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Abstract
Since its first confirmed case in December 2019, coronavirus disease 2019 (COVID-19) has become a worldwide pandemic
with more than 90 million confirmed cases by January 2021. Countries around the world have enforced lockdown measures
to prevent the spread of the virus, introducing a temporal change of air pollutants such as nitrogen dioxide (NO2) that are
strongly related to transportation, industry, and energy. In this study, NO2 variations over regions with strong responses
to COVID-19 are analysed using datasets from the Global Ozone Monitoring Experiment-2 (GOME-2) sensor aboard
the EUMETSAT Metop satellites and TROPOspheric Monitoring Instrument (TROPOMI) aboard the EU/ESA Sentinel-5
Precursor satellite. The global GOME-2 and TROPOMI NO2 datasets are generated at the German Aerospace Center (DLR)
using harmonized retrieval algorithms; potential influences of the long-term trend and seasonal cycle, as well as the short-
term meteorological variation, are taken into account statistically. We present the application of the GOME-2 data to analyze
the lockdown-related NO2 variations for morning conditions. Consistent NO2 variations are observed for the GOME-2
measurements and the early afternoon TROPOMI data: regions with strong social responses to COVID-19 in Asia, Europe,
North America, and South America show strong NO2 reductions of ∼30–50% on average due to restriction of social and
economic activities, followed by a gradual rebound with lifted restriction measures.
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Introduction

On 31 December 2019, an infectious pneumonia of unknown
cause, subsequently named as coronavirus disease 2019
(COVID-19), was detected in Wuhan in China. The COVID-
19 outbreak was announced as a pandemic in mid-March
2020 and has caused more than 90 million confirmed cases
and more than 1.5 million deaths around the world as of
January 2021 (https://coronavirus.jhu.edu/map.html). In an
effort to prevent the wide and rapid spread of the novel severe
virus, countries have imposed national or local restrictions,
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such as ordering to stay at home, banning on public
gathering, and closing non-essential shops and services.

The slowdown and recovery in social and economic activi-
ties around the world usually introduce a temporal change of
air pollution, particularly for air pollutants strongly related
to transportation, industry, and energy. Nitrogen dioxide
(NO2) is one of the most important and prominent air pollu-
tants affecting human health and ecosystem. Large amounts
of NO2 are produced anthropogenically in the boundary
layer by industrial processes, power generation, transporta-
tion, and biomass burning over polluted hotspots. The rela-
tively short atmospheric lifetime of NO2 (hours near the sur-
face) facilitates establishing a direct link between observed
tropospheric NO2 columns and emissions strengths (Richter
2009; Seinfeld and Pandis 2016).

A global and continuous monitoring of atmospheric NO2

abundances has been provided by European spaceborne
instruments, such as Global Ozone Monitoring Experiment
(GOME) aboard ERS-2 (Burrows et al. 1999), Scanning
Imaging Absorption SpectroMeter for Atmospheric CHar-
tographY (SCIAMACHY) aboard Envisat (Bovensmann
et al. 1999), Ozone Monitoring Instrument (OMI) aboard
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EOS-Aura (Levelt et al. 2006), Global Ozone Monitor-
ing Experiment-2 (GOME-2) aboard Metop (Callies et al.
2000; Munro et al. 2016), and TROPOspheric Monitor-
ing Instrument (TROPOMI) aboard Sentinel-5 Precursor
(Veefkind et al. 2012). The GOME-2 instruments have
been providing global pictures of the atmospheric compo-
sition since 2007 and will extend this unique dataset until
2027. GOME-2 provides morning observations of NO2 at
∼09:30 local time, which complement early afternoon mea-
surements from OMI or TROPOMI at ∼13:30 local time.
The long-term GOME-2 measurements have been widely
used in trend studies (Mijling et al. 2013; Hilboll et al.
2013; 2017), satellite dataset intercomparisons (Irie et al.
2012; Krotkov et al. 2017), and emission estimations (Gu
et al. 2014; Miyazaki et al. 2017; Ding et al. 2017). The
TROPOMI sensor, launched in 2017 with an unprecedented
spatial resolution of 7 km×3.5 km (5.5 km×3.5 km after
August 2019, van Geffen et al. (2020a)), allows local studies
of distribution and evolution of NO2 (Stavrakou et al. 2020;
Goldberg et al. 2020a; Georgoulias et al. 2020) and regional
emission estimates (Lorente et al. 2019; Beirle et al. 2019;
van der A et al. 2020; Huber et al. 2020).

The analysis of NO2 concentration variations, however,
is not straightforward due to the strong dependency on
meteorological conditions, such as solar irradiance and
wind fields. Figures 1 and 2 present two examples of NO2

monthly variations (gray lines) measured by GOME-2 on
MetOp-A for eastern China (21◦N–41◦N, 110◦E–122◦E)
and northern Italy (45◦N–46.5◦N, 7◦E–13◦E) in 2007–
2019. The tropospheric NO2 columns are generally higher
in winter due to the use of combustion power plants for
heating and due to the fact that the lower solar irradiances
increase the lifetime of NO2 in the atmosphere. In addition,
the tropospheric NO2 columns change over short timescales
(hours and days) depending on wind speeds and wind
directions that interact with the physical features of the
landscape to determine the movement and dispersal of air
pollutants. Therefore, NO2 changes are typically analyzed
using values averaged over long timeframes (months,
seasons, and years) based on a long-term satellite dataset
(Hilboll et al. 2013; Duncan et al. 2016; Georgoulias et al.
2019). To improve the robustness of the derived temporal
changes, chemical transport models (Liu et al. 2020a;
Koukouli et al. 2021) or comprehensive statistical models
(Hayn et al. 2009; Zhou et al. 2012) can be additionally
used.

Based on the spaceborne NO2 data from OMI and
TROPOMI, recent works have reported the decrease of NO2

concentration during the COVID-19 pandemic lockdown
across the world (Bauwens et al. 2020). For instance,
decreases of tropospheric NO2 columns by up to 70% are
observed for Chinese populated regions (Fan et al. 2020;
Huang and Sun 2020) partly attributed to the decline in

anthropogenic emissions related to the COVID-19 crisis
(Ding et al. 2020; Zhang et al. 2020). Similar strong
decreases by up to 60% are visible in regions with
high population and heavy industry, such as India (Singh
and Chauhan 2020), southern Europe (Chen et al. 2020;
Baldasano 2020), the western USA (Liu et al. 2020b), and
South America (Nakada and Urban 2020; Zalakeviciute
et al. 2020). These studies generally calculate the weekly
or monthly averages of NO2 data during the COVID-19
lockdown in 2020 and compare to the same timeframe
within recent 5 years or to the period prior to the lockdown
in 2020. In addition, the importance of the meteorological
variations between years has been explored in regional
studies for China (Liu et al. 2020a; Zhao et al. 2020) and
the USA (Goldberg et al. 2020b), which can affect the NO2

variations by 15%.
In this work, we present an analysis of the NO2 variations

due to enacting and lifting restrictions on movements in
response to the COVID-19 outbreak, covering the severely
affected countries across the polluted continents. Long-term
NO2 measurements from the satellite instrument GOME-
2 and high-resolution observations from TROPOMI are
applied, with corrections for trend, season, and meteorol-
ogy. Compared to previous studies, the synergy between
morning and early afternoon satellite NO2 observations is
explored. The GOME-2 and TROPOMI measurements are
retrieved in a consistent manner. The time series of morning
NO2 columns derived from GOME-2 spans over ∼14 years
of observations.

