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Abstract: When culturing cells in space or under altered gravity conditions on Earth to investigate
the impact of gravity, their adhesion and organoid formation capabilities change. In search of a target
where the alteration of gravity force could have this impact, we investigated p130cas/BCAR1 and its
interactions more thoroughly, particularly as its activity is sensitive to applied forces. This protein
is well characterized regarding its role in growth stimulation and adhesion processes. To better
understand BCAR1′s force-dependent scaffolding of other proteins, we studied its interactions with
proteins we had detected by proteome analyses of MCF-7 breast cancer and FTC-133 thyroid cancer
cells, which are both sensitive to exposure to microgravity and express BCAR1. Using linked open
data resources and our experiments, we collected comprehensive information to establish a semantic
knowledgebase and analyzed identified proteins belonging to signaling pathways and their networks.
The results show that the force-dependent phosphorylation and scaffolding of BCAR1 influence the
structure, function, and degradation of intracellular proteins as well as the growth, adhesion and
apoptosis of cells similarly to exposure of whole cells to altered gravity. As BCAR1 evidently plays a
significant role in cell responses to gravity changes, this study reveals a clear path to future research
performing phosphorylation experiments on BCAR1.

Keywords: knowledge explorer; pathway studio; mass spectrometry; post-translational modification;
network analysis; SPARQL

1. Introduction

When monolayers of tissue cells are cultured on a random positioning machine (RPM)
or during spaceflight, the gravity force experienced by the cells is altered in that it pulls
the cells of a monolayer constantly towards the center of the Earth. Under this condition
of prevented sedimentation, several cellular features change in comparison to control
cells cultured under normal laboratory conditions [1–3]. To extend our knowledge about
the cellular adjustment to prevented sedimentation, we investigated the role of BCAR1
(breast cancer anti-estrogen resistance protein 1) also known as p130cas (CRK-associated
substrate), because this protein is known to be a primary sensor of forces [4]. According to
current knowledge, forces pulling the C- and the N-terminal ends of BCAR1 apart effect
changes of its phosphorylation status [5].

Phosphorylation is a well-studied reversible post-translational modification (PTM)
of many proteins [6]. It is catalyzed by protein kinases (PK) and is reversed by protein
phosphatases (PPs). However, the extent of phosphorylation of particular proteins within
cells does not only depend on the content and/or activity of cognate PKs or PPs or both [7].
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The consensus motif (CM) of a target protein must also be so accessible that it can correctly
be positioned within the catalytic site of a kinase [8,9]. This correct positioning depends
on parameters [10] such as the three-dimensional order and the side chain orientation
of amino acids surrounding the target amino acid [11]. The CMs’ accessibility may be
changed by factors such as the docking of low- or high-molecular-weight ligands at the
protein to be modified [12,13] as well as by the binding of target proteins to components of
the cell membrane [14,15]. Furthermore, an initial phosphorylation influences subsequent
phosphorylation steps [16]. In addition, forces which stretch the amino acid chains of
specific domains, called intrinsically disordered domains, of target proteins modulate
the accessibility of target CMs. This has been proven for several proteins, such as the
cytoplasmic domain of PECAM-1 [17], the beta-catenin/E-cadherin complex [18] and
BCAR1 [4,5].

BCAR1 is an adapter protein, which links cell–cell and cell–matrix adhesion to an
extended signaling network [19]. It consists of 870 amino acids, which form five domains:
an N-terminal SH3 homology domain, followed towards the C-terminus by a proline-
rich region, a Substrate Domain (SD), a serine-rich domain, a Substrate-Binding Domain
(SBD) and a Focal Adhesion Targeting Domain which docks BCAR1 at a focal adhesion
complex [5,20]. The three-dimensional structures of the N-terminal SH3 homology domain
and of the C-terminal Focal Adhesion Targeting domain have been resolved at 1.1 and
2.5 Angström resolutions [20,21]. The three domains in between are functionally well
characterized as described below. BCAR1 generates signals via binding different effector
proteins. The selection of binding and interaction partners is influenced by the protein’s
status of phosphorylation and conformation [19], which depends at least partially on
the traction forces extending its three-dimensional conformation. In respect to the action
of forces, the most interesting part of BCAR1 is the so-called Substrate Domain (SD).
This domain has an intrinsically disordered conformation, which includes 15 tyrosine
phosphorylation sites (YxxP) [22]. If the domain’s conformation is extended with minimal
force, the phosphorylation sites become accessible for Src family kinases [23,24]. The forces
to stretch the domain may be generated in vivo by the cytoskeletal actin myosin system
and the focal adhesion system linked to the N-terminal end via the SH3 domain and to the
C-terminal end via the C-terminal Focal Adhesion Targeting domain [4,25–27]. The force
application to BCAR1 influences cell adhesion, cytoskeletal organization and growth factor
receptors’ signaling [28–30].

It has been described that BCAR1 gene expression is upregulated in multipotent
mesenchymal stromal cells under microgravity [31] and is regulated in endothelial cells [32]
and MCF7 cells [33]. Furthermore, a transient upregulation in MDA-MB-231 breast cancer
cells has been reported [34]. Therefore, we wanted to see whether gravity forces could
also influence BCAR1 activity on a protein level, particularly as recent proteome analysis
suggested an influence of gravity on the accumulation of BCAR1 in MCF-7 and in FTC-
133 cancer cells [35,36]. Hence, we collected information about the biochemical effects of
force-dependent changes of BCAR1 phosphorylation and complex formation described
in literature and compared the results with the behavior of cells exposed to microgravity.
After identifying the proteins known to interact with BCAR1 and detected in MCF-7 or
FTC-133 cancer cells by our proteome analysis [35,36], we composed two exemplary sets
of data. Using harmonized import mapping via Knowledge Explorer (KE), both types of
data were aggregated in a semantic knowledgebase [37]. Using this base, we established
protein interaction networks that show the impact of BCAR1 interaction activities on cell
physiology and signal transduction.

2. Results
2.1. Selection of Proteins

To study BCAR1 scaffolding activities, we created an overview on proteins capable
of interacting with BCAR1. Applying STRING, we recorded 50 proteins, co-mentioned
with BCAR1 in entries of the literature database Medline. The result was complemented
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by another 31 proteins obtained through searches in the dbPTM database as well as by
evaluating the references [5,20]. To examine protein interactions and signal transduction,
which can happen in a distinct kind of cells, we separately analyzed those of the proteins
which we detected in recent proteome analyses of MCF-7 breast cancer cells [35] and of
FTC-133 thyroid cancer cells [36], respectively. Data from MCF-7 cells were of interest
because the role of BCAR1 in these cells is well characterized [38,39]. For comparison
purposes, FTC-133-derived data were opposed. The FTC-133 cell line was isolated from a
man suffering thyroid tumors [40]. It is a fast-growing cell line with a mutated P53 gene [41]
and responds very quickly to exposure to simulated microgravity [42]. Furthermore, we
detected BCAR1 protein as well as BCAR1 gene expression in this cell line in previous
studies [36,43]. For subsequent network analyses, 81 proteins potentially interacting with
BCAR1 were matched against the 5924 proteins found in the proteome analysis of FTC-133
cells and against the 6968 proteins found in the analysis of MCF-7 cells [35,36].

As shown in Table 1, 39 of the BCAR1-related proteins had been detected in proteome
analyses of MCF-7 and of FTC-133 cells. Another 12 and 8 proteins were found only in
the MCF-7 (marked by *) or FTC-133 cells (marked by **), respectively. Independently of
their source, these proteins had different activities. A total of 25 proteins were enzymes,
including 12 kinases and 6 phosphatases (Figure 1). Another 24 are proteins which either
bind to different other proteins or adapt other proteins within complexes. Besides BCAR1,
six other proteins were found with intrinsically disordered domains, which change their
conformation upon the impact of low forces [22,23]. Three of the six proteins were detected
in MCF-7 cells and another three in FTC- 133 cells (Figure 1).

Table 1. List of selected proteins. The selected proteins were detected in both cell lines or in MCF-7 cells only (marked by *)
or in FTC-133 cells only (marked by **).

Entry Gene Name SwissProt Accession No. Protein Name Activity/Function

ABI1_HUMAN ABI1 Q8IZP0 Abl interactor 1 Adapter

ABL1_HUMAN ABL1 P00519 Tyrosine-protein kinase ABL1 Enzyme

RHG32_HUMAN ARHGAP32 A7KAX9 * Rho GTPase-activating
protein 32 Adapter

ARMX3_HUMAN ARMCX3 Q9UH62 Armadillo repeat-containing
X-linked protein3 Binding protein

BCAR1_HUMAN BCAR1 P56945
Breast cancer anti-estrogen

resistance protein 1 or p130cas
(CRK-associated substrate)

Binding protein

BCAR3_HUMAN BCAR3 O75815 * Breast cancer anti-estrogen
resistance protein 3 Adapter

CBL_HUMAN CBL P22681 E3 ubiquitin-protein ligase
CBL Enzyme

CD2AP_HUMAN CD2AP Q9Y5K6 CD2-associated protein Adapter

CDC42_HUMAN CDC42 P60953 Cell division control protein 42
homolog Enzyme

CIZ1_HUMAN CIZ1 Q9ULV3 * Cip1-interacting zinc finger
protein Binding protein

CRK_HUMAN CRK P46108 Adapter molecule crk Adapter

CRKL_HUMAN CRKL P46109 Crk-like protein Adapter

CSK_HUMAN) CSK P41240 Tyrosine-protein kinase CSK Enzyme

EPHA2_HUMAN EPHA2 P29317 Ephrin type-A receptor 2 Enzyme

ERBB2_HUMAN ERBB2 P04626 * Receptor tyrosine-protein
kinase erbB-2 Enzyme
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Table 1. Cont.

