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Abstract

We present a k-exact reconstruction method, which can be incorporated into vertex-centered unstructured
finite-volume flow solvers to maintain a high-order accurate solution in space. The scheme is combined with
a fractional step strategy for the solution of the incompressible Navier-Stokes equations with a fully implicit
discretization of a Poisson equation for the pressure correction. This also involves a novel approach for the
flux discretization in the k-exact framework. It is shown, that a third order of accuracy can be maintained
for the discretization of convective fluxes and a second order of accuracy for diffusive fluxes, even on highly
distorted grids. The scheme is implemented into ThetaCOM, a turbulent heat release extension of DLR’s
TAU code in its combustion version, showing its applicability to be used in a full production flow solver. The
improved properties of our approach in terms of performance and accuracy are demonstrated with several
benchmarks cases in both two and three spatial dimensions.

Keywords: High-Order Accuracy, k-Exact Reconstruction, Unstructured Grids, Finite-Volume
Discretization, Projection Method, Incompressible Flow

1. Introduction

Unstructured high-order methods in Computational Fluid Dynamics are promised to reduce the com-
putational effort for high-fidelity simulations employing complex geometries, due to enhanced resolution
properties and a larger decrease of truncation errors [1, 2]. In the last decades various numerical tools have
been developed for this task, such as the discontinuous Galerkin method [3, 4, 5, 6], the spectral volume
method [7, 8, 9, 10] or spectral difference schemes [11, 12]. They all rely on the introduction of extra degrees
of freedom within each computational cell. Thus, a higher order of accuracy is achieved, while information
is only exchanged among face-neighboring elements. Such compact discretization approaches differ funda-
mentally in data structure and implementation from unstructured finite-volume schemes used in industrial
production codes. Consequently, the integration of compact methods into established flow solvers requires
a considerable effort for implementation, verification and validation [13].

However, several high-order discretization procedures for unstructured grids exist, which are based on
the finite-volume method. These are essentially related to the k-exact reconstruction, which goes back to
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the work of Barth and Frederickson [14, 15] and which was further developed by Ollivier-Gooch et al. [16, 17,
18, 19]. Basically, the solution is locally reconstructed by means of piecewiese polynomials in every control
volume, whose coefficients are typically estimated by means of least-squares approximations. Especially for
compressible flows, the k-exact reconstruction is often combined with ENO/WENO approaches [20, 21, 22,
23] in order to stabilize the solution near discontinuities. All these methods are typically referred to as
non-compact, since they involve a reconstruction over large stencils of elements. This is also their major
drawback, since a large number of elements is required as the order of accuracy increases. As a consequence,
the k-exact reconstruction on unstructured grids typically requires complex algorithms for the search and
identification of element stencils [24, 25] and is prone to cache misses due to non-local data in memory [26]
and the associated decrease in performance. Furthermore, the code scalability for parallel calculations is
significantly affected [25, 27].

In recent years, several discretization techniques have been developed to overcome these difficulties.
Haider et al. [27, 28, 29, 30] proposed an algorithm, where a k-exact reconstruction from non-local data is
performed in an efficient way, that only involves exchange of data among adjacent cells. This is done by
a recursive correction of the polynomial coefficients, which are related to approximate derivatives. These
are determined by means of a least-squares approach, such that the reconstruction polynomials conserve
the cell averages of all face-neighboring elements. Wang et al. [25, 26, 31] proposed the compact least-
squares finite-volume method, which pursues a similar strategy as the procedure by Haider. Besides the
conservation of cell averages, it further requires various orders of derivatives of dependent variables to
conserve their means on face-neighboring elements. This leads to a system of linear equations that must
be solved iteratively. Zhang et al. [32] introduced a multi-step reconstruction procedure where high-order
accurate derivatives are estimated recursively by several least-squares relations to face-neighboring elements.
Compared to Wang’s compact least-squares method, this leads to an explicit reconstruction algorithm that
features a higher efficiency for explicit schemes. A related strategy was emphasized in the multiple-correction
method by Pont et al. [13, 33, 34] and recently by Menasria et al. [35], where the required derivative
operators are computed with a Green-Gauss formulation. Compared to least-squares approaches, the latter
should overcome problems that arise for highly stretched and irregular grids. The Green-Gauss derivatives
are also corrected successively to higher levels of accuracy through several geometric correction matrices.
All of the aforementioned approaches rely on a cell-centered grid structure. Recently, Bernard et al. [36]
proposed an approach similar to the methods by Haider and Pont, which is intended for vertex-centered
grids and which involves only one single correction step. It was shown, that the condition number of the
resulting correction matrices is independent of the mesh size, in contrast to ordinary weighted least-squares
approaches. However, their approach was only applied to the linear advection of a scalar quantity in the
absence of boundary conditions.

To our knowledge, most k-exact reconstruction methods have been successfully applied to the simulation
of compressible flows. Few attempts have been made to incorporate them for the solution of the time-
dependent incompressible Navier-Stokes equations. These typically require advanced solution strategies,
since the continuity equation is only present in terms of a constraint due to the vanishing temporal derivative
of the density. Thus, it is not possible to rely on common temporal discretization schemes, which is typically
done for purely hyperbolic systems of equations. Additionally, the pressure must be coupled to the velocity
field in an adequate manner [37]. A common way to solve these problems are operator splitting techniques
such as Chorin’s projection method [38, 39]. Here, continuity is enforced through the solution of an equivalent
substitute equation involving the Laplace operator [40]. The solution to the latter typically requires certain
strategies to prevent the generation of spurious pressure oscillations [41]. This must be taken into account,
if high-order methods are used for the solution process.

This paper is devoted to extending the multiple-correction method by Pont et al. [13] to vertex-centered
unstructured grids, in order to achieve an enhanced numerical accuracy in space. A median-dual mesh
representation is employed, which involves the storage of flow data at grid nodes and loops over grid edges
for the calculation of numerical fluxes. It thus features less control-volumes and less flux-interfaces on
most unstructured grids than a cell-centered approach [15]. Since the multiple-correction method requires
the storage of grid dependent tensor metrics at exactly these entities, a vertex-centered representation
significantly reduces the memory requirements. The proposed scheme is incorporated into a fractional
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step strategy for the solution of the incompressible Navier-Stokes equations, where a fully implicit Poisson
equation for the pressure is solved. The solution procedure for the latter is slightly modified, such that it
does not require the usage of auxiliary stabilization terms to prevent spurious pressure oscillations. Besides
this, a novel discretization of convective and diffusive fluxes in the k-exact framework is presented. Even on
highly irregular meshes, it maintains a third order accurate convective and a second order accurate diffusive
transport in space. It will be shown, that our scheme can be used in full production finite-volume flow
solvers for unstructured grids. For this purpose it is implemented in DLR’s ThetaCOM code (turbulent
heat release extension for TAU in its combustion version) [42, 43, 44, 45, 46, 47, 48, 49], which features a
memory-efficient matrix free Krylov solver for the system of linear equations and multigrid preconditioning
for the Poisson equation. The 1- and 2-exact projection method and corresponding flux discretization
methods are examined by means of several canonical test cases in 2D. Further benchmarks are carried out
to demonstrate the enhanced spatial accuracy properties for the simulation of incompressible laminar flows
in two and three dimensions on fully unstructured grids and in the presence of boundary conditions. The
overall performance gain of this high-order approach is assessed by comparison of all benchmark results with
conventional spatial discretization schemes.

2. Fundamentals of the k-exact multiple-correction method

This section gives a brief introduction to the k-exact finite-volume discretization. It will then be shown
how the multiple-correction approach by Pont et al. [13] can be extended to vertex-centered grids. In
addition, the corresponding correction matrices for the cases k = 1 and k = 2 will be derived. As a starting
point, consider a general transport equation, which describes the convection and the diffusion of any scalar
quantity φ in a flow field with velocity u and diffusivity D

∂φ

∂t
+

∂

∂xi
(uiφ) +

∂

∂xi

(
D
∂φ

∂xi

)
= S. (1)

The term S incorporates local sources and sinks of φ. For simplification, the diffusivity D is assumed to be
constant in space and independent of the local concentration of the scalar. Equation (1) is solved in a domain
Ω ⊂ Rd, which is discretized by a set of linear elements, referred to as the primary grid P(Ω). It consists of
tetrahedra, hexahedra, prisms or pyramids for d = 3 or triangles and quadrilaterals for d = 2. The edge-based
representation of P(Ω) is obtained by constructing polyhedrons from the centroids of adjacent elements,
faces and edges around each primary grid node. This representation is referred to as median-dual grid D(Ω)
and it consists of N non-overlapping complex polyhedral elements Ωα that are compounds of triangular
faces [50]. Two elements Ωα and Ωβ are called adjacent, if they share a common face Aαβ . All adjacent

elements of a cell Ωα are referred to as its 1st neighborhood, signed as V(1)
α . The nth neighborhood of Ωα is

defined recursively with the neighborhoods of its adjacent elements V(n)
α :=

⋃
γ∈V(n−1)

α
V(1)
γ . Figure 1 shows

a primary grid P(Ω), its respective median-dual tessellation D(Ω) and the first and second neighborhood of
a median-dual cell Ωα for d = 2.

Fundamental to the k-exact finite-volume discretization is the volume-average φα of an element Ωα

φα =
1

|Ωα|

˚
Ωα

φ(x) dV, (2)

where |Ωα| denotes the volume of the element. In the proposed method, the volume-average φα of an
element Ωα is stored at its respective primary grid node xα. Note that this is a major difference to the
node-centered edge-based method that is popular for compressible flow problems, where a point-valued
solution is stored at these locations instead [51, 52, 53, 54, 55]. In the scope of a Godunov scheme, the
volume-averaging is applied to equation (1) such that the averages φα act as degrees of freedom. This leads
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xα
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α
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α

xΓ

Figure 1: Median-dual grid in 2D, indicated in solid lines. The corresponding primary grid is drawn in
dashed lines. The simulation variables are stored at the location of primary grid nodes, e.g. xα or xβ .

to the following system of N equations:

∂φα
∂t

+
1

|Ωα|
∑
β∈V(1)

α

[¨
Aαβ

(uiφ)ni dA+

¨
Aαβ

(
D
∂φ

∂xi

)
ni dA

]
= Sα. (3)

The surface integrals are referred to as fluxes and must be approximated in order to close the system of
equations. To solve equation (3) using the k-exact reconstruction approach, essentially three steps are
required [15]:

1. Reconstruct the solution of the primitive field variables from known volume-averages in the vicinity of
Ωα at a time step tn

2. Approximate the fluxes at element interfaces with a higher order of accuracy using the reconstructed
solution of the adjacent elements.

3. Let the system of equations evolve in time to estimate new volume-averages at a new time step tn+1.

The reconstruction for an element Ωα is carried out through a polynomial function of degree k, denoted by
φ(k+1)(x; xα), which must satisfy the k-exactness constraint [15]

φ(k+1)(x; xα) = φ(x) +O
(
hk+1

)
, (4)

with h being a characteristic width of the element and φ(x) the exact value of φ at location x. The superscript
in brackets indicates the order of accuracy to approximate the solution. To estimate the unknown polynomial
coefficients, at least

(
k+d
k

)
averages φ must be provided [27]. This set of associated elements will be denoted

byNα and it is required that all these elements are located in the vicinity of Ωα. Typically, a larger number of
elements is used in order to stabilize the reconstruction. A requirement for φ(k+1)(x; xα) is the conservation
of the mean, which states that the reconstruction polynomial must preserve the volume-average of φ on Ωα
with an appropriate order of accuracy. Furthermore, the volume-averages φβ of all cells in the support Nα
must be conserved as well

1

|Ωα|

˚
Ωα

φ(k+1)(x; xα) dV = φα +O
(
hk+1

)
, (5a)

1

|Ωβ |

˚
Ωβ

φ(k+1)(x; xα) dV = φβ +O
(
hk+1

)
, ∀β ∈ Nα. (5b)

The reconstruction function of a median-dual cell Ωα can be expressed by means of a Taylor-polynomial of
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degree k

φ(k+1)(x; xα) = φ
∣∣∣(k+1)

xα
+

∂φ

∂xi1

∣∣∣∣(k)

xα

(xi1 − xi1,α)+. . .+
1

k!

