Agent-based modelling of market competition among flexibility options using Temporal Fusion Transformer networks

Felix Nitsch^{1,*}, <u>Christoph Schimeczek</u>¹, Valentin Bertsch²

¹ Department of Energy Systems Analysis
 Institute of Networked Energy Systems
 German Aerospace Center (DLR)
 Curiestraße 4, 70563 Stuttgart, Germany
 * corresponding author: Felix.Nitsch@dlr.de +49 711 6862-8865

² Chair of Energy Systems & Energy Economics Ruhr-Universität Bochum Universitätsstraße 150, 44801 Bochum, Germany

Knowledge for Tomorrow

PARIS AGREEMENT – THE ENERGY TRANSITION IS SET

Nations Unies Conférence sur les Changements Climatiques 2015 ^{COP21/CMP11}

Paris, France

AMIRIS

Agent-based Market model for the Investigation of Renewable and Integrated energy Systems

Model

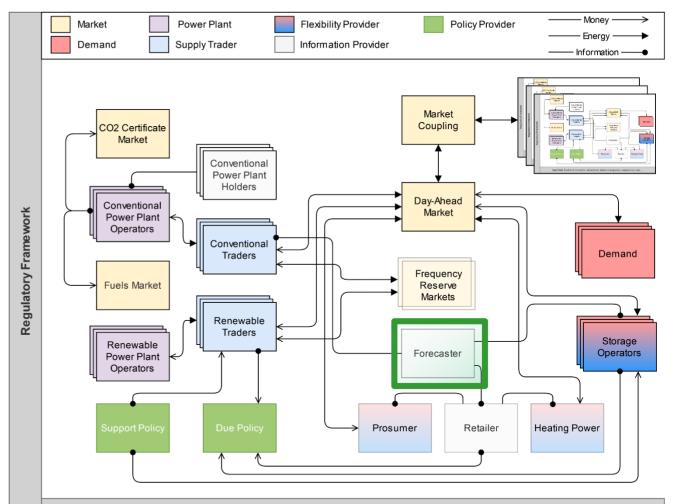
- Electricity market simulation
- Focus: Germany & Europe
- To be **Open Source** in 2021

Agents

- **Conventional Plants**
- **Renewable Plants**
- Traders
- Flexibilities
- Markets
- Policy
- Forecasting

Calculates

- **Electricity prices**
- Plant dispatch
- Market values
- Emissions
- System costs



Input Data: Feed-in of renewables, temperature, balance energy price, marginal cost, load, ...

Status Quo: Price forecasting in AMIRIS

- 1. Power plant operators send future bids to forecast agent
- 2. Forecast agent calculates forecasted price
- 3. Forecasts are sent to one Flex-option agent
- 4. Flex-option agent optimizes its operational strategy
- 5. All traders send final bids to Energy Exchange
- 6. Energy Exchange calculates final electricity price

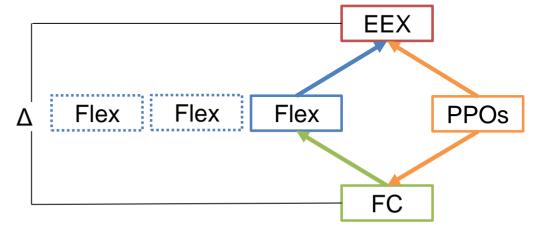
Final and forecasted price difference caused by flex-option agent actions

(i.e. charging \rightarrow "higher price", discharging \rightarrow "lower price")

Challenge:

Multiple flex-option agents mutually distort their forecasts due to their competitive actions

 \rightarrow Significant impacts on the accuracy of the price forecast



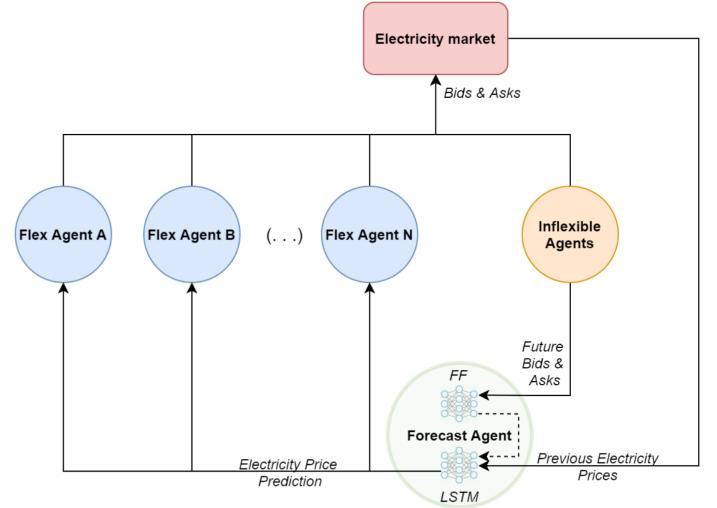
First attempt

Aim

Central forecast agent is learning bidding behaviour of flexibility options and their impacts on prices