Entry Gene Name SwissProt Accession No. Protein Name Activity/Function

ESR1_HUMAN ESR1 P03372 * Estrogen receptor Hormone receptor

FINC_HUMAN FN1 P02751 Fibronectin ECM protein

FYN_HUMAN FYN P06241 ** Tyrosine-protein kinase Fyn Enzyme

GLIS2_HUMAN GLIS2 Q9BZE0 ** Zinc finger protein GLIS2 Binding protein

GMPR2_HUMAN GMPR2 Q9P2T1 GMP reductase 2 Enzyme

HCK_HUMAN HCK P08631 ** Tyrosine-protein kinase HCK Enzyme

BIP_HUMAN HSPA5 P11021 Endoplasmic reticulum
chaperone BiP Enzyme

IGF1R_HUMAN IGF1R P08069 * Insulin-like growth factor 1
receptor Enzyme

IQGA1_HUMAN IQGA1 P46940 Ras GTPase-activating-like
protein IQGAP1 Binding protein

ITAV_HUMAN ITGAV P06756 Integrin alpha-V Binding protein

ITB1_HUMAN ITGB1 P05556 Integrin beta-1 Binding protein

ITB3_HUMAN ITGB3 P05106 ** Integrin beta-3 Binding protein

KI13A_HUMAN KIF13A Q9H1H9 * Kinesin-like protein KIF13A Motor protein

LYN_HUMAN LYN P07948 Tyrosine-protein kinase Lyn Enzyme

MK08_HUMAN MAPK8 P45983 Mitogen-activated protein
kinase 8 Enzyme

MET_HUMAN MET P08581 ** Hepatocyte growth factor
receptor Enzyme

MMP14_HUMAN MMP14 P50281 ** Matrix metalloproteinase-14 Enzyme

NCK1_HUMAN NCK1 P16333 Cytoplasmic protein NCK1 Adapter

NCK2_HUMAN NCK2 O43639 * Cytoplasmic protein NCK2 Adapter

PELP1_HUMAN PELP1 Q8IZL8 Proline-, glutamic acid- and
leucine-rich protein 1 Binding protein

P85A_HUMAN PIK3R1 P27986 * Phosphatidylinositol 3-kinase
regulatory subunit alpha Adapter

PTEN_HUMAN PTEN P60484 *

Phosphatidylinositol
3,4,5-trisphosphate
3-phosphatase and

dual-specificity protein
phosphatase PTEN

Enzyme

FAK1_HUMAN PTK2 Q05397 Focal adhesion kinase 1 Enzyme

PTN12_HUMAN PTN12 Q05209 Tyrosine-protein phosphatase
non-receptor type 12 Enzyme

PTN1_HUMAN PTPN1 P18031 Tyrosine-protein phosphatase
non-receptor type 1 Enzyme

PTN11_HUMAN PTPN11 Q06124 Tyrosine-protein phosphatase
non-receptor type 11 Enzyme

PAXI_HUMAN PXN P49023 Paxillin Cytoskeletal
protein

RAC1_HUMAN RAC1 P63000 Ras-related C3 botulinum
toxin substrate 1 Enzyme
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Table 1. Cont.

Entry Gene Name SwissProt Accession No. Protein Name Activity/Function

RAN_HUMAN RAN P62826 GTP-binding nuclear protein
Ran Binding protein

RHOA_HUMAN RHOA P61586 Transforming protein RhoA Enzyme

SH3K1_HUMAN SH3KBP1 Q96B97 SH3 domain-containing
kinase-binding protein 1 Adapter

SHIP2_HUMAN SHIP2 O15357
Phosphatidylinositol
3,4,5-trisphosphate

5-phosphatase 2
Enzyme

SRC_HUMAN SRC P12931 Proto-oncogene
tyrosine-protein kinase Src Enzyme

SRCN1_HUMAN SRCN1 Q9C0H9 * SRC kinase signaling inhibitor
1 Inhibitor

TENS3_HUMAN TNS3 Q68CZ2 Tensin-3 Cytoskeletal
protein

TLN1_HUMAN TLN1 Q9Y490 Talin-1 Cytoskeletal
protein

TENS1_HUMAN TNS1 Q9HBL0 ** Tensin-1 Cytoskeletal
protein

TRIP6_HUMAN TRIP6 Q15654 * Thyroid receptor-interacting
protein 6 Binding protein

VINC_HUMAN VCL P18206 Vinculin Cytoskeletal
protein

VEGFA_HUMAN VEGFA P15692 ** VEGFA Growth factor

VPS11_HUMAN VPS11 Q9H270
Vacuolar protein

sorting-associated protein 11
homolog

Binding protein

YES_HUMAN YES1 P07947 Tyrosine-protein kinase Yes Enzyme

1433Z_HUMAN YWHAZ P63104 14-3-3 protein zeta/delta Adapter

ZYX_HUMAN ZYX Q15942 Zyxin Binding protein
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Figure 1. Types of enzymes included in the list of selected proteins and related to BCAR1 from MCF-7 and FTC-133 cells. Proteins are identified by SwissProt entry names (for 
their accession numbers and gene names, see Table 1). Activities are given in enzyme classification numbers EC (green squares) and terms (blue squares). The various icons 
used in Figure 1 are shown below the graph at higher magnification. The left icon of the bottom line represents proteins named by their entry names within the figure. The 
middle icon indicates a publication, which is identified by the PMID number within the nearby white box. The PMID numbers identify those publications, which indicate that 
the respective protein contains an intrinsically disordered domain. The cell dish icon at the right side of the bottom indicates the origin of the cells. Within the figure, brown 
lines show the link of the protein to the origin cell lines MCF-7 (left side cell dish icon) and FTC-133 (right side cell dish icon). To see details, please zoom in. 

 

Figure 1. Types of enzymes included in the list of selected proteins and related to BCAR1 from MCF-7 and FTC-133 cells. Proteins are identified by SwissProt entry names (for their
accession numbers and gene names, see Table 1). Activities are given in enzyme classification numbers EC (green squares) and terms (blue squares). The various icons used in Figure 1 are
shown below the graph at higher magnification. The left icon of the bottom line represents proteins named by their entry names within the figure. The middle icon indicates a publication,
which is identified by the PMID number within the nearby white box. The PMID numbers identify those publications, which indicate that the respective protein contains an intrinsically
disordered domain. The cell dish icon at the right side of the bottom indicates the origin of the cells. Within the figure, brown lines show the link of the protein to the origin cell lines
MCF-7 (left side cell dish icon) and FTC-133 (right side cell dish icon). To see details, please zoom in.
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2.2. Network Formation of Selected Proteins

Using Pathway Studio (version 12.3), we studied interactions of the 51 MCF-7 proteins
and the 47 FTC-133 proteins indicated in Table 1 with emphasis on BCAR1 interactions
which could lead to complex formation. We found that the proteins of each cell line formed
a unique network, as indicated by the upper and the lower picture of Figure 2. Relating to
direct interaction with the scaffolding potential of the identified proteins (Table 1), the role
of BCAR1 in networks of mutual binding or direct regulation is shown in Figure 2 by gray
lines, green arrows, and red lines.
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Figure 2. Interaction of the selected proteins obtained from proteome analysis of MCF-7 breast cancer
cells (upper picture) and of FTC-133 thyroid cancer cells (lower picture). The icon labels refer to
proteins by their human entry names (see also Table 1). The lines between the icons show various
types of interaction. Gray lines indicate complex formation of the proteins connected with not exactly
defined mutual influence. Green arrows point to complex formation with an activity enhancing effect
on the protein at the arrowhead, red lines indicate complex formation with inhibition of the protein at
the cross-piece. In both pictures, a gray connection line between BCAR1 and CRK indicates complex
formation, while a green arrow between VCL and BCAR1 with the head near BCAR1 indicates
activation of BCAR1 by VCL and a green arrow between BCAR1 and MAPK8 with the head near
MAPK8 indicates activation of MAPK8 by BCAR1. The interaction network was built using Pathway
Studio v.12.3.
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Both pictures of Figure 2 show that BCAR1 can bind proteins detected in the proteome
analyses published in [35,36]. Of the proteins detected in the MCF7 [35] and also in the
FTC-133 cells [36], CBL, CD2AP, CRK, CRKL, IQGAP1, NCK1, PTK2, PXN, SH3KBP1,
SHIP2, TLN1, TNS3 and ZYX can interact with BCAR1 (full protein names are given in
Table 1). Of further proteins capable of binding to BCAR1, we found ESR1, NCK2, PIK3RI
and SRCIN1 only in MCF-7 cells, while MMP14 and TNS1 were only detected in FTC-133
cells. Vinculin (VCL), which was found in both types of cells, triggers activation of BCAR1
by direct interaction, while ABI1, MAPK8 and BCAR3 detected only in MCF-7 cells are
activated by BCAR1 (Figure 2, green arrows). Further regulatory effects on BCAR1 are
exerted by TRIP6 and SRCIN1, which both were detected in MCF-7 cells only as well
as by MMP14, which was only detected in FTC-133 cells. The 14-3-3 protein zeta/delta
(YWHAZ), which was detected in both cell types, forms a complex with BCAR1 (Figure 2).

2.3. Influence of Selected Interaction on Cell Physiology

While using Pathway Studio, online mouse clicks on strings or arrows in the graphs
of Figure 2 allowed us to retrieve literature about the protein interactions represented by
lines and arrows linked to BCAR1.