∂kφ

∂xi1 . . . ∂xik

∣∣∣∣(1)

xα

(xi1 − xi1,α) . . . (xik − xik,α) . (6)

The point of evaluation xα is the primary grid position, around which Ωα is constructed and φ|(k+1)
xα

refers to

the approximation of the point value φ(xα) with an accuracy of O(hk+1). Respectively, the derivative terms
denote k-exact differentiation operators, which approximate the nth derivative of φ at xα with an accuracy

of O(hk−n+1). The point value φ|(k+1)
xα

can be related to the volume-average φα by applying operator (2)
on the reconstruction polynomial (6)

φ
∣∣∣(k+1)

xα
= φα −

∂φ

∂xi1

∣∣∣∣(k)

xα

M(α,α)
i1

− . . .− 1

k!

∂kφ

∂xi1 . . . ∂xik

∣∣∣∣(1)

xα

M(α,α)
i1...ik

+O
(
hk+1

)
. (7)

Equation (7) can thus be used to determine φ|(k+1)
xα

in the reconstruction polynomial with an appropriate

accuracy, if the corresponding derivatives at xα are known. The terms M(α,α)
i1...ip

are referred to as rank p
geometric volume moment tensors. These quantities are of major importance to maintain a higher order of
accuracy, especially on highly distorted grids. They are defined in a general way for a volume Ωβ and any
point xα by

M(β,α)
i1i2...ip

=
1

|Ωβ |

˚
Ωβ

(xi1 − xi1,α) (xi2 − xi2,α) . . .
(
xip − xip,α

)
dV (8)

and can be calculated analytically prior to the simulation. The first superscript β denotes the volume Ωβ for
performing the averaging and the second superscript α denotes the point xα used for centering the moment.
For a detailed explanation and formulas on the calculation of geometric moment tensors for polyhedral

elements we refer to the literature [56, 57]. The rank one volume moment tensor M(α,α)
i simply expresses

the distance of a primary grid node xα towards the geometric centroid of the median-dual element Ωα. It

reduces to zero if both coincide. On the contrary, the symmetric rank two volume moment tensors M(α,α)
ij

eigenvalues describe the moments of inertia of Ωα towards xα and it does not equal zero [36]. The proposed

method requires geometric moments M(β,α)
i1i2...ip

between two adjacent cells Ωα and Ωβ . However, only the

moment tensors M(α,α)
i1i2...ip

must be stored for each element, since M(β,α)
i1i2...ip

can be deduced from binomial

expansion [17, 58]. The following relations can be obtained for the rank one and rank two volume moments:

M(β,α)
i =M(β, β)

i + (xi, β − xi,α) , (9a)

M(β,α)
ij =M(β, β)

ij + (xi, β − xi,α)M(β, β)
j + (xj, β − xj,α)M(β, β)

i + (xi, β − xi,α) (xj, β − xj,α) . (9b)

It remains to approximate the unknown derivative operators in Equations (6) and (7) with appropriate
accuracies. This is often addressed with a least-squares approach over all elements in the stencil Nα. But
especially for d = 3, a high number of elements is required to ensure a stable reconstruction. A further
problem is that most elements in Nα are not adjacent to Ωα. To exchange information among Nα, complex
data structures are required which leads to performance implications in terms of cache misses due to non-
local memory access [26, 27]. Furthermore, if the entire domain Ω is decomposed for parallel computations,
data packages of stencils that are distributed among domains must be exchanged. Since these overlapping
stencils may vary in size, this also applies to the resulting data packages, which limits the parallel efficiency
of the code [25, 27].

These problems are avoided in the multiple-correction approach, where the unknown derivatives are
determined through approximate Green-Gauss gradients, that only involve exchange of information between
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face-neighboring elements. Since these a priori derivatives do not meet the required k-exactness constraints,
they must be corrected with certain matrices, which successively increase their k-exactness level. These
correction matrices depend solely on the mesh geometry and are calculated prior to the simulation, if the
grid-structure is not varying in time. In the following sections, the correction matrices needed for 1- and
2-exact derivatives on vertex-centered grids will be derived.

2.1. 1-exact reconstruction

As a starting point, the gradient of the solution must be somehow approximated from available volume-
averages from face-neighboring elements of Ωα. This is done with a Green-Gauss gradient operator, which
is widely used in vertex-centered codes [59]

∂φ

∂xi

∣∣∣∣(0)

xα

:=
1

|Ωα|
∑
β∈V(1)

α

1

2

(
φα + φβ

)
S(αβ)
i . (10)

Here, S(αβ) refers to the joint normal of all sub-faces of the median-dual face Aαβ . Its norm equals the
surface area |Aαβ |. As already mentioned, the superscripts of point values enclosed in brackets serve to
emphasize the order of accuracy. Thus, the gradient operator in equation (10) features a discretization error
of O(1). As it will shown below, this error occurs if the grid is deformed to a certain degree. To deduce a
1-exact gradient operator, the solution of φ(x) is approximated through a Taylor series expansion of degree
one

φ(x) = φ
∣∣∣
xα

+
∂φ

∂xi

∣∣∣∣
xα

(xi − xi,α) +O
(
h2
)
. (11)

Note that these point values without superscripts refer to the actual solution and its derivatives at the
position xα. To relate the available volume-averages to this Taylor polynomial, equation (11) is volume-

averaged over element Ωα and all elements in its first neighborhood V(1)
α . The following equations result

under consideration of the geometric volume moment tensor definition in equation (8)

φα = φ
∣∣∣
xα

+
∂φ

∂xi

∣∣∣∣
xα

M(α,α)
i +O

(
h2
)
, (12)

φβ = φ
∣∣∣
xα

+
∂φ

∂xi

∣∣∣∣
xα

M(β,α)
i +O

(
h2
)

(13)

These expressions for the averages φα and φβ are inserted into the Green-Gauss gradient operator (10) for
which the geometric conservation property is exploited∑

β∈V(1)
α

S(αβ)
i = 0. (14)

It is now possible to relate the gradient operator (10) to the actual derivative at point xα through a linear
mapping with a matrix Gα:

∂φ

∂xi

∣∣∣∣(0)

xα

= G−1
ij,α

∂φ

∂xj

∣∣∣∣
xα

+O (h) (15)

This matrix-operation can be interpreted as a linear transformation of the initial Green-Gauss gradient,
such that it can serve as derivative for an underlying reconstruction function that satisfies the conservation
of the mean with an accuracy of O(h2). Note, that if G−1

ij,α equals a unit matrix δij , the initial gradient
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operator satisfies this condition inherently and thus features an error of O(h). This is the case, if the domain
is discretized on a regular cartesian grid. Grid deformations lead G−1

ij,α to deviate from δij , which causes a
constant error to manifest in equation (15). Note that this is a fundamental difference to node-centered
edge-based methods, for which the Green-Gauss gradient from equation (10) is exact for linear functions on
arbitrary triangular/tetrahedral grids [51, 52]. It can be shown that the inverse of the correction matrix Gα

is calculated from a Green-Gauss gradient of the first geometric volume moment tensor of Ωα

G−1
ij,α :=

∂Mj

∂xi

∣∣∣∣(0)

xα

with
∂Mj

∂xi

∣∣∣∣(0)

xα

:=
1

|Ωα|
∑
β∈V(1)

α

1

2

(
M(β,α)

j +M(α,α)
j

)
S(αβ)
i . (16)

This simply refers to the application of the operator in equation (10) on the respective tensor entries. It must
be noticed, that the centering of the volume moments in equation (16) varies according to the respective
element Ωα, where relation (9a) can be used. Incorporating the rank one moment tensor into matrix Gα

is one major difference towards the cell-centered approach, described in the work of Pont et al. [13]. In a
cell-centered approach, the data is stored at the geometric centroids of primary grid elements, leading to
the fact that rank one geometric volume moments reduce to zero. In contrast, elements in an edge-based
representation feature a higher complexity in terms of their shape. If the flow data is stored at the primary
grid nodes xα, which generally do not coincide with the geometric centroid of a median-dual element, the

condition M(α,α)
i = 0 is violated and must be taken into account. This is done inherently by the definition

of matrix Gα. Thus, the proposed method gives the opportunity to store the cell-averaged solution at any
point within element Ωα while preserving the order of accuracy. Finally, the matrix is used to introduce a
1-exact gradient operator, which is calculated by

∂φ

∂xi

∣∣∣∣(1)

xα

:= Gij,α
∂φ

∂xj

∣∣∣∣(0)

xα

where
∂φ

∂xi

∣∣∣∣(1)

xα

= δij
∂φ

∂xj

∣∣∣∣
xα

+O (h) . (17)

It is used to approximate the solution in the vicinity of Ωα with a 1-exact reconstruction polynomial

φ(2)(x; xα) = φ
∣∣∣(2)

xα
+

∂φ

∂xi

∣∣∣∣(1)

xα

(xi − xi,α) with φ
∣∣∣(2)

xα
= φα −

∂φ

∂xi

∣∣∣∣(1)

xα

M(α,α)
i . (18)

2.2. 2-exact reconstruction

If the solution is to be approximated by a 2-exact reconstruction polynomial, a second derivative of
appropriate order of accuracy is required. It is obtained by applying the Green-Gauss operator (10) on the
1-exact gradient of φ. This leads to an approximate Hessian matrix which features an error of O(1) on
deformed grids

∂2φ

∂xi∂xj

∣∣∣∣(0)

xα

:=
1

|Ωα|
∑
β∈V(1)

α

1

2

(
∂φ

∂xi

∣∣∣∣(1)

xα

+
∂φ

∂xi

∣∣∣∣(1)

xβ

)
S(αβ)
j (19)

Similar to the gradient, there exists a linear mapping, which can be used to correct this Hessian matrix to
a form that ensures an accuracy of O(h) on arbitrary grids. The starting point is a Taylor series expansion
of second degree for the solution φ around a primary grid node xα:

φ(x) = φ
∣∣∣
xα

+
∂φ

∂xi

∣∣∣∣
xα

(xi − xi,α) +
1

2

∂2φ

∂xi∂xj

∣∣∣∣
xα

(xi − xi,α) (xj − xj,α) +O
(
h3
)
. (20)

By volume-averaging equation (20) on Ωα and Ωβ , the available averages can be expressed by

φα = φ
∣∣∣
xα

+
∂φ

∂xi

∣∣∣∣
xα

M(α,α)
i +

1

2

∂2φ

∂xi∂xj

∣∣∣∣
xα

M(α,α)
ij +O

(
h3
)
, (21)
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φβ = φ
∣∣∣
xα

+
∂φ

∂xi

∣∣∣∣
xα

M(β,α)
i +

1

2

∂2φ

∂xi∂xj

∣∣∣∣
xα

M(β,α)
ij +O

(
h3
)
. (22)

After inserting these expressions for φα and φβ into the 1-exact gradient operator (17), it can be shown that
the leading error term of the 1-exact gradient rises with the second derivative of φ at xα according to

∂φ

∂xi

∣∣∣∣(1)

xα

=
∂φ

∂xi

∣∣∣∣
xα

+
1

2

∂2φ

∂xj∂xk

∣∣∣∣
xα

∂Mjk

∂xi

∣∣∣∣(1)

xα

+O
(
h2
)
, (23)

where the 1-exact gradient of the rank two geometric volume moments has been introduced as

∂Mmn

∂xi

∣∣∣∣(1)

xα

:=
Gij,α
|Ωα|

∑
β∈V(1)

α

1

2

(
M(β,α)

mn +M(α,α)
mn

)
S(αβ)
j . (24)

This quantity lies in the order of magnitude of O(h). Thus, if the second derivative of φ is estimated with
an accuracy of O(h), it can be used to correct the 1-exact gradient operator to reach an accuracy of O(h2).
This successive correction of derivatives is the key in the multiple-correction approach to reach higher levels
of accuracy, while information is only exchanged among adjacent elements. To obtain a correction procedure
for the Hessian matrix (19), the 1-exact gradient at position xβ must be expressed similar to the derivative
in (23)

∂φ

∂xi

∣∣∣∣(1)

xβ

=
∂φ

∂xi

∣∣∣∣
xα

+
∂2φ

∂xi∂xj

∣∣∣∣
xα

(xj, β − xj,α) +
1

2

∂2φ

∂xj∂xk

∣∣∣∣
xα

∂Mjk

∂xi

∣∣∣∣(1)

xβ

+O
(
h2
)
, (25)

The analytic derivatives at xβ have been expressed through derivatives at xα for which the underlying
Taylor-polynomial (20) has been exploited. The relation is finally inserted into the Hessian operator (19)

