantity fuansient/f- Shows a mostly smooth, yet significant variation
throughout the domain from very short transients up to more than
15¢.. The largest initial transient times are detected in the laminar
region near the LE. Interestingly, these values are significantly
larger compared to the estimation from the static pressure of the
inflow boundary, cf. Table 2. The reason for this could be that
these are point probes, which are probed at the midspan, whereas
the static pressure of the inflow boundary is an integral quantity.
Thus, spanwise and pitchwise variations are averaged out and the
fluctuations over time can be smaller. Looking at the raw time
signal A in Fig. 3(b), a visible change in the amplitude can be iden-
tified after the estimated end of the initial transient. The level of
fluctuations is significantly higher before 16.5z, due to upstream
moving acoustic waves from the still not fully developed separation
bubble. These acoustic disturbances, which occur in the initializa-
tion phase, are especially visible in signal A due to the relatively
low variance at this position. The MSER processes each time
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signal individually and therefore disturbances, which are relevant
for the laminar region but irrelevant when compared to the var-
iances of turbulent regions, are treated equally. In combination
with a desired error bound of statistical quantities, the MSER
could be improved by ignoring variations below a certain limit.

In contrast to the location near the LE, short initial transient times
ranging from O to 57, are estimated in the region of the separation
and around the TE. One can see that the signals B and C indeed
exhibit only small portions of transient phenomena. After less
than 3z, the fluctuations in signal B, probed in the separation
region, are already in a statistical steady-state. The point C, which
is located near the TE, features a nearly constant signal at the begin-
ning of the simulation. After around 17, the variations are directly
in the same magnitude as for the remaining signal. Therefore, the
truncated MSE does not increase and no initial transient is detected.
While this is initially unintuitive, it makes sense when thinking in
terms of averaging the signal. It means that if the values at the
beginning of the signal are already very similar to the long-time
mean and the fluctuations are below the fluctuations of the remain-
ing signal, the statistical error of the mean is lower when the begin-
ning of the signal is included. Thus, the long-time mean is more
reliable in a statistical sense by averaging the full signal. Conse-
quently, instead of determining the overall initial transient of the
signal, the MSER rather detects the initial transient relevant for
the average of the signal. To make the estimation more general,
one could also include errors of higher statistical moments, such
as the variance, to account for changes in these terms. However,
for the scope of analyzing time-averaged results of LES, the
MSER definition is sufficient. Another interesting point can be
identified in the wake probes, marked by D. Its estimated initial
transient differs significantly from the estimations of neighbor
points, i.e. 5¢, to 7.5¢.. The time plot of signal D indeed shows an
increase in the truncated MSE before 7.5¢.. The increase is,
however, only very small and, thus, the global minimum of the trun-
cated MSE is at 57 including more samples. If the truncated MSE
exhibits a very flat minimum as in this case, small differences in the
time signals can result in large changes in #iansient/?-

Summarizing the above observations, no clear trend can be iden-
tified as the estimated initial transient depends highly on the given
initial field. Laminar regions tend to have a longer initial transient
due to the fact that variations in the beginning of the simulation
are more significant compared to the final steady-state fluctuations.
However, if no variations are present, the estimated initial transient
is also low as observed in the region on the suction side in front of
the separation, cf. Fig. 3(a). Overall, the detected initial transient
times from integral values cannot be simply applied to the flow
field. Consequently, the initial transient has to be detected sepa-
rately for each probe and, concluding from the investigated time
signals, the MSER is appropriate for that purpose, although poten-
tial improvements have been addressed.

4.1.4  Guidelines. When the simulation is started from a given
initial solution, we have observed in the previous sections that the
initial transient depends on the quantity of interest and the location
in the domain. Thus, finding a generally appropriate beginning of
the averaging for multiple quantities and locations can be quite dif-
ficult. Furthermore, we showed that only considering integral quan-
tities, such as the blade forces and boundary values, can lead to a
false estimation of the initial transient of the inner flow field.
Based on that, we formulate the following guidelines with regard
to the starting point of the averaging for the remaining paper:

(1) A time signal is available for the quantity and location: Use
the initial transient of the time signal.

(2) A time signal is not available for the quantity and location:
Use the maximum transient time of all globally available
time series as the beginning of the averaging.

(3) The averaged quantity of interest is a function of multiple
instantaneous quantities for which time series are available:
Average each quantity individually with its own initial
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transient. Thus, the end of the transient of the derived quan-
tity is the maximum of the initial transient of the involved
signals.

(4) Time series are available for the quantity on a subdomain,
which should be averaged, e.g., blade cuts: Use the
maximal detected initial transient time in the subdomain.
One could also think of using each individual initial transient
in this case. However, we found that exploiting programming
benefits by using homogeneous numpy nd-arrays is more
appropriate.