2.3.1. Proteins Binding to the Substrate Domain (SD) of BCAR1

In both cell types, the adapter molecule crk (CRK) and the Crk-like protein (CRKL)
were detected in our proteome analyses published in refs. [35,36]. The quantitation scores
calculated in the mentioned analyses for CRK and CRKL of MCF7 cells were 12 × 108 and
21× 108, those calculated for CRK and CRKL of FTC-133 cells were 1.6× 108 and 2.9× 108.
Interestingly, in FTC-133 cells, CRKL was visible under each incubation condition, while
the concentration of FTC-133 CRK reached only detectable levels when the cells became
confluent [36]. According to [5,21], these proteins bind to the BCAR1 substrate domain
(SD) (Figure 3) after its YxxP motifs have been phosphorylated. If CRK is bound to BCAR1,
formation of stress fibers is induced [44] and the activation of mitogen-activated protein
kinase 8 (MAPK8) is favored [45]. Reversely, CRKL binding to BCAR1 impairs the connec-
tion of BCAR1 to the total focal adhesion complex (FA) [46], but promotes recruitment of
procaspase-8, suppressing apoptosis and favoring cell migration [47]. If CRK is phospho-
rylated at its SH3 domain, CRK-BCAR1 dissociates and cell migration is prevented [48].
Zyxin (ZYX) competes with CRK for binding to BCAR1. Recruited from the cytoplasm,
zyxin colocalizes with integrin and BCAR1. Upon mechanical stress, zyxin is involved in
the re-organization of the cytoskeleton [49]. Similar effects on the regulation of the actin-
cytoskeleton are exerted by TRIP6 (thyroid receptor interacting protein 6), another member
of the zyxin family which only was detected in MCF-7 cells [50]. SHIP2 (SH2-containing
inositol 5”- phosphatase 2) also binds to the phosphorylated SD of BCAR1 (Figure 3) [20].
Here, it becomes phosphorylated and activated for the de-phosphorylation of surrounding
inositol, which favors cell adhesion [51]. Furthermore PIK3R1 (only detected in MCF-7
cells, see Table 1) associates with the proline-rich region of BCAR1, which leads to the
reorganization of the cytoskeleton [52].
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In addition, NCK1 and NCK2 bind to the SD domain of phosphorylated BCAR1 [53].
NCK mediates the interaction of BCAR1 with the GTPase-activating protein ARHGAP32
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(only detected in MCF-7 cells). The complex of NCK-BCAR1-ARHGAP32 affects cell differ-
entiation via CDC42 and RAC1 [54]. Another molecular complex containing BCAR1 and
NCK is a critical link in signaling from the activated platelet-derived growth factor receptor
beta (PDGFβR) to the actin cytoskeleton [55]. NCK1 (commonly named NCK) and NCK2
regulate the actin cytoskeleton dynamic in slightly different ways [56]. The difference may
be due to their different sensitivities to ubiquitination by the E3 ubiquitin-protein ligase
CBL (CBL) [57]. CBL binds to membrane-associated BCAR1 via CRK or NCK [58]. Being a
member of CBL-BCAR1-CRK (or NCK) complexes, CBL exerts several regulatory functions
by mediating the ubiquitination and degradation of various proteins in a negative feed-
back manner [59]. Amongst those proteins are members of the src-family kinases [60,61],
including lyn- and fyn-kinases (see Table 1), which are known to phosphorylate the SD
domain of BCAR1 [62,63]. Associated with the SH3 domain-containing kinase-binding
protein 1 (SH3KBP1 or CIN85), CBL forms another complex with BCAR1 [64]. This complex
contributes to the regulation of cell adhesion and apoptosis [65]. If CBL and BCAR1 form
complexes with ABL1, the complexes associate with C3G, BCAR/ABL and CRKL. Together,
these proteins regulate cell adhesion and migration via paxillin (PXN) and focal adhesion
kinase 1 (PTK2) [66]. Within this association, BCAR1 is highly tyrosine phosphorylated [67].
In addition, CBL binds to CD2AP [68], which connects the SH3 domain of BCAR1 with the
actin cytoskeleton in a regulated manner [69].

Although the site where IQGAP1 associates with BCAR1 has not been exactly deter-
mined until now, it is known that its binding to the N-terminal region of BCAR1 needs
phosphorylation of the tyrosines of BCAR1’s SD, is stimulated by VEGF and plays a role in
endothelial cell motility and angiogenesis [70]. Association of the matrix metalloproteinase-
14 (MMP14) only detected in thyroid cells with BCAR1 at the edge of adhering cells has
not been precisely localized. It is known, however, that it is initiated by phosphorylation of
the substrate domain of BCAR1. After association, MMP14 is also phosphorylated [71].

2.3.2. Proteins Binding to other BCAR1 Domains

Besides the above-described proteins binding to the SD of BCAR1, there are proteins
which bind to the N-terminal SH3 domain of BCAR1 (Figure 3) [5,20]. The mechanism of
binding of different proteins under different conditions to this SH3 domain has been charac-
terized by crystallographic analysis [20]. Focal adhesion kinase 1 (FAK1 or PTK2) binds to
the SH3 domain of BCAR1, if it is pre-phosphorylated and BCAR1 phosphorylation occurs
afterwards [72]. If tyrosines within the SH3 domain of BCAR1 are already phosphorylated,
its interaction with FAK1 and recruitment of FAK1 to focal adhesions are inhibited [73].
If BCAR1 and FAK1 form a complex, tensin-3 co-localizes. This co-localization occurs in
a focal adhesion complex depending on whether BCAR1 is phosphorylated or not [74].
Vinculin binds to the SH3 domain of BCAR1 together with FAK1 [27]. The BCAR1-FAK1-
vinculin complex, which is found within focal adhesion complexes is required for stretch-
induced phosphorylation of the BCAR1 SD. Furthermore, paxillin binds to the N-terminal
regions, i.e., to the SH3 domain of BCAR1 via LD2/LD4 motifs [75]. In the latter case,
paxillin forms complexes with talin which is phosphorylated subsequently before it can
bind to BCAR1’s SH3 domain [4,76].

According to references [5,21], the serine-rich region of BCAR1 is located at the c-
terminal side of the BCAR1 substrate domain. If the underlying cell is attached to the
extracellular matrix, YWHAZ binds to this serine-rich region [77]. An YWHAZ-BCAR1
complex appears to forward signals for actin polymerization. At the c-terminal side of the
serine-rich domain, the carboxy-terminal domain is located. The interaction of SRC kinase
signaling inhibitor 1 (SRCIN1 or p140Cap) with this BCAR1 domain triggers SRCIN1
phosphorylation and plays a role in controlling actin cytoskeleton organization in response
to adhesive and growth factor signaling [78]. Moreover, paxillin can bind to the BCAR1’s
C-terminal region via its LD1 motif [75]. Bound to this site of BCAR1, paxillin anchors
BCAR1 to the FA (Figure 3).
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2.4. BCAR1, a Chain Link between Focal Adhesion and Cytoskeletal Proteins

Although BCAR1 emits various signals regulating cytoskeleton and cell adhesion,
information about a direct binding of BCAR1 to actin and myosin proteins or to adhesion
molecules such as cadherins or integrins was not found in literature. Therefore, we
performed interaction analyses of MCF-7 (Figure 4, upper picture) and FTC-133 proteins
(Figure 4, lower picture), examining the proteins which directly interact with BCAR1 as
shown in Figure 2 together with the cytoskeletal proteins beta-actin, gamma-actin, myosin-
9 and myosin-10 found in both cell types and with the adhesion proteins e-cadherin found
in MCF-7 cells (Figure 4, upper picture) or the n-cadherin found in FTC-133 cells (Figure 4,
lower picture). Figure 4 shows that in both types of cells, actins and myosins are linked
to BCAR1 via TLN1 or IQGAP1 [79–83], while integrin beta 1 is associated with BCAR1
via PXN, VCL and IQGAP1 [84,85]. However, different cell–cell adhesion proteins were
detected in the two cell types.
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Figure 4. Selected proteins which form complexes with BCAR1, as indicated by gray lines. Of these
proteins, TLN1 and IQGAP1 also form complexes with actins and myosins of MCF-7 breast cancer
cells (upper picture) and of FTC-133 thyroid cancer cells (lower picture), establishing a link between
the BCAR1 and the cytoskeleton. Regarding the cell–cell interaction proteins, CDH1 is connected
to BCAR1 via PIK3R1 in MCF7 cells (upper picture), while CDH2 forms a complex with TNS1 and
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BCAR1 in FTC-133 cells (lower picture). Additional links between BCAR1 and the growth factor
receptors ESR1 (upper picture) and MET (lower picture) can be recognized. The icons indicate the
proteins by their human entry names (see also Table 1). The lines between the icons show various
types of interaction. Gray lines indicate complex formation of the proteins connected. Green arrows
point to complex formation with an activity enhancing effect on the protein at the arrowhead, red
lines indicate complex formation with inhibition of the protein at the cross-piece. The interaction
network was built using Pathway Studio v.12.3.

CDH1 was found together with ARHGAP32, PIK3R1, ESR1 and ERBB2 only in MCF-7
cells, while CDH2 and ITGB3, MET, MMP14 and TNS1 were found only in FTC-133. Direct
association of BCAR1 with ESR1 has a negative influence on breast cancer cell differenti-
ation as it impairs mammary gland morphogenesis, if BCAR1 is over-expressed [86,87].
CDH1 interacts with BCAR1 indirectly via ARHGAP32 [88] or PIK3R1 [89], which both
dock at BCAR1’s SD. If PIK3R1 also binds to ERBB2 [90], the loss of CDH1 is induced [91].
In FTC-133 cells, CDH2, ITGB3 and MET are linked to BCAR1 via tensin-1 (TNS1). TNS1
binds to BCAR1 and is phosphorylated upon integrin activation [92]. In the absence of acti-
vated integrins, tensin is transferred to n-cadherin [93]. MMP14 binds to phosphorylated
BCAR1 [71]. In confluent endothelial cell cultures, MMP14 is associated with integrin-beta1,
while it is found jointly with αvβ3 integrins in migrating EC [94]. The association of the
hepatocyte growth factor receptor (MET) with the CRK isoform CRK-II sends proliferative
signals to the cells which harbor them [95]. Combined Figure 4 implies that there are links
between BCAR1 and the cytoskeleton, between BCAR1 and adhesion proteins as well as
between BCAR1 and growth factor receptors.