Architecture

- 1. Feed-forward model (FF)
- 2. Long-short term memory model (LSTM)
- Inputs:
 - Previous prices
 - Previous residual load
- Output:
 - Price forecast for next 3 hours



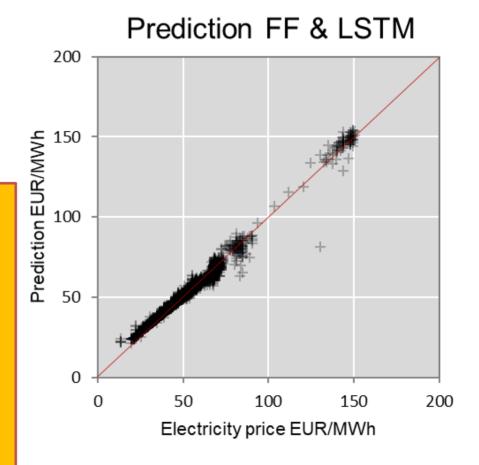
First Attempt's Results

Result

- Successful proof of concept
- Accurate predictions only up to t+3 time steps

But...

- 1. t+3 time steps not enough to build operational strategy
- 2. Uncertainties of prediction values unknown
- 3. Inconvenient two-staged training process (1. FF \rightarrow 2. LSTM)
- 4. "Black box" characteristic of ML prediction



Nitsch, F. and Schimeczek C. (2020). Model in model: Electricity price forecasts in agent-based energy system simulations. INREC Conference. https://elib.dlr.de/136017/

Temporal Fusion Transformers (TFT)

- Novel approach (Lim et al. (2020))
- Attention-based architecture
- Significant performance improvements over existing benchmarks (see Table)

Main features

Gating mechanisms

skip over unused components

- Variable selection networks
 select relevant input variables
- Static covariate encoders
 integrate static features
- Temporal processing
 learn long- & short-term relationships

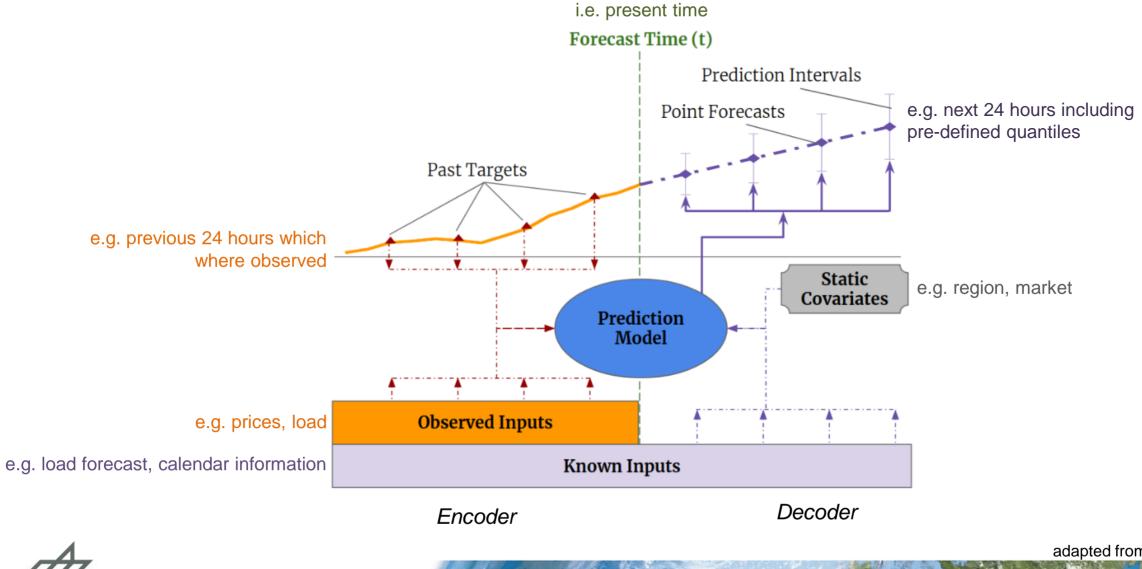
Table 2: P50 and P90 quantile losses on a range of real-world datasets. Percentages in brackets reflect the increase in quantile loss versus TFT (lower q-Risk better), with TFT outperforming competing methods across all experiments, improving on the next best alternative method (underlined) between 3% and 26%.