In “Spaceborne NO2 measurements,” the GOME-2 and
TROPOMI instruments and the algorithm for tropospheric
NO2 column retrieval are briefly introduced, followed by
a description of the correction method. “COVID-19 impact
on NO2 pollution” presents the NO2 variations observed
before, during, and after the COVOD-19 lockdown for
regions in Asia, Europe, North America, and South America
dominated by anthropogenic emissions. The summary is
given in “Conclusion”.

Spaceborne NO2 measurements

GOME-2

GOME-2 is a nadir-scanning ultraviolet, visible, and near-
infrared spectrometer measuring the Earth’s backscattered
radiance and extra-terrestrial solar irradiance in the spectral
range between 240 and 790 nm. The first GOME-2 was
launched in October 2006 aboard the EUMETSAT MetOp-
A satellite, and a second GOME-2 was launched in
September 2012 aboard MetOp-B (throughout this study
referred to as GOME-2A and GOME-2B, respectively). The
consistent long-term dataset is further extended by the third
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GOME-2 on the MetOp-C platform launched in November
2018. The Sun-synchronous polar orbit has a daily equator
crossing time of ∼9:30 local time. The default swath width
of GOME-2 is 1920 km, and the default ground pixel size
is 80 km×40 km in the forward scan. A decreased swath
of 960 km and an increased spatial resolution of 40 km×40
km are employed by GOME-2A in a tandem operation
of MetOp-A and MetOp-B from July 2013 onwards. See
Munro et al. (2016) for more details on instrument design
and performance.

The operational GOME-2 NO2 products are generated
using the GOME Data Processor (GDP) algorithm (Valks
et al. 2011) and provided by DLR in the framework
of EUMETSAT’s Satellite Application Facility on Atmo-
spheric Composition Monitoring (AC SAF). Near-real-time,
offline, and reprocessed GOME-2 level 2 and consolidated
products are available via a dedicated FTP server and the
EUMETSAT Data Centre (https://acsaf.org/). In the present
study, the current operational product (Valks et al. 2020) is
used.

TROPOMI

TROPOMI is a push broom imaging spectrometer covering
wavelength bands between the ultraviolet and the shortwave
infrared, launched in October 2017 aboard the EU/ESA
Sentinel-5 Precursor satellite. TROPOMI provides NO2

observations with a spatial resolution of 5.5 km×3.5 km at
nadir (7 km×3.5 km before August 2019). The swath width
is ∼2600 km in the direction across the track of the satellite
that allows daily global coverage. In combination with the
morning observations from GOME-2, the early afternoon
measurements (∼13:30 local time) from TROPOMI allow
a better study of NO2 diurnal variations. For further details,
see Veefkind et al. (2012) and Kleipool et al. (2018).

The TROPOMI NO2 retrieval algorithm used in this
study is developed at DLR and has been used to analyze
the effect of traffic emission on air quality in Germany
(https://atmos.eoc.dlr.de/sveld/). The retrieval is based on an
improved algorithm originally designed for GOME-2 (Liu
et al. 2019; Liu et al. 2020) and adapted for TROPOMI
measurements with optimization related to the specific
instrumental aspects. The TROPOMI NO2 dataset used in
the study is available upon request.

Tropospheric NO2 column retrieval

The retrieval of tropospheric NO2 columns for the GOME-
2 and TROPOMI instruments follows a classical three-step
scheme. First, the slant columns (namely the concentrations
integrated along the effective light path from the Sun
through the atmosphere to the instrument) are derived from

the measured (ir)radiances using the differential optical
absorption spectroscopy (DOAS) method (Platt and Stutz
2008). Second, the stratospheric contribution is estimated
and separated from the slant columns using a modified
reference sector method (Valks et al. 2011; Beirle et al.
2016), which uses the measurements over regions with
negligible tropospheric NO2 abundance. The modified
reference sector method requires no additional model input
and can be considered as a complement to the stratospheric
correction based on data assimilation, as implemented
in the operational TROPOMI product (van Geffen et al.
2020a). Third, the tropospheric NO2 vertical columns are
converted from the tropospheric slant columns by an air
mass factor (AMF) calculation. The presence of clouds
is taken into account using cloud parameters based on
the Optical Cloud Recognition Algorithm (OCRA) and
Retrieval Of Cloud Information using Neural Networks
(ROCINN) algorithms (Lutz et al. 2016; Loyola et al.
2018) with the advantages of operational implementation
and routine validation (Compernolle et al. 2020; Lambert
et al. 2020). The satellite data are filtered for clouds (cloud
radiance fraction < 0.5 or cloud fraction < ∼0.3) to reduce
retrieval errors. The retrieved GOME-2 and TROPOMI
measurements are aggregated based on an area-weighted
tessellation to resolutions of 0.1◦×0.1◦ and 0.025◦×0.025◦,
respectively.

Based on ground-based multi-axis differential optical
absorption spectroscopy (MAX-DOAS) measurements,
the GOME-2 validation results are generally within
the target accuracy of 30% for suburban and remote
conditions (Pinardi et al. 2014; Pinardi et al. 2017). Larger
underestimations are observed for polluted urban situations,
because the large GOME-2 pixel size (80 km×40 km/40
km×40 km) is less representative of the local urban NO2

pattern sampled by the ground-based instrument (Pinardi
et al. 2020). With a pixel size more representative of
the NO2 fields on local and regional scales, the retrieved
TROPOMI measurements agree with MAX-DOAS data at
the suburban Xianghe site in China (Hendrick et al. 2014)
with a correlation coefficient of 0.96 and a mean bias of
−2.1 × 1015 molec/cm2 or −17.6% (Liu 2019, see Sect. 6.4
therein).