2.5. BCAR1’s Belonging to Cellular Processes

To see which protein–protein interactions are included in which cellular processes,
we looked at those cellular processes in which BCAR1 and at least another five selected
proteins of the same cell type were included. We found a set of 18 identical processes,
independently of whether we used the MCF-7 or the FTC-133 proteins (Figure 5). Seven
of these processes were represented by equal proteins of both cell lines. In respect to the
other 11 processes, different proteins of similar processes were reported. Because of the
low coverage of these pathways by the selected proteins, an interpretation of these findings
is difficult (Supplementary Table S1). However, it is remarkable that 17 of the pathways
include FAK1, which catalyzes the linking of BCAR1 to the focal adhesion complexes
initiating its SD phosphorylation [4,20,27,72–74]. Another 10 processes include BCAR1 and
FAK1 together with CRK that uses phosphorylated SD of BCAR1 to form complexes with
further proteins to send out different signals (Figure 6) [44,45,48–51].
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Figure 6. Signaling pathways, of which each includes BCAR1 and FAK1 (PTK2) and CRK. These pathways are included in Figure 5 but are shown here in more detail. The proteins
are indicated by human entry names. The signaling pathways are named within light blue rectangles. They had been identified in Reactome assigned to their headings. Also see
Supplementary Table S1.
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3. Discussion

In this study, we applied functional network-based techniques to advance knowledge
about possible targets, where the alteration of gravity force initiates changes of cellular
behavior. Networks were established using data of earlier studies [35,36,84]. BCAR1
was selected as a central component of these networks because its activity is sensitive
to forces that can change its three-dimensional conformation, enhancing or diminishing
the accessibility for kinases [4,5]. As explained above, different accessibility for kinases
changes the phosphorylation status of BCAR1, which subsequently scaffolds different
proteins and exerts different effects on several signaling pathways.

The alteration of the phosphorylation of certain proteins under the condition of altered
gravity has already been described. For example, an enhanced phosphorylation of profilin-
1 was observed in confluent monolayers of FTC-133 cells, which did not form spheroids
on an RPM but had accumulated fyn-kinase and caveolin 1 [36,96]. Endothelial cells
cultured on a clinostat showed changes of phosphorylation of caveolin and nitric oxide
synthetase [97,98]. Cultured on a Rotary Cell Culture System (RCCS), human mesenchymal
stem cells reduced cofilin phosphorylation [99], while equal cells cultured on a three-
dimensional clinostat intensified paxillin phosphorylation at their edges [100]. When
macrophages are cultured on a two-dimensional clinostat, spleen tyrosine kinase (SYK)
phosphorylation is reduced [101]. Simulated microgravity influences the phosphorylation
level of phosphoinositide 3-kinase (PI3K) in OSE-3T3 cells [102]. In vivo, a hindlimb
suspension of mice decreased the phosphorylation of ribosomal protein S6 kinase 1 [103].
Therefore, this semantic study challenges an experimental search for a direct link between
the lack of gravity force to pull cells constantly towards the center of the Earth and the
phosphorylation of BCAR1.

It has been shown that a cell line includes 10,000 to 12,000 different proteins [104].
As such, one can assume that in the proteome analyses, evaluated proteins represent
about 50% to 70% of potentially present ones [35,36]. Despite the shortcomings, our
proteome analyses unveiled various proteins interacting with BCAR1. BCAR1 consists
of five domains, of which the substrate domain (SD) is the most force-sensitive one [4,5].
Comparing studies of microgravity research with literature about protein complexes which
dock at BCAR1’s SD, we noticed common physiological effects. For example, CRK interacts
with BCAR1 via the force-sensitive SD domain. This type of complex formation induces the
formation of stress fibers and the activation of MAPK8 [44,45,48]. The altered formation of
stress fibers and activation of MAPK8 were also observed in cells exposed to simulated
microgravity [105–108]. Furthermore, within a focal adhesion complex, BCAR1 and CRK
together may associate with TRIP6 detected in MCF-7 cells [35,48,109]. Scaffolded by
BCAR1 and CRK TRIP6 interacts with NF-κB (nuclear factor κB) linking cell adhesion and
nuclear transcription [110]. This fits to our recent experimental work, which showed that
altered gravity has a remarkable influence on the cellular localization of NF-κB in MCF-7
cells [111].

CBL is a further protein that interacts with BCAR1 via the SD-bound CRK [58] and
had attracted attention in microgravity research. Associated with BCAR1 and CRK, CBL
catalyzes the link of ubiquitin to several different target proteins, initiating their degra-
dation [59–61]. Linking ubiquitin or ubiquitin-like molecules to the ε-amino group of
lysine residues in target proteins regulates many cellular processes [112,113]. They lead
to the degradation of distinct proteins but also to the stabilization of others. This type of
post-translational modification was observed on many proteins, which are upregulated
in spheroids formed during cell incubation on an RPM as compared to control cells [3].
Among the proteins of which the degradation is mediated by CBL are fyn- and lyn- kinases,
which are the main kinases phosphorylating the SD of BCAR1 [61]. Consequently, studies
of interest are those showing that L6 myoblasts enhanced the expression of muscle-atrophy-
associated CBL during clinorotation [114] and that activation of CBL in microgravity
induced muscle atrophy [115].
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Moreover, the inositol metabolism plays a role in the adjustment of animal and plant
cells to microgravity [116,117]. In both, the MCF-7 and FTC-133 cell lines SHIP2 (also
named INPPL1) was found, which is activated after binding to the phosphorylated SD of
BCAR1 [20,51]. This enzyme de-phosphorylates phosphatidylinositol-3,4,5-trisphosphate
(PtdIns(3,4,5)P3) to PtdIns(3,4)P2, downregulating PI3K (phosphoinositide 3-kinase) path-
ways. PIK3R1 was detected in MCF-7 cells. When it forms complexes with BCAR1, it ac-
tivates signaling pathways which lead to the re-organization of the cytoskeleton [52,118].
The hindlimb unloading of rats downregulates the PI3K/pAkt pathway inducing muscle
atrophy [119], and the inhibition of PI3K (or NFκB) prevents the spheroid formation of
breast cancer cells in ultra-low attachment plates [120]. The latter observation is supported
by our recent proteome analysis, which unveiled 40% more PIK3R1 proteins in MCF-7
spheroids than in MCF-7 adherent cells [35]. In addition, CRKL interacts with BCAR1 via
the force-sensitive SD domain. CRKL-BCAR1 complexes impair FA-mediated binding,
while they suppress apoptosis by procaspase-8 inactivation [47,48]. This could explain
that cells survive a detachment from the bottom of a culture flask during the formation of
spheroids. The hypothesis is supported by the observation that procaspase-8 is inactivated
when breast cancer cells detach from their natural substratum and fill breast ducts without
suffering anoikis [121].

Via complex formation, the SD of BCAR1 influences various small GTPases [54,71].
In recent years, a number of studies have been published, which show that microgravity-
induced changes of small GTPase activity play a role in the adjustment of various cells to
altered gravity [122], e.g., of endothelial cells [123], glioma cells [124], stem cells [125] and
cancer cells [126]. The changes of small GTPase activities accompany alterations of adhe-
sion, migration and cytoskeletal rearrangements [124,126–128] as well as cell differentiation
and morphogenesis [125,129].

Several cell functions and pathways were identified in which BCAR1, FAK1 and
CRK are involved together (Supplementary Table S1). They include apoptosis, integrin
function, cytoskeleton signaling, chemokine signaling and cancer cell motility (Figure
6). All these functions were observed when adaptation of cells to altered gravity was
studied. Information about such studies can be retrieved in relevant databases. A few
recent publications are given by refs. [130–134].

The comprehensive information collected using linked open data resources and
our experiments suggests that changes in force-dependent phosphorylation or the de-
phosphorylation of SD, the most force-sensitive part of BCAR1, cause similar changes in
cellular behavior as when exposing cells to an RPM or a spaceflight. Though this suggestion
is based on many studies, an influence of the alteration of gravity on the phosphorylation
status of the SD of BCAR1 still needs verification by further experiments. However, even
though a microgravity-dependent phosphorylation of SD will be proven, the question re-
mains whether this change is caused by forces of motor proteins [135,136] linked to cellular
adhesion or by a failure of gravity force pulling cells constantly to the center of the Earth.
Figure 4 shows that there are at least indirect links between BCAR1 and myosins X or IX via
proteins such as talin, IQGAP1 or between BCAR1 and integrins via focal adhesion kinase,
paxillin and vinculin. Such links could also be the source of the force affecting BCAR1.
Still, an influence of annulling gravity forces on the intrinsically disordered domain of
BCAR1 appears possible, since size determinations of tissue cancer cells indicated volumes
varying between 1000 and 2000 fL [137]. Assuming a density of around 1.05 kg/L, a cancer
cell weighs between 1 and 2 ng. Hence, gravity force acting on one whole cell could be
around 15 pN as long as a culture flask stays stationary in an incubator under normal 1 g
condition. If this force of constantly pulling a cell towards the center of the Earth is totally
or partially annulled by any technique [96,138,139], cells behave as if the force-dependent
phosphorylation of BCAR1 had changed. This appears explainable, as the gravity force
affecting a whole cell is higher than the force needed to stretch an intrinsically disordered
domain of a protein [25,140].
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In addition, a change of BCAR1 activity is not limited to effects on or from the proteins
forming the networks of Figure 2. Even if only a second level of interaction is considered,
the complexity of the network enhances up to more than 1300 participants. The two-level
interaction network shown in Figure 7 indicates that each of the proteins named in Table 1
(black spots with SwissProt AC# in white squares) interacts with further proteins (pink
squares with IntAct interaction numbers). Despite the complexity, the KE allows one to
contextualize all participants and interactions for understanding details of the system (see
also Supplementary Figure S1). Graphical queries account for the close investigation of each
and every sub-network to verify dependencies in more detail. This provides preconditions
to further investigate the influence of additional parameters. One of them is the time of
exposure to microgravity, which urgently needs to also be studied in the BCAR1 system,
as it has been done for other proteins [141].