	ARIMA	ETS	TRMF	\mathbf{DeepAR}	DSSM
Electricity Traffic	$egin{array}{l} 0.154 & (+180\%) \ 0.223 & (+135\%) \end{array}$	$egin{array}{l} 0.102 \ (+85\%) \ 0.236 \ (+148\%) \end{array}$	$0.084~(+53\%)\ 0.186~(+96\%)$	$0.075 \; (+36\%) \\ 0.161 \; (+69\%)$	$0.083 (+51\%) \\ 0.167 (+76\%)$
	ConvTrans	$\mathbf{Seq2Seq}$	MQRNN	TFT	
Electricity Traffic	$\begin{array}{c} 0.059 \ (+7\%) \\ 0.122 \ (+28\%) \end{array}$	$egin{array}{l} 0.067 \ (+22\%) \ 0.105 \ (+11\%) \end{array}$	$0.077~(+40\%) \ 0.117~(+23\%)$	0.055* 0.095*	

(a) P50 losses on simpler univariate datasets.

Lim, B., Arik, S. O., Loeff, N., & Pfister, T. (2020). Temporal fusion transformers for interpretable multi-horizon time series forecasting. arXiv preprint arXiv:1912.09363.

TFT Forecasting Concepts



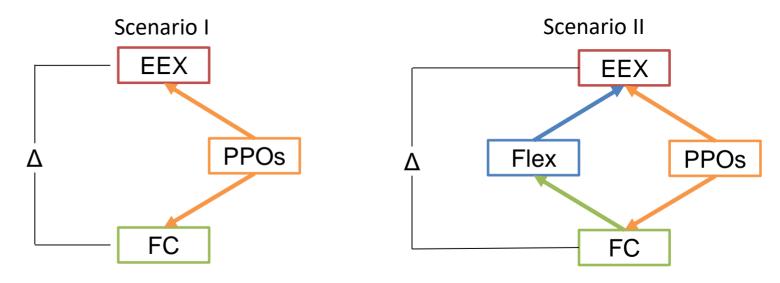
DLR

adapted from Lim et al. (2020)

Workflow

• 1. Hyperparameter scan

- Number of hidden layers
- Dropout
- Learning rate
- etc.

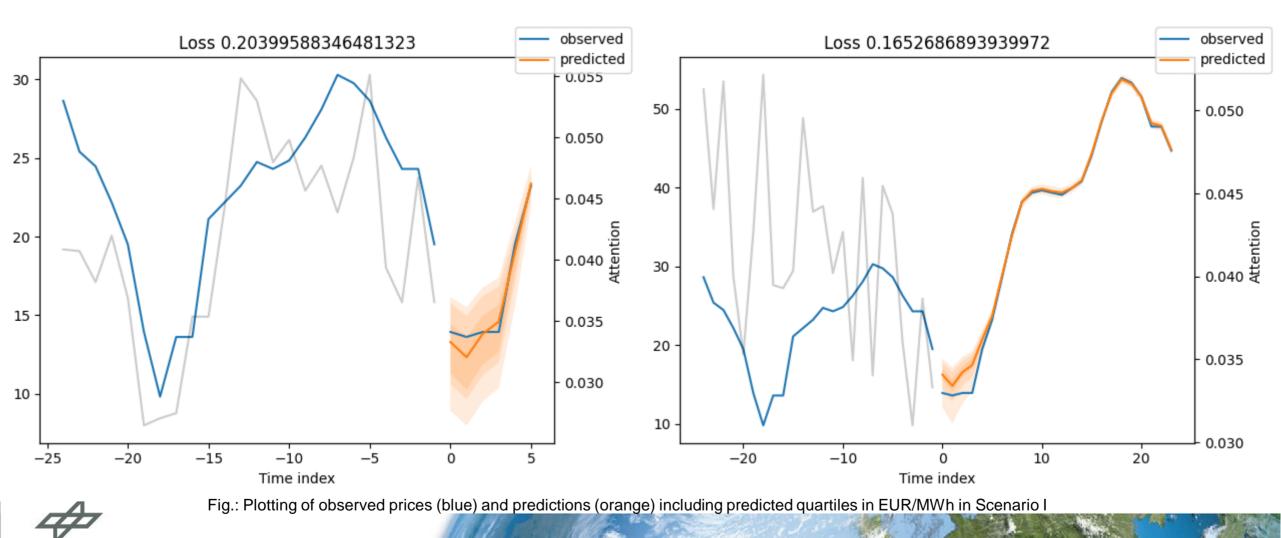


• 2. Training

- Based on AMIRIS simulation results
 - Scenario I: no flexibility options (easy to forecast, electric load \Leftrightarrow price)
 - Scenario II: extensive flexibility options (challenging to forecast, electric load \Leftrightarrow price)

