
  

  

Abstract—Muscle synergies have been widely used as a 

compact description of the neuromuscular motor control 

strategies. The online detection of synergistic activations might 

therefore improve the feasibility of sEMG-based control 

algorithms. In this study, a simple online detector of time-

varying muscle synergies activation timings is proposed, and its 

performance is evaluated in a simulated online scenario on a 

small sample of experimental signals. 

I. INTRODUCTION 

HE  surface electromyography signal (sEMG) has been 

widely used to characterize the neural strategies 

underlying human motor control. The direct relationship 

between sEMG signals and neuromuscular control strategies 

has been often taken as a motivation to exploit those signals 

for improve the control of prostheses or virtual reality 

avatars [1]. Moreover, it is well known that the human 

musculoskeletal system has a redundant nature and that 

different muscles must be coordinated to achieve a variety of 

biomechanical functions. Thus, a physiologically inspired 

dimensionality reduction technique may significantly 

improve the outcomes of any real-time decision algorithm 

using the sEMG signal. 

The coordination of different muscles is typically 

represented under the muscle synergy model; regardless of 

the physiological interpretation and mathematical 

implementation, the general feature of this model is that 

different muscles are acting in a patterned or grouped 

manner, i.e. as a synergy, to generate complex movements. 

Among the different muscle synergy models, the time-

varying model is the one that describes muscle coordination 

in the most compact way [2]. Moreover, the combination of 

spatial and temporal information in the same synergy makes 

this description the most suitable for investigating the sEMG 

signal in a windowed way, potentially improving reliability 

of any sEMG-based decision algorithm. While the online 

processing of muscle synergies has been shown to be 

relatively straightforward when a synchronous model is 

exploited [3], the real-time detection of the time-varying 

synergistic structure is more complex and requires the 

optimization of different processing blocks.  

In this work, a simple, projection-based method to 
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identify the activation of time-varying synergies starting 

from a pre-existent dictionary is presented and tested, with 

focus on its implications for online sEMG processing. 

II. METHODS 

A. Time-varying muscle synergies 

The time-varying synergy model describes the 

coordination of several different muscles as the combination 

of the activity of a set of patterned muscle activations. In this 

description, a muscle synergy or motor module is defined as 

the potentially asynchronous activation, within a fixed time 

frame, of different muscles [2]. Considering this, any 

complex muscle activation pattern can be generated by the 

linear combination of a small number of synergies, optimally 

scaled in amplitude and shifted in time. 

In the model of the time varying muscle synergy, each 

motor module is represented by a Nm x L matrix, where Nm 

is the number of muscles and L is the length of the 

synergies. If the muscle coordination is well represented by 

Ns synergies, the sEMG envelope during a biomechanical 

event is then described by Ns matrices determining the 

dictionary of synergies and two vectors of length Ns, C and 

τ, indicating the scaling and timing coefficients. 

B. Experimental protocol 

The online synergy detector has been tested on upper limb 

reaching data coming from three subjects among those 

enrolled in [2]. All the details on the experimental protocol 

can be found in the referenced study. For this work, the 

kinematics of the movement was used only as a reference for 

the segmentation of the electromyographic signal. The 

sEMG envelopes, originally recorded at 1 kHz, have been 

downsampled at 100 Hz. 

C. Data analysis  

The tonic component of the sEMG amplitude was 

estimated and removed from the signal, and time-varying 

synergies were then extracted following the same procedure 

adopted in [2]. To be coherent with the previous results on 

the same data, 5 synergies were extracted from all the 

subjects and the length of each module has been set to 500 

ms. The R2 value coming from the synergy approximation 

has been evaluated, and the W matrices were used as a 

dictionary for the online detector. 

D. Online detector 

The online detector works by projecting the first 200 ms 

of each synergy on the sEMG envelopes. At each time 

sample, all the synergies are projected onto the multi-muscle 
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signal and the synergy with the greatest projection value 

after normalization is selected as a candidate for being 

active. The scalar product for that synergy is then evaluated 

for the subsequent windows until its maximum is reached; 

the beginning sample of this window is then fixed as the 

onset of the synergy and the scaling coefficient is set to the 

corresponding scalar product value. The synergy profile is 

then scaled by the amplitude coefficient and subtracted from 

the corresponding samples of the sEMG signal, similarly to 

what is done in the extraction algorithm [2]; moreover, when 

a synergy is found to be active it undergoes a refractory 

period for its entire duration. If at any time instant a different 

synergy has a higher scalar product with respect to the 

current candidate, that synergy is selected as the new 

candidate without defining any activation of the previous 

one; this criterion has been inserted to ensure that no 

spurious activations can be detected when no synergy is 

present, given that in presence of zero activity the projection 

values are randomly fluctuating. 

The quality of the online detection has been quantified by 

using the estimated C and τ to reconstruct the original data 

and comparing the R2 coming from this approximation to the 

one found with the original synergy extraction algorithm. 

Moreover, the errors in the identification of the C and τ 

values have been computed as an additional metric. 

III. RESULTS 

  
Fig.1: An example of the reconstruction of the original data (black) coming 
from the synergy extraction (blue) and from the online detector (red). 

 

In order to ensure the validity of the results regardless of 

convergence to local minima, all the synergy estimation and 

subsequent projections have been replicated 30 times. R2 

values coming from the original synergy extraction 

algorithm have been found to be 0.80 ± 0.01, while for the 

reconstructed data the quality of the reconstruction drops to 

0.77 ± 0.02. On average, the online detector has an error of 

5% of the original value for the amplitude coefficients and 

of 15 ms on the timing instants. From Fig. 1 an example of 

the comparison between the original data and the two 

reconstruction is shown on randomly selected subset of 

muscles for a 10 seconds time interval.  

IV. DISCUSSION 

The presented results show that it is, in general, possible 

to build an algorithm for the online detection of the onset of 

the time-varying synergy from a multi-muscle sEMG 

recording. The small drop between the quality of the 

reconstruction from the optimization algorithm for synergy 

extraction and the one from the projection algorithm 

suggests that the performance of this kind of detector 

depends strongly on the quality of the synergy dictionary, 

that must be built on a subject-specific basis before the 

application of the controller. In this sense, future studies will 

have to investigate whether the dictionary built upon a 

relatively small portion of the time series is able to describe 

longer sequences of activations. In an ideal stationary model, 

if the calibration signal spans the entire movement space the 

synergy matrices are a complete basis for the sEMG space; 

however, several factors might affect the signal, potentially 

requiring a re-calibration of the dictionary. Among those 

factors, the co-adaptation mechanisms between the user and 

the controlled device might play a significant role and must 

be accurately characterized in a real life scenario. 

A potential limitation of this online detector is the 

impossibility to account for activation of variable length; 

while in the literature some attempts to identify muscle  

synergies with a dynamic time warping approach have been 

proposed [4], the solution to the problem requires complex 

and computationally expensive algorithm that will 

detrimentally affect the real-time performance of the 

detector. 

V. CONCLUSIONS 

In this study, a projection algorithm for the online 

identification of time-varying synergies has been proposed. 

The results have shown that, if the synergy dictionary is well 

defined, it is possible to identify the onsets and the 

amplitude coefficients of the time-varying synergy starting 

from a window smaller than the length of the synergy itself. 

While some optimization procedures might be needed for a 

real-world implementation of this method, the results are 

promising in the framework of using these modular motor 

control concepts in myoelectric control algorithms. 
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