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ABSTRACT

Urban land use prediction is an ill-posed problem from a re-
mote sensing perspective. Some areas are easy to predict
with aerial images, e.g. residential areas or industrial areas,
whereas it is nearly impossible to predict land use in dense
urban centers with highly mixed land use.

In this study, we use a fully convolutional, Bayesian
neural network for urban land use segmentation that yields
predictions and pixel-wise uncertainty values side-by-side.
By adding aleatoric uncertainty to the output of our model,
we can assess how much the model benefits from the pro-
vided data. We train our network using a dataset from four
metropolitan areas in the U.S. on two different zoom levels.
Our results show that adding aleatoric uncertainty can im-
prove the IoU scores if a sufficient amount of informative
data is provided.

Index Terms— Urban Land Use, Semantic Segmentation
Model, Uncertainty, Multi-Zoom Level

1. INTRODUCTION

Mapping urban land use is a crucial part for understanding
dynamics within a city, e.g. where do citizens live, where do
they work, etc. An in-depth knowledge into this geo-spatial
information helps to estimate the number of inhabitants as
well as to create mobility models.

In developed countries, municipalities have detailed
records about land use in their area on a parcel level. How-
ever, in emerging countries urban development proceeds at
high pace, making this information out-dated in short time, if
ever recorded.

Remote sensing can help to close this gap due to a grow-
ing number of earth observation satellites providing high-
resolution imagery on a spatial as well as on a temporal scale.
But assessing urban land use from an aerial perspective is an

This work is jointly supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. [ERC-2016-StG-714087], Acronym: So2Sat),
Helmholtz Association under the framework of the Young Investigators
Group “SiPEO” (VH-NG-1018, www.sipeo.bgu.tum.de), and the Bavarian
Academy of Sciences and Humanities in the framework of Junges Kolleg.

ill-posed task. Determining the function of an area or a build-
ing can be impossible due to unsolvable ambiguities: roofs
in city centers can cover buildings of any function. Neverthe-
less, there are areas that can be clearly predicted using remote
sensing data. Figure 1 illustrates where remote sensing data
shows clear patterns for urban land use (in blue) and where
there are high uncertainties (in red).

Fig. 1: Uncertainties in land use prediction in San Francisco:
Blue areas are predicted with high confidence while red ones
have high uncertainties

As a real world problem, areas with an obvious land use
can be right next to ambiguous areas with smooth transitions
between them. Therefore, we treat this problem as an seman-
tic segmentation task on images instead of a classification task
allowing different land use classes in one image. To tackle the
problem, we propose a Bayesian deep learning architecture
for land use segmentation that yields predictions and corre-
sponding, pixel-wise aleatoric uncertainty scores. This uncer-
tainty “captures noise inherent in the observations and cannot
be reduced even if more data were to be collected” [1]. By
corrupting the network’s output with random noise it makes
the network more robust. We show how this models performs
on different zoom levels and discuss how aleatoric uncertainty
can help to improve the segmentation results.



Our paper is structured as follows: We start with a brief
discussion about urban land use prediction in remote sensing
and introduce our model as well as the datasets for training
and evaluation. In section 5, results, we show how this model
performs in our study areas and discuss its features. Finally,
we summarize our findings and give an outlook on further
developments.

2. RELATED WORK

Generating a high-quality dataset for land use classification is
challenging because image patches must show homogeneous
areas without label noise from different classes in their vicin-
ity. The UC Merced dataset [2] is one of the most popular
benchmark datasets for land use classification since its labels
are manually curated and of very high quality. Deep learning
models achived big success on this dataset gaining accuracies
of over 95% [3, 4].

Models trained on classification datasets with homoge-
neous samples achieve high accuracies when applied to image
patches of the same data distribution, but lack generalization
if patches show parts of multiple classes. Therefore, recent
approaches aiming at high generalization decompose satellite
images into structurally similar regions and predict multiple
samples from each of them [5]. Alternatively, object-based
classification algorithms can be used [6].

Instead of treating the problem as a classification task,
segmentation models predict a class for each pixel of an im-
age patch individually and are able to process heterogeneous
areas. Segmentation models can work on data from different
decades to predict agricultural land use [7] or include multiple
remote sensing products from SAR and optical data [8].

