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Abstract— We present a new approach for Cartesian
impedance control of compliantly actuated robots with possibly
nonlinear spring characteristics. It reveals a remarkable stiff-
ness and damping range in the experimental evaluation. The
most interesting contribution, is the way the desired closed-
loop dynamics is designed. Our control concept allows to add a
desired stiffness and damping directly on the end-effector, while
leaving the system structure intact. The intrinsic inertial and
elastic properties of the system are preserved. This is achieved
by introducing new motor coordinates that reflect the desired
spring and damper terms. Theoretically, by means of additional
motor inertia shaping it is possible to make the end-effector
interaction behavior with respect to external loads approach,
arbitrarily close, the interaction behavior that is achievable by
classical Cartesian impedance control on rigid robots.

The physically motivated design approach allows for an
intuitive understanding of the resulting closed-loop dynamics.
We perform a passivity and stability analysis on the basis of a
physically motivated storage and Lyapunov function.

I. Introduction

In the past, it turned out that the impact of joint elasticities
on the controller design is of particular relevance for light
weight robots as well as for industrial robots when precise
and quick motions are required. In this case, it is common
to rely on the reduced model [1] of a flexible joint robot that
consists of the rigid body dynamics in feedback interconnec-
tion with the elastic actuator dynamics. Common causes of
joint elasticities are gear flexibility or the compliance of a
torque-force sensor. In these cases, the joint stiffness is quiet
high and the robot dynamics is primarily dominated by the
rigid body part. Consequently, several control approaches for
such elastic joint robots started with a control law for the
rigid body dynamics and used it as a desired torque to be
controlled with the elastic actuator dynamics [2], [3], [4].
On the contrary, feedback linearization based approaches
[5] designed the controller directly for the full flexible
model without first designing a rigid body controller in an
intermediate step. In both cases, a stable closed-loop systems
is achieved, but its structure deviates significantly from the
open loop system.

Starting with [8], [9] we aimed at developing passivity-
based control approaches that preserve the intrinsic com-
pliant dynamics of flexible joint robots. On robots with
rather stiff joints these approaches show good performances.
However, in highly compliant robots, it turned out that the
vibration damping performances of these approaches, which
rely on motor side damping and joint torque feedback, are
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Fig. 1. Fig. 1a shows the DLR Hand Arm System [6]. The first four arm
joints, namely the elbow and the three shoulder joints, are implemented
by Floating Spring Joints (FSJ) [7]. A simplified working scheme is
shown in Fig. 1c. The joint stiffness for various stiffness adjuster positions
σ = [ 0, 2.5, 5.0, 7.5, 10 ] deg is shown in Fig. 1b.

non-satisfactory. In robots featuring serial elastic actuators
(SEA) or variable impedance actuators (VIA) one deliber-
ately integrates a highly elastic element in the drive train.
These type of robots gained popularity in the recent past
as they offer a number of advantages such as improved
impact tolerance [7], lower reflected inertia, more accurate
and stable force control [10], energy storage that allows for
explosive motions [11]. On the other hand, the highly elastic
elements introduce intrinsic oscillatory dynamics into the
plant. For this kind of highly elastic robots, we proposed a
new passivity-based control approach [12], [13] that is based
on the idea of preserving the elastic structure of the plant
dynamics. In contrast to [9], it implements damping directly
on the link side and not indirectly via motor damping on
the motor side. From a conceptional point of view, these
works are most closely related to the work [14] which
proposes a controller that cancels the effects of gravity while
retaining the dynamics structure. In [15] we adopted the
design idea of our previous controllers to achieve Cartesian
impedance control for robots with visco-elastic actuators.
Despite their similar structure, visco-elastic actuators and
SEA have crucially different control properties. Considering
the link coordinates as output, visco-elastic systems have
a relative degree of at most 3. This leads to the situation
that [15], in its most general from, requires dynamic state
feedback. SEA systems, on the other hand, have a relative
degree of 4. In this paper we extend the concept of link-side
damping of our previous works to full impedance control. In
contrast to [15], static state feedback is sufficient. Impedance
control was initially introduced by [16] and has been suc-
cessfully applied on many robots in practice. It allows for
stable interactions of the robot with its environment in a
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Fig. 2. (a) Graphical representation of a single linear-elastic joint as
depicted in. (b) ESπ control achieves a full Impedance behavior directly
on the link. (c) ESP control achieves damping directly on the link.

defined manner. Enabling Cartesian impedance control on
highly elastic robots would increase their field of application
significantly in our opinion. To the best of knowledge, this
is the first Cartesian impedance controller that has been
experimentally validated on multi-joint robot with highly
elastic variable stiffness joints featuring highly nonlinear
stiffness characteristics, see Fig. 1.