4. Materials and Methods
4.1. Proteome Data

Proteins were obtained by mass spectrometry from MCF-7 human breast adenocar-
cinoma cells and from FTC-133 human follicular thyroid carcinoma cells according to
protocols described in [35,36]. Prior to analysis, both types of cells had been grown either
within a monolayer under normal 1 g laboratory conditions or exposed to an RPM, where
one part remained adherent (AD cells), while the other one formed three-dimensional
aggregates (MCS cells). Monolayer cells cultured under 1 g, AD cells, and MCS cells were
harvested and pelleted in separate samples. Each sample was subjected to a proteome anal-
ysis. In total, 12 different cell samples, i.e., four per incubation condition, were analyzed to
determine as many proteins as possible of MCF-7 cells, and five pellets were investigated
to identify proteins of FTC-133 cells.

Mass spectrometry was performed, as described in detail earlier [35,36]. Briefly, cells
were lysed. Their proteins were digested overnight at 37 ◦C with endoproteinase Lys-C
(Wako Chemicals GmbH, Neuss, Germany). The digested peptides were purified and
then separated using the Thermo easy n-LC 1000 system (Thermo Scientific, Waltham,
MA, USA). The peptides eluting from the column were directly sprayed into a Q Exactive
HF mass spectrometer (Thermo Scientific, Waltham, MA, USA) via a nano-electrospray
ionization source (Thermo Scientific, Waltham, MA, USA) [142,143]. The mass spectrometer
was operated in a data-dependent top 15 mode. Survey scans and fragmentation scans
were acquired at resolutions of 60,000 and 15,000, respectively (m/z = 200). Fragmentation
was performed on precursors isolated within a window of 1.4 m/z with a normalized
collision energy setting of 27.

Raw data from the mass spectrometer were processed using MaxQuant computa-
tional proteomics platform version 1.5.2.22 (Computational Systems Biochemistry, Max-
Planck-Gesellschaft, Munich, Germany) [144] using the standard parameters. At least
5900 different proteins were identified in five FTC-133 cell samples [36], and 6500 different
proteins were found in 12 MCF-7 cell samples [35]. These proteins formed the base for
applying the MaxLfQ algorithm to determine the relative protein concentration by delayed
normalization, as explained by Cox et al. in detail [145]. This label-free quantification
technology is based on the assumption that a majority of proteins exists which does not
change between the samples of a cell line.

4.2. Searching Proteins Interacting with BCAR1

To search proteins co-mentioned with BCAR1 in literature, we used the STRING
v11.0 tool [146] (available at https://string-db.org/, accessed on 21 July 2021) and in
addition searched dbPTM [147] (available at http://dbptm.mbc.nctu.edu.tw, accessed on 1
November 2020). Direct interaction between the selected proteins was determined using
Pathway Studio v.12.3 software (https://www.pathwaystudio.com/, accessed on 21 July
2021; Elsevier Research Solutions, Amsterdam, the Netherlands). After entering relevant
UniProt accession numbers, this software enables collecting information from a full text

https://string-db.org/
http://dbptm.mbc.nctu.edu.tw
https://www.pathwaystudio.com/
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of articles about the interaction of proteins. Literature indicating interactions is unveiled
online by mouse clicks on strings or arrows connecting icons.

4.3. Creation of a Semantic Network

To create a semantic network, harmonize the content from multiple resources, and
allow for graphical querying and reasoning, experimental data were imported to estab-
lish an initial resource description framework (RDF) knowledge base using KE (Melissa
Informatics, Rancho Santa Margarita, CA, USA—former IO Informatics). This tool al-
lows one to create, merge, and/or align semantic knowledge bases (SKB) in the form of
RDF serializations as files or in backend databases and to configure and connect them to
public semantic protocol and RDF query language (SPARQL) endpoints for query and
imports [37,148]. Its import functions provide abilities for nomenclature alignment, to set
or automate reification IDs for blank nodes, and to establish mapping for spreadsheets
or XML alignment [149,150]. After importing the experimental proteomics data, an ini-
tial partial ontology imported from UniProt (https://www.uniprot.org, accessed on 21
July 2021; versions 2020-06 and 2021-01) XML-RDF format was transformed into a core
RDF representation. A thesaurus manager was used to harmonize synonyms and avoid
duplication during the import process.

The UniProt content was queried for each of the proteins using its SPARQL end-
point. This added functional, interaction and complex formation properties to augment
the information on the enzymes and reported protein functions [149]. The information
collected was used to retrieve content from the NCBI Entréz resources OMIM, PubMed,
and Biosystems by means of graphical queries and to import their results using the NCBI
Connector API [151]. Parts of KEGG (Kyoto Encyclopedia of Genes and Genoms) and
Reactome (https://reactome.org/PathwayBrowser/, accessed on 21 July 2021; v.75, Re-
lease 7 December 2020) [152] were used to validate pathway information. Protein–protein
interactions were retrieved in IntAct (https://ebi.ac.uk/intact/, accessed on January 2021)
and MINT (https://mint.bio.uniroma2.it/, accessed on 21 July 2021) databases.

5. Conclusions

From the network analysis presented, we conclude that the application of seman-
tic tools such as KE and Pathway Studio, which help to look at a specific subgroup of
thousands of proteins usually unveiled by proteome analyses of whole cells, will be use-
ful to extract functional information from proteome analyses and better support one’s
understanding of complex cellular processes. Using this exemplary application of the
method, we conclude that BCAR1 could be a primary target of Earth’s gravity. Experiments
on changes of the phosphorylation of BCAR1 under microgravity now appear to be a
promising way to explore how gravity affects human tissue cells. In this context, we can
also look at the influence of the time of exposure on the quantities of phosphorylated and
un-phosphorylated BCAR1 molecules.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/computation9080081/s1, Supplementary Table S1: List of pathways and processes, which
include BCAR1 and at least another five proteins of Table 1. Details are given about coverage and
participating proteins of both cell lines. Supplementary Figure S1: Two-level protein interaction
network: Violet arrow icons and their violet relationship lines indicate interactions. Numbers
indicate IntAct designation of interaction. Interaction participants are not shown to simplify the
graph. Proteins are identified with their icons labeled with UniProt accession numbers. Orange lines
indicate the originating cancer cell line.
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73. Janoštiak, R.; Tolde, O.; Brůhová, Z.; Novotný, M.; Hanks, S.K.; Rösel, D.; Brábek, J. Tyrosine phosphorylation within the SH3
domain regulates CAS subcellular localization, cell migration, and invasiveness. Mol. Biol. Cell 2011, 22, 4256–4267. [CrossRef]

74. Qian, X.; Li, G.; Vass, W.C.; Papageorge, A.; Walker, R.C.; Asnaghi, L.; Steinbach, P.J.; Tosato, G.; Hunter, K.; Lowy, D.R. The
Tensin-3 Protein, Including its SH2 Domain, Is Phosphorylated by Src and Contributes to Tumorigenesis and Metastasis. Cancer
Cell 2009, 16, 246–258. [CrossRef] [PubMed]

75. Zhang, C.; Miller, D.J.; Guibao, C.D.; Donato, D.M.; Hanks, S.K.; Zheng, J.J. Structural and functional insights into the interaction
between the Cas family scaffolding protein p130Cas and the focal adhesion-associated protein paxillin. J. Biol. Chem. 2017, 292,
18281–18289. [CrossRef] [PubMed]

76. McGowan, S.E.; McCoy, D.M. Platelet-derived growth factor receptor-α and Ras-related C3 botulinum toxin substrate-1 regulate
mechano-responsiveness of lung fibroblasts. Am. J. Physiol. Cell. Mol. Physiol. 2017, 313, L1174–L1187. [CrossRef] [PubMed]

77. Guzman, M.G.; Dolfi, F.; Russelo, M.; Vuori, K. Cell adhesion regulates the interaction between the docking protein p130cas and
14-3-3 proteins. J. Biol. Chem. 1999, 274, 5762–5768. [CrossRef] [PubMed]

78. Di Stefano, P.; Cabodi, S.; Erba, E.B.; Margaria, V.; Bergatto, E.; Giuffrida, M.G.; Silengo, L.; Tarone, G.; Turco, E.; Defilippi, P.
p130Cas-associated Protein (p140Cap) as a New Tyrosine-phosphorylated Protein Involved in Cell Spreading. Mol. Biol. Cell
2004, 15, 787–800. [CrossRef]

79. Weissbach, L.; Bernardsb, A.; Herion, D.W. Binding of Myosin Essential Light Chain to the Cytoskeleton-Associated Protein
IQGAP. Biochem. Biophys. Res. Commun. 1998, 251, 269–276. [CrossRef] [PubMed]

80. Briggs, M.W.; Sacks, D. IQGAP1 as signal integrator: Ca2+, calmodulin, Cdc42 and the cytoskeleton. FEBS Lett. 2003, 542, 7–11.
[CrossRef]

81. Sit, B.; Gutmann, D.; Iskratsch, T. Costameres, dense plaques and podosomes: The cell matrix adhesions in cardiovascular
mechanosensing. J. Muscle Res. Cell Motil. 2019, 40, 197–209. [CrossRef]

82. Lee, H.S.; Bellin, R.M.; Walker, D.I.; Patel, B.; Powers, P.; Liu, H.; Garcia-Alareez, B.; de Pereda, J.M.; Liddington, R.C.; Volkmann,
N.; et al. Characterization of an actin-binding site within the talin FERM do-main. J. Mol. Biol. 2004, 343, 771–784. [CrossRef]
[PubMed]

