
Irregular Invertible Bloom Look-Up Tables
Francisco Lázaro, Balázs Matuz

Institute of Communications and Navigation of DLR (German Aerospace Center),
Wessling, Germany. Email: {Francisco.LazaroBlasco, Balazs.Matuz}@dlr.de

Abstract—We consider invertible Bloom lookup tables (IBLTs)
which are probabilistic data structures that allow to store key-
value pairs. An IBLT supports insertion and deletion of key-value
pairs, as well as the recovery of all key-value pairs that have been
inserted, as long as the number of key-value pairs stored in the
IBLT does not exceed a certain number. The recovery operation
on an IBLT can be represented as a peeling process on a bipartite
graph. We present a density evolution analysis of IBLTs which
allows to predict the maximum number of key-value pairs that
can be inserted in the table so that recovery is still successful
with high probability. This analysis holds for arbitrary irregular
degree distributions and generalizes results in the literature. We
complement our analysis by numerical simulations of our own
IBLT design which allows to recover a larger number of key-
value pairs as state-of-the-art IBLTs of same size.

I. INTRODUCTION

Invertible Bloom lookup tables (IBLTs) were first intro-
duced in [1] as probabilistic data structures that can be used to
represent a set S of elements. Every element of S is mapped
to a number d of cells of the IBLT (a formalization follows
in Section II). We call an IBLT regular if d is a constant for
every element of S, otherwise, we say it is irregular. In the
context of data bases the elements of S are key-value pairs.
The key can be thought of as a short (unique) identifier of
an element in the database, whereas the value is the actual
data which can be orders of magnitude larger than the key.
Commonly, the key associated to an element of the database
is obtained simply as a hash function of its value. As the
name indicates, an important property of IBLTs is that they
are invertible (in contrast to Bloom filters [2]), i.e., they allow
to list the elements of the set S which they represent. The
asymptotic performance of regular IBLTs was studied in [1].
It was found that an IBLT is invertible with high probability if
its load, defined as the ratio of key-value pairs to the number
of cells, does not exceed the load threshold. The analysis in [1]
relies on known results about the 2-core threshold of regular
hypergraphs. In [3], the load threshold of specific irregular
hypergraphs with only two different degrees was analyzed.

In the literature, IBLTs are applied for so-called set recon-
ciliation problems aiming at establishing consistency among
different sets of elements [4]. In a two party system with sets
SA and SB one would like to determine set differences SA\SB
and SB \SA in an efficient way and communicate the missing
elements to the respective parties. Amongst others, IBLTs find

This work has been accepted for presentation at the 11th International
Symposium on Topics in Coding
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting /republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works

applications in remote file synchronization, synchronisation
of distributed databases, deduplication, or gossip protocols
[5], [4]. Recently, IBLTs have been used to improve block
propagation in the Bitcoin network [6].

This work, extends the analysis of irregular IBLTs. We
first illustrate that the recovery operation (sometimes also
referred to as inversion) of an IBLT corresponds to a peeling
decoding process [7], [8], [9] on a bipartite graph. Next,
we derive a density evolution analysis to obtain the load
threshold. This generalizes the results of [1], [3] to arbitrary
irregular IBLTs. Furthermore, we make the observation that the
recovery process of IBLTs is strongly linked to the successive
interference cancellation process for multiple access protocols
over the collision channel [10]. Finally, we provide an irregular
IBLT construction which outperforms the results in [1], [3].

II. IRREGULAR INVERTIBLE BLOOM LOOKUP TABLES

A. Description

Let S = {z1, z2, ..., zn} be a set of elements, with |S| = n.
We assume that each element z is a key-value pair, denoted
by z = (x, y). The key x is of length ν bits and the value y
is of length κ � ν bits. The key x is obtained as a function
of y where the mapping is many to one. For the analysis that
follows we make two simplified, but common assumptions.
First, all keys x in the set are distinct, i.e., there are no key-
collisions. Second, the keys x are selected uniformly from
{0, 1}ν .

Let a cell c be a data structure containing two different fields
count and data where:
• count is an integer. It contains the number of elements

that have been mapped to this cell (details on the mapping
follow).

• data =(data.x, data.y) is a bit string of length ν+κ which
can be divided into a pair of bit strings of length ν and
κ, respectively. The bit strings data.x and data.y contain,
respectively, the binary XOR of the keys and values that
have been mapped to the cell.