4.2 Statistical Convergence and Error. In this section, we
address the statistical convergence of the LES of the T106C by ana-
lyzing time signals of relevant quantities at different locations in the
flow field. We start with the blade loading and the pressure distribu-
tion on the blade represented by the isentropic Mach number. Fol-
lowing that, uncertainties in the position of the separation are
investigated through the wall shear stress. The statistical conver-
gence of the transition behavior and general appearance of the
separation bubble is judged using boundary layer probes. Finally,
we study the total pressure loss and turbulent shear stress in the
wake. For all these quantities, we analyze the validity of the rela-
tions of the statistical error given in Sec. 2.2 using a simple
moving average (SMA) and a cumulative moving average
(CMA). The different averaging windows starting from #,, and
ending at t.,4 are denoted by the superscript g = fend, 1.€.

gfuan—’fend — J
Tend — Istart

Unless stated otherwise, the shaded areas shown in the following
figures represent the 68% CI of the respective mean quantity.

Tend

g(ndt (13)

Istart

4.2.1 Isentropic Mach Number. The first quantity of interest is
the mean isentropic Mach number, which is defined as

2 (p(),inlet(t)> _1 (14)
r=1\\ p&x. 0

y—1
4

Mis(x) =

where pg iniet(?) is the area averaged stagnation pressure taken from
the inlet and p(x, t) is the static pressure on the blade surface. In
Fig. 4, the isentropic Mach number averaged for 10, 20 and
337.9t. is shown and compared with the experimental results of
Ref. [32]. Following the guidelines given in Sec. 4.1.4, we start
the averaging after an initial transient of 17.1¢., which is restricted
by the transient time of the probes near the LE, cf. Fig. 3(a). Addi-
tionally, the 68% CI based on the estimated error is plotted as a
shaded area for each averaging duration. As stated in Sec. 2.2, the
estimated error of the Mach number is propagated from the individ-
ual averages of pg inie(t) and p(x, 7).

We observe a good agreement of the LES results with the mea-
surements on the pressure side. In contrast, even for the largest aver-
aging time, significant discrepancies are present in the leading edge
region on the suction side and in the region of the separation
between x/c,x =[0.58, 1]. These discrepancies are neither within
the confidence interval of the LES nor within the uncertainties spe-
cified in Ref. [32], which range from 0.4% to 1.2% (0.8% is shown
in Fig. 4, but is only visible in the zoomed view due to the marker
size). Hence, the differences cannot be linked to statistical errors
due to insufficient averaging time. As discussed in Sec. 3, similar
deviations have been observed in other publications.

Focusing on the LES results, we cannot distinguish between the
results with different averaging lengths in the full view Fig. 4(a).
Zoomed closer into the separation region at the suction side TE,
see Fig. 4(b), small differences can be spotted between the short
averaging times and the long-time average. Most of the long-time
average lies well within the estimated 68% confidence interval of
the short-time averages, which is at maximum 0.8% for 10z, and
0.64 % for 20z, averaging window. Yet, in the aft region between
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Fig. 4 Averaged blade pressure distribution in terms of the
isentropic Mach number M for different averaging times and
the respective 68% Cls compared with experimental data from
Ref. [32]: (a) full view and (b) zoomed view

Xlcax =0.97 and x/c,x=1.00, the long-time average is biased
towards the upper border of the CI of the average over 20¢.. This
could be an indication of a slow transient drift, which is more pro-
nounced in the total pressure losses inside the wake and will be dis-
cussed in detail in Sec. 4.2.3. Nevertheless, the deviations are small
and the relative 68 % Cl is already below 1%, such that the isentro-
pic Mach number can be regarded as well converged after only 10z,.

To further address the statistical convergence and survey the esti-
mated CI, the time signals of two locations with a more significant
estimated error, marked with vertical lines in Fig. 4(b), are sepa-
rately analyzed in Fig. 5. The first point is located in the separation
region at x/c,, = 0.93 and the second near the TE at x/c,, =0.997. In
the upper subplot, the time signal of an instantaneous isentropic
Mach number using the instantaneous reference total pressure pg,
intlef(?) and static pressure p(r) is shown. We note a significant
initial transient in the time signal at both locations, whose duration
corresponds with the estimated transient duration of the inflow
boundary condition. The subplot in the middle shows the CMA
of the isentropic Mach number (blue line) following the guidelines
from Sec. 4.1.4. Additionally, the 68 % CI of the mean is plotted for
each averaging interval. To visually judge the evolution of the
mean, the long-time-averaged isentropic Mach number is also
shown in the figure as a constant over the normalized simulation
time (orange line). Differences between the long-time mean and
the short-time means, i.e., averaging window sizes of up to 12z,
are clearly visible in Fig. 5(a). However, the long-time average
lies well within the predicted 68 % CI of the short-time averages.
This is further substantiated by the lower subplot of Fig. 5(a),
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Fig. 5 Error analysis of the times series of probes sampled at
x/cax ={0.93, 0.997}. These positions are marked in Fig. 4(a).
(a) x/cax =0.93 and (b) x/c,x = 0.997.