∂2φ

∂xixj

∣∣∣∣(0)

xxα

=
∂2φ

∂xi∂xk

∣∣∣∣
xα

∂xk
∂xj

∣∣∣∣(0)

xα

+
1

2

∂2φ

∂xm∂xn

∣∣∣∣
xα

∂2Mmn

∂xi∂xj

∣∣∣∣(0)

xα

+O (h) , (26)

with the Green-Gauss derivative operators for xk and Mmn

∂xk
∂xj

∣∣∣∣(0)

xα

:=
1

|Ωα|
∑
β∈V(1)

α

1

2
(xk,α + xk, β)S(αβ)

j , (27)

∂2Mmn

∂xi∂xj

∣∣∣∣(0)

xα

:=
1

|Ωα|
∑
β∈V(1)

α

1

2

(
∂Mmn

∂xi

∣∣∣∣(1)

xα

+
∂Mmn

∂xi

∣∣∣∣(1)

xβ

)
S(αβ)
j . (28)

The linear mapping in equation (26) can be expressed in terms of a matrix multiplication by vectorizing the

Hessian matrices. The vectorized Hessian will be denoted by D̂α(φ) and all matrix entries are arranged in
the following order, as shown for the approximate Hessian matrix:

D̂(0)
α (φ) =

[
∂2φ

∂x1∂x1

∣∣∣(0)

xα

∂2φ
∂x1∂x2

∣∣∣(0)

xα

∂2φ
∂x1∂x3

∣∣∣(0)

xα

∂2φ
∂x2∂x2

∣∣∣(0)

xα

∂2φ
∂x2∂x3

∣∣∣(0)

xα

∂2φ
∂x3∂x3

∣∣∣(0)

xα

]
. (29)

9



Considering the symmetry of the Hessian matrix, it is now possible to obtain a correction matrix Hij,α to

relate the approximate Hessian matrix operator D̂
(0)
α (φ) to its analytical counterpart D̂α(φ)

D̂
(0)
i,α(φ) = H−1

ij,α D̂j,α(φ) +O (h) . (30)

It is shown in Appendix A how the entries of matrix H−1
ij,α are calculated. Just like Gα, matrix Hα depends

solely on the mesh geometry and thus can be calculated and inverted prior to the simulation. It also reduces
to a unit matrix δij for regular cartesian grids. Finally, a 2-exact Hessian matrix operator is introduced as

D̂
(1)
i,α(φ) := Hij,α D̂

(0)
j,α(φ). (31)

During runtime, it is only necessary to compute this matrix-vector product, in order to correct the Hessian
operator (19) onto its 2-exact form. Since this Hessian operator features an accuracy of O(h), it can be
employed to correct the 1-exact gradient according to equation (23). This leads to the definition of the
2-exact gradient operator

∂φ

∂xi

∣∣∣∣(2)

xα

:=
∂φ

∂xi

∣∣∣∣(1)

xα

− 1

2

∂2φ

∂xj∂xk

∣∣∣∣(1)

xα

∂Mjk

∂xi

∣∣∣∣(1)

xα

. (32)

The 1-exact gradient of the rank two volume moments must be stored in addition to the defined correction
matrices for every primary grid node. It is also calculated only once prior to the simulation, if no mesh
deformation is considered. Finally, the 2-exact reconstruction polynomial can be estimated according to

φ(3)(x; xα) = φ
∣∣∣(3)

xα
+

∂φ

∂xi

∣∣∣∣(2)

xα

(xi − xi,α) +
1

2

∂2φ

∂xi∂xj

∣∣∣∣(1)

xα

(xi − xi,α) (xj − xj,α) , (33)

where the point value of φ at xα is approximated according to equation (7) with

φ
∣∣∣(3)

xα
= φα −

∂φ

∂xi

∣∣∣∣(2)

xα

M(α,α)
i − 1

2

∂2φ

∂xi∂xj

∣∣∣∣(1)

xα

M(α,α)
ij . (34)

The overall procedure to obtain a 2-exact reconstruction of φ in the entire domain is summarized in algo-
rithm 1.

2.3. Reconstruction at boundaries

A problem of the median-dual representation is that primary grid nodes at boundaries are not located in
the interior of their associated median-dual elements, but rather directly on the element boundary-interface.
This is particularly undesirable at solid walls and can lead to problems at sharp corners [50]. To avoid
these issues, certain boundary-vertices are shifted into the domain. The shifting of a boundary node xα
is applied by translating it towards the interior of the domain and normal to the adjacent boundary face.
This is done prior to the construction of the median-dual representation and affects the shape and size of
the respective boundary element Ωα, as well as its direct neighboring elements. This is indicated in Figure 2
for a primary grid of triangles. Boundary nodes are only shifted, when they are adjacent to wall boundary
conditions, inlets or outlets. In contrast, vertices at symmetry boundary conditions remain. Note, that all
boundaries are represented exclusively by planar triangles or quadrilaterals. This discrete approximation of
boundaries inhertly introduces an error of O

(
h2
)

[19]. Both shifted and non-shifted boundaries affect the
calculation of the k-exact correction matrices, since the latter depend on derivatives of the geometric volume
moment tensors and these in turn get affected by boundaries. The influence of boundaries on the 1-exact
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Algorithm 1 Procedure for obtaining a 2-exact reconstruction of a field variable φ.

1: procedure Reconstruct Solution 2-Exact(φ)

2: for α← 1 to N do

3: Compute approximate Green-Gauss operator ∂φ
∂xi

∣∣∣(0)

xα
from equation (10)

4: Obtain 1-exact gradient ∂φ
∂xi

∣∣∣(1)

xα
through correction with matrix Gij,α (17)

5: Compute approximate Hessian matrix operator ∂2φ
∂xi∂xj

∣∣∣(0)

xα
from equation (19)

6: Obtain 2-exact Hessian matrix ∂2φ
∂xi∂xj

∣∣∣(1)

xα
through correction with matrix Hij,α (31)

7: Correction for 2-exact gradient ∂φ
∂xi

∣∣∣(2)

xα
using 2-exact Hessian matrix (32)

8: Reconstruct 2-exact point value φ
∣∣∣(3)

xα
at primary grid nodes xα (34)

9: φ(3)(x; xα)← 2-exact reconstruction polynomial on Ωα (33)

10: return

V(1)
αV(2)

α Bα

S(αγ)Ωγ

Ωα
xα

(a) Non-shifted boundaries

xγ

xΓ

Ωα

Ωγ

xα

(b) Shifted boundaries

Figure 2: Median-dual representation at boundaries. Dashed lines refer to the primary grid and thin solid
lines to its respective median-dual representation. The thick solid line highlights the boundary. The area
enclosed by the dash-dotted line shows a ghost element Ωγ that is adjacent to the element Ωα of the
respective boundary node xα. For shifted boundary elements, xΓ denotes a point on the boundary surface
Aαγ between Ωα and Ωγ . The solution of a ghost element Ωγ is stored at xγ .

reconstruction can be taken into consideration through an additional term in the gradient operator (10)

∂φ

∂xi

∣∣∣∣(0)

xα

:=
1

|Ωα|
∑
β∈V(1)

α

1

2

(
φα + φβ

)
S(αβ)
i +

1

|Ωα|
∑
γ∈Bα

φ
∣∣∣
xΓ

S(αγ)
i . (35)

Here, Bα includes the neighborhood of boundary ghost elements Ωγ adjacent to Ωα. In this context, the
position xΓ refers to the centroid of the boundary face Aαγ and φ|xΓ

indicates a prescribed boundary
value. For non-shifted boundaries xα coincides with xΓ, as well as with node xγ at which the solution of
the adjacent ghost element Ωγ is stored. This can be incorporated into matrix Gij,α, if the value φ|xΓ

is
calculated according to

φ
∣∣∣
xΓ

=
1

2

(
φα + φγ

)
+O (h) . (36)
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As a result, the respective ghost elements Ωγ can be included in the gradient calculation of the rank
one volume moment tensor (16) similarly to interior elements. The volume moments of these non-shifted
boundary ghost cells Ωγ are deduced by mirroring the volume moments of the inner element Ωα at the
boundary face Aαγ with a rotation matrix Rij

M(γ,γ)
i = RijM(α,α)

j with Rij = δij − 2
S(αγ)
i S(αγ)

j

S(αγ)
k S(αγ)

k

. (37)

At shifted boundaries, the presence of boundary ghost cells Ωγ is neglected and the value φ|xΓ
is expressed

at the boundary face in terms of a 1-exact Taylor polynomial

φ
∣∣∣
xΓ

= φ
∣∣∣
xα

+
∂φ

∂xi

∣∣∣∣
xα

(xi,γ − xi,α) +O
(
h2
)

(38)

This term is substituted into the Green-Gauss gradient operator (10), leading to the following correction
term

Bij,α =
1

|Ωα|
∑
γ∈Bα

(xj,γ − xj,α)S(αγ)
i , (39)

that must be added to the inverse of matrix G−1
ij,α in equation (16). The consideration of boundaries for the

Hessian operator is more challenging, since this requires the knowledge of derivatives of flow quantities in
the ghost cells. To circumvent this, interior gradients are simply extrapolated onto the nodes of boundary
ghost cells xγ . The approximate Hessian operator (19) can then be extended with the following boundary
contribution

∂2φ

∂xixj

∣∣∣∣(0)

xα

:=
1

|Ωα|
∑
β∈V(1)

α

1

2

(
∂φ

∂xi

∣∣∣∣(1)

xα

+
∂φ

∂xi

∣∣∣∣(1)

xβ

)
S(αβ)
j +

1

|Ωα|
∑
γ∈Bα

1

2

(
∂φ

∂xi

∣∣∣∣(1)

xα

+
∂φ

∂xi

∣∣∣∣(1)

xγ

)
S(αγ)
j . (40)

With this approach boundaries can simply be taken into account for the correction matrix Hij,α by providing

further information on the rank two volume moment tensors M(γ,γ)
ij of the ghost cells Ωγ . These are then

used in the calculation of the respective moment tensor derivatives in equations (24) and (28). For the

actual gradient computation, the approximation of the ghost cell gradient ∂φ
∂xi

∣∣∣(1)

xγ
depends on the boundary

treatment. Since non-shifted boundaries are used for symmetry conditions, the gradient is mirrored at such
boundary interfaces.

∂φ

∂xi

∣∣∣∣(1)

xγ

= Rij
∂φ

∂xj

∣∣∣∣(1)

xα

. (41)

For shifted boundaries the gradient is extrapolated from the interior element Ωα and its first neighborhood V(1)
α :

∂φ

∂xi

∣∣∣∣(1)

xγ

=
∂φ

∂xi

∣∣∣∣(1)

xα

+

 1

|Ωα|
∑
β∈V(1)

α

1

2

(
∂φ

∂xi

∣∣∣∣(1)

xα

+
∂φ

∂xi

∣∣∣∣(1)

xβ

)
S(αβ)
j

 (xj,γ − xj,α) . (42)

The proposed approach adjusts correction matrices in the vicinity of boundaries, so that the levels of
accuracy for derivatives are formally maintained for boundary elements. This also affects correction matrices
of elements that are not directly located at the domain boundaries. A drawback is that the solution near
boundaries is essentially reconstructed on a stencil with fewer elements. This makes it prone to the occurrence
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of instabilities, which was found particularly for shifted boundaries in connection with strong gradients. As
a remedy, correction matrices at shifted boundaries are replaced by unit matrices, in order to overcome these
stability problems. This reduces the accuracy of the calculated derivatives of boundary elements, since they
are essentially calculated from the standard Green-Gauss procedures given in equation (10) and (19). The
ghost cell correction for volume moment gradients is still employed, since it also affects elements that are
not directly located at the domain boundaries.

3. Approximation of face fluxes

Once the reconstruction polynomials are determined, the surface integrals of equation (3) must be eval-
uated at element interfaces. In the scope of k-exact higher-order methods, this is generally done by re-
constructing the flux function on the face at several quadrature points, in order to maintain the desired
order of accuracy [17, 31, 58, 60, 61]. A drawback of this method is, that the number of quadrature points
rises rapidly for the employed median-dual grid representation, where faces are compounds of several sub-
triangles. In addition, to integrate this approach into an existing finite-volume solver, the underlying code
structure must be modified significantly. Instead, a single-point surface integration method is applied in this
work, which has also been successfully applied by Pont et al. [33] and Menasria et al. [35] for cell-centered
grids. Furthermore, it was shown in the author’s previous work [62, 63] that it is possible to employ this
method for median-dual grids in d = 2. The approach is based on a Taylor series expansion around a single
point xΓ on a median-dual face Aαβ . The surface-integral of any flux function fi can then be approximated
by means of the reconstructed value fΓ,i and its derivatives at point xΓ:

¨
Aαβ

fi ni dA = fi

∣∣∣
xΓ

S(αβ)
i +

∂fi
∂xj1

∣∣∣∣
xΓ

S(αβ)
i,j1

+ . . .+
1

k!