Let us define two hash functions:
• hΛ(x) = d is a non-uniform random hash function

which maps an input x ∈ {0, 1}ν to an output d ∈
{1, 2, . . . , dmax}. The parameter Λ = (Λ1,Λ2, . . . ,Λdmax),
referred to as degree distribution, is a probability mass
function. Under the assumption that the input x is uni-
formly distributed, we have P (d = i) = Λi, i.e., the
output of hΛ(x) follows the degree distribution Λ.

• Hm,d(x) = g is a random hash function which maps
an input x ∈ {0, 1}ν to a length-d vector g of d
different natural numbers in {1, 2, . . . ,m}, i.e., it samples

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/478618024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithm 1 Initialization

procedure INITIALIZE()
for i = 1, 2, . . . ,m do

ci.count = 0
ci.data = 0

Algorithm 2 Insertion

procedure INSERT(z)
d← hΛ(z.x)
g ← Hm,d(z.x)
for i = 1, 2, . . . , d do

cgi .count = cgi .count + 1
cgi .data = XOR (cgi .data, z)

Algorithm 3 Deletion

procedure DELETE(z)
d← hΛ(z.x)
g ← Hm,d(z.x)
for i = 1, 2, . . . , d do

cgi .count = cgi .count− 1
cgi .data = XOR (cgi .data, z)

Algorithm 4 Recovery

procedure RECOVER()
while ∃i ∈ [1,m]|ci.count = 1 do

add z = ci.data to the output list
call Delete (z)

d different natural numbers between 1 and m without
replacement. Such a hash function can be obtained from
a uniform random hash function that outputs a natural
number between 1 and

∏d−1
i=0 (m− i).

An irregular IBLT is a probabilistic data structure to store
elements of a set S. It is defined by its degree distribution
Λ, the number of cells (or length) m, and the random hash
functions hΛ(x) and Hm,d(x). An IBLT supports several
operations: initialization, insertion, deletion, and recovery:
• Initialize(). This operation sets the different fields of all

the cells in the IBLT to zero.
• Insert(z). The insertion operation adds the key-value pair
z to the IBLT (see Algorithm 2).

• Delete(z). The deletion operation removes the key-value
pair z to the IBLT (see Algorithm 3).

• Recover(). This operation aims at outputting all the key-
value pairs stored in the IBLT. If this operation provides
the full list of key-value pairs in the IBLT, we say it
succeeded. Otherwise, if it provides an incomplete list,
we say the list operation fails (see also Algorithm 4).

B. Encoding S into an IBLT

The mapping of the n elements of S to an IBLT, also
referred to as encoding is done as follows. First, all cells
are initialized to zero as described by Algorithm 1. After
initialization, the elements of S are successively inserted into

the IBLT as described by Algorithm 2: for every element
z = (x, y), d = hΛ(x) cells with indices Hm,d(x) = g are
selected. The element z is then XOR-ed with the data field of
the cells, and their count field is increased by one.

C. Recovery of S
We are interested in recovering all n elements of S from the

irregular IBLT of length m. This process is also referred to as
recovery and or decoding. Recovery succeeds if all m cells of
the IBLT have count field equal to zero. In this case the output
of the recovery operation will contain all n elements that had
been inserted. Otherwise, if some cells have a non-zero count,
recovery fails. A low-complexity algorithm for the recovery
of IBLTs was proposed in [1], instantiated for a regular IBLT.
Algorithm 4 describes the recovery operation for an irregular
IBLT. We seek for cells with counter field equal to one, since
the data field of such cells is an element z of S. Then, z =
(x, y) is deleted from the IBLT by calling Delete(z), which
removes z from hΛ(x) = d cells with indices Hm,d(x) = g.
Since successful recovery requires processing all n elements
of S, and each element gets mapped in average to d̄ different
cells, complexity of the recovery operations scales as O(nd̄)
(which is the same as the encoding complexity).