where estimated error is plotted against the observed difference
between the CMA and the long-time average. The observed error
is always below the estimated error, which indicates the plausibility
of the estimate. We emphasize here that one realization of an aver-
aging window has to be interpreted as one experiment and, follow-
ing the definition of a confidence interval, there is a 68% chance that
the confidence interval encompasses the true mean. Hence, it is not
guaranteed. As the mean values with longer averaging intervals also
contain the same samples of the short-time mean, they are to some
extend linked together and follow a similar bias. Looking at
Fig. 5(b), deviations of the long-time mean and the 68 % CI of
the CMA between 107, to 157, can be noted. Though, after 157,
until the shown 100z, the CI encompasses the long-time average
as already observed for the probe in the separation. Considering
the estimated and observed errors, one can see that the observed
errors match the estimated ones very well when averaging the
signal until 75¢. to 93¢.. On the other hand, there are intervals in
which the observed error is comparatively small. If only a small
series of selected averaging intervals is chosen to judge statistical
convergence without considering the estimated averaging error,
misleading conclusions on convergence may be drawn.

Summarizing the observations, the isentropic Mach number
around the blade converges statistically in a fairly short time. The
maximal predicted CI is already below 1% after averaging the
flow field for only 10¢.. Analyses of time signals from two locations
indicate that the used estimation is plausible even if it rather over-
estimates the observed error for this signal.

4.2.2 Skin Friction Coefficient. To investigate the separation
behavior of the T106C, we are interested in the mean skin friction
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coefficient around the blade, which is given by

B — ||z(x, 1|
_ ) - : 15
c7(x) sgn< (x) - 7(x t)) Po.outet) — Poutier(d) (2

where po outter(t) and pouner(?) are the area averaged total and static
pressures at the outlet and z(x, ¢) is the wall shear stress vector.
The sign of ¢, is derived using the scalar product of the wall
shear stress vector and the tangential vector of blade surface t(x)
defined in the span plane, i.e., £,>0 and #,=0. Again, a separate
error is estimated for each signal and error propagation is applied
to determine the error of the derived quantity. The mean skin fric-
tion coefficient distribution including the 68 % CI is presented in
Fig. 6(a).

The MSER estimates the maximum initial transient of the distri-
bution to 16.6¢., which is longer than the involved signals from the
boundary conditions and, thus, determined by one of the shear stress
signals. All averaging lengths result in similar distributions of the
mean skin friction coefficient featuring a long separation bubble
and a secondary recirculation region in which the backflow sepa-
rates from the blade. The separation point of first bubble is predicted
to be at x/c,x = 0.676 in the long-time reference, which was deter-
mined through the zero crossing of the mean shear stress wall in the
axial direction. The shorter averaging intervals differ by a
maximum of +0.002c,x (0.3%). Similar observations can be
made for the location of the secondary recirculation region differing
by a maximum of +0.003c,x with respect to the long-time average.
Hence, the key features are already well converged after averaging
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Fig. 6 Error analysis of the skin friction coefficients. (a) Aver-
aged skin friction coefficient ¢; and 68% CIl over the relative
blade coordinate. The shaded area represent the confident inter-
val. (b) Simple moving average of the mean skin friction coeffi-
cient ¢; at a point marked in Fig. 6(a) averaged over 10t..

Journal of Turbomachinery

for 10¢.. Uncertainties are only present for the magnitude of the fric-
tion coefficient in the secondary bubble and near the TE on the
suction side.

A way to study the uncertainty and the plausibility of the CI is to
keep the averaging duration constant and move the averaging
window along the time signal, i.e., using SMAs. This is carried
out using non-overlapping averaging intervals of 10z, in Fig. 6(b)
for the position marked in Fig. 6(a). First, a significant variation
of the mean values depending only on the position of the averaging
window can be noticed. The measured mean skin friction coeffi-
cient, visualized by the dashed red lines, ranges from @mi“ ~0.13 -
1073 to 7™ »~ 1.02 - 1073, which is a difference of 158 % relative
to the long-time mean. The high uncertainty is also reflected in the
width of the 68 % Cls, which is on average 94 % of the long-time
mean. Comparing both, 30 of the 33 CIs from independent averag-
ing windows contain the reference mean and only 3 realizations do
not. This seems to be low, as in ideal stochastic conditions, 10 to 11
of the 33 ClIs should not encompass the true mean. Though, to
approach these conditions, vastly more realizations and, therefore,
longer simulation times are required, which is not realizable at the
moment. Consequently, keeping the low number of realizations
and possible correlations in mind, the plausibility of the estimated
Cl is at least indicated.