In comparison with the operational TROPOMI product
(van Geffen et al. 2020a; van Geffen et al. 2020b), the
retrieved TROPOMI tropospheric NO2 columns (Fig. S1)
vary by 4 × 1014 molec/cm2 on average (Fig. S2) due
to the difference in the stratosphere-troposphere separation
method. From Fig. S2, larger increases by more than 1 ×
1015 molec/cm2 are found mainly over polluted regions
in winter as a result of the applications of different cloud
parameters and different treatments of snow/ice scenarios in
the AMF calculation (van der A et al. 2020).

https://acsaf.org/
https://atmos.eoc.dlr.de/sveld/
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Fig. 1 Time series of monthly
(gray line) and yearly (black
dots) mean tropospheric NO2
columns measured by
GOME-2A over eastern China
(21◦N–41◦N, 110◦E–122◦E).
The linear fitting result for the
yearly average shows a growth
for 2007–2011 (red line) and a
reduction for 2011–2019 (blue
line). Slopes are 0.69 for
2007–2011 (red text) and −0.53
for 2011–2019 (blue text)

Trend, seasonal, andmeteorological corrections

To consider the potential influences of long-term trends
and seasonal cycles as well as short-term meteorological
variations at a given location, the corrected tropospheric
NO2 columns Vcorr are calculated for GOME-2 and
TROPOMI with a statistical model:

Vcorr = V + mtrend(ty, tm)

fseason(tm) × fwind(u(t), v(t))
. (1)

For the observed time t (year ty , month tm, and day td ),
the original tropospheric NO2 columns V are adjusted
with a trend correction term mtrend , a seasonal correction
factor fseason, and a wind correction factor fwind . The
trend correction follows Bekbulat et al. (2020), who use
the slope of historical data as the trend correction term for
ground-based measurements and adjust the historical data
to the 2020 reference. The seasonal correction and the wind
correction apply the normalization method from Goldberg
et al. (2020b), who modify the satellite observations to
a reference with average seasonal and meteorological
conditions.

The trend correction term mtrend is calculated for
GOME-2A and GOME-2B as the slope of the linear
regression line (Bekbulat et al. 2020) based on GOME-
2A annual averages from 2007 to 2019. The assumption
of linear trend has been widely used in previous works
(Richter et al. 2005; Konovalov et al. 2010; Duncan et al.
2016; Georgoulias et al. 2019). To detect trend reversals in
the ∼13-year time series, a method suggested by Cermak
et al. (2010) is used to find the year when a reversal from
negative to positive trends or from positive to negative
trends happens. Identified by minimizing a change point
score, a trend reversal is reported if the trend for the period

before or after the reversal year is statistically significant
at the 95% confidence level and the long-term average
tropospheric NO2 columns is larger than 1×1015 molec/cm2

(Georgoulias et al. 2019). As shown in Fig. S3, extended
regions over eastern China and parts of the North India
Plain exhibit a reversal from positive to negative trends
mostly in 2011 or 2012, in agreement with previous studies
using satellite measurements or emission data (De Foy et al.
2016; van der A et al. 2017; Georgoulias et al. 2019).
These reversals are partly explained by the implementation
of clean technology (Bansal and Bandivadekar 2013; Liu
et al. 2016), a stricter control of Chinese environmental
regulations (CAAC 2013; Wu et al. 2017), and a slowdown
in Indian economic development (Hilboll et al. 2017).

Figures 1 and 2 show the long-term trends of tropo-
spheric NO2 columns measured by GOME-2A for east-
ern China (21◦N–41◦N, 110◦E–122◦E) and northern Italy
(45◦N–46.5◦N, 7◦E–13◦E), including the slope and inter-
cept of the linear regression analysis. For China, the annual
trend correction is 0.69 × 1015 molec/cm2 per year for
2007–2011 and −0.53×1015 molec/cm2 per year for 2011–
2019, indicating changes of 8.3%/year and −7.2%/year,
respectively. The evaluations are confirmed by studies using
OMI satellite measurements (Krotkov et al. 2016; Duncan
et al. 2016; Georgoulias et al. 2020), who reported aver-
age changes of 8.4%/year before 2011 and −7.0%/year after
2011 for eastern China, and studies using emission data (Liu
et al. 2016; van der A et al. 2017), who estimated an increase
of 9.1% and a decrease of 6.5%. For Italy, the annual trend
correction is −0.23×1015 molec/cm2 per year, representing
a reduction of 4.3%/year of the tropospheric NO2 columns.
Due to tightening vehicle emission standards (Euro 2007), a
similar negative trend is detected by OMI (e.g., −4.0%/year
from Duncan et al. (2016)) and emission data (e.g. -5.2%/yr
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Fig. 2 Time series of monthly
(gray line) and yearly (black
dots) mean tropospheric NO2
columns measured by
GOME-2A over northern Italy
(45◦N–46.5◦N, 7◦E–13◦E). The
linear fitting result for the yearly
average shows a decline (blue
line) with a slope of −0.23

from Miyazaki et al. (2017)). Additional examples are
gathered in Fig. S4 for large urban cities, where a nega-
tive trend is found for Los Angeles (−3.5%/year) in the
USA (33.5◦N–35.5◦N, 117.25◦W–119.25◦W), and positive
trends are observed for New Delhi (1.2%/year) in India
(27.6◦N–29.6◦N, 76.2◦E–78.2◦E) and Lima (2.8%/year) in
Peru (11◦S–13◦S, 76◦W–78◦W).

The seasonal correction factor fseason is calculated
for GOME-2A, GOME-2B, and TROPOMI based on the
climatological seasonal variability (the monthly averages
divided by the annual average), derived using NO2

observations from 2007 to 2019 for GOME-2A, 2013 to
2019 for GOME-2B, and 2018 to 2019 for TROPOMI,
respectively. From the GOME-2A time series examples
in Figs. 1 and 2 and the multiple-year monthly mean
data over Asia, Europe, and North America in Fig. S5,
the tropospheric NO2 columns are largest in winter, and
the seasonal correction factors are ∼3–4 times higher
in winter than in summer (Fig. S6), mainly due to the
longer NO2 lifetime and higher emissions. As indicated
by the EDGAR-HTAP V2 emission data (https://edgar.jrc.
ec.europa.eu/htap v2/) in Fig. S7, the emissions from the
residential sector, which is one of the main energy-related
sources of NO2, increase for these northern mid-latitude
regions in winter due to domestic heating.

The wind correction factor fwind is derived using
the eastward and northward wind components u and v,
respectively, from the European Center for Medium range
Weather Forecasting (ECMWF) ERA5 dataset (https://cds.
climate.copernicus.eu/). The wind data at 10 m above the
surface have a spatial resolution of 0.25◦×0.25◦ and a
temporal resolution of 6 h. For different wind directions,
wind speeds are averaged over 12 h prior to the satellite
overpass time to approximately represent the effect of
transport integrated over the lifetime of NO2 (Zhou et al.

2012). The 10 m data are representative of the wind
fields within the lower boundary layer, particularly for
regions with strong sources close to the surface (Hayn
et al. 2009; Georgoulias et al. 2020). Influences of
additional meteorological variables, such as precipitation,
temperature, and solar irradiation, are partially considered
by applying the corrections for season and wind (Zhou et al.
2012; Goldberg et al. 2020b). The cloud effects are not
considered as the observations are filtered for clouds (see
“Tropospheric NO2 column retrieval”).