D. Peeling decoding

We argue that the recovery operation is an instance of
peeling decoding [8]. We may represent an IBLT as a bipartite
(or Tanner) graph G = (Z∪C, E) composed of a set of n data
nodes Z , a set of m cell nodes C and a set of edges E . As
the names indicate, data nodes represent key-value pairs and
cell nodes represent cells of the IBLT. A data node zi ∈ Z
and a cell node ch ∈ C are connected by an edge if and only
if zi = (xi, yi) is written to cell ch, i.e., ∃k|gk = h, where
g = Hm,d(xi) and d = hΛ(xi). A data node z and a cell node
c are said to be neighbors if they are connected by an edge.
We use the shorthand z ∈ N (c) or c ∈ N (z). The degree
of a node is given by the number of edges connected to the
node. Thus, the degree of a cell node equals the count field
of the cell it represents.

Recovery of S can be represented as a peeling process on a
bipartite graph where the graph is unknown to the decoder
and is revealed during the decoding process. In particular,
whenever a cell node c of degree one is present, its only
neighbor N (c) = z is determined. The key-value pair z which
is represented by the data node z is added to the output list.
Next, the retrieved key-value pair is removed from the IBLT
which translates into the removal of all edges attached to its
associated data node. This process is repeated until no more
cell nodes of degree one are present. At this stage, if all cell
nodes are of degree zero, recovery succeeded and all key-value
pairs are present in the output list. Otherwise, if some cell
nodes of degree larger than zero are present, recovery fails,
and the output list will not contain all key-value pairs.

Example 1 (Peeling decoding). The different steps of the
peeling process are shown in Figure 1. Figure 1a shows the
bipartite graph representation of an IBLT before the peeling

z1 z2 z3 z4

c1 c2 c3 c4 c5

(a) ` = 0

z1 z2 z3 z4

c1 c2 c3 c4 c5

(b) ` = 1

z1 z2 z3 z4

c1 c2 c3 c4 c5

(c) ` = 2

z1 z2 z3 z4

c1 c2 c3 c4 c5

(d) ` = 3

z1 z2 z3 z4

c1 c2 c3 c4 c5

(e) ` = 4

Fig. 1: Peeling process on the graph representation of an IBLT
with n = 4 key-value pairs and m = 5 cells. The index ` is
used to denote the different steps of the recovery process.

process starts. We observe that the IBLT has m = 5 cell
and stores n = 4 key-value pairs. However, at this stage the
depicted bipartite graph is unknown to the decoder, since it
does not have any knowledge about S. The decoder is only
aware of the m cell nodes. For this reason, the data nodes as
well as the edges are shown in grey. The graph structure will
be revealed successively as the recovery operation progresses,
and it will only be completely known if decoding succeeds.
Otherwise, a part of the graph will remain hidden. We can
see that cell node c3 has degree 1, and thus its associated
IBLT cell c3 has count 1. The recovery operation retrieves
the only key-value pair that has been mapped to cell c3,
i.e., data node z2, which is added to the output list of the
recovery operation. Afterwards, z2 is deleted from the IBLT.
In the graph representation this translates to revealing the only
neighbor of cell node c3, data node z2 (now shown in black),
and deleting all edges attached to it, as shown in Figure 1b.
As a consequence, the degree of c1 becomes one. In the next
step, as shown in Figure 1c, the only neighbor of c1, z1, is
revealed and all edges attached to it are removed. This reduces
the degree from c4 from 2 to 1. Then, data node z4 is revealed
since it is the only neighbor of c4. After all edges attached to
z4 are removed, as shown in Figure 1d, we have two cell nodes
of degree 1, namely c2 and c5, both of which have as only
neighbor z3. In the last step shown in Figure 1e, first z3 is
revealed as the only neighbor of c2. Finally, all edges attached
to z3 are erased from the graph. In this example recovery
operation succeeded and set S was completely recovered.

III. ANALYSIS OF THE RECOVERY PROCESS

A. Degree Distributions

Let us define the node perspective degree distribution poly-
nomial for the data nodes as

Λ(x) =

dmax∑
d=1

Λd xd

where x is a dummy variable and Λd is the probability of a
data node z being of degree d. Similarly, the node perspective
degree distribution polynomial for the cell nodes is

Ψ(x) =

n∑
d=0

Ψd xd

where Ψd corresponds to the probability of a cell node c

having degree d. In literature, Λ(x) and Ψ(x) are sometimes
referred to as left and right degree distributions, a convention
that has its origins in LDPC literature. It is easy to verify
that the average node degrees are obtained by evaluating the
derivative of the polynomials in x = 1, i.e., Λ′(1), and Ψ′(1)
respectively.