Concluding from an engineering perspective, the large relative
uncertainty of the friction coefficient in that specific location is
probably not important enough to justify longer averaging times
as key aspects are already well converged. Hence, with the knowl-
edge and estimation of the uncertainty, an averaging window of 10z,
or even less is enough for the friction coefficient in this case.

4.2.3 Total Pressure Loss 0.465c,, Behind the Trailing Edge.
The error analysis of the wake velocity deficit at 0.465¢,, down-
stream of the TE is plotted in Fig. 7 in terms of the total pressure
loss coefficient including the 68 % CI over the relative pitchwise
coordinate s. The mean total pressure loss is given by

pO(S’ t)

o]
¢ Po.intec(?)

(16)
where po(s, 1) is the total pressure at the pitchwise position s in the
wake and pgine(?) is the total pressure area averaged over the
inflow panel. Significant differences between the pressure losses
determined by the LES and the experiment of Ref. [32] are
present. The peak pressure loss from the experiment nearly
doubles the value of the simulation. On the contrary, the width of
the wake matches fairly well in all cases. As discussed in Sec. 3,
the assumptions made in the numerical simulation, such as the
use of laminar inflow conditions rather than a turbulence intensity
of 0.9%, as reported in the experiment, can have an effect on the
size of the separation and the mixing in the wake. The reported mea-
surement uncertainty of 10-20% (15% is shown as shaded band in
the figure) certainly cannot explain the deviation alone. The
observed differences to the experiments are also larger than the esti-
mated confidence intervals for all plotted averaging times. The total
pressure loss in the experiment was measured with 5-hole probes
and, therefore, the instantaneous total pressure has been averaged
directly to obtain the shown total pressure loss. However, this pro-
cedure is not the only possible one to evaluate the total pressure loss
from scale-resolving simulations. Another choice could be to
average the primitive variables directly, which is in the context of
a CFD solver more natural and could seem arbitrary at a first
glance. Yet, due to the presence of turbulent fluctuations inside
the wake, e.g., quantifiable by a maximal normalized turbulent
Mach number of /Vary(M)/M = 0.106, the averaging strategies
result in deviating predictions of the total pressure loss as shown
in Fig. 7. This fact has to be considered and clearly stated when
showing and comparing averaged quantities. Seemingly, the
wrong averaging strategy results in a closer agreement with the
experimental data, which is most likely due to a cancellation of
eITorS.
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Fig.7 Error analysis of the pressure loss in the wake at 0.465¢ .
behind the trailing edge. (a) Mean pressure loss and 68 % Cl over
the non-dimensional pitchwise coordinate for different averaging
times and the experiments of Ref. [32]. (b) Error evolution of the
pressure loss on the position marked by the dashed vertical line
in Fig. 7(a).

Interestingly, the estimated confidence interval does not vanish in
the region between the wakes where almost no turbulent structures
are present and the mean pressure loss is equal for all averaging
times. This can be related to the phenomenon where the periodic
content of the signal results in an offset of the estimated error,
which will be discussed in Sec. 4.3. Overall, in comparison to quan-
tities on the blade, e.g., the isentropic Mach number and shear
stress, the predicted relative uncertainties are about an order of mag-
nitude larger and visually noticeable variations occur between the
different averaging windows, especially in the middle of the wake.

In Fig. 7(b), the observed drift in the wake profile is investigated
using the CMA (top) and two SMAs (bottom) of the total pressure
loss coefficient at the position marked in Fig. 7(a). While the CMA
of isentropic Mach number shown in Fig. 5 converged relatively
quickly toward the full average of the signal, a different behavior
can be observed here. It takes roughly 170z, for the confidence inter-
vals of the cumulative and the full averages to touch. As can be seen
in the SMA with a window of 100z, there is a transient behavior on
a very long timescale which could not be detected by MSER. With
this knowledge, the full average should be taken over the interval
100 — 355 leading to a loss, which differs by 3%. This is just
outside of 95% CI of the average over 8.1 — 355. The slow drift
is extremely hard if not impossible to detect without having
access to the full time sample. This is illustrated by the green
lines in Fig. 7(b) which show the analysis which could have been
performed if only 100z, of time signal had been available. The
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CMA (top) still shows a rather noisy signal within this range but
the value moves within the confidence interval of the average
over 8.1 - 100 from as early as about 30f.. The fluctuations in
the SMA (bottom) appear to be random and lie well within the
95% CI, which is, of course, considerably bigger due to the
reduced window size. All things considered, it is very likely that
one could have called the short simulation statistically converged
with a relative estimated error on the total pressure loss coefficient
at this position of 2.9%, when, in fact, this result deviates more than
11% from the average over 100 — 355. In terms of integral loss
coefficient, the deviation is not as big as detailed above but still
6.3% because the effect can be observed over large parts of the pres-
sure loss profile.