Figure 3 shows the wind influences on the tropospheric
NO2 columns measured by TROPOMI in 2018–2019 for

Fig. 3 Variations in TROPOMI tropospheric NO2 columns for 2018–
2019 as a function of wind speed for different wind directions over
Los Angeles in the southwestern USA (34.0◦N–34.25◦N, 118.0◦W–
118.25◦W). The error bar shows the standard error of the mean. The
average wind speed is 1.6 m/s. The average tropospheric NO2 column
is 7.1 × 1015 molec/cm2

https://edgar.jrc.ec.europa.eu/htap_v2/
https://edgar.jrc.ec.europa.eu/htap_v2/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
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Los Angeles located in the southwestern coast of the USA
(34.0◦N–34.25◦N, 118.0◦W–118.25◦W). The TROPOMI
tropospheric NO2 columns decrease by 33–76% when the
wind speed increases from 0.5 to 3.5 m/s due to the faster
dispersion away from the emission sources. For Los Angeles,
the northeast wind (i.e., u < 0 and v < 0) yields the largest
tropospheric NO2 columns with emission and transport
from upwind, which can be 70% larger than the columns
from other directions at the same wind speed, in agreement
with estimations from the regional study from Goldberg
et al. (2020b) using the operational TROPOMI data.

For each satellite pixel, fwind is implemented following
the normalization method from Goldberg et al. (2020b).
First, the ERA wind data with a 0.25◦×0.25◦ resolution
are bilinearly interpolated to 0.1◦×0.1◦ for GOME-2 and
0.025◦×0.025◦ for TROPOMI. Second, wind climatologies
are derived using the historical wind information and
tropospheric NO2 columns (2007–2019 for GOME-2A,
2013–2019 for GOME-2B, and 2018–2019 for TROPOMI),
indicating the NO2 dependencies on wind speed and wind
direction. Third, based on the wind climatologies, correction
values for each grid pixel are determined by normalizing to
a reference that is set to have an average wind speed. Lastly,
the correction values are modelled by the linear regression,
based on which fwind is determined for the current ERA5
wind conditions.

Figure 4 shows the average wind directions and wind
speeds in 16 March–15 April 2019 and the effect of
applying the meteorological correction for TROPOMI
tropospheric NO2 columns over the southwestern USA area.
For Californian coastal cities with a mountainous terrain,
such as Los Angeles and San Francisco, taking account
of the meteorological condition (predominant west winds)
affects the NO2 levels by up to 1 × 1015 molec/cm2 (20%),
mainly by reducing the NO2 underestimations for upwind
regions and reducing the overestimations for downwind
regions.

COVID-19 impact on NO2 pollution

China

China, where COVID-19 was first identified, was also the
first country to impose the lockdown restrictions, starting
from Wuhan and other cities in the Hubei region on
23 January 2020 to quarantine the center of COVID-19
outbreak. Similar measures have been imposed across China
as of mid-March 2020. With the efforts mostly based on
strict containment measures, the first epidemic wave has
been under control by early April 2020, when the lockdowns
ended or were largely relaxed.

Fig. 4 Average ERA5 wind
directions and wind speeds as
quiver plot and differences in
tropospheric NO2 columns with
and without the meteorological
correction, as measured by
TROPOMI over the
southwestern USA in 16
March–15 April 2019
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Fig. 5 Daily variations in 10-day moving averages of the corrected
GOME-2A/B tropospheric NO2 columns over eastern China (21◦N–
41◦N, 110◦E–122◦E) for 2007–2018 (green), 2019 (blue), and 2020
(red). Green shading shows standard error of the mean for 2007–2018.
The 2020 COVID-19 pandemic lockdown starts on 23 January. The
2020 Chinese New Year falls on 25 January. The yearly varying dates
of the Chinese New Year are considered

Figure 5 shows the tropospheric NO2 daily variations
in 10-day moving averages over eastern China (21◦N–
41◦N, 110◦E–122◦E) for 2020 and historical data from

GOME-2A/B. Data are corrected for trend, season, and
meteorology. In comparison with the uncorrected values in
Fig. S8, the winter values in Fig. 5 are uniformly lower
after accounting for the seasonal influence, and the summer
values are higher. The meteorological correction affects the
GOME-2 tropospheric NO2 columns by up to 8.5% during
lockdown in Fig. S9. Smaller positive corrections factors in
2020 during lockdown indicate less favorable conditions for
low NO2 as compared to 2019, in agreement with Liu et al.
(2020a).

The analysis of the COVID-19 lockdown impact is
complicated by the coincidence of the 7-day Chinese New
Year holidays. Consistent with the historical data, the
tropospheric NO2 columns in 2020 decrease by a factor
of 2 before the New Year. The columns, however, do
not increase back to the normal level after the holiday
as the historical data mainly resulted from the lockdown
measures, confirming previous findings using OMI data
(Bauwens et al. 2020; Huang and Sun 2020). Due to the
gradual recovery of social and economic activities, the
columns start to rebound 1 month after the New Year
(late February) and return to the normal level as previous
years by early April with short-term variations partly
related to observational errors. Higher NO2 levels are found
during April and May 2020 due to the increased emissions
from energy consumption and road transport (Zheng et al.

Fig. 6 Averages of the corrected
tropospheric NO2 columns
measured by TROPOMI over
eastern China during lockdown
in 23 January–22 March in 2020
and comparison with columns in
the same time period in 2019
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2020), consistent with regional studies using ground-based
monitoring data (Wang et al. 2020; Silver et al. 2020; Lauri
2020) and emission data (Zheng et al. 2020a). Since the
2020 NO2 data are lower by 31.8% than previous years
before the lockdown period and 16.3% after the lockdown
period, likely due to the pollution control policies (Liu et al.
2016; Wu et al. 2017), the lockdown effect over eastern
China is estimated to induce a NO2 reduction of 30% on
average.

Consistent daily variations of the retrieved NO2 amounts
are found between GOME-2 and TROPOMI (Fig. S10 -
S12). For the urban and suburban Chinese regions, the
NO2 measurements from GOME-2 are generally larger than
TROPOMI due to the diurnal cycle of NO2, which is a
function of diurnal variability in emissions, photochemistry,
and boundary layer height (Penn and Holloway 2020).
Attributed in part to emissions from commuter traffic, which
peak in the morning and evening (Bower et al. 1991; Ketzel
et al. 2003; Harley et al. 2005), the GOME-2 overpass
could capture morning maximum NO2 columns (Fishman
et al. 2008; Penn and Holloway 2020). In addition, the
GOME-2 measurements are generally noisier as compared
to TROPOMI results because of instrument degradation
effects (Munro et al. 2016).

Figure 6 shows the corrected TROPOMI tropospheric
NO2 over eastern China during the 2020 COVID-19
lockdown and the comparisons with columns in the same
time periods in 2019. During the lockdown period, the
TROPOMI NO2 declines across China, including the
industrial regions and economic zones in the North, the

major highways in the Center, and the shipping routes in the
South.