Note that the data node degree distribution Λ(x) is a design
parameter while the cell node distribution Ψ(x) is induced by
Λ(x), the number of cells m and the cardinality n of S . In
particular, observe that the number of edges connected to the n
data nodes must be the same as the number of those connected
the m cell nodes, i.e.,

nΛ′(1) = mΨ′(1).

Since d = hΛ(x) follows the probability distribution
P (d = i) = Λi, and g = Hm,d(x) is a length-d vector of
different numbers between 1 and m chosen uniformly at
random without replacement, the probability that a data node
z is connected to a given cell node c is

P{c ∈ N (z)} =
Ψ′(1)

n
.

If we assume that the outputs of the hash functions hΛ(x)
and Hm,d(x) are independent for different inputs, then the
probability that a cell node c is connected to d data nodes
follows a binomial distribution,

Ψd =

(
n

d

)(
Ψ′(1)

n

)d(
1− Ψ′(1)

n

)n−d
.

Instead of the node-perspective degree distributions, one
may also use edge-perspective degree distributions. Let us
define by λd (and ρd) the probability that a generic edge in
the bipartite graph is connected to a degree d data node (a
degree d cell node). We have

λd =
Λdd∑
` Λ``

and ρd =
Ψdd∑
` Ψ``

.

For convenience, the polynomial representations of λd and ρd
are chosen to be

λ(x) =
∑
d

λdx
d−1 and ρ(x) =

∑
d

ρdx
d−1.

B. Density Evolution

Let us define the load η = n/m as the ratio between
the number of key-value pairs and cells, and let us consider
the regime in which n and m tend to infinity while keeping
the load η constant. For a given λ(x) and load η we are
interested in determining whether the recovery operation will
be successful or not. In literature, the performance of peeling
decoding is analyzed via density evolution [8], [11], which
restates the peeling decoder as an equivalent iterative message
passing algorithm where nodes pass messages along the edges
to their neighbors. In our case, the messages exchanged by
the nodes can be either an erasure, i.e., we do not know
the corresponding key-value pair yet, or the opposite, non-
erasure, meaning that key-value pair has been recovered. In
particular, given an ensemble of bipartite graphs G (n, η, λ)
with n data nodes, m = n/η cell nodes, and edge oriented
degree distribution λ(x), density evolution yields the average
probability of the exchanged messages at the `th iteration
being an erasure assuming that n goes to infinity.

Denote by p` the (average) probability that the message sent
from a cell node over an edge at the `th iteration is an erasure
and by q` the (average) probability that the message sent from
a data node over an edge at the `th iteration is an erasure.
Consider first the message sent by a cell node of degree d
over a given edge. This message will be a non-erasure if the
messages received through the remaining d − 1 edges were
non-erasure messages. Thus we have

1− p` = (1− q`)d−1

p` = 1− (1− q`)d−1.

Similarly, if we consider a data node of degree d, the message
sent over an edge will be an erasure only if all messages
received over all other d− 1 edges were erasures. Thus,

q` = p`−1
d−1.

We are interested in the average erasure probability, where
the average is taken over all edges of all bipartite graphs in
G (n, η, λ), hence we have

q` =
∑
d

λdp`−1
d−1 = λ(p`−1). (1)

Similarly, the average probability that a message sent by a cell
node over a random edge is an erasure can be obtained as

p` =
∑
d

ρd
(
1− (1− q`)d−1

)
= 1− ρ(1− q`). (2)

Initially, we have q0 = p0 = 1, i.e., we start by setting all
messages to erasures. Then, by iteratively applying (1) and
(2) we can track the evolution of q` and p` as the number of
iterations ` grows. Note that q` corresponds to the probability
that a randomly chosen key-value pair has been recovered after
` iterations.

As shown in [8], the probability of non-erasure (i.e., suc-
cess) is subject to a threshold effect (or phase transition)
at η = η∗, referred to as load threshold in the sequel. In
particular, the list operation will be successful with probability
tending to 1 for loads η fulfilling 0 < η ≤ η∗. According to

[8], the load threshold η∗ can be formally expressed as the
maximum value of η for which

q > λ(1− ρ(1− q)), ∀q ∈ (0, 1]. (3)

Note that the dependency on η is implicit in ρ(x). In particular,
in the asymptotic regime when n→∞, we can express Ψ(x)
as

Ψ(x) = e−Ψ′(1)(1−x) = e−ηΛ′(1) (1−x)

which allows to rewrite ρ(x) as

ρ(x) =
Ψ′(x)

Ψ′(1)
= e−ηΛ′(1) (1−x). (4)

Substituting ρ(x) in (3) by (4) yields

q > λ
(

1− eηΛ′(1)q
)
, ∀q ∈ (0, 1]

which explicitly shows the dependency on η.