∂kfi
∂xj1 . . . ∂xjk

∣∣∣∣
xΓ

S(αβ)
i,j1...jk

+O
(
hk+1

)
. (43)

This integration method relies on the definition of the rank p geometric surface moments, which give the
opportunity to approximate the surface-integral with a higher order of accuracy regardless of the shape of
the underlying primary grid elements. This can be achieved with only a single point of evaluation, whose
position can be chosen arbitrarily on the surface. The surface moments are generally defined for a face Aαβ
by

S(αβ)
i,j1j2...jp

=

¨
Aαβ

ni (xj1 − xj1,Γ) (xj2 − xj2,Γ) . . .
(
xjp − xjp,Γ

)
dA. (44)

The subscripts i and jp are separated by a comma to highlight that i indicates the face normal direction
and jp the spatial direction of the terms

(
xjp − xjp,Γ

)
. The superscripts (αβ) indicate the elements Ωα and

Ωβ adjacent to the face, on which point xΓ for the Taylor series expansion is located. The rank zero surface
moments have already been introduced for the estimation of k-exact derivatives. The surface moments of a
surface Aαβ can be calculated from a weighted sum of the surface moments of its corresponding sub-triangles
with their surface normals. This is done prior to the simulation. A detailed explanation on how to calculate
geometric moments for triangular surfaces can be found in the literature [56]. Note that in contrast to
the geometric volume moment formulation, the surface moments are not normalized with the interface area
|Aαβ |. This is due to reasons of clarity for the further derivation of the scheme. It remains to reconstruct
the unknown flux function fi|xΓ

and its derivatives at the cell interfaces. As it will be shown, these can be
obtained from the already determined reconstruction polynomials of the adjacent elements.

3.1. Convective fluxes

In order to obtain a k-exact approximation of the convective fluxes fi = (uiφ), the primitive field variables
ui and φ are simply substituted by means of their reconstruction polynomials. The resulting product of
these functions is then evaluated at xΓ. This is done similarly for the derivatives of fi, where derivatives of
the reconstruction polynomials are employed. After some algebra, it is possible to reformulate the convective
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fluxes in terms of 2-exact reconstructed primitive field variables ui and φ as:

¨
Aαβ

(uiφ)ni dA = ṁ
∣∣∣(3)

xΓ

φ
∣∣∣(3)

xΓ

+ ṁi

∣∣∣(3)

xΓ

∂φ

∂xi

∣∣∣∣(2)

xΓ

+
1

2
ṁij

∣∣∣(3)

xΓ

∂2φ

∂xi∂xj

∣∣∣∣(1)

xΓ

+ |Aαβ | O
(
h3
)
, (45)

where the mass flux terms ṁ have been defined by

ṁ
∣∣∣(3)

xΓ

= ui

∣∣∣(3)

xΓ

S(αβ)
i +

∂ui
∂xj

∣∣∣∣(2)

xΓ

S(αβ)
i,j +

1

2

∂2ui
∂xj∂xk

∣∣∣∣(1)

xΓ

S(αβ)
i,jk , (46a)

ṁi

∣∣∣(3)

xΓ

= uj

∣∣∣(3)

xΓ

S(αβ)
j,i +

∂uj
∂xk

∣∣∣∣(2)

xΓ

S(αβ)
j,ki , (46b)

ṁij

∣∣∣(3)

xΓ

= uk

∣∣∣(3)

xΓ

S(αβ)
k,ij . (46c)

Note that all these terms scale with |Aαβ |, due to the surface integration and the respective definition of the
geometric surface moment tensors. Furthermore, the mass flux terms (46b) and (46c) scale also with h and
h2, respectively, which leads to the overall accuracy of O(h3). The mass flux tensors at the interface node
xΓ are calculated with a central averaging of the reconstructed values from both adjacent elements. Note,
that during the solution process this is done only once at the beginning of each time step tn.

In the scope of inviscid compressible flows, convective numerical fluxes are typically evaluated as (approx-
imate) solutions to local Riemann problems, exploiting the hyperbolic nature of the underlying equations.
Unfortunately, this cannot be extended directly to fractional step approaches, since the system of equations
are treated in a decoupled manner. Thus, to keep the numerical dissipation as small as possible, a central
approximation of face values is employed, using the reconstruction functions of the adjacent elements. This
method lacks to recognize and suppress odd-even decoupling of the solution [50]. Hence, to stabilize the
solution process, the reconstruction of face values is biased towards the element in upwind direction. This
acts as an artificial numerical dissipation term and has also been employed in several other works [13, 64, 65].
A detailed analysis on the spectral properties for this approach has been given by Pont et al. [13] for cell-

centered grids. Finally, for a 2-exact reconstruction, the scalar field variable φ|(3)
xΓ

at the interface Aαβ is
finally approximated according to

φ
∣∣∣(3)

xΓ

= aU φ
∣∣∣(3)

xU
+ aD φ

∣∣∣(3)

xD
+

(
bU

∂φ

∂xi

∣∣∣∣(2)

xU

+ bD
∂φ

∂xi

∣∣∣∣(2)

xD

)
∆xi,DU

+

(
cU

∂2φ

∂xi∂xj

∣∣∣∣(1)

xU

+ cD
∂2φ

∂xi∂xj

∣∣∣∣(1)

xD

)
∆xi,DU∆xj,DU .

(47)

Here, U is the upwind and D the downwind direction at the interface and ∆xi,DU = xi,D−xi,U denotes the

distance vector from the upwind to the downwind node. Note that the point values φ|(3)
xU

and φ|(3)
xD

must be
approximated from the underlying reconstruction polynomial according to equation (7). The derivatives of
φ at the interface are reconstructed similarly

∂φ

∂xi

∣∣∣∣(2)

xΓ

= aU
∂φ

∂xi

∣∣∣∣(2)

xU

+ aD
∂φ

∂xi

∣∣∣∣(2)

xD

+

(
bU

∂2φ

∂xi∂xj

∣∣∣∣(2)

xU

+ bD
∂2φ

∂xi∂xj

∣∣∣∣(2)

xD

)
∆xj,DU , (48)

∂2φ

∂xi∂xj

∣∣∣∣(1)

xΓ

= aU
∂2φ

∂xi∂xj

∣∣∣∣(1)

xU

+ aD
∂2φ

∂xi∂xj

∣∣∣∣(1)

xD

. (49)
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By adjustment of the coefficients a, b, c it is possible to blend between different discretization schemes.
Table 1 shows parameters that lead to a 2-exact, a 1-exact and to two 0-exact schemes, namely the Low-
Dissipation Low-Dispersion scheme (LD2) by Loewe et al. [66], as well as a conventional central differencing
scheme (CDS). The latter are typically considered as second-order accurate finite-volume schemes, but are
only first-order accurate on distorted grids. Thus, the 1-exact approach is already an improvement with
respect to these conventional schemes, since the accuracy is maintained, regardless of the grid, as it will be
demonstrated in Section 5. Depending on the exactness of the scheme, the respective correction operations
on the derivatives are applied. For the 0-exact schemes, point values such as φ|xU reduce to volume-averages

φU and only geometric surface moments of rank zero are used. The parameter θ ∈ [0, 1] is utilized for the
2- and 1-exact schemes to shift the bias towards the element in the upwind direction and thus stabilizing
the solution. A value of θ = 0 results in a central discretization, whereas with θ = 1 the bias is set fully
towards the upwind direction. In the entire work, a value of θ = 0.2 is used. For all schemes, terms that
contain derivatives are set to zero for the reconstruction of face-values adjacent to shifted elements. This
increases the overall stability, especially for the 2-exact reconstruction, even though the reconstruction is
formally first-order accurate at such faces. However, it was observed that this error does not significantly
affect the solution in all the examined test cases that involve shifted boundaries.

Table 1: Parameters for the flux calculation with different discretization schemes.

Scheme aU aD bU bD cU cD
k = 2 (1 + θ)/2 (1− θ)/2 (1 + θ)/4 −(1− θ)/4 (1 + θ)/16 (1− θ)/16
k = 1 (1 + θ)/2 (1− θ)/2 (1 + θ)/4 −(1− θ)/4 0 0
LD2 1/2 1/2 9/50 −9/50 0 0
CDS 1/2 1/2 0 0 0 0

3.2. Diffusive fluxes

For the diffusive fluxes fi = D(∂φ/∂xi) a classical scheme referred to as Mathur-Murthy [67, 68] or face-
tangent scheme [59] will be used. This scheme is often employed for unstructured grids and is known to be
second-order accurate in space. However, it will be shown that the median-dual representation introduces
an error of O (h) on distorted grids. In the following, additional terms for the scheme are derived, which
allow to overcome this error through a k-exact reconstruction. Starting point is an approximation of the
surface-integral by means of equation (43)

¨
Aαβ

(
D
∂φ

∂xi

)
ni dA = D

∂φ

∂xi

∣∣∣∣
xΓ

S(αβ)
i +D

∂2φ

∂xi∂xj

∣∣∣∣
xΓ

S(αβ)
i,j + |Aαβ | O

(
h2
)
. (50)

Unlike for the convective fluxes, the surface-integral cannot be approximated with O
(
h3
)
. This would

require the first and second derivatives of φ to have a higher exactness level, as well as a third derivative
to be available with an accuracy of O (h). This can be provided with a 3-exact reconstruction, but is not
investigated in this work. To prevent spurious oscillations, it is desired to express the first term on the right
of equation (50) by means of the adjacent volume-averages φα and φβ [67]. This is achieved by splitting the

joint face normal vector S(αβ)
i in two parts

∂φ

∂xi

∣∣∣∣
xΓ

S(αβ)
i = ε(αβ)

(
∂φ

∂xi

∣∣∣∣
xΓ

∆xi, βα

)
− ∂φ

∂xi

∣∣∣∣
xΓ

(
ε(αβ)∆xi, βα − S(αβ)

i

)
, (51)

where the factor ε(αβ) is defined by

ε(αβ) =
S(αβ)
i S(αβ)

i

∆xj, βα S(αβ)
j

. (52)
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The first term arises from the projection of the distance vector ∆xi, βα = xi, β − xi,α onto the face normal

S(αβ)
i , both pointing from element Ωα to Ωβ . The second term contributes for the part of ∆xi, βα which is

orthogonal to S(αβ)
i , as illustrated in Figure 3. It reduces to zero for orthogonal grids.

xα

xβ

xΓ

S(αβ)

(ε∆xβα − S(αβ))(ε∆
xβα

)

Figure 3: Splitting of the joint median-dual face normal S(αβ)
i into a part (ε(αβ)∆xi, βα) projected onto the

distance vector xi, βα and a part (ε(αβ)∆xi, βα − S(αβ)
i ) orthogonal to it.