3. METHOD

Our model is based on a combination of techniques that
showed success in a Kaggle segmentation challenge on aerial
images1. At the core it is a U-Net style architecture [9]
with four down and four up convolution blocks with batch
normalization and ELU activation functions [10] for feature
extraction. These blocks are pair-wise connected with skip
connections for propagating spatial information.

For calculating uncertainties, we train the network with a
modified loss function that captures aleatoric uncertainty rep-
resenting the inherent noise in the data, e.g. inconsistencies
in ground truth or sensor noise [11]. For image segmentation
the network outputs are randomly corrupted N times and in-
tegrated by Monte Carlo sampling. For N samples the loss
criteria becomes:

E(y′) = −
∑
i,j

1

N

N∑
n=1

K∑
k=1

yi,j,k · log(y′n,i,j,k) (1)

1https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection

where i, j are pixel indices, k is the number of classes,
and y′n are corrupted samples of network output y′. These
corrupted samples are created by making the network output
extra learned parameter σ. This parameter scales the ran-
domly generated Gaussian noise samples, which are added
to network output logits and passed through softmax func-
tion. During prediction, same corruption and sampling steps
are performed and entropy of softmax outputs is taken as the
uncertainty measure.

We train this model using Adam [12] with a learning rate
of 10e-4 and a batch size of 16 in combination with early
stopping monitoring the validation loss. Our model is trained
a maximum of 25 epochs.

4. DATASET

Our dataset consists of Google Maps tiles and cadastral data
from four metropolitan areas in the United States: Los An-
geles (LA), New York City (NYC), San Francisco (SF), and
Washington D.C (WDC). Their municipalities provide land
use data on a parcel level with geo-spatial coordinates in a
free and open way. In each area a different land use classifi-
cation scheme is applied for describing land use with different
levels of granularity. Therefore, we homogenized the cadas-
tral labels to a three class segmentation scheme: Residential,
non-residential, and background. The first two labels are used
for built-up areas focusing on buildings, whereas the last one
covers roads, parks, green spaces, and other open areas.

After homogenization of our ground truth we obtained the
corresponding aerial image tiles for the areas covered from
Google Maps at two zoom levels: 16 and 18. If a tile covers
only background, we omitted it, otherwise we downloaded a
256 x 256 image from Google Maps.

To minimize spatial correlation and avoid spatial overfit-
ting, we split the data from each area using a median data
split strategy in latitude and longitude. This divides each area
into four parts: North-east, north-west, south-east, and south-
west, so that each part covers approximately the same area.
The northern parts are used for training, the part in the south-
west is for validation, and the south-east is for testing.

5. RESULTS

We evaluate our model on two different zoom levels for each
class and study area individually. The results are shown in
Table 1 and Table 2 for zoom levels 16 and 18, respectively.
To assess the results of a model with aleatoric uncertainty es-
timation, we compare it with a baseline model of the same
architecture but a default cross-entropy loss called baseline.
Zoom level 16 has a lower ground sampling distance and
shows more spatial context of an area while at zoom level 18
parcels and building instances become distinguishable. Land
use classes spanning across large areas can benefit from the



larger spatial context, while others benefit from a higher level
of detail.

Class Background Non-residentiall Residential
Area Method

LA Baseline 0.307 0.358 0.523
Aleatoric 0.299 0.298 0.519

NYC Baseline 0.462 0.098 0.347
Aleatoric 0.368 0.069 0.314

SF Baseline 0.388 0.297 0.376
Aleatoric 0.385 0.287 0.357

WDC Baseline 0.593 0.029 0.357
Aleatoric 0.531 0.036 0.356

Table 1: Intersection over Union results at zoom level 16 per
study area, method, and class

Class Background Non-residential Residential
Area Method

LA Baseline 0.488 0.510 0.688
Aleatoric 0.507 0.535 0.706

NYC Baseline 0.287 0.427 0.480
Aleatoric 0.362 0.473 0.531

SF Baseline 0.298 0.398 0.489
Aleatoric 0.274 0.410 0.540

WDC Baseline 0.156 0.295 0.420
Aleatoric 0.157 0.338 0.445

Table 2: Intersection over Union results at zoom level 18 per
study area, method, and class

At zoom level 16, adding aleatoric uncertainty does not
yield any improvement compared to a baseline model: In
most cases, the IoU values decrease. Moreover, the back-
ground class shows the highest IoU values compared to non-
residential and residential with non-residential performing
the worst. Taking a closer look at the study areas, LA shows
the highest values on average, whereas NYC and WDC are
lower due to their IoU values for the non-residential class.