C. Connection to IRSA

For the bipartite graphs used to represent IBLTs the left
degree distribution Λ(x) (or λ(x)) is a free parameter whereas
the right degree distribution Ψ(x) corresponds to a binomial
distribution. Such bipartite graphs have been studied in depth
in the context of a random access protocol known as irregular
repetition coded slotted ALOHA (IRSA) over the collision
channel [10]. A few important results on such graphs are
listed in the following. The asymptotic regime was first studied
in [10], where a density evolution analysis was presented. In
[12] a sequence of capacity achieving degree distributions was
presented, i.e., ensembles whose load threshold converges to
η∗ = 1. For the finite length regime, an approximate error-
floor analysis was presented in [13] whereas an approximate
analysis of the waterfall performance was presented in [14].

IV. NUMERICAL RESULTS

Table I shows the load thresholds η∗ for different regular and
irregular data node degree distributions obtained via density
evolution. For regular distributions, we observe that the load
thresholds obtained with the analysis in Section III coincide
with the thresholds reported in [1], where a different technique
was used to obtain the thresholds.1 Among the regular distri-
butions, Λ(x) = x3 yields the best threshold η∗ = 0.8183.

In addition to regular distributions, Table I also provides
the load thresholds for three irregular distributions whose load
thresholds are higher than those of regular distributions. The
slightly irregular distribution 0.887x3 + 0.113x21 with thresh-
old 0.92 is taken from [3], where it was conjectured to be the
best irregular distribution with two degrees. The distribution
0.25x2 + 0.6x3 + 0.15x8 for IRSA is taken from [10], and
was designed to exhibit good performance for moderate values
of m. Additionally, following the analysis in Section III we
derive the degree distribution 0.15x2 + 0.725x3 + 0.125x18

with threshold 0.934 by using an optimization algorithm called
simulated annealing. In particular, the goal of the optimization
was maximizing the load threshold, see (3), while limiting the
probability of degree 2 since it is associated with high error
floors for small and moderate values of m [13].

TABLE I: Load thresholds η∗ for different degree distributions
Λ(x) η∗

x3 0.818
x4 0.772

0.887x3 + 0.113x21 0.920
0.25x2 + 0.6x3 + 0.15x8 0.892

0.15x2 + 0.725x3 + 0.125x18 0.934

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10−4

10−3

10−2

10−1

100

η

P
e

x3

x4

0.887x3 + 0.113x21

0.25x2 + 0.6x3 + 0.15x8

0.15x2 + 0.725x3 + 0.125x18

Fig. 2: Probability of unsuccessful of a key-value pair, Pe, as
a function of η for different regular and irregular data node
degree distributions with m = 2000.

Monte Carlo simulations to determine the probability of
a key-value pair not being recovered (not present in the
output list of the recovery operation), termed Pe, versus
the channel load η are shown in Figure 2. We simulated
IBLTs with m = 2000 for the different degree distribution
in Table I. If we compare the curves in the figure with
the asymptotic load thresholds in Table I, we observe that
the load threshold provides a good estimate of the load for
which Pe undergoes a phase transition, i.e., for which Pe
shows a sharp drop. The irregular distributions outperform
their regular counterparts. Among the presented distributions,
Λ(x) = 0.15x2 + 0.725x3 + 0.125x18 found by simulated
annealing yields the best performance.

V. CONCLUSION AND OUTLOOK

In this paper we discuss degree distributions for irregular
IBLTs. Realizing recovery corresponds to peeling decoding,
we provide a density evolution analysis, which is a novel
tool to analyze IBLTs and extends results from the literature.
Furthermore, we show that the graphs induced by IBLTs, are
characterized by a binomial right degree distribution, a family
of graphs which has been studied in the framework of random
access protocols. This allows to borrow powerful tools from
the literature for future work on IBLTs. Finally, using density
evolution we design a degree distribution which outperforms
known distributions for IBLTs.