83. Steenblock, C.; Heckel, T.; Czupalla, C.; Santo, A.I.E.; Niehage, C.; Sztacho, M.; Hoflack, B. The Cdc42 Guanine Nucleotide
Exchange Factor FGD6 Coordinates Cell Polarity and Endosomal Membrane Recycling in Osteoclasts. J. Biol. Chem. 2014, 289,
18347–18359. [CrossRef] [PubMed]

84. Bauer, T.J.; Gombocz, E.; Krüger, M.; Sahana, J.; Corydon, T.J.; Bauer, J.; Infanger, M.; Grimm, D. Augmenting cancer cell
proteomics with cellular images—A semantic approach to understand focal adhesion. J. Biomed. Inform. 2019, 100, 103320.
[CrossRef] [PubMed]

85. Takahashi, K.; Suzuki, K. Regulation of protein phosphatase 2A-mediated recruitment of IQGAP1 to beta1 integrin by EGF
through activation of Ca2+/calmodulin-dependent protein kinase II. J. Cell. Physiol. 2006, 208, 213–219. [CrossRef]

86. Leal, M.D.P.C.; Pincini, A.; Tornillo, G.; Fiorito, E.; Bisaro, B.; De Luca, E.; Turco, E.; Defilippi, P.; Cabodi, S. p130Cas Over-
Expression Impairs Mammary Branching Morphogenesis in Response to Estrogen and EGF. PLoS ONE 2012, 7, e49817. [CrossRef]

http://doi.org/10.1158/0008-5472.CAN-10-0911
http://doi.org/10.1006/bbrc.2000.3760
http://doi.org/10.1046/j.1432-1033.2002.03031.x
http://www.ncbi.nlm.nih.gov/pubmed/12135478
http://doi.org/10.1186/1478-811X-11-9
http://www.ncbi.nlm.nih.gov/pubmed/23343344
http://doi.org/10.1016/j.bbrc.2005.06.030
http://doi.org/10.1074/jbc.M005784200
http://www.ncbi.nlm.nih.gov/pubmed/11067845
http://doi.org/10.1073/pnas.96.11.6211
http://www.ncbi.nlm.nih.gov/pubmed/10339567
http://doi.org/10.1074/mcp.M116.064428
http://www.ncbi.nlm.nih.gov/pubmed/28007913
http://doi.org/10.1016/j.febslet.2007.12.029
http://www.ncbi.nlm.nih.gov/pubmed/18164686
http://doi.org/10.1242/jcs.02794
http://www.ncbi.nlm.nih.gov/pubmed/16478788
http://doi.org/10.1091/mbc.e11-03-0207
http://doi.org/10.1016/j.ccr.2009.07.031
http://www.ncbi.nlm.nih.gov/pubmed/19732724
http://doi.org/10.1074/jbc.M117.807271
http://www.ncbi.nlm.nih.gov/pubmed/28860193
http://doi.org/10.1152/ajplung.00185.2017
http://www.ncbi.nlm.nih.gov/pubmed/28775097
http://doi.org/10.1074/jbc.274.9.5762
http://www.ncbi.nlm.nih.gov/pubmed/10026197
http://doi.org/10.1091/mbc.e03-09-0689
http://doi.org/10.1006/bbrc.1998.9371
http://www.ncbi.nlm.nih.gov/pubmed/9790945
http://doi.org/10.1016/S0014-5793(03)00333-8
http://doi.org/10.1007/s10974-019-09529-7
http://doi.org/10.1016/j.jmb.2004.08.069
http://www.ncbi.nlm.nih.gov/pubmed/15465061
http://doi.org/10.1074/jbc.M113.504894
http://www.ncbi.nlm.nih.gov/pubmed/24821726
http://doi.org/10.1016/j.jbi.2019.103320
http://www.ncbi.nlm.nih.gov/pubmed/31669288
http://doi.org/10.1002/jcp.20657
http://doi.org/10.1371/journal.pone.0049817


Computation 2021, 9, 81 23 of 25

87. Cabodi, S.; Moro, L.; Baj, G.; Smeriglio, M.; Di Stefano, P.; Gippone, S.; Surico, N.; Silengo, L.; Turco, E.; Tarone, G.; et al. p130Cas
interacts with estrogen receptor α and modulates non-genomic estrogen signaling in breast cancer cells. J. Cell Sci. 2004, 117,
1603–1611. [CrossRef]

88. Okabe, T.; Nakamura, T.; Nishimura, Y.N.; Kohu, K.; Ohwada, S.; Morishita, Y.; Akiyama, T. RICS, a Novel GTPase-activating
Protein for Cdc42 and Rac1, Is Involved in the β-Catenin-N-cadherin and N-Methyl-d-aspartate Receptor Signaling. J. Biol. Chem.
2003, 278, 9920–9927. [CrossRef]

89. Calautti, E.; Li, J.; Saoncella, S.; Brissette, J.L.; Goetinck, P.F. Phosphoinositide 3-Kinase Signaling to Akt Promotes Keratinocyte
Differentiation Versus Death. J. Biol. Chem. 2005, 280, 32856–32865. [CrossRef]

90. Lengyel, C.G.; Altuna, S.C.; Habeeb, B.; Trapani, D.; Khan, S.Z.; Lengyel, C.D. The Potential of PI3K/AKT/mTOR Signaling as a
Druggable Target for Endometrial and Ovarian Carcinomas. Curr. Drug Targets 2020, 21, 946–961. [CrossRef]

91. Nilsson, G.M.A.; Akhtar, N.; Kannius-Jkanson, M.; Baeckström, D. Loss of E-cadherin expression is not a prerequisite for
c-erbB2-induced epithelial-mesenchymal transition. Int. J. Oncol. 2014, 45, 82–94. [CrossRef]

92. Lo, S.H.; Yu, Q.-C.; Degenstein, L.; Chen, L.B.; Fuchs, E. Progressive Kidney Degeneration in Mice Lacking Tensin. J. Cell Biol.
1997, 136, 1349–1361. [CrossRef] [PubMed]

93. Lefort, C.T.; Wojciechowski, K.; Hocking, D.C. N-cadherin cell-cell adhesion complexes are regulated by fibronectin matrix
asembly. J. Biol. Chem. 2011, 286, 3149–3160. [CrossRef]

94. Gálvez, B.G.; Matías-Román, S.; Yáñez-Mó, M.; Sánchez-Madrid, F.; Arroyo, A.G. ECM regulates MT1-MMP localization with β1
or αvβ3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. J. Biol.
Chem. 2002, 159, 509–521. [CrossRef]

95. Riordan, S.M.; Lidder, S.; Williams, R.; Skouteris, G.G. The beta-subunit of the hepatocyte growth factor/scatter factor (HGF/SF)
receptor phosphorylates and associates with CrkII: Expression of CrkII enhances HGF/SF-induced mitogenesis. Biochem. J. 2000,
350, 925–932. [CrossRef]

96. Riwaldt, S.; Pietsch, J.; Sickmann, A.; Bauer, J.; Braun, M.; Segerer, J.; Schwarzwälder, A.; Aleshcheva, G.; Corydon, T.J.; Infanger,
M.; et al. Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics 2015, 15, 2945–2952.
[CrossRef] [PubMed]

97. Spisni, E.; Toni, M.; Strillacci, A.; Galleri, G.; Santi, S.; Griffoni, C.; Tomasi, V. Caveolae and caveolae constituents in mech-
anosensing: Effect of modeled microgravity on cultured human endothelial cells. Cell. Biochem. Biophys. 2006, 46, 155–164.

98. Shi, F.; Zhao, T.-Z.; Wang, Y.-C.; Cao, X.-S.; Yang, C.-B.; Gao, Y.; Li, C.-F.; Zhao, J.-D.; Zhang, S.; Sun, X.-Q. The Impact of Simulated
Weightlessness on Endothelium-Dependent Angiogenesis and the Role of Caveolae/Caveolin-1. Cell. Physiol. Biochem. 2016, 38,
502–513. [CrossRef]

99. Saxena, R.; Pan, G.; McDonald, J.M. Osteoblast and Osteoclast Differentiation in Modeled Microgravity. Ann. N. Y. Acad. Sci.
2007, 1116, 494–498. [CrossRef]

100. Koaykul, C.; Kim, M.-H.; Kawahara, Y.; Yuge, L.; Kino-Oka, M. Alterations in Nuclear Lamina and the Cytoskeleton of Bone
Marrow-Derived Human Mesenchymal Stem Cells Cultured Under Simulated Microgravity Conditions. Stem Cells Dev. 2019, 28,
1167–1176. [CrossRef] [PubMed]

101. Brungs, S.; Kolanus, W.; Hemmersbach, R. Syk phosphorylation—A gravisensitive step in macrophage signalling. Cell Commun.
Signal. 2015, 13, 1–9. [CrossRef]

102. Dai, Z.; Guo, F.; Wu, F.; Xu, H.; Yang, C.; Li, J.; Liang, P.; Zhang, H.; Qu, L.; Tan, Y.; et al. Integrin αvβ3 mediates the synergetic
regulation of core-binding factor α1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide
3-kinase signaling. Bone 2014, 69, 126–132. [CrossRef] [PubMed]

103. Lloyd, S.A.; Lang, C.; Zhang, Y.; Paul, E.M.; Laufenberg, L.J.; Lewis, G.; Donahue, H.J. Interdependence of Muscle Atrophy and
Bone Loss Induced by Mechanical Unloading. J. Bone Miner. Res. 2014, 29, 1118–1130. [CrossRef] [PubMed]

104. Bekker-Jensen, D.B.; Kelstrup, C.D.; Batth, T.S.; Larsen, S.C.; Haldrup, C.; Bramsen, J.B.; Sørensen, K.D.; Høyer, S.; Ørntoft, T.F.;
Andersen, C.L.; et al. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Syst.
2017, 4, 587–599.e4. [CrossRef]

