Pushing Computational Boundaries: Solving Integrated Investment Planning Problems for Large-scale Energy Systems with PIPS-IPM++

OR 2021, online, September 1st 2021

Karl-Kien Cao, Manuel Wetzel, Nils-Christian Kempke, Thorsten Koch

German Aerospace Center (DLR) Institute of Networked Energy Systems Energy Systems Analysis

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Motivation

Motivation: Energy System Optimization Models

Annual energy balances

Purpose

Future insights on

- supply and demand of energy
- infrastructure and investment needs
- feasibility

Trends¹

- Addressing uncertainty and transparency
- Addressing the growing system complexity
- Increasing resolutions and scope

1: According to: Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74-86. 2: Based on: Cao, K. K., Haas, J., Sperber, E., Sasanpour, S., Sarfarazi, S., Pregger, T., ... & Kneiske, T. M. (2021). Bridging granularity gaps to decarbonize large-scale energy systems—The case of power system planning. Energy Science & Engineering.

Motivation: Energy System Optimization Models

Purpose

Future insights on

- supply and demand of energy
- infrastructure and investment needs
- feasibility

Trends¹

- Addressing uncertainty and transparency
- Addressing the growing system complexity
- Increasing resolutions and scope

Dimensions

1: According to: Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74-86.

Motivation: Energy System Optimization Models

Purpose

Future insights on

- supply and demand of energy
- infrastructure and investment needs
- feasibility

Trends¹

- Addressing uncertainty and transparency
- Addressing the growing system complexity
- Increasing resolutions and scope

Annual energy balances

REMix

PvPSA

1: According to: Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74-86. 2: Based on: Cao, K. K., Haas, J., Sperber, E., Sasanpour, S., Sarfarazi, S., Pregger, T., ... & Kneiske, T. M. (2021). Bridging granularity gaps to decarbonize large-scale energy systems—The case of power system planning. Energy Science & Engineering.

Modelling Large-scale Energy Systems

Example: Representation of PyPSA-Eur

Source: Hörsch, J., Hofmann, F., Schlachtberger, D., & Brown, T. (2018). PyPSA-Eur: An open optimisation model of the European transmission system. Energy Strategy Reviews, 22, 207-215.

Methodology

Solving the Models

Methods on the Software-Side³

Modeller's Domain Knowledge + Supercomputing²

1: Investigated in: Raventós, O., & Bartels, J. (2020). Evaluation of temporal complexity reduction techniques applied to storage expansion planning in power system models. Energies, 13(4), 988. 2: Based on: Scholz, Y., Fuchs, B., Borggrefe, F., Cao, K. K., Wetzel, M., von Krbek, K., ... & Buchholz, S. (2020). Speeding up Energy System Models-a Best Practice Guide.

3: Based on: Cao, K. K., Von Krbek, K., Wetzel, M., Cebulla, F., & Schreck, S. (2019). Classification and evaluation of concepts for improving the performance of applied energy system optimization models. Energies, 12(24), 4656.

Understanding the Block Structure

Results

Solving PyPSA-Eur¹ with PIPS-IPM++

Annotation

No. regions	No. MPI-tasks (time blocks)
37	{96, 120, 144, 192, 768}
128	{, 96,, 192,, 384,, 1095}
512	{96, 144, 192,, 528, 768, 792, 1056}
1024	{96, 144, 192}
3475	{96, 144}

Total

Source: Hörsch, J., Hofmann, F., Schlachtberger, D., & Brown, T. (2018). PyPSA-Eur: An open optimisation model of the European transmission system. Energy Strategy Reviews, 22, 207-215.

Measuring the Performance Commercial solver on shared memory PIPS-IPM++ on distributed memory Speed-up Max. memory savings Resources core-h ₿ 10² 104 Memory allocation in S Time to solve in Resource usage in 10¹ 10^{-3} 10¹ 10² 100 120 488 120 240 488 120 240 60 240 60 60 488 Number of model regions Number of model regions Number of model regions

- Mitigation of both time and memory limits possible via compute node configuration on HPC systems
- Trade-off: Time to solve vs. resources consumption

Solving PyPSA-Eur with PIPS-IPM++

- Best-in-class:
 - Take best result for Speed-up across different annotations
- Operational and investment decisions
 - Investments into renewable energy generation
 - Additional investments into storage and power transmission capacities

Solving the PyPSA-Eur with PIPS-IPM++

Max. memory savings

Conclusions

Conclusions

Trend	Large-scale energy system optimization models
	Higher resolutions and broader scopes
Challenges	Computing times
C	Memory demand
Open parallel solver PIPS-IPM++ ¹	Exact solutions
	Distributed memory hardware
	Speed-up vs. compute resources
Future	Parameter tuning
	Suitable use-cases

Outlook for Modelling Large-scale Energy Systems

Electricity - Gas Own depiction

European Power and Gas Transmission Grid

Thank you!

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS at Julich Supercomputing Centre (JSC).

German Aerospace Center (DLR) Institute of Networked Energy Systems Energy Systems Analysis Karl-Kien.Cao@dlr.de | Manuel.Wetzel@dlr.de