4.2.4 Shear Stress 0.465c,, Behind the Trailing Edge. Rey-
nolds stresses extracted from LES are often used in RANS model-
ing. It is essential to be certain of their statistical convergence to
draw the right conclusions. The error analysis for the shear stress
component #'v' is shown in Fig. 8. Because the Reynolds stresses
are second moments, they are expected to converge slower than
the mean values. This translates into larger statistical errors and con-
fidence intervals, which are present in Fig. 8(a). We can observe a
variation of the shear stress distribution with increasing averaging
time, while the confidence intervals intersect each other. At the
position of peak stress marked by the dashed vertical line, the one-
sided confidence interval after averaging over = 92¢, is around 7%
and after 347¢, still around 4%.
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Fig. 8 Error analysis of the Reynolds stress u'v’ in the wake at
0.465c,, behind the trailing edge. (a) Reynolds stress u'v’ and
68 % Cl over the non-dimensional pitchwise coordinate for differ-
ent averaging times. (b) Error evolution of the shear stress on the
position marked in Fig. 8(a).
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Again, the plausibility of the estimator is validated in Fig. 8(b) for
the marked location. The estimated confidence interval covers the
observed differences for most averaging times. Note that the long-
time average is only an estimate for the true mean and by definition
of the CMA the observed error must eventually go to zero. A slow
transient phase similar to that in the pressure loss can be observed as
well. However, in this case, the variation of the SMA occurs mostly
within the 95% CI, so the drift is statistically less significant. Note
that especially from 200z, on, the CI appears to be overestimated. It
has to be considered, though, that the SMA with a window size of
100 yields just about 3 statistically independent samples for the
mean. To reliably assess the quality of the estimator for such a
broad window size, the simulation would have to run at least 10
times longer. Averaging with a window size of 30z, gives a hint
that very low frequency oscillations are present in the shear
stress. This motivates longer averaging times such as 100z, which
seems to be more appropriate in this case judging by the rather sto-
chastic oscillations of the corresponding SMA.

4.2.5 Boundary Layer Analysis. To evaluate the separation and
transition behavior of the LES, boundary layer cuts normal to the
blade surface have been placed along the suction side in the
midspan plane (cf. Fig. 1). The tangential velocity at these boundary
layer cuts gives insight into the appearance of the separation bubble,
which is visualized for different averaging times in Fig. 9(a). The
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Fig. 9 Mean tangential velocity and maximum of the turbulent
kinetic energy along boundary layer cuts. (a) Mean and 68 % con-
fidence interval of the normed tangential velocity shifted by the
given line index i along boundary layer cuts. (b) Maximum of
the turbulent kinetic energy and its 68% confidence interval
along boundary layer cuts.
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average tangential velocity is computed via

u_c(ﬂ) =u(n, Ht, + vy, t)ty (17)

where (t,, t,) is the tangential vector pointing along the blade surface
in the positive mean flow direction and 7 is the distance from the
blade surface.

The incoming laminar boundary layer (0.65¢,x) has no visual sta-
tistical error and is, not surprisingly, equally well predicted for all
averaging times. After 0.8c,, the appearance of the separation is
nearly identical for all averaging times with only little uncertainties.
The largest uncertainties are present at the boundary of the develop-
ing separation bubble, i.e. cut 0.8¢,y, and in the boundary layer cut
near the TE, where strong turbulent phenomena are present. Com-
pared to the quantities in the wake, the mean tangential velocity pro-
files along boundary layer cuts do not require such a long averaging
time to decrease the uncertainties to reasonable values, i.e., maximal
5.0% or 3.4% standard error relative to the mean outlet velocity
[|Zoutet|| in case of averaging until 307, or 50¢., respectively. If
one is only interested in the overall structure of the separation
bubble, even averaging windows below 30z, are sufficient.