105. Higashibata, A.; Imamizo-Sato, M.; Seki, M.; Yamazaki, T.; Ishioka, N. Influence of simulated microgravity on the activation of
the small GTPase Rho involved in cytoskeletal formation—Molecular cloning and sequencing of bovine leukemia-associated
guanine nucleotide exchange factor. BMC Biochem. 2006, 7, 19. [CrossRef]

106. Sarkar, S.; Wise, K.C.; Manna, S.K.; Ramesh, V.; Yamauchi, K.; Thomas, R.L.; Wilson, B.L.; Kulkarni, A.D.; Pellis, N.R.; Ramesh,
G.T. Activation of activator protein-1 in mouse brain regions exposed to simulated microgravity. In Vitro Cell Dev. Biol. Anim.
2006, 42, 96–99. [CrossRef]

107. Ethiraj, P.; Ottinger, A.M.; Singh, T.; Singh, A.; Haire, K.M.; Reddy, S.V. Proteasome inhibition suppress microgravity elevated
RANK signaling during osteoclast differentiation. Cytokine 2020, 125, 154821. [CrossRef]

108. Koaykul, C.; Kim, M.-H.; Kawahara, Y.; Yuge, L.; Kino-Oka, M. Maintenance of Neurogenic Differentiation Potential in Passaged
Bone Marrow-Derived Human Mesenchymal Stem Cells Under Simulated Microgravity Conditions. Stem Cells Dev. 2019, 28,
1552–1561. [CrossRef]

109. Lai, Y.-J.; Chen, C.-S.; Lin, W.-C.; Lin, F.-T. c-Src-Mediated Phosphorylation of TRIP6 Regulates Its Function in Lysophosphatidic
Acid-Induced Cell Migration. Mol. Cell. Biol. 2005, 25, 5859–5868. [CrossRef] [PubMed]

http://doi.org/10.1242/jcs.01025
http://doi.org/10.1074/jbc.M208872200
http://doi.org/10.1074/jbc.M506119200
http://doi.org/10.2174/1389450120666191120123612
http://doi.org/10.3892/ijo.2014.2424
http://doi.org/10.1083/jcb.136.6.1349
http://www.ncbi.nlm.nih.gov/pubmed/9087448
http://doi.org/10.1074/jbc.M110.115733
http://doi.org/10.1083/jcb.200205026
http://doi.org/10.1042/bj3500925
http://doi.org/10.1002/pmic.201500067
http://www.ncbi.nlm.nih.gov/pubmed/25930030
http://doi.org/10.1159/000438646
http://doi.org/10.1196/annals.1402.033
http://doi.org/10.1089/scd.2018.0229
http://www.ncbi.nlm.nih.gov/pubmed/31169056
http://doi.org/10.1186/s12964-015-0088-8
http://doi.org/10.1016/j.bone.2014.09.018
http://www.ncbi.nlm.nih.gov/pubmed/25263523
http://doi.org/10.1002/jbmr.2113
http://www.ncbi.nlm.nih.gov/pubmed/24127218
http://doi.org/10.1016/j.cels.2017.05.009
http://doi.org/10.1186/1471-2091-7-19
http://doi.org/10.1290/0512083.1
http://doi.org/10.1016/j.cyto.2019.154821
http://doi.org/10.1089/scd.2019.0146
http://doi.org/10.1128/MCB.25.14.5859-5868.2005
http://www.ncbi.nlm.nih.gov/pubmed/15988003


Computation 2021, 9, 81 24 of 25

110. Willier, S.; Butt, E.; Richter, G.H.; Burdach, S.; Grunewald, T.G. Defining the role of TRIP6 in cell physiology and cancer. Biol. Cell
2011, 103, 573–591. [CrossRef] [PubMed]

111. Kopp, S.; Sahana, J.; Islam, T.; Petersen, A.G.; Bauer, J.; Corydon, T.J.; Schulz, H.; Saar, K.; Huebner, N.; Slumstrup, L.; et al. The
role of NFκB in spheroid formation of human breast cancer cells cultured on the Random Positioning Machine. Sci. Rep. 2018, 8,
1–17. [CrossRef] [PubMed]

112. Komander, D.; Rape, M. The Ubiquitin Code. Annu. Rev. Biochem. 2012, 81, 203–229. [CrossRef] [PubMed]
113. Li, K.; Zhong, B. Regulation of Cellular Antiviral Signaling by Modifications of Ubiquitin and Ubiquitin-like Molecules. Immune

Netw. 2018, 18, 4. [CrossRef] [PubMed]
114. Uchida, T.; Sakashita, Y.; Kitahata, K.; Yamashita, Y.; Tomida, C.; Kimori, Y.; Komatsu, A.; Hirasaka, K.; Ohno, A.; Nakao, R.; et al.

Reactive oxygen species upregulate expression of muscle atrophy-associated ubiquitin ligase Cbl-b in rat L6 skeletal muscle cells.
Am. J. Physiol. Physiol. 2018, 314, C721–C731. [CrossRef] [PubMed]

115. Nonaka, I. Muscle fiber atrophy. Rinsho Shinkeigaku 2012, 52, 1315–1317. [CrossRef] [PubMed]
116. Sun, Z.; Li, Y.; Zhou, H.; Cai, M.; Liu, J.; Gao, S.; Yang, J.; Tong, L.; Wang, J.; Zhou, S.; et al. Simulated microgravity reduces

intracellular-free calcium concentration by inhibiting calcium channels in primary mouse osteoblasts. J. Cell. Biochem. 2019, 120,
4009–4020. [CrossRef]

117. Kriegs, B.; Theisen, R.; Schnabl, H. Inositol 1,4,5-trisphosphate and Ran expression during simulated and real microgravity.
Protoplasma 2006, 229, 163–174. [CrossRef]

118. Bandyopadhyay, C.; Veettil, M.V.; Dutta, S.; Chandran, B. p130Cas Scaffolds the Signalosome to Direct Adaptor-Effector Cross
Talk during Kaposi’s Sarcoma-Associated Herpesvirus Trafficking in Human Microvascular Dermal Endothelial Cells. J. Virol.
2014, 88, 13858–13878. [CrossRef]

119. Zhang, S.; Yuan, M.; Cheng, C.; Xia, D.-H.; Wu, S. Chinese Herbal Medicine Effects on Muscle Atrophy Induced by Simulated
Microgravity. Aerosp. Med. Hum. Perform. 2018, 89, 883–888. [CrossRef]

120. Hinohara, K.; Kobayashi, S.; Kanauchi, H.; Shimizu, S.; Nishioka, K.; Tsuji, E.; Tada, K.; Umezawa, K.; Mori, M.; Ogawa, T.; et al.
ErbB receptor tyrosine kinase/NF-κB signaling controls mammosphere formation in human breast cancer. Proc. Natl. Acad. Sci.
USA 2012, 109, 6584–6589. [CrossRef]

121. Parsons, M.J.; Patel, P.; Brat, D.J.; Colbert, L.; Vertino, P.M. Silencing of TMS1/ASC Promotes Resistance to Anoikis in Breast
Epithelial Cells. Cancer Res. 2009, 69, 1706–1711. [CrossRef] [PubMed]

122. Louis, F.; Deroanne, C.; Nusgens, B.; Vico, L.; Guignandon, A. RhoGTPases as Key Players in Mammalian Cell Adaptation to
Microgravity. BioMed. Res. Int. 2015, 2015, 1–17. [CrossRef]

123. Kashirini, D.N.; Kononikhin, A.S.; Marina, I.M.; Buravkova, L.B. Secretome of Cultured Human Endothelial Cells in Simulated
Microgravity. Bull. Exp. Biol. Med. 2019, 167, 35–38. [CrossRef]

124. Deng, B.; Liu, R.; Tian, X.; Han, Z.; Chen, J. Simulated microgravity inhibits the viability and migration of glioma via
FAK/RhoA/Rock and FAK/Nek2 signaling. In Vitro Cell. Dev. Biol. Anim. 2019, 55, 260–271. [CrossRef]

125. Xue, L.; Li, Y.; Chen, J. Duration of simulated microgravity affects the differentiation of mesenchymal stem cells. Mol. Med. Rep.
2017, 15, 3011–3018. [CrossRef] [PubMed]

126. Tan, X.; Xu, A.; Zhao, T.; Zhao, Q.; Zhang, J.; Fan, C.; Deng, Y.; Freywald, A.; Genth, H.; Xiang, J. Simulated microgravity inhibits
cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and
AMPK pathways. Sci. Rep. 2018, 8, 3769. [CrossRef] [PubMed]

127. Zhao, T.; Li, R.; Tan, X.; Zhang, J.; Fan, C.; Zhao, Q.; Deng, Y.; Xu, A.; Lukong, K.E.; Genth, H.; et al. Simulated Microgravity
Reduces Focal Adhesions and Alters Cytoskeleton and Nuclear Positioning Leading to Enhanced Apoptosis via Suppressing
FAK/RhoA-Mediated mTORC1/NF-κB and ERK1/2 Pathways. Int. J. Mol. Sci. 2018, 19, 1994. [CrossRef] [PubMed]

128. Lin, S.C.; Gou, G.H.; Hsia, C.W.; Ho, C.W.; Huang, K.L.; Wu, Y.F.; Lee, S.Y.; Chen, Y.H. Simulated Microgravity Disrupts
Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and
RhoA-ROCK1-p38 MAPK-p53. Signaling. Stem Cells Dev. 2016, 25, 1172–1193. [CrossRef] [PubMed]