Figure 7 presents the TROPOMI NO2 differences
between 2020 and 2019 over eastern China for the pre-
lockdown period (23 November of the previous year–
22 January), the peri-lockdown period (23 January–22
March), and the post-lockdown period (23 March–22 May).
Table 1 quantifies the impact of the lockdown on corrected
TROPOMI tropospheric NO2 columns at selected Chinese
cities. The populated cities show strong reductions of
tropospheric NO2 columns during lockdown, likely due
to a combination of general improvements in air quality
(reductions by up to 33%) and COVID-19 lockdown impact
(further reductions by 27–48%). The estimated lockdown
impact is consistent with Liu et al. (2020a), who observed
a lockdown-related decrease of the operational TROPOMI
NO2 data by 21±5% and concluded that the actual emission
reduction is likely larger than the observed decrease due to
the meteorological influence.

Southern Europe

As one of the first European countries hit hard by the
COVID-19 pandemic, Italy imposed initial lockdown on 21
February 2020 in the most affected Lombardy region. The
lockdown zone was extended to the northern provinces on
8 March and to the whole country on 9 March, making
Italy the first European country to implement a nationwide
lockdown. The lockdown restrictions were partially lifted
from 4 May and further relaxed from 1 June.

Fig. 7 Differences in corrected
TROPOMI tropospheric NO2
columns between 2020 and
2019 observed before (23
November of the previous
year–22 January), during (23
January–22 March), and after
(23 March–22 May) lockdown
over eastern China
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Table 1 Relative differences in the corrected tropospheric NO2 columns (%) between 2020 and 2019 observed before, during, and after the
COVID-19 lockdown for selected cities in Asia, Europe, North America, and South America

Name Location Pre-lockdown Peri-lockdown Post-lockdown

23 Nov(last year)–22 Jan 23 Jan–22 Mar 23 Mar–22 May
Beijing, China 39.92◦N, 116.42◦E −4.43 −45.7 −28.0
Shanghai, China 31.17◦N, 121.47◦E −33.1 −60.5 −15.0
Wuhan, China 30.58◦N, 114.28◦E −22.4 −70.8 −26.1

16 Jan–15 Mar 16 Mar–15 May 16 May–15 Jul
Barcelona, Spain 41.38◦N, 2.15◦E −13.1 −62.4 −31.3
Lisbon, Portugal 38.73◦N, 9.15◦W −22.7 −49.6 −18.4
Madrid, Spain 40.43◦N, 3.70◦W −21.4 −59.9 −37.1
Milan, Italy 45.45◦N, 9.17◦E −30.2 −50.3 −26.5
Rome, Italy 41.90◦N, 12.45◦E −12.9 −44.5 −28.4

25 Jan–24 Mar 25 Mar–24 Jun 25 Jun–24 Jul
New Delhi, India 28.61◦N, 77.21◦E −14.8 −42.8 −6.49
Mumbai, India 19.00◦N, 72.80◦E 1.45 −41.3 −19.5
Waidhan, India 24.11◦N, 82.65◦E −15.9 −10.1 −24.3

16 Jan–15 Mar 16 Mar–15 May 16 May–15 Jul
Los Angeles, USA 34.05◦N, 118.25◦W 4.81 −33.0 −29.6
New York, USA 40.78◦N, 73.97◦W −16.4 −37.3 −23.9
Philadelphia, USA 39.95◦N, 75.17◦W −20.8 −28.2 −23.5
San Francisco, USA 37.78◦N, 122.43◦W 11.7 −36.7 −29.6
Washington DC, USA 38.88◦N, 77.03◦W −23.5 −31.3 −27.3

16 Jan–15 Mar 16 Mar–15 May 16 May–15 Jul
Buenos Aires, Argentina 34.58◦S, 58.37◦W 13.0 −26.1 −4.36
Guayaquil, Ecuador 2.17◦S, 79.93◦W −11.4 −45.1 −5.19
Lima, Peru 12.00◦S, 77.03◦W 7.22 −74.7 −51.4
Santiago, Chile 33.47◦S, 70.7◦5W −3.34 −25.7 −29.7
Sao Paulo, Brazil 23.52◦S, 46.52◦W 34.8 −24.9 −20.1

Average tropospheric NO2 columns are calculated using TROPOMI data within a 0.5◦×0.5◦ box around the city centers (latitudes and longitudes
given in the table)

From Fig. 8, the corrected tropospheric NO2 columns
from GOME-2A/B decrease by ∼20% for northern Italy
before the lockdown compared to previous years, mainly
caused by the emission control of the road transport
and by the industrial combustion modification in Europe
(Curier et al. 2014; Duncan et al. 2016; EEA 2019). The
NO2 columns decline by 51.7% on average during the
lockdown period in March–May and return to the level
∼20% lower compared to historical data in early June after
the lockdown was eased. Considering the decrease before
and after lockdown, the lockdown restriction measures
likely contribute to an average 30% decline of the NO2

concentration for northern Italy.
Following Italy, European countries started to impose

restrictions from mid-March with different severity and
timing. Countries like Italy and Spain imposed strict
lockdowns in response to the strong increase of infections,
while others such as Germany and the Netherlands enacted
relatively more relaxed measures. Countries like Portugal
and Greece enforced proactive measures when cases were

Fig. 8 Daily variations in 10-day moving averages of the corrected
GOME-2A/B tropospheric NO2 columns over northern Italy (45◦N–
46.5◦N, 7◦E–13◦E) for 2007–2018 (green), 2019 (blue), and 2020
(red). Green shading shows standard error of the mean for 2007–2018.
The COVID-19 pandemic lockdown starts on 8 March 2020
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Fig. 9 Averages of the corrected tropospheric NO2 columns measured by TROPOMI over southern Europe during lockdown in 16 March–15
May in 2020 and comparison with columns in the same time period in 2019

low, while others including France and the UK took longer
before imposing strict lockdowns.

For countries with strict and rapid lockdown measures
in southern Europe, the drop in road traffic and industrial
activities during the lockdown period leads to visible
decreases of NO2 levels in most cities and highways in
Figs. 9 and 10. The observed tropospheric NO2 columns
in Table 1 are 12.9–30.2% lower than the previous year
before the implementation of the lockdown measures, 44.5–
62.4% lower during lockdown, and 18.4–37.1% lower after
lockdown, indicating that the lockdown effect contributes to
a ∼30% drop in NO2 over southern Europe.

India

India ordered a public curfew in response to the COVID-
19 outbreak on 22 March 2020, followed by a nationwide
lockdown affecting 1.3 billion people on 25 March
2020. This large lockdown was extended to 30 June for
containment zones and was eased in a phased manner in
other zones from 8 Jun.

From Fig. 11, since the start of initial curfews and
national restrictions in late March, the corrected GOME-2
tropospheric NO2 columns decrease by a factor of 3 by early
April over the New Delhi region and remain low until June,

Fig. 10 Differences in corrected TROPOMI tropospheric NO2 columns between 2020 and 2019 observed before (16 January–15 March), during
(16 March–15 May), and after (16 May–15 July) lockdown over southern Europe
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Fig. 11 Daily variations in 10-day moving averages of the corrected
GOME-2A/B tropospheric NO2 columns over New Delhi in northern
India (27.6◦N–29.6◦N, 76.2◦E–78.2◦E) for 2007–2018 (green), 2019
(blue), and 2020 (red). Green shading shows standard error of the
mean for 2007–2018. The COVID-19 pandemic lockdown starts on 25
March 2020

not only in comparison with values before the lockdown but
also compared to an identical period in the historical data.
The declines for New Delhi during the lockdown period are
up to 65.2% compared to previous years. Good agreement is
observed between GOME-2 and TROPOMI data (Fig. S11).