To get an indication for laminar to turbulent transition,
we investigate the development of the maximum resolved
turbulent kinetic energy in the boundary layer k()=

1
2 (u’(n, 1)2 +V'(n, t)2 +w'(n, t)z) over the axial coordinate x/c,y,

see Fig. 9(b). The shaded area represents the 68% CI of the respec-
tive location of the maximum k, which is computed following Sec.
2.2. A clear, continuous, but slow increase of the maximal turbulent
kinetic energy starting from 0.65¢,, can be observed. Interestingly,
between 100z, and 200z, the level of the resolved turbulent kinetic
energy is significantly higher compared to the other shown intervals
at the blade cuts 0.7 < x/c,x < 0.9. The 68% CI barely intersects the
other CIs, which shows the high uncertainty in that region. Despite
the uncertain magnitude, the location of the transition onset is very
similar for all averaging windows at 0.89¢,x with maximum differ-
ence of +0.002¢,. It has been determined by the crossing of two
tangential lines approximating the two slopes. The first one is the
best fit of the region between 0.7¢,x and 0.85c¢,, and the second
one is the best fit between 0.89¢,, and 0.95¢,.

The largest uncertainties of the maximum resolved turbulent
kinetic energy are present in the fully turbulent region after
0.96¢, The maximum differs from k/ ||fget|> = 0.127, when
averaging from 18.7¢, to 100z, to k/ ||ml|2 =0.137 using an
averaging window from 100z, to 200z.. Nevertheless, the 68%
CIs intersect each other and the long-time reference lies well
within the CIs. Hence, longer simulation times might be required
if the exact value is of interest. On the contrary, the overall appear-
ance of the maximum turbulent kinetic energy converges faster and
averaging over 100¢. is already suitable to draw conclusions about
the basic transition phenomena.

4.2.6 Integral Total Pressure Loss. From an engineering per-
spective, it is highly relevant to be able to estimate simulation run-
times which are required to drive the statistical error for a blade
efficiency criterion below a certain threshold. One such criterion
is the integral total pressure loss, which can be evaluated from
area averaged total pressure at inlet and outlet as

_ Dooutlet ()

é,outlel Po,inlet Q)

Note that this differs slightly from the definition given in Eq. (16) in
terms of averaging order but enables the direct application of
Eq. (12). The former definition can also be used in combination
with error propagation and leads to similar results.

We choose a short section of 27, of the signal starting at the esti-
mated end of the initial transient of 7.76¢. and use it to estimate the
number of correlated samples as well as the variance. For a relative
error on £ of 1%, Eq. (12) yields a required averaging time of 297z,.
Indeed, the statistical error obtained from the simulation over 2971,

MARCH 2022, Vol. 144 / 031005-11

1202 1990100 90 U uuewBIog [SBYDI ‘AZ HUBIUNEY N-YNT 4 WNAUSZ Seyosinad ¥1a A Jpd'G00LED € ¥l 0GIN9L9¥9.29/S00LE0/E/ P L /IPd-ojoie/AlauiyorwIoginy/Bi0 awse uonos|jooleyBipaLuse;/:diy Wwoly papeojumod



(excluding the initial transient) is estimated very consistently as
en(©) =~ 1.09%. In light of the measurement uncertainty [32], a spe-
cified relative error of 10% yields a required averaging time of 3¢,
showing that a first, rough evaluation of integral quantities is
already possible after averaging only over few convective time-
scales. This demonstrates another use of the error estimation
approach assisting in the planning of scale-resolving simulations.

4.3 Error Estimation in the Presence of Periodic Signals. In
the previous section, we showed the plausibility of the confidence
interval based on the sample variance and integral timescale moti-
vated decorrelation times for different quantities of interest. The
applied error estimation procedure is usually suited for random pro-
cesses including correlated samples. However, especially in the
wake, significant low-frequency periodic phenomena are present
due to huge size of the laminar separation bubble and its roll-up,
which can be seen in Fig. 1 as wavy structure in the vorticity con-
tours. When we look at the power spectral density (PSD) of the axial
velocity sampled at the location marked in Fig. 7(a) shown in
Fig. 10, dominant frequencies exist at f=1.7/t., 2.3/t., and 3.0/z...
Especially in laminar regions such as between two wakes, the esti-
mated error can be dominated by periodic oscillations.

