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Online Centroidal Angular Momentum Reference Generation and
Motion Optimization for Humanoid Push Recovery

Robert Schuller, George Mesesan, Johannes Englsberger, Jinoh Lee, and Christian Ott

Abstract— This paper presents a new push recovery algo-
rithm for humanoid robots in balancing scenarios by exploiting
the system’s rotational dynamics. The proposed framework
actively generates centroidal angular momentum (CAM) ref-
erences based on the force magnitude and direction of the
push to counteract the disturbance and maintain its balance.
Since a humanoid robot can only store a limited amount of
angular momentum, the CAM reference is generated in three
consecutive phases: 1) CAM generation phase to counteract the
push; 2) CAM reduction phase to bring the robot to a halt;
and 3) posture recovery phase to converge to the reference pose
again. A subsequent whole-body motion optimizer, formulated
as a constrained quadratic optimization problem, generates
kinematically feasible whole-body trajectories based on the
CAM reference. The proposed framework is validated through
experiments with the humanoid robot TORO.

I. INTRODUCTION

Maintaining balance under strong external forces even in
confined spaces is one of the key challenges for humanoid
robots to be deployed in real-world applications and interact
with humans. The robot needs to actively react to unpre-
dictable external pushes, i.e., push recovery, to avoid falling,
which is always a severe danger for the robot as well as
adjacent humans.

To create sophisticated motion in humanoid robots, it is
beneficial to analyze human behavior first, since humanoid
robots mimic real human beings concerning size and kine-
matic structure, and thus both share similar motion patterns.
Biomechanical studies of human balance [1] discovered
different high-level reaction strategies in the presence of
external perturbations (ankle, hip, and stepping strategies).
The ankle strategy generates torques in the ankle joints while
keeping the rest of the body in a fixed posture. Using the
hip strategy, humans purposely change the body’s angular
momentum to generate horizontal restoring forces acting on
the center of mass (CoM). Finally, one can also take a step to
withstand a push, called stepping strategy. These strategies
are selected by several factors such as the intensity of the
perturbation or properties of the support surface [2]. For
balancing on confined or compliant ground, a combination
of ankle and hip strategy is mainly preferred [3], which is
also the focus of this work as previewed in Fig. 1.

Inspired by the importance of angular momentum in
human motion, especially expressed around the CoM [4], [5],
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Humanoid robot TORO generating centroidal angular momentum
to maintain its balance after being pushed.

Fig. 1.

i.e., centroidal angular momentum (CAM), explicit control
of the rotational dynamics has become a core component
in humanoid whole-body control [6], [7]. Some approaches
use simplified models to account for angular momentum in
humanoids, e.g., the linear inverted pendulum plus flywheel
model [8], [9]. Other methods exploit the robot’s full system
dynamics since the simplified models cannot describe the
entire complexity of individual body segments’ contributions
to the overall CAM of a humanoid [10]-[12].

Especially for balancing controllers that support a hip
strategy, where upper body motion generates CAM to with-
stand the push, a full system model is beneficial. Hyon et
al. [13] use a passivity-based approach for their postural
balancer combining an ankle and hip strategy to withstand
external pushes. Hofmann et al. [14] present a momentum-
exploiting CoM controller, which sacrifices angular momen-
tum regulation for a higher prioritized linear momentum task
under large external perturbations. The momentum-based
balance controller proposed by Lee et al. [15] generates ad-
missible momenta while considering contact constraints. The
approach is extended and experimentally validated in [16].

Methods for generating CAM references based on desired
motions, e.g., jumps with twist or kicks, are introduced
in [17]-[19]. However, the presented approaches [10]-[19]
have in common that the CAM for force-disturbed balancing
scenarios is not deliberately planned but only generated when
the fulfillment of higher priority tasks requires a violation
of the angular momentum regulation task. This can be the
case when contact constraints are reached, e.g., the center
of pressure (CoP) is approaching the edge of the support



area. In contrast to flywheels, humanoids do not have the
capability of storing CAM for a longer period of time.
If the induced angular momentum is not reduced quickly
enough, kinematic limits will be reached [10]. However, if
the angular momentum is reduced too quickly, the CoP will
move again towards the edge of the support area. In the
previous approaches, the behavior of the angular momentum
can only be influenced indirectly by reprioritizing different
subtasks, which makes it difficult to properly schedule the
addition and removal of CAM to the system without reaching
hardware or contact constraints.