The goal is to express the projection of the face-gradient on the vector ∆xβα in equation (51) by means
of the volume-averages φα and φβ , which leads to a formulation that is especially robust for highly-skewed
grids [51, 59]. However, it must be ensured that this formulation satisfies the constraints given from the
k-exactness criteria (4) and (5). For the derivation of such a relation, a Taylor-series expansion is defined
in the vicinity of node xΓ, which reads for k = 2:

φ(x) = φ
∣∣∣
xΓ

+
∂φ

∂xi

∣∣∣∣
xΓ

(xi − xi,Γ) +
1

2

∂2φ

∂xi∂xj

∣∣∣∣
xΓ

(xi − xi,Γ) (xj − xj,Γ) +O
(
h3
)
. (53)

This equation is volume-averaged in order to obtain expressions of averaged quantities of the adjacent
elements that satisfy the conservation of the mean

φα = φ
∣∣∣
xΓ

+
∂φ

∂xi

∣∣∣∣
xΓ

M(α,Γ)
i +

1

2

∂2φ

∂xi∂xj

∣∣∣∣
xΓ

M(α,Γ)
ij +O

(
h3
)
, (54a)

φβ = φ
∣∣∣
xΓ

+
∂φ

∂xi

∣∣∣∣
xΓ

M(β,Γ)
i +

1

2

∂2φ

∂xi∂xj

∣∣∣∣
xΓ

M(β,Γ)
ij +O

(
h3
)
. (54b)

Taking into account the relations for the geometric volume moment tensors in equations (9), the face-gradient
can be projected onto the distance vector ∆xβα through

∂φ

∂xi

∣∣∣∣
xΓ

∆xi, βα =
(
φβ − φα

)
− ∂φ

∂xi

∣∣∣∣
xΓ

(
M(β, β)

i −M(α,α)
i

)
− 1

2

∂2φ

∂xi∂xj

∣∣∣∣
xΓ

(
M(β, β)

ij −M(α,α)
ij

)
− 1

4

∂2φ

∂xi∂xj

∣∣∣∣
xΓ

[
∆xi, βα

(
M(α,α)

j +M(β, β)
j

)
+ ∆xj, βα

(
M(α,α)

i +M(β, β)
i

)]
+O

(
h3
)
.

(55)

Similar to the convective fluxes, the gradients at the face are approximated from the underlying k-exact
reconstruction polynomials. For k = 2, using a central formulation leads to the following expressions for the
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gradient and the Hessian matrix at the face

∂φ

∂xi

∣∣∣∣
xΓ

=
1

2

(
∂φ

∂xi

∣∣∣∣(2)

xα

+
∂φ

∂xi

∣∣∣∣(2)

xβ

)
+

1

4

(
∂2φ

∂xi∂xj

∣∣∣∣(1)

xα

− ∂2φ

∂xi∂xj

∣∣∣∣(1)

xβ

)
∆xj, βα +O

(
h2
)
, (56a)

∂2φ

∂xi∂xj

∣∣∣∣
xΓ

=
1

2

(
∂2φ

∂xi∂xj

∣∣∣∣(1)

xα

+
∂2φ

∂xi∂xj

∣∣∣∣(1)

xβ

)
+O (h) . (56b)

Equations (51), (55) and (56) are inserted into the diffusion flux integral (50), which finally leads to the
expression

¨
Aαβ

(
D
∂φ

∂xi

)
ni dA = D

[
F

(αβ)
D,MM + F

(αβ)
D,EX1 + F

(αβ)
D,EX2

]
+ |Aαβ | O

(
h2
)
. (57)

The first term of equation (57) recovers the original formulation of Mathur and Murthy [67]

F
(αβ)
D,MM = ε(αβ)

(
φβ − φα

)
− 1

2

(
∂φ

∂xi

∣∣∣∣(2)

xα

+
∂φ

∂xi

∣∣∣∣(2)

xβ

)(
ε(αβ)∆xi, βα − S(αβ)

i

)
. (58)

The terms F
(αβ)
D,EX1 and F

(αβ)
D,EX2 are designated as contributions to enhance the accuracy in the scope of

the k-exact reconstruction approach. The term F
(αβ)
D,EX1 accounts for the 1-exactness reconstruction of the

diffusion flux integral

F
(αβ)
D,EX1 = −1

2
ε(αβ)

(
∂φ

∂xi

∣∣∣∣(2)

xα

+
∂φ

∂xi

∣∣∣∣(2)

xβ

)(
M(β, β)

i −M(α,α)
i

)
. (59)

This term compensates for an error of O (h) that results from the adjacent volume-averages not being stored
in the respective geometric element centroids. This error is not present if the rank one volume moments in
equation (59) reduce to zero. The latter is valid for cell-centered schemes, thus leading the standard Mathur-
Murthy scheme to reconstruct the face-gradient with a second order of accuracy. The second correction term

F
(αβ)
D,EX2 reduces this specific error even further to O

(
h3
)

and contributes to approximate the surface-integral

with O
(
h2
)
, regardless of the shape of Aαβ . However, it does not achieve an overall accuracy of O

(
h3
)

due
to the reasons mentioned above.

F
(αβ)
D,EX2 =

1

2

(
∂2φ

∂xi∂xj

∣∣∣∣(1)

xα

+
∂2φ

∂xi∂xj

∣∣∣∣(1)

xβ

)[
S(αβ)
i,j − 1

2
ε(αβ)

(
M(β,Γ)

ij −M(α,Γ)
ij

)]

− 1

4

(
∂2φ

∂xi∂xj

∣∣∣∣(1)

xα

− ∂2φ

∂xi∂xj

∣∣∣∣(1)

xβ

)[
ε(αβ)

(
∆xi, βα +M(β, β)

i −M(α,α)
i

)
− S(αβ)

i

]
∆xj, βα,

(60)

with

M(β,Γ)
ij −M(α,Γ)

ij =M(β, β)
ij −M(α,α)

ij +
1

2
∆xi, βα

(
M(β, β)

j +M(α,α)
j

)
+

1

2
∆xj, βα

(
M(β, β)

i +M(α,α)
i

)
. (61)

3.3. Comparison of memory requirements between cell- and vertex-centered approaches

This section gives a brief overview on the memory requirements of a 2-exact vertex-centered multiple-
correction approach compared to a cell-centered formulation, as for example given by Pont et al. [13]. A
primary grid is considered, which consists of Nc control volumes, Nf faces, Ne edges and Nv vertices. The
number of these entities can be related by Euler’s formula Nf + Nv = Ne + Nc. Following the work of
Barth [15], the number of control volumes for three dimensional meshes can be expressed using the number
of vertices Nc = βNv, where β usually ranges from five to seven for tetrahedral meshes. Similarly, the number
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of faces can be calculated by that of the edges with Nf = 2β/(1 + β)Ne. These formulas do not account
for boundary-effects on the mesh structure. However, this influence can be neglected, since most primary
grids of interest offer a high number of internal elements compared to those located at boundaries. Table 2
shows the number of additional floating point values to store, if the proposed reconstruction approach is
implemented in a cell- or a vertex-centered representation and under consideration of symmetry properties
for the moment tensors. The cell-centered approach stores volume moments and correction matrices for every
control volume and surface moments for every face in the primary grid. As the solution is stored in the
control volume centroids, the rank one geometric volume moment tensors reduce to zero. This also applies

to the rank one geometric face moments S(αβ)
i,j , if xΓ is chosen to be the geometric centroid of the interfaces.

Contrary, in the median-dual approach volume moments must be calculated for every primary grid node
and face moments for every primary grid edge and none of these can be neglected. By taking the sum over
all values in Table 2 and employing the given grid-relations, the ratio for the number of additional values
to store with the cell-centered representation VC-C to the number of additional values with the median-dual
approach VM-D on an identical grid can be derived(

VC-C

VM-D

)
=

101

18
− 505

18(5 + β)
(62)

Compared to the median-dual approach, a cell-centered representation requires to store roughly three times
as many additional floating point values for tetrahedral meshes on the same grid (β ≈ 6). This ratio can
only serve as a basic estimate and will definitely be smaller, when grids with mixed primary elements are
considered. However, the ratio changes if both methods are compared for the same number of unknowns. In
this case, the cell-centered approach requires roughly half as much memory as the vertex-centered method.
For a better comparison of both methods in terms of memory, accuracy and performance, comparable
studies can be performed as for example in the works of Diskin et al. [51, 69]. Besides this, the present
multiple-correction approach offers reduced memory requirements compared to the vertex-centered method
by Bernard et al. [36]. Their approach relies on a single 10 × 10 correction matrix to obtain a 2-exact
reconstruction polynomial. It thus requires 100Nv additional floating point values to store this matrix, as
well as the respective volume and surface moments. In contrast, our approach requires only 63Nv floating
point values for both correction matrices and the gradient of the rank two geometric volume tensor, besides
the additional moment invariants.

Table 2: Number of additional floating point values to store for the 2-exact multiple-correction scheme using
a cell- or vertex-centered grid representation on an identical grid.

Representation M(α,α)
i M(α,α)

ij Gij,α Hij,α
∂Mjk

∂xi

∣∣∣(1)

xα
S(αβ)
i,j S(αβ)

i,jk

Cell-Centered 0 6Nc 9Nc 36Nc 18Nc 0 18Nf
Vertex-Centered 3Nv 6Nv 9Nv 36Nv 18Nv 9Ne 18Ne

4. The k-exact projection method

One key element of this work is to combine the presented k-exact reconstruction approach with a frac-
tional step method for the simulation of time-dependent viscous incompressible flows. Fractional step meth-
ods, also referred to as projection methods [39], go back to the work of Chorin and Temam [38, 70] and
intend to overcome the difficulty of the coupling between pressure and velocity through the incompressibil-
ity constraint. Compared to other solution procedures, projection methods require only to solve a single
sequence of decoupled equations for the velocity and the pressure at every time step, which makes them very
attractive for large scale simulations [39]. Starting point are the Navier-Stokes equations for incompressible
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flows, which read

∂ui
∂xi

= 0, (63)

∂ui
∂t

+
∂

∂xj
(uiuj)− ν

∂2ui
∂x2

j

= − 1

ρ0

∂p

∂xi
. (64)

A standard incremental pressure-correction scheme [39] is used, which consists of two steps. The first step
predicts an interim velocity u∗, which does not satisfy continuity. It is obtained from the initial pressure at
time step tn and taking convective and viscous fluxes into account. The latter are discretized in time using
the Crank-Nicolson scheme, which features a second order accuracy in time [41]

u∗i − uni
∆t

+
1

2

∂

∂xj
Fij(u∗) +

1

2

∂

∂xj
Fij(un) = − 1

ρ0

∂pn

∂xi
. (65)

The fluxes are calculated according to Fij(u) = uiu
n
j − ν(∂ui/∂xj). Note that the convective part uses the

velocity unj of time step tn for both explicit and implicit fluxes, in order to linearize the system of equations.
The predictor equations are volume-averaged according to (2), which leads to the following expression

u∗i,α − uni,α
∆t

+
1

|Ωα|
∑
β∈V(1)

α

[
1

2

¨
Aαβ

Fij (u∗) nj dA+
1

2

¨
Aαβ

Fij (un) nj dA

]
= − 1

ρ0

(
∂pn

∂xi

)
α

. (66)

It is now possible to apply the introduced k-exact flux-formulations to discretize the surface-integrals and
solve for the interim velocity field u∗. However, the volume-averaged pressure gradient on the right hand
side differs substantially from the available k-exact gradients at the primary grid nodes, since the latter
are point-values at xα. Thus, an appropriate conversion from point-values to volume-averages is needed to
maintain the accuracy. One possibility is to simply use higher derivatives and respective geometric moment
tensors, analogous to equation (7). For k = 2, this would result in(

∂p

∂xi

)
α

=
∂p

∂xi

∣∣∣∣(2)

xα

+
∂2p

∂xi∂xj

∣∣∣∣(1)

xα

M(α,α)
j +O

(
h2
)
, (67)

whereas for k = 1 the volume-averaged pressure gradient coincides with the 1-exact pressure gradient at xα.
Unfortunately, this approach cannot maintain the overall accuracy for a given exactness level. This would
require higher derivatives of the pressure at xα, which is not consistent with the degree of the underlying
reconstruction polynomial. We thus propose a method, where a volumetric averaging procedure through a
Green-Gauss formulation is applied. For k = 2 this leads to the following expression

(
∂p

∂xi

)
α

=
1

|Ωα|
∑
β∈V(1)

α

¨
Aαβ

p ni dA =
1

|Ωα|
∑
β∈V(1)

α

p
∣∣∣(3)

xΓ

S(αβ)
i +

∂p

∂xj

∣∣∣∣(2)

xΓ

S(αβ)
i,j +

1

2

∂2p

∂xj∂xk

∣∣∣∣(1)

xΓ

S(αβ)
i,jk +O

(
h3
)
.

(68)

The face values of p at xΓ and its derivatives are approximated as central averages from the reconstructed
face-values of the two adjacent elements Ωα and Ωβ . In this way the desired order of accuracy is preserved.
Both approaches will be tested by means of benchmark simulations in the following section.