Increasing the zoom level to 18, the findings change:
Adding aleatoric uncertainty increases the IoU values in al-
most every aspect. Each class yields an improvement of up
to 10% with one exception: the background class in SF. On a
class level, the residential class shows the highest IoU values,
with non-residential being second and the background class
on the third place. Again, LA shows the highest values on
average, but in this case NYC scores second ahead of SF.

Comparing the results on the two zoom levels, built-up ar-
eas benefit from the increased resolution. Especially the non-
residential class shows high gains in NYC and WDC. As a
drawback, the background class yields lower IoU scores with

more details in the imagery. Furthermore, adding aleatoric
uncertainty increases the values only at zoom level 18.

To dive deeper into the differences between the two zoom
levels we analyze the distribution of uncertainty values in LA
for each class in Figure 2 and Figure 3 for zoom levels 16 and
18, respectively.
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Fig. 2: Uncertainty value histograms at zoom level 16 in Los
Angeles for each class
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Fig. 3: Uncertainty value histograms at zoom level 18 in Los
Angeles for each class

At zoom level 16, all histograms are skewed towards
higher values (for each class) indicating that the model is
mostly uncertain about its predictions (Figure 2). Increasing
the zoom level to 18 leads to a shift, especially for the residen-
tial class. In this case, the distribution of uncertainty values
is skewed towards lower values meaning that the model is
mostly very confident about its predictions for residential
areas (Figure 3).

Both models were trained using early stopping to avoid
overfitting and none of them was trained until the maximum
number of epochs. So the data available to the model was
sufficient for some training, but still there are open questions
to the model. There are ambiguities that the model is not able
to resolve based on the patterns it has seen so far.

Training the model on the same area with tiles at zoom
levels 16 and 18 leads to a multiplication of the data by fac-
tor 16 in the number of samples. Nevertheless, we see that
the background class can be predicted well at zoom level 16
and moreover, yields lower IoU scores at higher resolutions.
At zoom level 16 large scale structures become more visible
while classes that require a higher resolution are blurred.

Figure 4 shows an example for the output of our model



Fig. 4: Example for segmentation of urban land use at zoom
level 18 with uncertainty

in a dense urban area with parcels of different land use next
to each other. The plot on the very right depicts the aleatoric
uncertainty for each pixel with blue as low uncertainty and
red as high uncertainty.

The large road is segmented well as background, while
smaller streets are partially missed and labeled as residential.
However, the uncertainty plot reveals that these narrow street
areas are predicted with low confidence. The residential area
in the lower right corner with small green spaces in the back-
yard is correctly predicted at very low uncertainty. We see that
non-residential areas are often wrongly classified, but with
high uncertainty, indicating that the decision was very close.

6. CONCLUSION AND OUTLOOK

In this study, we propose a Bayesian deep neural network to
address an ill-posed task in remote sensing. We add aleatoric
uncertainty to a segmentation model with a special loss func-
tion and use this combination for urban land use segmenta-
tion. By evaluating this model on four study areas in the
U.S., we show its behaviour on different data and compare
it to a baseline model without uncertainty estimation. Adding
aleatoric uncertainty to a model makes it more robust towards
noise given enough data and provides further details into what
has been learned.

In our future work, we plan to integrate this knowledge
into models that use multi-scale data in an end-to-end fashion
leveraging large-scale overviews and focused views in a com-
bined manner. Uncertainty values can help to identify where
higher-resolution data is necessary or helpful to resolve am-
biguities. This paves the way to a smart approach of fusing
multi-scale imagery.
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