From Figs. 12 and 13, lockdown-related declines of
TROPOMI tropospheric NO2 columns are observed for the
Indo-Gangetic Plain in the North with a large population as
well as the Chhattisgarh state in the Center and the Tamil
Nadu state in the South with electricity production activities
(Hilboll et al. 2017). From Table 1, the NO2 values decrease
by 42% on average for populated cities such as New Delhi
and Mumbai for the lockdown period compared to the same
time in 2019, which is 35.4% lower than the pre-lockdown
drops. For the Waidhan City with the largest Indian power
station (the Vindhyachal Super Thermal Power Station),
lockdown-related variations of no more than 14.2% are found
in the TROPOMI dataset due to the continuous operations
to procure coal-powered energy, an essential commodity
during the lockdown period (Sharma et al. 2020; Mahato
et al. 2020).

The USA

The USA local and statewide restriction measures first
began to come into effect from mid-March 2020 in affected
areas like California. The Californian lockdown started
first on 12 March to limit non-essential gatherings and
extended to the entire state on 19 March. The restrictions
were initially lifted from 8 May and further relaxed from 5
June. As of July 2020, however, California re-imposed the

Fig. 12 Averages of the
corrected tropospheric NO2
columns measured by
TROPOMI over India during
lockdown in 25 March–24 June
in 2020 and comparison with
columns in the same time period
in 2019
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Fig. 13 Differences in corrected TROPOMI tropospheric NO2 columns between 2020 and 2019 observed before (25 January–24 March), during
(25 March–24 June), and after (25 June–24 July) lockdown over India

lockdown measures, when the highest number of confirmed
infections in the USA was reported.

The corrected NO2 concentrations from GOME-2
decline by 20% on 12 March for Los Angeles in Fig. 14
as the initial COVID-19 measures were adopted. Compared
to the historical data, the NO2 concentrations are decreased
by 31.1% on average during the first month of lockdown

Fig. 14 Daily variations in 10-day moving averages of the corrected
GOME-2A/B tropospheric NO2 columns over Los Angeles in the
southwestern USA (33.5◦N–35.5◦N, 117.25◦W–119.25◦W) for 2007–
2018 (green), 2019 (blue), and 2020 (red). Green shading shows
standard error of the mean for 2007–2018. The COVID-19 pandemic
lockdown starts on 12 March 2020

and 26.0% during the second month. The (much-)above-
average to record precipitation in 2020 (https://www.ncdc.
noaa.gov/sotc/national/202003) can contribute to the NO2

variations, but the impact is expected to be partially
corrected by the wind correction introduced in “Trend,
seasonal, and meteorological corrections”. In early June,
the strong increases of tropospheric NO2 columns can be
explained by the presence of a number of bush fires (https://
www.lafd.org/alerts). Afterwards the NO2 levels remain
low compared to the historical data, because the lockdown
measures were re-imposed due to a significant increase of
infection cases.

Similar variations are observed for TROPOMI measure-
ments in Fig. S11. However, as compared to the relatively
large regions with high pollution levels in “China”-India,
Los Angeles shows less pronounced agreement between
GOME-2 and TROPOMI data due to heterogeneous topog-
raphy and isolation from urban agglomeration. In addition, a
stronger dependency of local NO2 amount on wind fields is
observed for TROPOMI (Fig. S12) than GOME-2 (Fig. S9).
For Los Angeles, GOME-2 averages the high concentrations
of the plume with the lower surrounding concentrations over
a larger pixel size.

The lockdown causes decreases of TROPOMI NO2

levels for major cities in California’s Central Valley, the
San Francisco Bay Area, and the Greater Los Angeles
Area as compared to 2019 in Figs. 15 and 16. The mean
decline observed during the lockdown period for California
is 34.9% in Table 1, consistent with the estimations of 32.5

https://www.ncdc.noaa.gov/sotc/national/202003
https://www.ncdc.noaa.gov/sotc/national/202003
https://www.lafd.org/alerts
https://www.lafd.org/alerts
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Fig. 15 Averages of the
corrected tropospheric NO2
columns measured by
TROPOMI over southwestern
USA during lockdown in 16
March–15 May in 2020 and
comparison with columns in the
same time period in 2019

to 40.7% from Goldberg et al. (2020b) using the operational
TROPOMI product and accounting for the meteorological
effect. The NO2 columns recover only slightly by 5.2%
between the peri- and post-lockdown periods, which can be
related to the implementation of the re-lockdown, requiring
future observations for a robust analysis. In comparison
with California, the lockdown-related NO2 variations are
less significant in the eastern USA in Table 1. The NO2

drops due to COVID-19 precautions are estimated to range

between 7.4 and 17.8% considering the decline in the pre-
lockdown period, and the NO2 rebounds range between 4.0
and 10.3%.

South America

Most countries affected by COVID-19 in South America
imposed quarantine restrictions starting from mid-March to

Fig. 16 Differences in corrected TROPOMI tropospheric NO2 columns between 2020 and 2019 observed before (16 January–15 March), during
(16 March–15 May), and after (16 May–15 July) lockdown over southwestern US
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Fig. 17 Daily variations in 10-day moving averages of the corrected
GOME-2A/B tropospheric NO2 columns over Lima in Peru (11◦S–
13◦S, 76◦W–78◦W) for 2007–2018 (green), 2019 (blue), and 2020
(red). Green shading shows standard error of the mean for 2007–2018.
The COVID-19 pandemic lockdown starts on 15 March 2020

slow down the rapid increase of infections, such as regional
lockdowns in Brazil and Chile and national lockdowns in
Ecuador, Argentina, and Peru.

Starting on 15 March 2020 with the announcement of
one of the earliest and strictest lockdown measures in
South America, declines of the GOME-2 tropospheric NO2

columns by up to 54.3% are found for the Lima area
of Peru in late March and April 2020 in Fig. 17. As a
four-step plan on a monthly basis to reopen the economy

was announced in early May 2020, the NO2 levels return
to the normal range and differ within ±20% afterwards.
Compared to TROPOMI data (Fig. S11), the larger noise in
the NO2 columns from GOME-2 is attributed to the larger
effect of the Southern Atlantic Anomaly (SAA), where an
anomaly in the Earth’s magnetic field leads to enhanced
radiation exposure of the MetOp satellites (Richter et al.
2011; Fioletov et al. 2020).