Price Prediction – Scenario I – without flexibility option

Encoder 24h – Prediction 6h and 24h



Price Prediction – Scenario II – with extensive flexibility options

Encoder 24h – Prediction 6h and 24h

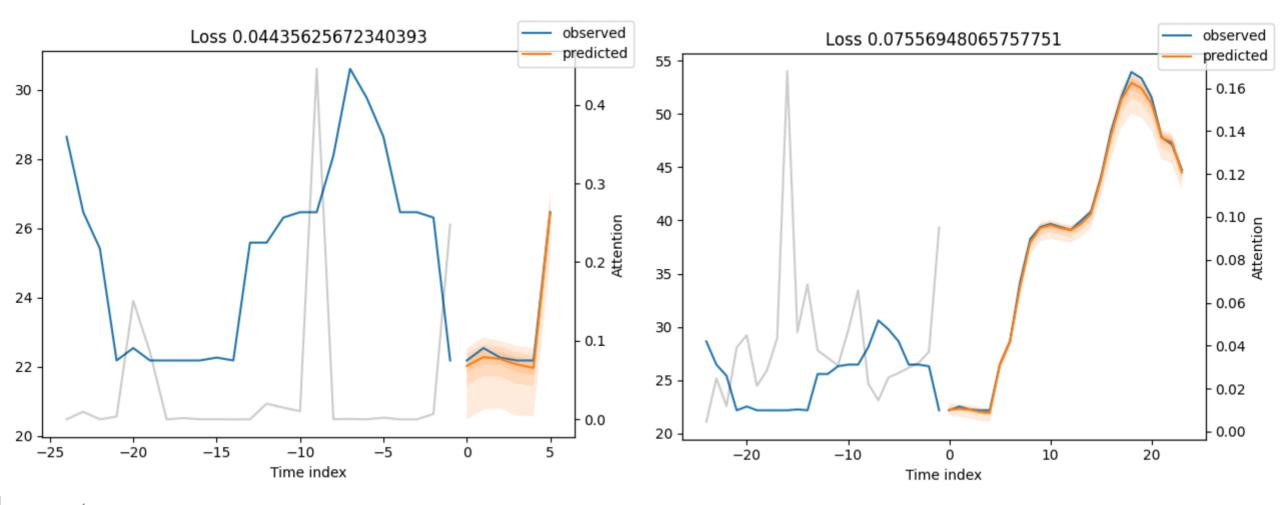
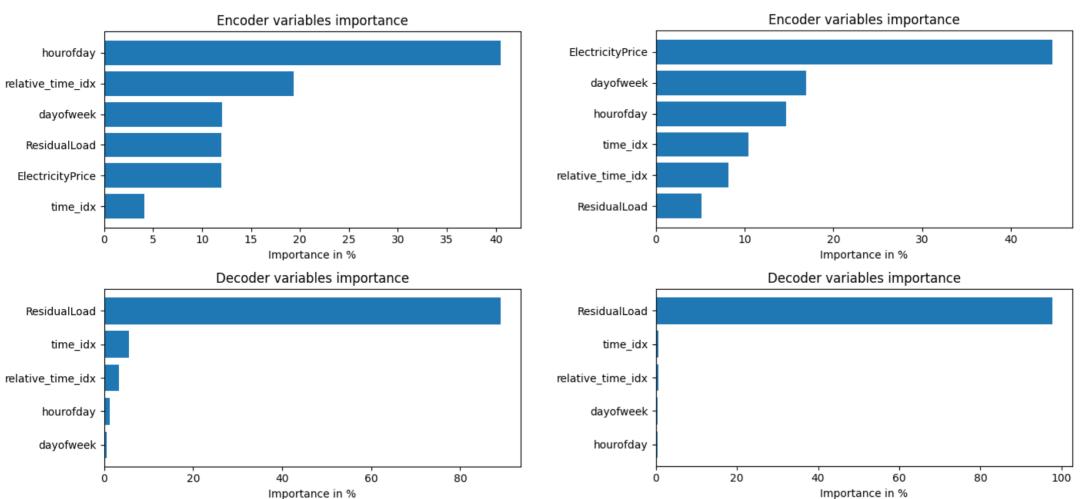


Fig.: Plotting of observed prices (blue) and predictions (orange) including predicted quartiles in EUR/MWh in Scenario II

Variable importance – Scenario II Encoder 24h

6h Prediction



24h Prediction

Conclusion

- 1. Accurate predictions only up to t+3 time steps
 - High quality forecasts for 24 time steps
- 2. No way to consider uncertainties regarding the prediction values
 - Prediction uncertainty estimates
- 3. Inconvenient two-staged training process (1. FF \rightarrow 2. LSTM)
 - Very convenient training using pytorch, optuna and TFT implementation by Jan Beitner
- 4. "Black box" characteristic of ML prediction
 - "Attention" feature: identify important input variables

Outlook

- Generalize training data for scenarios
- o Transfer ML models from Python to Java (AMIRIS)
- o Develop strategies for flex-option planning to utilize uncertainty information

Contact: Felix Nitsch felix.nitsch@dlr.de

German Aerospace Center | Institute of Networked Energy Systems | Energy Systems Analysis