Once the interim velocity field u∗ has been determined, it is used to estimate the final velocity at tn+1
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using the projection step

un+1
i − u∗i

∆t
= − 1

ρ0

(
∂pn+1

∂xi
− ∂pn

∂xi

)
. (69)

The unknown pressure gradient at tn+1 is calculated by solving a Poisson equation, which is obtained from
the divergence of the momentum equations (64) and under consideration of the continuity equation (63)

∂

∂xi

(
∂pn+1

∂xi

)
=
ρ0

∆t

∂u∗i
∂xi

+
∂

∂xi

(
∂pn

∂xi

)
. (70)

Similar to the predictor step, this equation is discretized in space according to

∑
β∈V(1)

α

¨
Aαβ

(
∂pn+1

∂xi

)
ni dA =

∑
β∈V(1)

α

[
ρ0

∆t

¨
Aαβ

u∗ini dA+

¨
Aαβ

(
∂pn

∂xi

)
ni dA

]
. (71)

The integrals comprising the pressure gradients are approximated by using the k-exact diffusive flux formu-
lation, which has been presented in equation (57). The surface-integral on the right hand side involving the
interim velocity field is approximated according to

¨
Aαβ

u∗i ni dA = ṁ∗
∣∣∣(k+1)

xΓ

+ |Aαβ | O
(
hk+1

)
. (72)

where the mass flux term ṁ∗|(k+1)
xΓ

from equation (46a) is formed with u∗i . For collocated arrangements
of pressure and velocity, spurious oscillations may occur as the pressure gradient calculation is based on
central averages [41]. Typically, a stabilization term based on the work of Rhie and Chow [71] is added to
the interpolated face velocities u∗ to prevent a decoupling of the pressure and the velocity field [41]. This
term introduces an error of O(h3) on cartesian grids [72], but can lead to more severe errors when grids
tend to be distorted. However, for all the grids used in this work it was found that the presented k-exact
multiple correction approach does not require an auxiliary Rhie-Chow stabilization term to prevent spurious
pressure oscillations. We believe this is due to the fact, that larger stencils are used for the calculation of the
volume-averaged pressure gradient and for the discretized divergence of the interim velocity field ∂u∗i /∂xi.
This leads to a stronger coupling between pressure and velocity field and thus prevents the solution from
odd-even decoupling. Once the new pressure field is obtained, it is used to correct the interim velocity u∗.
For consistency, equation (69) must also be volume-averaged to preserve the k-exactness

un+1
i,α = uni,α −

∆t

ρ0

[(
∂pn+1

∂xi

)
α

−
(
∂pn

∂xi

)
α

]
. (73)

The averaged pressure gradients must be calculated using one of the methods already described. The
required operations to perform a 2-exact projection step are summarized in Algorithm 2.
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Algorithm 2 Procedure to perform the 2-exact projection step

1: procedure Do Projection(un, pn)

2: for α← 1 to N do

3: Perform a 2-exact reconstruction of un and pn on Ωα according to algorithm (1)

4: Compute the volume-averaged pressure gradient
(
∂p
∂xi

)n
α

using (67) or (68)

5: for Aαβ ← Ωα ∩ Ωβ , Ωα,Ωβ ∈ D(Ω) do

6: Compute massflux-tensors ṁ (46a)-(46c) and store them at the element interface Aαβ

7: Solve the volume-averaged momentum predictor step (65) for u∗

8: for α← 1 to N do

9: Perform a 2-exact reconstruction of u∗ on Ωα according to algorithm (1)

10: Solve the volume-averaged Poisson equation (71) for new pressure field pn+1

11: for α← 1 to N do

12: Compute the volume-averaged pressure gradient
(
∂p
∂xi

)n+1

α
using (67) or (68)

13: Obtain the divergence-free velocity field un+1
α (73)

5. Numerical benchmarks

This section is devoted to the validation of the accuracy and the performance properties of the proposed
1- and 2-exact multiple-correction schemes. The schemes have been implemented into ThetaCOM, which is
developed at the DLR Institute of Combustion Technology. ThetaCOM has been extensively used for the
simulation of incompressible and variable density flow problems, for example, detailed large-eddy simulations
of complex combustion applications [42, 43, 44, 45, 46, 47, 48, 49]. The solver uses a collocated, edge-
based representation with median-dual cells that are constructed from hybrid primary grid elements, such
as tetrahedra, hexahedra, pyramids or prisms. The Poisson equation for the pressure is solved using the
preconditioned flexible generalized minimal residual method (GMRES). As preconditioning a single multigrid
V cycle is used on three grid levels. The k-exact multiple-correction is only employed on the finest grid
level. All other transport equations are solved using a biconjugate gradient stabilized method (BiCGSTAB)
with Jacobi preconditioning. All linear equations are formulated in a matrix-free approach, which reduces
the memory requirements significantly by avoiding additional storage for sparse matrix data structures.

The 1- and 2-exact multiple-correction is tested against conventional methods already implemented in
ThetaCOM. Here, convective fluxes are either discretized with a central differencing scheme (referred to
as CDS), or with the low-dissipation low-dispersion scheme by Loewe et al. [66, 73] (referred to as LD2).
The respective flux-coefficients are given in Table 1. For both these conventional schemes, diffusive fluxes
are discretized with the original Mathur-Murthy formulation in equation (58). In contrast, the additional
terms (59) and (60) are only used for the 1- and 2-exact schemes, respectively. For all test cases, a Crank-
Nicolson scheme is used for the temporal discretization, as proposed for the predictor step of the momentum
Equations (66). The latter features a second order accuracy in time. Besides this, small Courant-Friedrichs-
Lewy (CFL) numbers are used to ensure that the temporal errror does not affect the results and the
convergence history. All implicit fluxes are calculated with a deferred-correction procedure according to
Khosla and Rubin [74]. Thus derivatives used for the reconstruction are only updated once at the end of
every time step. This results in a splitting of the explicit and implicit flux parts which is formally not
purely central in the sense of the Crank-Nicolson scheme. However, numerical experiments showed that this
approach significantly increases the overall performance of all schemes, since the calculation of gradients
accounts for a major part of the overall computation time during one time step. At the same time, it was
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also found that the resulting error from this deferred-correction approach is negligible. For both the k-exact
schemes, the proposed projection method is utilized, which does not rely on any additional stabilization
techniques for the pressure-velocity coupling. Both the conventional discretization methods employ an
incremental variant of the projection method as described by Knopp et al. [75], where the interpolation
scheme by Rhie and Chow [71] is used to avoid spurious pressure oscillations.

In the following sections, the influence of the proposed k-exact scheme on the accuracy of diffusive
and convective fluxes will be emphasized through canonical test cases, namely the linear diffusion of an
instantaneous point source and the convection of a vortex in a uniform flow field. Additionally, the lid
driven cavity problem and the laminar flow around a cylinder in 2D will be considered, in order to show
the scheme’s capability to enhance the solution of time dependent viscous flows in the presence of Dirichlet
boundary conditions. Finally, a benchmark for the laminar flow around a sphere will be performed, where
it is shown that the present approach can be applied to the simulation of fully three-dimensional flows.

5.1. Linear diffusion of an instantaneous point source

This first test case aims to show the superior properties of the introduced k-exact discretization of the
diffusive fluxes. This is achieved by solving the general transport equation (1) under consideration of a
non-moving flow field with u = 0 and in the absence of any sinks or sources. The problem is set up in a two
dimensional domain x ∈ [−L,L]

2
and the diffusion coefficient D is set constant. An initial concentration of

φ is released locally in the center of the domain x0 = [0, 0]T by means of a Dirac pulse φ(x, t = 0) = δ(x).
Assuming the domain to be sufficiently large, the temporal evolution of the passive scalar can be calculated
analytically with

φ(x, t) =
1

4πDt
exp

[
− (x− x0)2 + (y − y0)2

4Dt

]
. (74)

The domain is initialized with the concentration of φ(x, t0) at a specified time t0 = 0.25 s and the passive
scalar decays for a simulation time of one second. The final concentration is compared to the analytic
solution at t1 = 1.25 s. The reference length is set to L = 1 m and a diffusion coefficient D = 0.005 m2/s is
chosen, so that all boundaries of the domain are located sufficiently far away from the center. Four meshes
are analyzed, whose primary representation consist of randomly distorted triangles. Since the employed
solver can handle only three-dimensional elements, the meshes actually consist of prismatic elements. The
third coordinate direction is neglected and symmetry boundaries are applied. A representative mesh with
N = 322 primary grid nodes is presented in Figure 4. The grids are created by randomly shifting N × N
primary grid nodes within the domain, which is followed by a Delaunay triangulation. The diffusive fluxes
are either approximated through the proposed 2-exact approach, a 1-exact approach or the original Mathur
and Murthy formulation, as given in equation (57). The accuracy of the numerical schemes is analyzed with
the L2-norm

EL2
(φ) =


∑N
α=1

(
φα − φ

ex

α

)2

|Ωα|∑N
α=1 |Ωα|


1/2

(75)

with the volume-averaged exact solution φ
ex

α and the total number of elements N . The latter is successively
increased from N = 162 to N = 1282. Figure 5 displays the resulting L2-norm errors of the benchmark. The
0-exact flux approximation, which refers to the original Mathur and Murthy formulation, only converges to
a first order of accuracy due to the grid deformation. This error can be attributed to the deviation between

primary grid nodes and element centroids. It is corrected in the 1-exact scheme by the term F
(αβ)
D,EX1 in

equation (57), which leads to a second-order accurate solution. Due to the reasons mentioned in Section 3.2,
the 2-exact diffusive flux formulation converges only with O

(
h2
)

and features slightly smaller errors than

the 1-exact formulation. It thus seems, that the second correction term F
(αβ)
D,EX2 in equation (57) has only

minor effects on the overall accuracy.
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Figure 4: Mesh for the 2D linear
diffusion benchmark with N = 322
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Figure 5: Grid convergence of the L2-error
norm for the 2D linear diffusion bench-
mark. k refers to the exactness of the un-
derlying approximation for diffusive fluxes.

5.2. Convection of a vortex on a periodic grid

The next test case describes the convection of a 2D vortex in an inviscid, incompressible and uniform
flow field. It intends to show the superior capabilities of the k-exact schemes to capture the convective
transport. The vortex is defined by the velocity and pressure fields

u1(x, t = 0) = u∞ +
∂ψ

∂x2
and u2(x, t = 0) = − ∂ψ

∂x1
, (76a)

p(x, t = 0) = p∞ −
1

2
ρ

(
Γ

σ

)2

exp

[
− (x1 − x1,c)

2 + (x2 − x2,c)
2

σ2

]
, (76b)

with a free-stream velocity u∞ in x1 direction and an ambient pressure p∞. The field variables are deduced
from the stream function ψ

ψ(x, t = 0) = Γ exp

[
− (x1 − x1,c)

2 + (x2 − x2,c)
2

2σ2

]
(77)

with circulation Γ, vortex radius σ and vortex center xc. The exact solution to the problem is simply the
convection of the vortex at free-stream velocity. Thus its shape must be preserved as accurately as possible
by the underlying numerical scheme. The numerical solution to the problem is obtained from the discretized
Navier-Stokes equations (63) and (64) with vanishing viscosity ν = 0. Additionally, the convection of a
passive scalar φ with the vortex is investigated. The initial concentration φ is given by

φ(x, t = 0) = A exp

[
− (x1 − x1,c)

2 + (x2 − x2,c)
2

σ2

]
, (78)

such that it features the same extend as the vortex and therefore must also be preserved in its shape. A
periodic domain x ∈ [0, L]

2
is employed and a grid convergence study is performed for a convection distance

of δx = L, which intends to estimate the actual orders of magnitude by which the numerical error decreases.
The chosen parameters are given in Table 3. The meshes are generated in the same manner as for the
linear diffusion benchmark, shown in Figure 4. The convergence of the numerical schemes is examined by
successively increasing the number of elements in the domain from N = 322 to N = 2562. A CFL number
of 0.1 is set for all simulations. It has been demonstrated in a separate convergence study of the numerical
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time step that with this value for the CFL number the influence of temporal discretization errors can be
neglected.

Table 3: Parameters used for the vortex convection test case.