The main contributions of this work are as follows:
(i) we present a push recovery algorithm for force-disturbed
balancing scenarios exploiting an ankle and hip strategy,
while a corresponding CAM reference is generated online
based on the force magnitude and direction of the push. The
high-dimensional tuning process of different task priorities
to schedule the CAM behavior is simplified by introducing
physically intuitive design parameters. The hip strategy can
be independently activated even before contact constraints
are activated or task conflicts occur; and (ii) we propose a
framework that takes the CAM reference as an input and
generates feasible whole-body motions while considering
kinematic limits of the system and exploiting the full-body
dynamics. A constraint quadratic optimization problem (QP)
formulation gives the flexibility of weighting the contribution
of different body segments to the overall CAM and enables
the online adaption to different contact configurations.

The generated whole-body trajectories are tracked by
a subsequent passivity-based whole-body controller. Fig. 2
overviews the proposed system architecture.

II. BACKGROUND

This section gives an overview of the system’s dynamic
model and a summary of the previous work on the passivity-
based whole-body controller [20]-[22].

A. Dynamic Model

As a system model for a humanoid robot, we assume
a floating base dynamics with n torque-controlled joints.
Instead of the base coordinates, we utilize the position of
the CoM z. € R3 together with the orientation of the hip
Ry, € SO(3), and with the corresponding translational and
rotational velocities . € R?® and w, € R3, which are
stacked together into the velocity vector v, = (21 wl)7.
The total number of degrees of freedom (DoF) of the system
is denoted by 7 = n + 6. The dynamics of the system can
be formulated as follows:

m(E) e () (7o) = () +re @

where M € R™*™ and C' € R™*"™ are the positive definite
inertia and the Coriolis matrix, respectively. The gravitational
wrench is represented by w, = (mgd 07)7, where m
denotes the overall mass of the robot and g; € R? is
the vector of gravitational acceleration. The joint positions
are represented by g € R", and the corresponding joint

torques are 7 € R™. The variable T.,; € R"™ stands for
the generalized external forces acting on the system.

To obtain a model representation suitable for a balancing
controller, the joint coordinates of both feet are substi-
tuted by their Cartesian coordinates. The following task
Jacobian J € R™*™ provides the mapping into task space
velocities & € R™:
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where v; = (2] w!)T € RS with i € {r, I} is the trans-
lational and rotational velocity of the right and left foot,
respectively, which are stacked together into the velocity
vector v = (v v')T. The remaining free DoF ¢; € R"~!2
are defined in joint space, with Sy € R(®=12)x7 gelecting the
corresponding joints of the whole joint vector. The stacked
adjoint matrices for the legs are denoted by Ad € R'2*6 and
J' € R12X" are the stacked Jacobians, respectively [22].

The CAM I, € R? depends linearly on the velocity vector

lc:A<V.°’> — AT ', 3)
q Hf_/

where A € R3*™ is the rotational part of the centroidal
momentum matrix (CMM) [23]. The CAM is represented in
a frame attached to the CoM and aligned with the inertial
frame. It can also be expressed as a function of the task
velocities and a transformed CMM denoted by A using
inverse kinematics of (2). In this work, J is a square matrix
and assumed to be invertible; the handling of redundancy
and singular configurations is considered as future work.

B. Passivity-based Whole-body Controller [20]—[22]

The controller generates ground reaction forces based on
the robot’s desired movement and compensates for possible
disturbances. The derivation in this section assumes that the
robot is balancing in double support; however, the formu-
lation can be extended to further contact configurations by
applying several modifications.