To investigate the effect of periodic content superimposed on tur-
bulent signals, we perform a test based on fully developed turbulent
channel flow at Re; = 395 computed with an eighth order Discon-
tinuous Galerkin scheme with Kennedy—Gruber split formulation
on a mesh of 64 x64 x 64 as described in Ref. [40]. This dataset
should contain no significant periodic content, apart from that
induced by the periodic domain of 2726 x26x 5 with the half
channel height 6. The simulation ran for 40 eddy turnover times
from which 20 were used to obtain converged averages of mean
velocity and Reynolds stresses. We use a time signal of the span-
wise velocity w from a probe in the logarithmic part of the boundary
layer at y* &~ 151 whose mean has to be exactly 0 due to the symme-
try of the configuration. On top of that we impose a synthetic peri-
odic signal with a varying amplitude a and a single frequency f

w* (1) = w(t) + a sin(2zft) (19)

The PSD of the original in Fig. 10 (a =0, f=0) shows a clear iner-
tial range with low frequency peaks not significantly greater than
the noise. With the proposed synthetic signal, a discrete peak at a
frequency slightly below the inertial range is generated, which
stands out of the noise. The concrete frequency is arbitrary in this
case, but the same trends can be observed nearly independent of
the frequency.
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Fig. 10 Power spectral density of T106C axial velocity at x =

0.465c,x and channel flow spanwise velocity spectra superim-
posed with synthetic periodic signals of different amplitudes
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As discussed before, the estimator for the MSE with a given con-
fidence interval of 68% can be interpreted in the following way:
Suppose a series of independent random experiments for which a
sample mean is computed. Then this sample mean will lie within
the confidence interval of the true mean in 68% of the cases. The
statement can be reformulated such that the actual standard devia-
tion of the sample means of all experiments is equal to the
average standard deviation estimated from the single experiments.
This is easily confirmed using normally distributed numbers from
any random number generator for sufficiently large samples of
the order of 100 samples per experiment and 100 experiments.
Using a lower number of samples per experiment or experiments
will yield more spread in the number of means within the given con-
fidence interval.

For the time signal described above, following Eq. (13) we define
a series of non-overlapping windowed means as

gm C= gtm*)tm"‘Atm (20)

for a window m with size A" with t,,,, >1,,+ A" as uncorrelated
experiments with a known true mean. Note that the number of inde-
pendent samples per experiment of roughly 30 and number of
experiments of roughly 50 are still relatively low, so we cannot
expect a perfect agreement with the statement in the previous para-
graph. What we can indeed observe, is an indication of what
happens with increasing amplitude of periodic signal. For M uncor-
related random experiments, we obtain a standard deviation of the
sample means

Osample means = Vary (gm) 2

This should be roughly equal to the standard deviation of the mean
estimated from N,, samples averaged over all windows m

Cesii = i Af g" 22
estimated = M €N, (g ) ( )

m=0

by Eq. (8). The number of samples which lie within the estimated
confidence interval of the true mean is given by

Minsige = Hgm | M = Cestimated < 8" < p + Gestimated} | (23)

The results are summarized in Table 3. We can observe how the
standard deviation of the sample means grows only very slowly
with increasing amplitude of the synthetic signal. The estimated
error, however, grows much faster, leading to an increasing ratio
of sample means within the estimated confidence interval of the
true mean. While the error is already slightly overestimated for
the base signal (which can be due to the low number of samples),
the overestimation increases with increasing periodic content.
This has to be considered when assessing flows in which stochastic
turbulence is superimposed with periodic content such as vortex
shedding or passing wakes from previous blade rows.

The above analysis is also applied to time signals from the wake
of the T106C at x = 0.465 c,x. To this end, the pitchwise probes are
separated into two regions, i.e., inside the wake defined by probes
with ¢>0.01 and outside the wake containing the remaining

Table 3 Quality of the error estimator for synthetic signals with
increasing amplitude superimposed on the spanwise velocity of
turbulent channel flow at y* ~ 151

UL(, % Hiine Ocstimated O—sample means M
Osample means
0.00 0 0.76 9.91-10° 7.45-10° 1.33
0.02 5 0.80 10.32-10° 7.45-10° 1.38
0.04 5 0.86 11.50-10° 7.52-10° 1.53
0.08 5 0.94 15.66 - 10° 7.83-10° 2.00
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probes. An example spectrum for each region is shown in Fig. 10,
displaying the significant difference in their ratio between periodic
and turbulent content. For the considered signals, the true mean
of quantities of engineering interest such as the average total pres-
sure is generally not known. We can, however, use the long-time
average P,'%73% as an estimator for the true mean. With a
window size of 6f., 42 windows are obtained for this interval
with the effective sample sizes ranging from 32 outside the wake
to 81 in its core. Outside the wake, the ratio of the estimated stan-
dard deviation to the computed standard deviation of the sample
MEANS Oegiimated/Osample means INCreases to 3.8, showing an overesti-
mation of the error as expected due to the limited strength or total
absence of turbulent fluctuations. Inside the wake, on the other
hand, an average ratio of 1.08, including portions with ratios
below 1, indicates an accurate estimation of the error. This further
substantiates the findings of the previous sections, in which the esti-
mated error at several locations of interest has been analyzed with
CMAs and SMAs and found to be plausible. Finally, because the
estimated error inside the wakes is still larger by a factor of up to
3.7, the overprediction of the error between the wakes would not
lead to false overall conclusions regarding the required averaging
time.