129. Shi, F.; Wang, Y.C.; Hu, Z.B.; Xu, H.Y.; Sun, J.; Gao, Y.; Li, X.T.; Yang, C.B.; Xie, C.; Li, C.F.; et al. Simulated Microgravity Promotes
Angiogenesis through RhoA- Dependent Rearrangement of the Actin Cytoskeleton. Cell. Physiol. Biochem. 2017, 41, 227–238.
[CrossRef] [PubMed]

130. Prasad, B.; Grimm, D.; Strauch, S.M.; Erzinger, G.S.; Corydon, T.J.; Lebert, M.; Magnusson, N.E.; Infanger, M.; Richter, P.; Krüger,
M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int. J. Mol. Sci. 2020, 21,
9373. [CrossRef] [PubMed]

131. Lin, X.; Zhang, K.; Wei, D.; Tian, Y.; Gao, Y.; Chen, Z.; Qian, A. The Impact of Spaceflight and Simulated Microgravity on Cell
Adhesion. Int. J. Mol. Sci. 2020, 21, 3031. [CrossRef]

132. Smith, J.K. Osteoclasts and Microgravity. Life 2020, 10, 207. [CrossRef]
133. Romswinkel, A.; Infanger, M.; Dietz, C.; Strube, F.; Kraus, A. The Role of C-X-C Chemokine Receptor Type 4 (CXCR4) in Cell

Adherence and Spheroid Formation of Human Ewing’s Sarcoma Cells under Simulated Microgravity. Int. J. Mol. Sci. 2019, 20,
6073. [CrossRef]

134. Ahn, C.B.; Lee, J.H.; Han, G.D.; Kang, H.W.; Lee, S.H.; Lee, J.I.; Son, K.H.; Lee, J.W. Simulated microgravity with floating
environment promotes migration of non-small cell lung cancers. Sci. Rep. 2019, 8, 14553. [CrossRef]

http://doi.org/10.1042/BC20110077
http://www.ncbi.nlm.nih.gov/pubmed/22054418
http://doi.org/10.1038/s41598-017-18556-8
http://www.ncbi.nlm.nih.gov/pubmed/29343717
http://doi.org/10.1146/annurev-biochem-060310-170328
http://www.ncbi.nlm.nih.gov/pubmed/22524316
http://doi.org/10.4110/in.2018.18.e4
http://www.ncbi.nlm.nih.gov/pubmed/29503737
http://doi.org/10.1152/ajpcell.00184.2017
http://www.ncbi.nlm.nih.gov/pubmed/29513566
http://doi.org/10.5692/clinicalneurol.52.1315
http://www.ncbi.nlm.nih.gov/pubmed/23196603
http://doi.org/10.1002/jcb.27685
http://doi.org/10.1007/s00709-006-0214-y
http://doi.org/10.1128/JVI.01674-14
http://doi.org/10.3357/AMHP.5079.2018
http://doi.org/10.1073/pnas.1113271109
http://doi.org/10.1158/0008-5472.CAN-08-2351
http://www.ncbi.nlm.nih.gov/pubmed/19223547
http://doi.org/10.1155/2015/747693
http://doi.org/10.1007/s10517-019-04454-8
http://doi.org/10.1007/s11626-019-00334-7
http://doi.org/10.3892/mmr.2017.6357
http://www.ncbi.nlm.nih.gov/pubmed/28339035
http://doi.org/10.1038/s41598-018-20459-1
http://www.ncbi.nlm.nih.gov/pubmed/29491429
http://doi.org/10.3390/ijms19071994
http://www.ncbi.nlm.nih.gov/pubmed/29986550
http://doi.org/10.1089/scd.2016.0040
http://www.ncbi.nlm.nih.gov/pubmed/27269634
http://doi.org/10.1159/000456060
http://www.ncbi.nlm.nih.gov/pubmed/28214845
http://doi.org/10.3390/ijms21249373
http://www.ncbi.nlm.nih.gov/pubmed/33317046
http://doi.org/10.3390/ijms21093031
http://doi.org/10.3390/life10090207
http://doi.org/10.3390/ijms20236073
http://doi.org/10.1038/s41598-019-50736-6


Computation 2021, 9, 81 25 of 25

135. Liao, W.; Elfrink, K.; Bähler, M. Head of Myosin IX Binds Calmodulin and Moves Processively toward the Plus-end of Actin
Filaments. J. Biol. Chem. 2010, 285, 24933–24942. [CrossRef]

136. Kerber, M.L.; Cheney, R.E. Myosin-X: A MyTH-FERM myosin at the tips of filopodia. J. Cell. Sci. 2011, 124, 3733–3741. [CrossRef]
[PubMed]

137. Bauer, J.; Grimm, D.; Hofstaedter, F.; Wieland, W. Techniques for studies on growth characteristics of human prostatic cancer cells.
Biotechnol. Prog. 1992, 8, 494–500. [CrossRef]

138. Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.M.; De Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.A.; Lebert,
M.; et al. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and
Recommended Terminology. Astrobiology 2013, 13, 1–17. [CrossRef] [PubMed]

139. Nassef, M.Z.; Kopp, S.; Wehland, M.; Melnik, D.; Sahana, J.; Krüger, M.; Corydon, T.J.; Oltmann, H.; Schmitz, B.; Schütte, A.; et al.
Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells. Int. J. Mol. Sci. 2019, 20, 3156.
[CrossRef]

140. Pang, S.M.; LE, S.; Yan, J. Mechanical responses of the mechanosensitive unstructured domains in cardiac titin. Biol. Cell 2018,
110, 65–76. [CrossRef]

141. Grimm, D.; Pietsch, J.; Wehland, M.; Richter, P.; Strauch, S.; Lebert, M.; Magnusson, N.E.; Wise, P.; Bauer, J. The impact of
microgravity-based proteomics research. Expert Rev. Proteom. 2014, 11, 465–476. [CrossRef] [PubMed]

142. Nagaraj, N.; Kulak, N.A.; Cox, J.; Neuhauser, N.; Mayr, K.; Hoerning, O.; Vorm, O.; Mann, M. System-wide Perturbation Analysis
with Nearly Complete Coverage of the Yeast Proteome by Single-shot Ultra HPLC Runs on a Bench Top Orbitrap. Mol. Cell.
Proteom. 2012, 11, 111. [CrossRef]

143. Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for
proteomics using StageTips. Nat. Protoc. 2007, 2, 1896–1906. [CrossRef] [PubMed]

144. Cox, J.; Mann, M. Max Quant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and pro-
teome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [CrossRef] [PubMed]

145. Cox, J.; Hein, M.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate Proteome-wide Label-free Quantification by Delayed
Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteom. 2014, 13, 2513–2526. [CrossRef]
[PubMed]

146. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.;
Bork, P.; et al. STRING v11: Protein—Protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef]

147. Breitwieser, F.P.; Colinge, J. IsobarPTM: A software tool for the quantitative analysis of post-translationally modified proteins.
J. Proteom. 2013, 90, 77–84. [CrossRef]

148. Stanley, R.A.; Gombocz, E.A. System, Method, Software Architecture, and Business Model for Intelligent Object Based Information
Platform. U.S. Patent 7,702,639, 20 April 2010.

149. Hancock, W.S.; Wu, S.L.; Stanley, R.R.; Gombocz, E.A. Publishing large proteome datasets: Scientific policy meets emerging
technologies. Trends Biotechnol. 2002, 20, s39–s44. [CrossRef]

150. Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bansal, P.; Bridge, A.; Poux, S.; Bougueleret, L.; Xenarios, I.; Boutet, E.
UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. Methods
Mol. Biol. 2016, 1374, 23–54. [CrossRef]

151. Lindberg, D.A. Internet access to the National Library of Medicine. Eff. Clin. Pr. ECP 2000, 3, 256–260.
152. Milacic, M.; Haw, R.; Rothfels, K.; Wu, G.; Croft, D.; Hermjakob, H.; D’Eustachio, P.; Stein, L. Annotating Cancer Variants and

Anti-Cancer Therapeutics in Reactome. Cancers 2012, 4, 1180–1211. [CrossRef] [PubMed]

http://doi.org/10.1074/jbc.M110.101105
http://doi.org/10.1242/jcs.023549
http://www.ncbi.nlm.nih.gov/pubmed/22124140
http://doi.org/10.1021/bp00018a004
http://doi.org/10.1089/ast.2012.0876
http://www.ncbi.nlm.nih.gov/pubmed/23252378
http://doi.org/10.3390/ijms20133156
http://doi.org/10.1111/boc.201700061
http://doi.org/10.1586/14789450.2014.926221
http://www.ncbi.nlm.nih.gov/pubmed/24957700
http://doi.org/10.1074/mcp.M111.013722
http://doi.org/10.1038/nprot.2007.261
http://www.ncbi.nlm.nih.gov/pubmed/17703201
http://doi.org/10.1038/nbt.1511
http://www.ncbi.nlm.nih.gov/pubmed/19029910
http://doi.org/10.1074/mcp.M113.031591
http://www.ncbi.nlm.nih.gov/pubmed/24942700
http://doi.org/10.1093/nar/gky1131
http://doi.org/10.1016/j.jprot.2013.02.022
http://doi.org/10.1016/S1471-1931(02)00205-7
http://doi.org/10.1007/978-1-4939-3167-5_2
http://doi.org/10.3390/cancers4041180
http://www.ncbi.nlm.nih.gov/pubmed/24213504

	Introduction 
	Results 
	Selection of Proteins 
	Network Formation of Selected Proteins 
	Influence of Selected Interaction on Cell Physiology 
	Proteins Binding to the Substrate Domain (SD) of BCAR1 
	Proteins Binding to other BCAR1 Domains 

	BCAR1, a Chain Link between Focal Adhesion and Cytoskeletal Proteins 
	BCAR1’s Belonging to Cellular Processes 

	Discussion 
	Materials and Methods 
	Proteome Data 
	Searching Proteins Interacting with BCAR1 
	Creation of a Semantic Network 

	Conclusions 
	References