Inspired by PD+ control [26], the desired closed-loop
behavior is formulated as follows:

wimp
AD, Av.\ P
M(Aij>+C<Aqo>—Text_J wggﬁ ) (4)
T
f

where w,, . € R'2 denotes the concatenated contact
wrenches of both feet and the deviation from the com-
manded trajectories are given by Av = v, —v¢™¢ and
Aqg = ¢ — ¢°™. Note that the commanded trajectories are
generated in task space and the corresponding commanded
CoM and joint values are computed via inverse kinematics:

ch,d
(q'(émd > _ J—la-:cmd. (5)
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Fig. 2. Overview of the system architecture, where the blue highlighted elements are considered as the main contributions of this work. For brevity, time
derivatives of system states and equations not used in the final implementation of the algorithm are omitted.

The CoM associated impedances are defined by

. __ pcmd s scmd
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where the linear and rotational stiffness matrices K. > 0
and X, > 0 as well as the linear and rotational damping
matrices D. > 0 and B, > 0 are symmetric and positive
definite. The Cartesian orientation of the hip is controlled by
a virtual rotational spring 7,.(Zp, (R§™*)T R;,) [20], while
the impedance of the joint task is realized by

= K¢(qr — ¢5™") + Ds(gr — 45", (D

with the positive definite and symmetric linear spring
K > 0 and damper Dy > 0 matrices.

By comparing the system dynamics (1) and the desired
closed-loop behavior (4) while focusing on the upper six
rows, we obtain the following equality
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with the CoM-mapped contact wrench on the left-hand side
and the overall desired CoM wrench on the right-hand side.
Accordingly, the inertia and Coriolis matrix are split into the
upper six rows describing the centroidal dynamics and the
lower part, i.e., M = [MI, MI]" and C = [C], C]".
The feedforward terms are summarized in w!/. Note that the
transposed adjoint matrix, also referred to as contact map,
has a full rank of six, while the size of wg, s is 12 in double
support. To determine the distribution of wg, ¢ in all possible
configurations, a constrained QP based on (8) is formulated
using the following contact constraints: contact unilaterality,
Coulomb’s friction model, bounded normal force, bounded
torque on the z-axis, and CoP constraints. After resolving the
wrench distribution, the final control torques are computed
as follows:
1>§md ngd NT T __imp
T:MQ(qcmd)+Cq(qcmd>_(J) ng.f_Sfo :
©))
ITII. CAM-BASED MOTION OPTIMIZATION

We propose a framework that takes as input whole-body
trajectories from a high-level planner, e.g., [24], [25], and
optimizes over the velocities of selected DoF w.r.t. a CAM
reference which is generated online based on present external

disturbances. Note that a direct measurement of the external
forces is not necessary.

A. Whole-body Motion Optimization

We separate the whole task space into & DoF adjusted
within the motion optimizer and the remaining 7 — k DoF
kept unchanged with k£ € {0, ..,7}. The transformed CMM
and the task space velocity vector in (3) can be accordingly
split as follows:

A=A Ay A A ], 0
A, ER3xk A, cR3% (i—k)
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where the subscriptions a and w denote adjusted and un-
changed DoF, respectively. The optimization variables can be
selected online depending on the contact configuration and
the planning objective. For example, if only the velocities of
the joint task should be adjusted w.r.t. a CAM objective, the
task space velocity vector is assigned as follows: &, = ¢y
and &, = (vI 7).

The goal is to find optimized velocities #%* for the k
selected DoF to induce a predefined reference CAM 17¢/ to
the system. As seen in Fig. 2, the reference CAM is obtained
from the CAM reference generator, which will be presented
in the Sections III-B and III-C. By reformulating (3), the
optimized velocities are determined to satisfy

1 = Age + A7 (12)

where #7¢/ is the reference velocity of the unchanged DoF
provided by the trajectory planner. To solve (12) with linear
inequality constraints, a QP is formulated

min (567 Qi1 + 36,Q,5, ) . (13)
with the residua
o = A, &P + A, grel —1me (14a)
5, =2 — &¢, (14b)
and subject to the constraints
B < P < e (15)

The desired velocity ¢ in (14b) is computed based on the

deviation of the optimized posture from its reference

id = &7l + K, (al¢ — xot), (16)



where the reference velocity for the optimization variables
"¢/ and the corresponding position "¢/ are provided by the
trajectory planner. The optimized position z2! is obtained
from &°P! through integration w.r.t. time. The convergence
behavior of the robot towards its reference pose can be
influenced by the design parameter K, > 0 which is
diagonal and positive definite.