5 Summary and Conclusion

A set of known tools to systematically assess the statistical con-
vergence of SRS results has been introduced covering two main
ingredients: the detection of the end of the initial transient and an
estimator for the confidence interval of sample means based on cor-
related time signals. We have applied the methods to a long sample
of data obtained from an LES of the TI06C LPT at an exit Rey-
nolds number of 80,000 and exit Mach number of 0.65. In
general, the marginal standard error rule (MSER) method has
been shown to reliably detect the initial transient except for very
slow drifts. We formulated guidelines on how to deal with spatially
varying initial transients to obtain the largest of statistically inde-
pendent samples possible. With the initial transient reliably
removed from the time signals, we assessed the statistical conver-
gence of various quantities of engineering and turbulence modeling
interest. The short averaging times in the order of 10 convective
times found in the literature can be justified for the blade pressure
distribution and skin friction.

A different conclusion needs to be drawn for the wake flow. Sig-
nificantly longer averaging times in the order of 100 convective
times are required to obtain confidence intervals of below 5% for
the total pressure loss. Not surprisingly, higher moments such as
the Reynolds stress tensor show even larger relative confidence
intervals. We observed that signals with a significant periodic
content compared to the turbulent fluctuations need to be treated
with caution because there, the error can be consistently
overestimated.

An interesting observation was made in terms of an extremely
slow drift seen especially in the wake. This slow drift could not
be observed in the boundary values and integral quantities. We dis-
cussed that even with the information of confidence intervals this
would have been extremely hard to spot with only short data
samples available. This might be an artifact of this concrete case
and initialization, but the possibility of effects like this has to be
considered when LES results are evaluated.

Considering possible slow drifts and periodic content, further
work is required to fully automate estimates of the mean and the
confidence interval. This can involve the specification of a tolerable
error when determining the end of the initial transient as well as a
reliable estimation of error in the presence of periodic signals.
With robust error estimates incorporated in the online analysis of
CFD solvers, statistical convergence criteria could be formulated
such that the simulation terminates when the specified error is
reached. However, even with the known limitations, the discussed
methods can be used to base the duration of the computation on a
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tolerable confidence interval in terms of statistics. As LES enters
engineering applications more and more, this can potentially save
a lot of resources and avoid misleading conclusions.
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Nomenclature
Abbreviations

CFD = computational fluid dynamics
CI = confidence interval
CMA = cumulative moving average
DNS = direct numerical simulation
IID = independent and identically distributed
LE = leading edge
LES = large eddy simulation
LPT = low-pressure turbine
MSE = mean-square error
MSER = marginal standard error rule
PSD = power spectral density
RANS = Reynolds-averaged Navier—Stokes
SMA = simple moving average
SRS = scale-resolving simulations
TE = trailing edge
WALE = wall-adapting local eddy-viscosity

Latin Symbols

chord length
frequency
example signal from an LES
resolved turbulent kinetic energy
pressure
= time
= expected value of a random variable
= number of samples
= temperature
rimass flow
¢; = skin friction coefficient
ey = estimated error based on N samples
t. = characteristic convective time (¢/||#outet||)
tuansient = €stimated end time of the initial transient
u; = tangential velocity component
Xuans = axial coordinate of the transition onset

NZOAT xR o
1]

Dy = number of samples between two independent
observations
M;, = isentropic Mach number
F=(F,, F,, F,)T = vector of the integral forces on the blade
surface

Vary = sample variance

u = (u, v, w)! = vector of the Cartesian velocity components

t=(ly, ty, 0)" = tangential vector on the blade surface pointing
in the positive mean flow direction

x=(x,y, 2)T = vector of the Cartesian coordinates

Greek Symbols

= flow angle

cell size

heat capacity ratio

total pressure loss coefficient
distance from the blade surface
= population mean

= autocorrelation function

= standard deviation

= lag between samples

= wall shear stress vector

A9 QDT TS = P
1l
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Subscripts

[Jo = stagnation value
[J.x = axial component
Ointes ounet = reference values at the inlet and outlet
[ss, Clps = values on the suction side and pressure side

Superscripts

O = fluctuations based on time average
O% = non-dimensionalized value based on friction
velocity

Averaging operators

time average

=1 -1, .
O = time average from fyg tO feng
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