Parameter L u∞ p∞ ρ σ x1,c x2,c Γ A

Value 0.1 m 20 m/s 100, 000 Pa 1.0 kg/m3 0.005 m 0.05 m 0.05 m 0.4 m2/s 0.4

Figure 6 shows the grid convergence for both x1-velocity and pressure, calculated with the k-exact
multiple correction method for k = 1 and k = 2. The simulations have been performed with both variations
of the volume-averaged pressure gradient, which is needed for the right hand side of the momentum predictor
and for the correction of the interim velocity field. The approach described by equation (67) is denoted as
Type 1, whereas for Type 2 the gradient is calculated according to equation (68). Both formulations
do not show any significant difference when the 1-exact discretization is chosen. In contrast, the 2-exact
multiple-correction method produces significantly higher errors when using the Type 1 formulation. This is
to be expected, since this procedure formally approximates the averaged pressure gradient only with O(h2).
Interestingly, this error has a greater effect on the calculation of the velocity field than on the pressure. Due
to the enhanced accuracy, the volume-averaged pressure gradient will be calculated according to the Type
2 formulation in all of the following simulations, as the 2-exact reconstruction is used. The Type 1 gradient
is used for the 1-exact approach, since this formulation has proven to be more stable for the upcoming test
cases.
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Figure 6: Grid convergence for the 2D vortex convection on a periodic grid regarding the discretization of
the averaged pressure gradient. k refers to the employed exactness level for the convective flux discretization.
Type 1 refers to the averaged pressure calculated with equation (67), whereas for Type 2 equation (68) has
been used.

The performance of the different discretization schemes is assessed by comparing the average iteration
time τit estimated for every simulation. It is normalized with the highest average iteration time τit,max
achieved in all simulations. Simulations are carried out for both 1- and 2-exact schemes, as well as the
conventional LD2 and CDS schemes, described above. Due to the iterative solution procedure for the
pressure equation, the 2-exact approach requires a continuous update for both gradient and Hessian matrix
in every sub-iteration, which significantly increases the computation time. Hence, it is further examined
how the numerical error behaves, when different exactness levels are employed for pressure and momentum.
A promising approach is to apply the 2-exact reconstruction for momentum fluxes in equation (66) and the
discretized divergence of the interim velocities u∗i in the pressure equation (71). On the other hand, the
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Figure 7: Grid convergence and performance regarding the 2D vortex convection on a periodic grid. k refers
to the employed exactness level for the convective flux discretization. For k = 2∗, velocities are reconstructed
with k = 2 and the pressure with k = 1.

fluxes involving the pressure in equation (71) are treated with the 1-exact approach, thus the Hessian matrix
for the pressure no longer needs to be updated in every sub-iteration. This scheme will be referred to as
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2∗-exact. Figures 7a to 7c show the resulting L2-norm errors obtained for velocity in x1 direction, pressure
and the passive scalar. The 1- and 2-exact schemes preserve the prescribed accuracy levels, especially for
the convection of the passive scalar. On the contrary, both conventional schemes only reach a first order
of accuracy due to the strong deformation of the employed grids. The LD2-scheme even fails to accurately
predict the convection of the passive scalar. There is a slight deviation from O(h3) in the pressure for both
2- and 2∗-exact schemes on the left in Figure 7b. This is due to the fact that the 2-exact pressure fluxes
in equation (71) only preserve an accuracy of O(h2), even if both correction terms are utilized. Since the
overall convergence is higher than O(h2), we suggest that that the divergence of the interim velocity field
∂u∗i /∂xi on the right hand side of the pressure equation is the leading contributor to the numerical error
and thus should be discretized with higher orders of accuracy in general.

Concerning the performance, both 2-exact schemes require significantly less time to predict the solution
for a desired error threshold than the conventional schemes. For example, the 2∗-exact method requires only
a tenth of the time compared to the CDS-scheme to fall below an error accuracy of EL2(u1) ≤ 7 × 10−1

for the u1-velocity, as a significantly coarser grid can be used. The performance increase is particularly
apparent for the convection of the passive scalar, shown on the right of Figure 7c. The solution obtained
from both 2-exact schemes on a grid with N = 322 elements clearly outperforms the solution obtained from
both conventional schemes on the finest grid resolution with N = 1282 elements. Comparing both 2-exact
schemes, the 2∗-exact method is approximately twice as fast in the calculation of a single time step for a
fixed number of elements. This is due to the fact, that the Hessian matrix of the pressure must not be
updated in every single sub-iteration. Since this approach does not noticeably affect the numerical error,
the 2∗-exact scheme will be used for all upcoming benchmark simulations.

5.3. Convection of a vortex on an expanding grid

The vortex convection is now performed for a larger distance and for a mesh that consists of expanding
elements. This gives the opportunity to further analyze the influence of a deformed mesh on the preservation
of the vortex structure. A domain of size x ∈ [0, 10L] × [0, L] is considered, with a convection distance of
δx = 9L. The same parameters for the vortex are chosen as for the previous test case, given in Table 3.
A single simulation is performed for all discretization schemes on a mesh with 1280 primary grid nodes
in x1-direction and 256 nodes in x2-direction. The grid is the resulting Delaunay triangulation of a set of
nodes that are displaced to a small extent and whose spacing increases in x1-direction. A similar grid is
shown in Figure 8, where the resolution has been reduced for reasons of clarity. Figures 9a to 9c show the
numerical solution obtained for u1,α, pα and φα after a convection of δx = 9L. The black contours highlight
the analytic solution, according to which the minimum and maximum values are given in the respective
colorbars. The 2∗-exact scheme preserves the shape and absolute values of the vortex and the passive scalar
very well. This proves its superior dispersion and dissipation properties, even on highly distorted grids.
For the 1-exact reconstruction the overall shape of vortex and passive scalar is deformed and the structure
is shifted from the actual center. The solution also deviates from the analytic values in terms of absolute
values, which reveals the inferior dispersion properties in contrast to the 2∗-exact method. These effects are
even more apparent for both the LD2- and CDS-discretization. Particularly the solution of the conventional
CDS-scheme is influenced by a strong dispersive error. For LD2 the preservation of the vortex shape and
position is slightly enhanced compared to the CDS-method. However, it is clearly not able to preserve the
shape of the convected passive scalar.

5.4. Lid driven cavity problem at Re = 1000

The lid driven cavity problem is a well-known benchmark for incompressible flow solvers [37, 76, 77,
78, 79, 80] and it is considered here to evaluate the k-exact discretization approach under the influence of

Dirichlet boundary conditions. A cavity of size x ∈ [0, L]
2

is taken into account, with a reference length
L = 1 m. The top of the cavity is a moving lid with velocity u1 = 1.0 m/s and u2 = 0.0 m/s, whereas
the three remaining boundaries are no-slip walls with u1 = u2 = 0.0 m/s. Simulations are performed on
three meshes with N = {322, 642, 1282} primary grid nodes as depicted in Figure 10. All grids consists of
elements with maximum aspect ratios of approximately 15. A CFL number of 0.2 has been chosen, such
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Figure 8: Expanding grid for the vortex convection. The shown grid features a reduced resolution for clarity
reasons.

(a) Volume-averaged velocity u1,α in m/s

(b) Volume-averaged pressure pα in kPa

(c) Volume-averaged passive scalar φα

Figure 9: Benchmark results for the vortex convection on an expanding grid, obtained for a convection
distance of δx = 9L with various discretization schemes. Black contours indicate the analytical solution.

that the influence of the temporal discretization error can be neglected. To ensure a converged solution, the
simulations are run until the change of the kinetic energy Ek in the entire domain between two succeeding
time steps varies less than |En+1

k − Enk | < 10−6 m2/s2.
Figure 11a shows the stream function ψ in the domain, calculated for both k-exact schemes on the finest

mesh with N = 1282 nodes. The stream function ψ is estimated by taking the divergence of the following
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equation

∂ψ

∂x1
+
∂ψ

∂x2
= u1 − u2 (79)

and solving it similarly to the Poisson equation of the pressure correction with the underlying flow field u.
Both results agree well with simulations in several works that are highly referenced for this benchmark, such
as Ghia et al. [78], Botella and Peyret [76] or Bruneau and Saad [77]. The flow field is characterized by a
dominant vortex in the center of the domain and two smaller vortices in both lower corners of the cavity.
Figure 12 shows velocity profiles for u1 and u2 calculated with both k-exact schemes on all three meshes.
These are compared to results given by Ghia et al. [78]. In both cases, even the profiles on the coarse grid
agree remarkably well to the reference values. There are no visual differences between the reference data
and the solutions obtained with the finer grids. Similar results have been obtained for both the conventional
LD2 and CDS schemes, which are therefore not shown. The choice of the discretization scheme has a
larger influence on the calculation of the primary vortex, which is determined by local minima of the stream
function ψ. Table 4 shows calculated point values for the stream function minimum in the cavities primary
vortex, estimated with different discretization schemes on the mesh with N = 642 nodes. Additionally, the
associated vorticity ω and the respective vertex center coordinates are given. The 2∗-exact scheme features
for both ψ and ω the greatest agreement to the reference values, followed by the 1-exact scheme. Also
the x1-coordinate of the vortex center agrees well in both cases, whereas the x2 coordinate differs slightly.
However, these coordinates must be taken with caution, as they only correspond to the coordinates of the
primary grid nodes at which the local minimum of ψ was determined.
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Figure 10: Lid driven cavity
problem grid with N = 322 pri-
mary grid nodes.

(a) 2∗-exact scheme (b) 1-exact scheme

Figure 11: Contours for stream function ψ for the lid driven
cavity at Re = 1000 for N = 1282.

Table 4: Comparison on the primary vortex quantities of the lid driven cavity problem with Re = 1000.

N ψ [m2/s] ω [1/s] x1 [m] x2 [m]

Botella and Peyret [76] 160 (spectral) −0.118937 2.06775 0.54308 0.56520
Bruneau and Saad [77] 128× 128 −0.118920 2.06740 0.53125 0.56543

2∗-exact 64× 64 −0.118760 2.07987 0.54927 0.58171
1-exact 64× 64 −0.118710 2.03657 0.54927 0.58171
LD2 64× 64 −0.117377 2.01889 0.51698 0.54930
CDS 64× 64 −0.118263 2.04903 0.51698 0.54930
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Figure 12: Velocity-profiles for the lid driven cavity benchmark at Re = 1000 obtained with the k-exact
reconstruction approach. The profiles are linearly interpolated from point-values of u1 and u2. Reference
values are taken from Ghia et al. [78]

5.5. Laminar flow around cylinder in 2D

This benchmark was proposed by Schaefer et al. [81] within the DFG high priority research program
Flow Simulation with High-Performance Computers. It has been used by several authors to demonstrate the
capability of high-order schemes to accurately predict time-dependent, viscous flows [37, 79, 80]. Simulations
are performed for the flow around a circular cylinder at Re = 100. A cylinder of diameter 0.1 m is placed in a
channel of dimension 2.2 m×0.41 m. No-slip walls are employed for the top and bottom boundary conditions
of the channel and a parabolic inflow velocity profile is applied at the inlet. For details concerning the setup
we refer to the test case 2D-2 in [81]. At the specified Reynolds number, a Karman vortex street forms
behind the cylinder, leading to periodic oscillations of the drag and lift forces that exert on it. The maximum
drag and lift coefficients, as well as the resulting Strouhal number from the periodic oscillations are used
to evaluate the solution. Four meshes are considered with an increasing number of primary grid nodes
N = {4920, 10390, 19790, 39622}. The grids consist of prismatic elements in the core region of the channel
and hexahedral layers in the vicinity of no-slip walls. Thus, the curved cylinder surface is approximated by
planar quadrilaterals and elements near the cylinder were refined to keep the corresponding error due to
curvature sufficiently small. Similar to the previous benchmarks, the x3-coordinate direction is neglegted,
which is accounted for by using symmetry boundary conditions. Figure 13 shows the coarsest mesh with
4920 primary grid nodes. The simulations are performed with all four discretization schemes for a total
simulation time of 10 s and with a time step ∆t = 10−4 s.

Figure 14 displays the solution at a state, where the lift force becomes largest. The solution has been
obtained with the 2∗-exact scheme for the meshes with N = 10390 and N = 39622 nodes. In both cases
the Karman vortex street is clearly visible and the results are in very good agreement to those given in
other works which utilized high-order methods for this benchmark [37, 79, 80]. Even on the coarse mesh
the absolute values for all quantities are predicted accurately. Figure 15 displays a selection of the temporal
history of the lift and drag coefficient CD and CL, calculated on the coarse mesh with N = 10390 and
with both k-exact methods. The temporal patterns for both coefficients agree well with data provided in
literature [37, 79, 80]. It also highlights a distinct phase shift in both coefficients as the order of accuracy
is increased. The latter is less an indication of accuracy, but suggests that the shedding process is triggered
slightly differently by the schemes. A similar behavior was also obtained in the work of Bassi et al. [37],
who employed a discontinuous Galerkin method for incompressible flows with an artificial compressibility
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Figure 13: Mesh with N = 4920 primary grid nodes, which is used for the laminar flow around a cylinder
benchmark.