The QP finds a trade-off between an angular momentum
task (14a) and a reference posture task (14b). The non-strict
priorities between the two tasks can be adjusted based on
the choice of the weighting matrices Q; and Q,, > 0, which
are both positive definite and symmetric. A non-strict task
hierarchy is necessary to allow the robot to fully converge
to its reference posture even if 17 = 0. The combination
of an angular momentum and a posture task is chosen
because optimizing only for the CAM (14a) may lead to
unfavorable body postures. The reference posture provided
by the trajectory planner is defined based on high-level task
objectives.

The kinematic constraints in task space (15) ensure
that predefined position limits (z,,Z,) and velocity limits
(&,,®,) are not exceeded

&, ) &),
2" = min(K,(z, — %), &,),

= max(K,(z, — "

a7)

where K, > 0 is diagonal and positive definite. Larger
values of K, lead to a wider area where the optimization
(13) is uninfluenced; however, they also demand higher
accelerations in the neighborhood of the constraint [27].
These constraints can be extended to a Cartesian-based
self-collision avoidance or singular configurations preven-
tion. Based on the optimized velocities, the corresponding
commanded whole-body trajectories are generated through
numerical differentiation and integration and finally concate-
nated with the unchanged DoF.

B. Hip and Ankle Strategy in the Context of Passivity-based
Whole-body Control

For balancing scenarios, the high-level planner generates
trajectories to hold a fixed posture, which means that the
reference values on velocity and acceleration level are zero,
a7/ = &7°/ = 0. Therefore, the whole-body motion result-
ing from an external push is solely generated through the
methods presented in Section III.

The wrench distribution problem in Section II-B searches
for feasible contact wrenches to produce the desired force
and torque at the CoM, (8), counteracting disturbances. As
the contact wrenches need to fulfill the contact constraints,
an upper and lower limit of the maximum producible CoM
wrench exists. Especially for the case disturbed by pushes,
the contact torque constraints are easily reached, i.e., the CoP
approaches the edge of the support area, and foot rotation or
tilting can happen, which causes the robot to fall. To prevent
this, an additional torque around the CoM is to be induced
by actively generating CAM, which counteracts the present
contact torques. In consequence, desired CoM wrenches of

higher magnitude can be generated, i.e., stronger pushes can
be compensated.

The reference CAM is computed based on the required
contact torques. To circumvent the wrench distribution prob-
lem and make the adjoint matrix in (8) invertible, the contact
torques are calculated for a single virtual stance foot with
its center located between the right and left foot position
in double support, i.e., ®, = %(a:,« + @), or equal to the
foot position of the stance foot in single support. The virtual
stance foot has a size equal to the robot’s support area. By
applying this simplification and reformulating (8), the contact
torque of the virtual stance foot T, € R? is obtained as

(18)

C

Ty = [iv,c I] (wcff — Wy _'_wimp)’
———

Ad; T,
where &,. is the cross-product matrix of the vector
Ty = T.— T, between the CoM and the virtual stance foot
position. The rotational part of the inverted adjoint matrix of
the virtual stance foot, which has full rank by construction,
is represented by Ad,, T .. The contact torques in (18) can
be further split as follows:

19)

1),rotwc

7, = Ad T wl’ +Ad;fot( —wy + wimp),
—_———

ThiP rankle
where 7P represents the contact torques generated by
intended upper body motion, here in the form of the feedfor-
ward terms, and is therefore associated with a hip strategy.
The contact torques induced by gravity and impedance terms
are summarized by T{}"“e, which are considered as an ankle
strategy since they indicate the resulting contact torque that
would be present if a fixed body posture is preserved, i.e., if
wif =0.