The implementation of lockdown measures decreases
the TROPOMI tropospheric NO2 columns for most South
American urban areas in Figs. 18 and 19. Local NO2

increases can be attributed to active biomass burning in
rural regions, for instance, the NO2 enhancements by
up to 1 × 1015 molec/cm2 over Argentina and Paraguay
during lockdown are likely related to fires for agricultural
use (https://modis.gsfc.nasa.gov/gallery/individual.php?db
date=2020-04-21). Comparing the peri-lockdown NO2

drops with pre-lockdown values in Table 1, the declines
resulted from the lockdown are 39.1% for Buenos Aires
in Argentina, 33.7% for Guayaquil in Ecuador, 81.9% for
Lima in Peru, 22.4% for Santiago in Chile, and 59.7% for
Sao Paulo in Brazil. During the post-lockdown timeframe,
the NO2 levels rebound by ∼20% in Lima but to lower
levels than the pre-lockdown timeframe. A return to the
normal NO2 level is found for Guayaquil and Buenos Aires,
but the comparison in Argentina is complicated due to the
increase in fire activity, which is visible from the increased
tropospheric NO2 columns during the post-lockdown period
in Fig. 19 over Paraná River Basin (https://earthobservatory.
nasa.gov/images/147031/the-parched-parana-river). While

Fig. 18 Averages of the
corrected tropospheric NO2
columns measured by
TROPOMI over South America
during lockdown in 16
March–15 May in 2020 and
comparison with columns in the
same time period in 2019

https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2020-04-21
https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2020-04-21
https://earthobservatory.nasa.gov/images/147031/the-parched-parana-river
https://earthobservatory.nasa.gov/images/147031/the-parched-parana-river
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Fig. 19 Differences in corrected TROPOMI tropospheric NO2 columns between 2020 and 2019 observed before (16 January–15 March), during
(16 March–15 May), and after (16 May–15 July) lockdown over South America

a number of regions remain the current epicenters of the
COVID-19 pandemic, regional studies with longer NO2

time series will be the subject of future work.

Conclusion

In response to the rapid COVID-19 spread, countries around
the world have imposed lockdown restrictions. Quantifying the
temporal changes of pollutant concentrations due to COVID-
19 restrictions is important to understand the impact of public
health measures on environment, economy, and society.

Mainly emitted anthropogenically from the road trans-
port and industrial activities, the variations of tropospheric
NO2 columns are analyzed based on the long-term global
dataset (since 2007) from GOME-2 with a morning over-
pass and the high-resolution measurements (5.5 km×3.5
km) from TROPOMI with an early afternoon overpass.
The GOME-2 and TROPOMI NO2 data are retrieved in
a harmonized manner and corrected for trend, season, and
meteorology using a statistical method.

With good consistency between GOME-2 and
TROPOMI measurements, strong decreases in tropospheric
NO2 columns are observed during the lockdown period
not only in comparison with levels before and after the
lockdown but also compared to identical periods in the
historical data. China observes an average 24.1% decline
of NO2 levels due to the pollution control policies and a
further reduction of ∼30% due to the COVID-19 contain-
ment measures after the Chinese New Year holiday in late
January 2020. The NO2 amount gradually returns to the
normal level as previous years after 2 months of lockdown.
Similar decline and rebound are observed for southern

European countries such as Italy, Portugal, and Spain,
where the mean NO2 decline because of emission control is
∼20% and the lockdown-related drop during mid-March to
mid-May is ∼30%. In India, the tropospheric NO2 columns
decrease by 42% on average for populated areas and by up
to 14.2% for particular power plant locations, followed by
a rebound in late June after 3 months of lockdown. The
USA reports a lockdown-related NO2 reduction of 34.9%
on average for western regions such as California and up to
17.8% for eastern areas. In South America, the tropospheric
NO2 columns reduce by up to 81.9% during mid-March to
mid-May due to the lockdown.

In conclusion, the NO2 drops due to the lockdown
restrictions are estimated to be 30% for populated cities
in China and southern Europe, 42% in India, 35% in the
southwestern USA, and 48% in South America. Due to
the recovery of social and economic activities in a phased
manner, gradual rebounds of the tropospheric NO2 columns
to normal levels are found for countries such as China, Italy,
and India. As the lockdown is still ongoing for a number
of regions worldwide in response to the second wave of
outbreak, and its long-term effect on NO2 variations (e.g.,
due to the possible economic downturn) is uncertain, a
further monitoring of the NO2 concentration recovery will
be necessary.
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Beirle S, Hörmann C, Jöckel P, Liu S, Penning de Vries M, Pozzer A,
Sihler H, Valks P, Wagner T (2016) The stratospheric estimation
algorithm from mainz (stream): estimating stratospheric NO2 from

nadir-viewing satellites by weighted convolution. Atmos Meas
Tech 9(7):2753–2779. https://doi.org/10.5194/amt-9-2753-2016

Bekbulat B, Apte J, Millet D, Robinson A, Wells K, Marshall J (2020)
PM2.5 and ozone air pollution levels have not dropped consis-
tently across the US following societal COVID response. https://
doi.org/10.26434/chemrxiv.12275603.v1

Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Rozanov VV,
Chance KV, Goede APH (1999) Sciamachy: mission objectives
and measurement modes. J Atmos Sci 56:127–150. https://doi.
org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2

Bower JS, Broughton GFJ, Dando MT, Lees AJ, Stevenson KJ, Lam-
pert JE, Sweeney BP, Parker VJ, Driver GS, Waddon CJ, Wood AJ
(1991) Urban NO2 concentrations in the UK in 1987. Atmos Envi-
ron B Urban Atmos 25(2):267–283. https://doi.org/10.1016/0957-
1272(91)90062-J

Burrows JP, Weber M, Buchwitz M, Rozanov V, Ladstätter-
Weißenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K,
Eichmann K-U, Eisinger M, Perner D (1999) The global ozone
monitoring experiment (gome): mission concept and first scien-
tific results. J Atmos Sci 56(2):151–175. https://doi.org/10.1175/
1520-0469(1999)056<0151:TGOMEG>2.0.CO;2

CAAC (2013) Caac (clean air alliance of china) state council air
pollution prevention and control action plan. Tech. Rep., issue II,
www.cleanairchina.org

Callies J, Corpaccioli E, Eisinger M, Hahne A, Lefebvre A (2000)
Gome-2-metop’s second-generation sensor for operational ozone
monitoring. ESA bulletin 102:28–36

Cermak J, Wild M, Knutti R, Mishchenko MI, Heidinger AK (2010)
Consistency of global satellite-derived aerosol and cloud data
sets with recent brightening observations. Geophys Res Lett
37(21):L21704. https://doi.org/10.1029/2010GL044632

Chen J, Jiang Z, Miyazaki K, Zhu R, Chen X, Liao C, Jones D,
Bowman K, Sekiya T (2020) Impacts of COVID-19 control
measures on tropospheric NO2 over China, South Korea and Italy.
arXiv:2006.12858