(a) N = 10390 (b) N = 39622

Figure 14: Solution for the laminar flow around a cylinder in 2D at a state of maximum lift force simulated
with the 2∗-exact scheme. Displayed are absolute velocities (top), the pressure difference to a reference
pressure pref (middle) and the vorticity (bottom).

approach. A quantitative comparison of the present results is given in terms of a grid convergence study for
the maximum drag and lift coefficients, CD,max and CL,max, as well as the Strouhal number St = (Df)/U .
The latter is calculated from the cylinder diameter D = 0.1 m, the mean velocity U = 1.0 m/s and the
estimated frequency of the lift coefficient f . The resulting values are determined on the basis of simulations
for the described discretization schemes and are displayed in Figure 16. They are compared against reference
bounds provided by Schaefer et al. [81], which are highlighted by means of dashed areas. The performance
of the schemes is analyzed through the average iteration time τit, which is normalized with the maximum
iteration time τit,max of all simulations. Remarkably, the Strouhal number has been predicted accurately
by all simulations within the given bounds. However, there are large discrepancies in the prediction of both
maximum drag and lift coefficients when the conventional discretization schemes are employed. Even on the
finest mesh, both techniques fail to accurately predict the value of CL,max. Contrary, the values for CD,max
and CL,max are calculated accurately even with a coarse mesh of N = 10390 nodes when using both 1- and
2∗-exact methods. As a result, the average iteration time is significantly reduced when using these schemes
to calculate the coefficients within the prescribed ranges. Considering CD,max, the 2∗-exact scheme requires
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Figure 15: Time histories of a single period for drag coefficient CD (left) and lift coefficient CL (right) for
the laminar flow around a cylinder in 2D, obtained with the 1- and 2∗-exact reconstruction approach and
for N = 10390.

N = 4920 and the 1-exact scheme N = 10390 elements for an accurate prediction. It thus can be stated, that
both methods roughly require only 20% of the simulation time, that would be required to calculate the same
result with the LD2-scheme. For CL,max, both k-exact schemes give accurate predictions for N = 10390.
Thus, the 1-exact scheme takes slightly less time to predict a desired level of accuracy in this case. If the
computation time is considered for a fixed number of degrees of freedom, the 2∗-exact method exceeds the
mean iteration of the conventional schemes by a factor of approximately 1.5 to 2.0. For the 1-exact method
this factor is in the range of 1.0 to 1.5 and in both cases it increases as the mesh is refined. All in all, it is
clearly shown that both proposed schemes are capable of giving accurate predictions on the coarser grids
and thus enhancing the overall performance.

5.6. Laminar flow around a sphere in 3D

This benchmark serves to show the ability of the proposed k-exact discretization approach to enhance
three-dimensional, time-dependent, viscous flow simulations on fully unstructured grids. A sphere with
radius r = 1 mm is considered, which is placed in a domain of size 120 mm × 30 mm × 30 mm. To obtain
a desired Reynolds number of Re = 300, an inflow velocity u1 = 1.5 m/s is imposed and the kinematic
viscosity is set to ν = 10−5 Pa s. For this Reynolds number, the flow is characterized by a shedding of
vortices, which have the structure of symmetrical hairpins [82]. For the surface of the sphere a no-slip wall
boundary condition is applied. To study the influence of the grid resolution on the accuracy of the solution,
three grids of different element sizes are employed, comprising N = {139589, 252101, 610159} primary grid
nodes. The grids predominantly consist of tetrahedral elements. Elements are refined in the vicinity of
the sphere to a mean size from 0.2 mm to 0.5 mm, in order to reduce the error of the curved boundary
approximation through planar surface elements. Prismatic elements are used for the boundary layer, with
a mean element size from 0.04 mm to 0.08 mm and the first layer height from 0.004 mm to 0.010 mm. The
element size in the wake of the sphere ranges from 0.3 mm to 0.75 mm. Figure 17 shows a cross-section of the
coarsest grid. A time step of 7× 10−6 s has been used for all simulations, in order to maintain CFL < 0.5
on all grids. Similarly to the two-dimensional flow around a cylinder, the temporal evolution of the drag
and the lateral force coefficient CD and CD are calculated from the forces exerting on the sphere. The
lateral component is defined as the force acting in the direction of the symmetry plane of the wakes vortical
structures. The simulation quality is assessed by mean values of lateral force and drag coefficients, their
oscillation amplitudes and the resulting Strouhal number.

Figure 18 shows two oscillation periods of both the drag coefficient CD and lateral force coefficient CL
calculated with the k-exact schemes on the finest grid. Both schemes predict similar temporal histories for
the lateral force coefficient, whereas the drag mean coefficient is slightly reduced as the 2∗-exact scheme is
employed. Irrespective of this, in both cases CL appears nearly as a single-frequency sinusoid, while the
drag coefficient CD is clearly not. The latter also shows a phase lead relative to CL. All these outcomes
agree very well with simulation results by other authors, for example Gassner et al. [83] or Johnson and
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Figure 16: Grid convergence study for the laminar flow around a cylinder benchmark in 2D. Shown are
the maximum drag and lift coefficients CD,max and CL,max, as well as the Strouhal number St for various
meshes with N primary grid nodes (left) and over the normalized average iteration time τit/τit,max. The
dashed regions highlight the lower and upper bounds for this benchmark given by Schaefer et al. [81].

Patel [82]. Table 5 lists the force coefficients, the oscillation amplitudes and the Strouhal number that have
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Figure 17: Coarse mesh with N = 139589 primary grid nodes used for the simulation of a laminar flow
around a sphere in 3D.
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Figure 18: Temporal evolution of two oscillation periods of the drag coefficient CD and the lateral force
coefficient CL for the laminar flow around a sphere benchmark, obtained with both k-exact schemes on the
finest grid with N = 610159.

Table 5: Predicted values for the mean drag coefficient CD,mean, the lateral force coefficient CL,mean, the
respective oscillation amplitudes CD,amp and CL,amp and the Strouhal number St for the laminar flow
around a sphere in 3D. The results have been obtained on the finest mesh with N = 610159 nodes and with
various discretization schemes.

Reference CD,mean CL,mean CD,amp CL,amp St

Johnson and Patel [82] 0.656 −0.069 0.0035 0.016 0.137
Gassner et al. [83] 0.673 −0.065 0.0031 0.015 0.135
Kim et al. [84] 0.657 −0.067 − − 0.134
Tomboulides [85] 0.671 − 0.0031 − 0.137

2∗-exact 0.660 −0.068 0.0030 0.015 0.134
1-exact 0.662 −0.067 0.0032 0.016 0.135
LD2 0.664 −0.065 0.0029 0.016 0.133
CDS 0.663 −0.069 0.0027 0.015 0.129

been obtained with different discretization schemes on the finest grid. Both k-exact discretization schemes,
as well as the LD2-scheme, predict all values with only minor deviation compared to reference values given
by other authors [82, 83, 84, 85]. Only the CDS-scheme yields larger discrepancies in terms of the Strouhal
number St and the amplitude of the drag coefficient CD,amp.

The advantage of the k-exact schemes over the conventional discretization methods is even more clear as
coarser meshes are employed. Figures 19a-19c shows calculated mean values and amplitudes for the lateral
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Figure 19: Target indicators for the laminar flow around a sphere benchmark, shown over the number of
primary grid nodes N (top), as well as over the normalized average computation time for a single iteration
τit/τit,max (bottom). The dashed dotted lines are reference values given by Johnson and Patel [82] and the
straight dashed lines refer to values by Gassner et al [83].

force coefficients for all three grids, as well as the estimated Strouhal number. Straight dashed dotted lines
represent reference values by Johnson et al. [82] and the dashed lines are values from Gassner et al. [83].
The latter were estimated with a nodal discontinuous Galerkin scheme with ≈ 3 million degrees of freedom.
Both k-exact schemes predict these reference values remarkably well when the grid is coarsened. In contrast
to this, the conventional schemes fail to give accurate results especially on the coarsest grid. Figures 19d-19f
show the target indicators CL,mean, CL,amp and St over the average iteration time τit normalized by the
maximum iteration time obtained in all simulations τit,max. Compared to the conventional discretization
approaches, the mean iteration time increases approximately by a factor of 3.3 if the 2∗-exact schemes is
used and by a factor of 1.5 for the 1-exact method. These ratios persist more or less on all three grids. Even
though the mean iteration time increases significantly, it can be stated that the overall time to achieve a
desired level of accuracy is reduced with the k-exact schemes. This is especially apparent for the 1-exact
scheme.

Figure 20 shows three-dimensional vortical structures in the domain which have been identified for the
2∗-exact multiple-correction scheme and both conventional schemes on the finest grid. The structures are
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visualized by means of the λ2-vortex criterion by Jeong and Hussain [86], where a value of λ2 = −100 has
been chosen to highlight the surfaces. The 1-exact results appear similar to the 2∗ solution and thus are not
shown for reasons of clarity. It can be observed that the flow preserves a planar symmetry around the plane
on which the shedding process is initiated [85]. The shape of these vortical structures also agrees very well
with simulation results by several other authors [82, 83, 84, 85, 87]. It should also be noted that the 2∗-exact
method is clearly capable of preserving the vortical structures over a long distance. This is also the case
for the LD2-scheme, even though it features small artifacts in the wake of the sphere. These artifacts are
even more apparent for the CDS-scheme, which also gives an inaccurate prediction of the vortex structures
further downstream. Figure 21 shows the λ2-criterion calculated on the coarsest grid. The level of detail is
reduced due to larger element sizes. However, compared to both conventional schemes, the 2∗-exact solution
still preserves the major flow features with great agreement to the fine case.

(a) 2∗-exact scheme

(b) LD2 scheme

(c) CDS scheme

Figure 20: Vortical structures of the laminar flow around a sphere identified through the λ2 vortex criterion
for N = 610159 primary grid nodes.

6. Conclusion

In this work the k-exact multiple-correction method by Pont et al. [13] has been extended to vertex-
centered grids. Furthermore, the discretization approach has been incorporated into a fractional step solution
strategy for solving the unsteady Navier-Stokes equations. This also involves the implementation of both
convective and diffusive fluxes in the k-exact framework, where a single-point integration has been used for
the approximation of surface-integrals. The presented method has been implemented in a full-production
flow solver by means of a 1- and 2-exact reconstruction and it has been validated by several two- and
three-dimensional benchmark problems.

It was shown by means of canonical benchmarks, that the presented approach preserves desired accuracy
properties for both convective and diffusive fluxes. Furthermore, the influence on the numerical error was
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(a) 2∗-exact scheme

(b) LD2 scheme

(c) CDS scheme

Figure 21: Vortical structures of the laminar flow around a sphere identified through the λ2 vortex criterion
for N = 139589 primary grid nodes.

investigated when using different reconstruction levels for pressure and velocity in the projection method.
Compared to a purely 2-exact approach, it was found that the error is only slightly affected when reconstruct-
ing the pressure with k = 1 and the velocity with k = 2. At the same time, the performance of the 2-exact
approach could be significantly improved with this configuration. The proposed k-exact approach was also
compared to conventional discretization schemes on unstructured grids. It could be demonstrated that our
approach clearly enhances the accuracy of simulation results on grids with significantly lower resolution
properties, thus leading to an enhanced overall performance. This was also the case for more complicated
benchmark simulations, namely the lid driven cavity problem, the laminar flow around a cylinder in 2D and
the laminar flow around a sphere in 3D. These benchmarks also showed that the higher accuracy of the
presented approach is maintained in the presence of Dirichlet boundary conditions.

For future works, the approach will be used for the simulation of fully turbulent flows on unstructured
grids in the framework of large-eddy simulations. Furthermore, the present solution procedure will be ex-
tended for the simulation of variable-density low-Mach number flows, so that it can be utilized for combustion
applications.
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Appendix A. On the calculation of correction matrix Hα

Matrix Hα is used to obtain a Hessian matrix operator that features an accuracy of O (h). Its inverse
H−1
α is solely calculated from the mesh geometry. For reasons of clarity, it can be decomposed in two
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matrices Aα and Bα

H−1
α =

1

2
(Aα + Bα) , (A.1)

whose entries are calculated according to
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Bα =
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