The feedforward terms in (8) can be reformulated with
expanded inertia and Coriolis matrix as follows:

I g s
-fc _ mI 0 0 djcmd + 0 wcmd
Tl;ff 0 M., qu q?md Co q?md ’
—— M
wl? M. °
(20)

where the feedforward force and torque are fcf f and be f s
respectively. The feedforward torque can be interpreted as the
rate of change of CAM that results from the commanded tra-
jectory, which is transformed via inverse kinematics (5) from
task space. The commanded CoM velocity and acceleration,
and therefore also f(f f. is defined to be zero for balancing
scenarios. Consequently, the contact hip torque simplifies to

T:ip — bef — l'g‘md’ (21)
where [¢™¢ is the rate of change of the commanded CAM.
Note that the commanded CAM is the output of the motion
optimization in Section III-A, whereas the reference CAM
is its input.



C. CAM Reference Generation for Force-disturbed Balanc-
ing Scenarios

In this section, a method is presented for scheduling the
hip strategy’s activation time, and a corresponding CAM
reference is provided. Based on T{}”kle, (19), a reference
CAM and therefore a resulting TP will be generated to
keep T, within its limits 7, n/maz o B3 The limits on
the torque around the z-axis are approximated by predefined
upper and lower values [21], [22]. The limits for the xy-plane
are computed based on the constraint that the combined CoP

Py € R? needs to be inside the virtual stance foot S,

o = fl ( T:;) €5,
where f,, . is the total vertical force applied to the ground.
To account for the limited angular momentum storing
capabilities of a humanoid, the CAM reference generation
is separated into three consecutive phases: 1) the first phase
actively generates CAM to compensate for the external forces
evoked by a disturbance (e.g. push); 2) the second phase
brings the CAM reference back to zero to bring the robot to
a halt; and 3) the last phase ensures that the robot converges
to its reference pose again. A switch back to phase 1 is
possible at any time if an additional push is detected. The
push recovery algorithm is applied independently for every
spatial dimension ¢ € {x, y, z} aligned with the (potentially
rotated) virtual stance foot, i.e., pushes from all directions
can be independently compensated in the respective axis.
For the sake of clarity, the indices ¢ are omitted from
here on. The presented relations in scalar form apply to
each spatial dimension. The proposed algorithm is explained
with simulation results using the humanoid robotics platform
OpenHRP [28] with the same robot model employed in
experimental verifications (Section IV).
1) CAM Generation Phase: The first phase is activated af-
ter a push occurs, which is detected when the corresponding
Tankle exceeds a predefined threshold 7277, The threshold

v
is a function of the contact torque limits resulting from (22)

(22)

Tthres

t . Tmin/ma:v

v )

(23)

with the design parameter o € [0, 1]. The larger «, the
later the hip strategy will be activated. In general, the hip
strategy should be activated as late as possible to fully exploit
the capabilities of the ankle strategy first. However, if the
hip strategy only gets active when the contact constraints
are reached (o = 1), small model uncertainties or tracking
errors can cause the robot to fall. Therefore, a safety margin
improves the robustness of the algorithm; in practice, we
achieved good results with « € [0.7, 0.9]. Fig. 3a shows a
simulated course of 74"¥!¢ from (19). The robot is pushed
from behind with an impulse of 12 Ns, which, normalized
by its mass, corresponds to a delta velocity of 0.152 <.
The rate of change of the reference CAM is defined as the
difference of the ankle torque and its threshold
l';ef (t) _ Tihres (t) o Tankle(t).

v

(24)
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(a) Contact ankle torque of the virtual stance foot.
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Fig. 3.  CAM reference generation in three phases based on the contact

ankle torque resulting from a push in positive z-direction applied at ¢ = 1 s.
The vertical dashed lines denote the beginning of the respective phase.