Despite the fact that the bipartite graphs arising from
IBLTs have been studied in practice in the context of IRSA,
some questions related to IBLTs still remain open. First, in
the context of IRSA the interesting regime is that of small

1In [1] results are reported in terms of 1/η.

or moderate values of m, due to latency constraints. Also,
owing to energy efficiency considerations, IRSA distributions
usually feature a low average and maximum degree. For IBLTs
scenarios with larger m, larger average and maximum degrees
might be of interest. Second, and more importantly, for some
applications [4], at the time in which the size of the IBLT is
fixed, the number of key-value pairs which will be inserted in
it is not known or deviates strongly from its estimated value.
So far, schemes based on IBLTs solve this by oversizing the
IBLT, i.e. operating at lower loads, which is inefficient. A
more advantageous scheme would be one that allows to add
IBLT cells on demand, similarly as it is done in frameless
ALOHA [15].

ACKNOWLEDGEMENTS

The authors would like to thank Federico Clazzer for
providing the software used for the Monte Carlo simulations.

REFERENCES

[1] M. Goodrich and M. Mitzenmacher, “Invertible Bloom lookup tables,” in
2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). Monticello, IL, USA: IEEE, 2011, pp. 792–799.

[2] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[3] M. Rink, “Mixed hypergraphs for linear-time construction of denser
hashing-based data structures,” in Proc. of the Int. Conf. on Current
Trends in Theory and Practice of Comp. Science. Springer, 2013, pp.
356–368.

[4] D. Eppstein, M. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference?: Efficient set reconciliation without prior context,” ACM
SIGCOMM Comp. Commun. Review, vol. 41, no. 4, pp. 218–229, 2011.

[5] M. Mitzenmacher and R. Pagh, “Simple multi-party set reconciliation,”
Distributed Comput., vol. 31, no. 6, pp. 441–453, 2018. [Online].
Available: https://doi.org/10.1007/s00446-017-0316-0

[6] P. Ozisik, G. Andresen, B. Levine, D. Tapp, G. Bissias, and S. Katkuri,
“Graphene: Efficient interactive set reconciliation applied to Blockchain
propagation,” in Proc. of Conf. of the ACM Special Interest Group on
Data Commun. Beijing, China: ACM, Aug. 2019, pp. 303–317.

[7] N. Alon, J. Edmonds, and M. Luby, “Linear time erasure codes
with nearly optimal recovery,” in Proceedings of IEEE 36th Annual
Foundations of Computer Science. Milwaukee, WI, USA: IEEE, Oct.
1995, pp. 512–519.

[8] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random
processes via and-or tree evaluation,” in Proc. of the 9-th annual ACM-
SIAM Symp. on Discrete Algs. San Francisco, CAL, USA: ACM, 1998,
pp. 364–373.

[9] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. on Inf. Theory, vol. 47,
no. 2, pp. 569–584, Feb. 2001.

[10] G. Liva, “Graph-based analysis and optimization of contention resolution
diversity slotted ALOHA,” IEEE Trans. on Commun., vol. 59, no. 2, pp.
477–487, 2011.

[11] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. on
Inf. Theory, vol. 47, no. 2, pp. 619–637, 2001.

[12] K. Narayanan and H. Pfister, “Iterative collision resolution for slotted
ALOHA: An optimal uncoordinated transmission policy,” in Proc. of
7th Int. Symp. on Turbo Codes and Iterative Inf. Processing (ISTC).
Gothenburg, Sweden: IEEE, 2012, pp. 136–139.

[13] M. Ivanov, F. Brännström, A. Graell i Amat, and P. Popovski, “Error
floor analysis of coded slotted ALOHA over packet erasure channels,”
IEEE Commun. Letters, vol. 19, no. 3, pp. 419–422, 2015.

[14] A. Graell i Amat and G. Liva, “Finite-length analysis of irregular
repetition slotted ALOHA in the waterfall region,” IEEE Commun.
Letters, vol. 22, no. 5, pp. 886–889, 2018.

[15] F. Lázaro, C. Stefanović, and P. Popovski, “Reliability-latency perfor-
mance of frameless ALOHA with and without feedback,” IEEE Trans.
Commun., vol. 68, no. 10, pp. 6302–6316, Jul. 2020.