Compernolle S, Argyrouli A, Lutz R, Sneep M, Lambert J-C, Fjæraa
AM, Hubert D, Keppens A, Loyola DG, O’Connor E, Romahn F,
Stammes P, Verhoelst T, Wang P (2020) Validation of the sentinel-
5 precursor tropomi cloud data with cloudnet, aura omi O2-O2,
modis and suomi-npp viirs. Atmos Meas Tech Discuss 2020:1–33.
https://doi.org/10.5194/amt-2020-122

Curier RL, Kranenburg R, Segers AJS, Timmermans RMA, Schaap
M (2014) Synergistic use of omi NO2 tropospheric columns and
lotos–euros to evaluate the NOx emission trends across europe.
Remote Sens Environ 149:58–69. https://doi.org/10.1016/j.rse.20
14.03.032

De Foy B, Lu Z, Streets DG (2016) Satellite NO2 retrievals suggest
China has exceeded its NOx reduction goals from the twelfth five-
year plan. Sci Rep 6:35912. https://doi.org/10.1038/srep35912

Ding J, Miyazaki K, van der A RJ, Mijling B, Kurokawa J-I, Cho S,
Janssens-Maenhout G, Zhang Q, Liu F, Levelt PF (2017) Inter-
comparison of NOx emission inventories over East Asia. Atmos
Chem Phys 17(16):10125–10141. https://doi.org/10.5194/acp-17-
10125-2017

Ding J, van der A RJ, Eskes H, Mijling B, Stavrakou T, van
Geffen J, Veefkind P (2020) Chinese NOx emission reductions
and rebound as a result of the COVID-19 crisis quantified
through inversion of tropomi NO2 observations. Geophys Res Lett
47(19):e2020GL089912. https://doi.org/10.1029/2020GL089912

Duncan BN, Lamsal LN, Thompson AM, Yoshida Y, Lu Z, Streets
DG, Hurwitz MM, Pickering KE (2016) A space-based, high-
resolution view of notable changes in urban NOx pollution around
the world (2005–2014). J Geophys Res Atmos 121(2):976–996.
https://doi.org/10.1002/2015JD024121

EEA (2019) Air quality in Europe – eea (european environment
agency) 2019 report. Tech. Rep., 10/2019

https://scihub.copernicus.eu/
https://cds.climate.copernicus.eu/
https://acsaf.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.scitotenv.2020.140353
www.theicct.org/india
https://doi.org/10.1029/2020GL087978
https://doi.org/10.1126/sciadv.aax9800
https://doi.org/10.5194/amt-9-2753-2016
https://doi.org/10.26434/chemrxiv.12275603.v1
https://doi.org/10.26434/chemrxiv.12275603.v1
https://doi.org/10.1175/1520-0469(1999)056$<$0127:SMOAMM$>$2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056$<$0127:SMOAMM$>$2.0.CO;2
https://doi.org/10.1016/0957-1272(91)90062-J
https://doi.org/10.1016/0957-1272(91)90062-J
https://doi.org/10.1175/1520-0469(1999)056$<$0151:TGOMEG$>$2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056$<$0151:TGOMEG$>$2.0.CO;2
https://doi.org/10.1029/2010GL044632
http://arxiv.org/abs/2006.12858
https://doi.org/10.5194/amt-2020-122
https://doi.org/10.1016/j.rse.2014.03.032
https://doi.org/10.1016/j.rse.2014.03.032
https://doi.org/10.1038/srep35912
https://doi.org/10.5194/acp-17-10125-2017
https://doi.org/10.5194/acp-17-10125-2017
https://doi.org/10.1029/2020GL089912
https://doi.org/10.1002/2015JD024121


Air Qual Atmos Health

Euro (2007) Regulation (ec) no 715/2007 of the european parliament
and of the council of 20 june 2007 on type approval of motor
vehicles with respect to emissions from light passenger and
commercial vehicles (euro 5 and euro 6) and on access to vehicle
repair and maintenance information 29.6.2007. Tech Rep., Official
Journal of the European Union L 171/1., https://eur-lex.europa.eu/
eli/reg/2007/715/oj

Fan C, Li Y, Guang J, Li Z, Elnashar A, Allam M, de Leeuw G
(2020) The impact of the control measures during the COVID-19
outbreak on air pollution in China. Remote Sens 12(10):1613.
https://doi.org/10.3390/rs12101613

Fioletov V, McLinden CA, Griffin D, Theys N, Loyola DG, Hedelt
P, Krotkov NA, Li C (2020) Anthropogenic and volcanic point
source SO2 emissions derived from tropomi on board sentinel-
5 precursor: first results. Atmos Chem Phys 20(9):5591–5607.
https://doi.org/10.5194/acp-20-5591-2020

Fishman J, Bowman KW, Burrows JP, Richter A, Chance KV,
Edwards DP, Martin RV, Morris GA, Pierce RB, Ziemke JR,
Al-Saadi JA, Creilson JK, Schaack TK, Thompson AM (2008)
Remote sensing of tropospheric pollution from space. Bull Am
Met Soc 89(6):805–822. https://doi.org/10.1175/2008BAMS25
26.1

Georgoulias AK, Boersma KF, van Vliet J, Zhang X, van der A RJ,
Zanis P, de Laat J (2020) Detection of NO2 pollution plumes from
individual ships with the tropomi/s5p satellite sensor. Environ Res
Lett 15(12):124037. https://doi.org/10.1088/1748-9326/abc445

Georgoulias AK, Stammes P, Boersma KF, Eskes H (2019) Trends
and trend reversal detection in 2 decades of tropospheric
NO2 satellite observations. Atmos Chem Phys 19(9):6269–6294.
https://doi.org/10.5194/acp-19-6269-2019

Goldberg DL, Anenberg S, Mohegh A, Lu Z, Streets DG (2020a)
Tropomi NO2 in the United States: a detailed look at the annual
averages, weekly cycles, effects of temperature, and correlation
with pm2.5. https://doi.org/10.1002/essoar.10503422.1

Goldberg DL, Anenberg SC, Griffin D, Mclinden CA, Lu Z, Streets
DG (2020b) Disentangling the impact of the COVID-19 lock-
downs on urban NO2 from natural variability. Geophys Res Lett
47(17):e2020GL089269. https://doi.org/10.1029/2020GL089269

Gu D, Wang Y, Smeltzer C, Boersma KF (2014) Anthropogenic
emissions of NOx over China: reconciling the difference of inverse
modeling results using gome-2 and omi measurements. J Geophys
Res Atmos 119(12):7732–7740. https://doi.org/10.1002/2014JD0
21644

Harley RA, Marr LC, Lehner JK, Giddings SN (2005) Changes
in motor vehicle emissions on diurnal to decadal time scales
and effects on atmospheric composition. Environ Sci Technol
39(14):5356–5362. https://doi.org/10.1021/es048172+

Hayn M, Beirle S, Hamprecht FA, Platt U, Menze BH, Wagner T
(2009) Analysing spatio-temporal patterns of the global NO2-
distribution retrieved from gome satellite observations using a
generalized additive model. Atmos Chem Phys 9(17):6459–6477.
https://doi.org/10.5194/acp-9-6459-2009
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