This difference can be interpreted as the additional hip
torque in (19) that is needed to keep 7, within the limits.
The corresponding reference CAM [7¢/(t) can be obtained
by integrating (24) with respect to time. The time t is
defined within the interval ¢ € [¢1, ¢2), where the moment
of activation of the first phase is characterized by ¢t = #;.
Phase 1 is completed when the ankle torque is again below
the predefined threshold, i.e., |[72"*e(t)| < 7LPres(t), this
point in time is defined by ¢ = t5. Fig. 3b shows the resulting
CAM reference for different values of «.

2) CAM Reduction Phase: During phase 1, the reference
CAM is monotonically increasing. After the push is com-
pensated, the reference CAM has a non-zero value, which
needs to be smoothly reduced to zero to bring the robot to
rest again. Therefore, a third-order polynomial is used to
generate a trajectory while ensuring C! continuity to avoid
jumps in the resulting 7.

The system state when phase 2 gets activated is used as
an initial condition for the polynomial. In order to bring the
robot to a halt after phase 2, the CAM and its time derivative
need to be zero at the end of the trajectory. Phase 2 is defined
within the time interval ¢ € [t2, t3]. The CAM reference



trajectory is formulated as

et =30

(25)
=0 r

where the coefficients a; can be determined based on the
boundary conditions. The last free parameter is the total
duration of phase 2 whiqh is denoted by T' = t3 — to. Based
on the critical points of lzef , a relationship between the total
duration, the reference CAM at the beginning of phase 2

ZZ?; and its maximum rate of change [™%* > ( is obtained
as follows:
_ sl o6
2jmar

Note that T" cannot be chosen arbitrary large without reaching
kinematic limits, while small 7" induce a high maximum rate
of change of CAM. To find a trade-off, Z.Q“” is chosen as a
function of the peak rate of change of CAM during phase 1
given by

max
t) <t<ts

ires =5 (| max [i20(1)]), @)
with the design parameter defined within the interval
B € (0, 1], see Fig. 3c. Small values of /3 increase the risk
of activating position limits while large values can lead to
an aggressive reduction of the CAM. Both scenarios can
deflect the CoP towards the edge of the support area and
potentially cause the robot to fall over. We achieved good
results with 8 € [0.3, 0.5]. Note, this formulation gives a
good intuition on how fast the CAM should be reduced but
does not provide a formal guarantee that kinematic limits or
contact constraints will not be reached.

3) Posture Recovery Phase: After phase 2 is completed,
the reference CAM is reduced to zero, but the robot con-
figuration is still deviating from its reference pose. At this
point, the posture task (14b) of the motion optimization
becomes dominant. It provides a smooth return to the initial
robot configuration while inducing only a small CAM with
an opposite sign to the one generated in phases 1 and 2.
The CAM tracking depends on the weight matrix selection.
Increasing @Q; in (13) while keeping Q,, constant leads to
better CAM tracking but also increases the convergence time
w.r.t. the reference pose and consequently the total duration
of phase 3, see Fig. 3d.

IV. EXPERIMENTS

The proposed methods were validated in experiments with
the torque-controlled humanoid robot TORO [29]. The robot
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(a) Contact torque of virtual stance foot.
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(d) Combined CoP and CoM position in z-direction.
Fig. 5. Results of the experiment #1: Push recovery in double support,

where the gray highlighted area indicates the duration of the push and the
vertical dashed lines denote the beginning of the respective phase.

has 27 DoF, a height of 1.74 m, and a total weight of 79.2 kg.
The pushing force is measured by an external force sensor
mounted on the tip of a stick. Footage of the experiments
can be found in the supplementary video.

A. Implementation Details

The constrained QPs of the wrench distribution in Sec-
tion II-B and the motion optimization (13) are solved by
using two independent instances of the online active-set
optimization algorithm gpOASES [30], which provides a
‘hot-start’ functionality; good results were achieved with a
maximum of 10 working set recalculations. The controller



is executed at a speed of 1 kHz, whereas the low-level joint
controller computation rate is 3 kHz [31].

