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Abstract— While simultaneous and proportional activation
of multiple degrees of freedom (DOFs) is supported by novel
prosthetic hands, there are still no commercial controllers to
appropriately enable it. Here, we test a ridge regression based
myocontrol method in two real-time scenarios: 13 subjects with
an extended high-density EMG electrode set (192 channels) and
4 subjects with a reduced set of electrodes (16 channels). In
each scenario, the algorithm was trained on 3 repetitions of
single DOF motions (rest, wrist flexion/extension and rotation,
and hand closing) and then subjects were asked to reach 24
on-screen goals consisting of one-DOF, two-DOF, and three-
DOF targets. The results showed that participants were able
to reach all types of targets and that their one-DOF success
rate remained high despite the simultaneous control of mul-
tiple DoFs (95.9 ± 5.7%). Moreover, the performance did not
significantly change when reducing the number of electrodes
(97.6± 4.5% for 16 channels).

I. INTRODUCTION

Multi-articulate prosthetic hands have been commercially
available for over a decade. Even though they feature
multiple motorized degrees of freedom (DOFs), the most
commonly provided control interface is a switching paradigm
leaving users to progressively cycle through preset func-
tions [1]. Recently, advanced prosthetic systems have been
controlled with pattern recognition algorithms [2], [3] capa-
ble of directly distinguishing individual gestures by classi-
fying electromyographic (EMG) activity of user’s residual
muscles. While this is an important advance, the lack of
simultaneous functions makes it still far from meeting the
expectations of natural control.

Enabling simultaneous control over multiple DOFs was
attempted by extending the pattern recognition approaches
to facilitate simultaneous classes [4]. While feasible, this
approach remained bound to laboratory conditions. To over-
come the inherent discrete nature of classifiers, a focus has
been put on regression approaches which aim to establish
a continuous mapping between the observed EMGs and
the functional domain of prosthetic joints [5]. However,
even after demonstrating that a high number of DOFs can
be concurrently controlled in this way in robotic systems
using high-density EMG (HD-EMG) [6], the most recent
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home-tested prosthetic systems are still bound to only two
DOFs [7].

Here, we propose a regression-based approach which
follows the recommendations on being highly intuitive and
requiring minimal calibration [8] to deliver 3-DOF simul-
taneous and proportional control over the wrist and hand
(wrist flexion/extension, wrist pronation/supination, and hand
closing and rest). The approach was evaluated in real-time
and its robustness was examined by progressive channel
reduction.

II. MATERIAL AND METHODS

A. Control Strategy

We acquired 192 monopolar EMG signals with three
8-by-8 ELSCH064NM3 sensor matrices (EMG-USB2+ am-
plifier, OTBioelettronica, Italy), which were placed around
the circumference of the forearm. A moving average (MAV)
filter was applied to the rectified signal to extract the en-
velope and a ridge regression (RR) machine learning (ML)
method was applied to the EMG envelopes1.

B. Experiment Description

To investigate the combined capability of user and
ML method we recruited 13 able-bodied participants (age
27.5± 3). The study was approved by the local ethics
committee of Imperial College of London and all participants
have given their written consents before participation.

The EMG sensor matrices were placed around the partici-
pant’s forearm covering the entire circumference. Reference
electrodes were placed at the wrist, and subjects were seated
comfortably in front of a PC screen (Figure 1).

The subjects performed three repetitions of the aforemen-
tioned actions of the wrist and hand at a comfortable level for
2s. These 3×6 = 18 recordings of the MAV of all available
channels were used for training the RR algorithm. Thereafter
they performed 24 randomly presented goal reaching tasks
(12 one-DOF, 8 two-DOF and 4 three-DOF goals, equally
distributed with respect to the origin). These tasks accounted
for different levels of activation, e.g. 30% of wrist flexion
combined with 80% of wrist pronation and 0% hand closure
in a two-DOF goal. The subject had 20s to attempt and reach
each goal (15% of the normalised work space), and stay
within it for 0.3s.

1The EMG was gathered at 2048Hz and treated with a 5th order
Butterworth bandpass-filter (20Hz − 500Hz). Features were calculated
from the rectified, low-pass filtered signal (2nd order Butterworth at 2Hz
cut-off), and averaged across a window of 100 samples with a 3/4 overlap.
The regularization parameter in RR was kept at 1.0.
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Fig. 1: Experimental setup with EMG-USB2+ amplifier, PC screen
with prediction and target stimulus, and participant equipped with
three 8x8 sensor matrices
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Fig. 2: Box plot with SR of all subjects, superimposed by a dot plot
of the individual subject results. Brackets with asterisks represent
significant difference, brackets without asterisks represent grouping.

Of the 13 subjects, four completed an additional round
of the same 24 tasks, but with a reduced number of EMG
sensors - 16 of the original 192 sensors were used for training
the ML method. The reduced set featured eight electrode
pairs (along the muscle fibre direction) evenly distributed
around the widest circumference of the forearm. We did not
aim at targeting specific muscle groups.

C. Statistical Evaluation

For evaluation purposes we compared the performance of
all 192 vs. the reduced 16 sensors. Also, we have considered
the difference when dealing with one-DOF, two-DOF and
three-DOF goals. Therefore, we calculated the success rate
(SR) per subject across these categories and performed
a statistical analysis with the two factors Sensor Number
[full, reduced] and TargetDOFs [1, 2, 3]. We used a two-
way repeated-measures ANOVA with α = 0.05. Significant
interactions were followed up by a pair-wise comparison with
Bonferroni correction.

III. RESULTS

Figure 2 summarizes the results of the user study in terms
of SR per category as well as the results of the statistical
analysis. The factor TargetDOF was highly significant with
F (2, 6) = 30.66, p < 10−3, while the factor Sensor Number
showed no significant influence on the outcome measure with

F (1, 3) = 0.00, p = 1.00. The interaction term showed
no significance either with F (2, 6) = 2.51, p = 0.16.2

A post-hoc of the significant factor TargetDOF revealed
that each level is significantly different from another with
p ∈ [0.018, 0.00027].

IV. DISCUSSION

Results show that although the participants have trained
the algorithm only with single actions, they were capable
of real-time command of two-DOF and even three-DOF
combined actions. To the best of our knowledge this is the
first time that such a level of control is achieved using
intuitive control inputs. Although there was a significant
performance degradation when facing more difficult tasks
(i.e. two-/three-DOF), this did not impact one-DOF control.

Another remarkable finding is the fact that the channel
reduction did not have a significant influence on the per-
formance. A slight, yet not significant, improvement was
observed when decreasing the number of EMG channels,
which might potentially originate from an increase in signal-
to-noise ratio for the reduced set.

V. CONCLUSION

Here we demonstrated for the first time a successful real-
time myocontrol over 3-DOFs in a concurrent and propor-
tional fashion with natural inputs and minimal user and
machine training. We achieved this by relying on a simple
ML method trained on only individual DOF data, yet the
system remained intuitive enough to allow users to achieve
simultaneous control by eliciting EMGs of concurrent DOFs.
In future, we intend to test this approach with amputee
subjects and physical prosthetic systems.
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