The activation threshold for phase 1 is defined by
oy = 0.9; the duration of phase 2 is set by 8, = 0.4. Due
to high sensor noise, the measured CAM [. and its rate
of change [, are reproduced by using a momentum-based
disturbance observer similar to the one in [27]. Note that
these values are only for evaluation and not used within the
presented algorithms.

B. Experimental Evaluations

We present two scenarios to evaluate the push recovery
algorithm’s performance on the real system. In the first
scenario, the robot is standing upright in double support and
is pushed impulsively from behind (along the x-axis) on the
height of the hip with a maximum force of 65 N and an
impulse of 18 Ns (0.227 *2). The optimization variable ZoPt
in (13) includes the angular velocities of the hip around all
three axes, the joint velocity in the torso as well as the first
four joint velocities in every arm. To reject the push, the
robot generates CAM by bending forward and moving the
arms back. Fig. 4 shows snapshots of the robot behavior as
a reaction to the push.

The ankle, hip, and resulting contact torque of the virtual
stance foot are shown in Fig. 5a. The pure ankle torque
exceeds its limit, which means that the combined CoP would
have reached the support area’s edge if a fixed posture had
been preserved, causing the robot to fall. The controller
from Section II-B alone could not have compensated the
push without the presented CAM-based motion optimization
from Section III. Through the additional generated CAM and
corresponding 7P, the resulting contact torque 7, is kept
within its limits and the robot recovers its balance after the
push. Fig. 5d shows the corresponding combined CoP and
CoM deviation. The course of the reference, commanded and
measured CAM through all phases and their rate of change
are plotted in Figs. 5b and 5c, respectively.

In the second experiment, the robot balances on the right
leg and is pushed from the front with a maximum force
of 75 N and an impulse of 22.5 Ns (0.284 ). Snapshots
of the experiment are presented in Fig. 6, while the results
are shown in Fig. 7. Note that the translational Cartesian
velocity of the left foot is added to the optimization variables
of the previous experiment with the double support; the
corresponding CoM-mapped impedance wrench needs to be
added in (8) and in (18) to the ankle torque (refer to [22]
for further details). Exemplary for the DoF adjusted in the

Fig. 6. Snapshots of experiment #2: Push recovery in single support.
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Fig. 7. Results of the experiment #2: Push recovery in single support,
where the gray highlighted area indicates the duration of the push and the
vertical dashed lines denote the beginning of the respective phase.

motion optimization in (13), the course of the hip angular
velocity around the pitch axis, the Cartesian velocity of the
swing leg in the z-direction, and the velocity of the first
shoulder joint with the corresponding positions and limits
are displayed in Fig. 8.

Note that the robot can compensate pushes in the sagittal
plane of higher magnitude in single support compared to the
same test setup in double support. The extent of the support
area in x-direction is equal for both configurations; however,
in single support, the swing leg generates almost one-half of
the peak CAM in the y-direction, see Fig. 7d.
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Fig. 8. A selection of three optimized velocities and positions in the motion
optimizer with limits (17), where the gray area indicates the pushing and
the dashed lines denote the beginning of the respective phase.

V. CONCLUSION

This paper proposes a push recovery algorithm for balanc-
ing scenarios exploiting an ankle and hip strategy. When a
push occurs, the activation of an additional hip strategy is
scheduled, and a corresponding reference CAM is generated
based on the induced contact torque. The subsequent motion
optimizer finds a trade-off between an angular momentum
and a posture task to generate feasible whole-body trajecto-
ries. The proposed approach was validated in experiments for
single and double support balancing scenarios. It was shown
that the CAM-based motion optimization enables the robot to
maintain balance against pushes, which could not be handled
by the controller of Section II-B alone, while kinematic
limits were additionally incorporated. The hip strategy can be
activated independently of task conflicts or reached contact
constraints, which facilitates the incorporation of model
uncertainties or tracking errors and increases the robustness.

As part of future work, methods for automatically tuning
the design parameters and an improved representation of the
torque limits on the z-axis will be evaluated.
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