II. The Basic Design Idea

This section presents the basic idea that underlies the
proposed control concept. In order to keep the presentation
simple, we consider a single joint with flexible transmission
as shown in Fig. 2(a). The actuator with inertia B is coupled
via a linear-elastic element, with stiffness K, to the link
inertia M. The motor and link coordinates are represented
by θ and q, respectively. The displacement of the elastic
element is described by the difference θ − q. The control
input u, is a generalized force acting on the motor inertia.
The corresponding dynamics can be expressed as

Mq̈ = K(θ − q) (1)
Bθ̈ + K(θ − q) = u. (2)

The goal of impedance control is to achieve a desired
dynamical behavior of the link with respect to an external
generalized force.

We start by deriving a control law that adds a spring and
damper term on the link side, while preserving the structure
of the plant dynamics. This is achieved by introducing a new

motor coordinate η that satisfies

K(θ − q) = K(η − q)−Dqq̇ − Kq(q − qd)︸                  ︷︷                  ︸
=:n

(3)

and reflects the desired link-side impedance behavior char-
acterized by the spring stiffness Kq and the viscous damping
coefficient Dq.1 The desired equilibrium point of the link is
qd. We choose the control law

u = ū + BK−1n̈ + n,

which leads, under consideration of (3), to the following
intermediate dynamics

Mq̈ = K(η − q) − Dqq̇ − Kq(q − qd)
Bη̈ + K(η − q) = ū.

Next, we choose

ū = −Dηη̇,

such that the resulting closed-loop dynamics

Mq̈ = K(η − q) − Dqq̇ − Kq(q − qd) (4)
Bη̈ + K(η − q) = Dηη̇. (5)

has the unique equilibrium point q = η = qd, q̇ = η̇ = 0.2 The
corresponding graphical representation of the closed-loop
dynamics is presented in Fig. 2(b). Clearly, we achieved or
goal of modifying the link interaction behavior by adding a
visco-elastic element directly on the link; compare Fig. 2(a)
with Fig. 2(b).

In impedance control theory, a desired dynamical behavior
usually is given by a differential equation of second order
representing a mass-spring-damper system with mass M,
desired stiffness Kq, and desired damping Dq. In our case, we
achieved a double spring-mass-damper system with an extra
mass B, and stiffness K, and damper Dη. For rather gentle
interactions the link behavior is dominated by the spring Kq
and the damper Dq. Also the static equilibrium is solely
defined by the spring Kq. Clearly, for forceful interactions
the dynamics of the link deviates from the dynamics of
the second order system. In this situation the resulting link
behavior will be influenced also by the joint stiffness K,
the actuator inertia B and the damping factor Dη. Intuitively
speaking, the deviation of the actual link behavior from
the desired link behavior decreases with decreasing motor
inertia B. By adding extra feedback of the virtual joint torque
K(η − q) one can shape the apparent motor inertia B [9].
Naturally, the lower the shaped rotor inertia the better the
approximation of the desired behavior. This concept will be
put into concrete terms in Sec. III.

From the conceptual point of view, the ESπ control ap-
pears to be closely related to our previously proposed elastic
structure preserving (ESP) control [13] as, loosely speaking,
the visco-elastic elements are simply mirrored from the
virtual motor side to the link side, cf. Fig. 2(b) and Fig. 2(c).
But in practice, this difference has critical implications.

1For simplicity, we assume Kq and Dq to be constant.
2Note, according to (3), the corresponding equilibrium point in the

original motor coordinates is [q = qd , θ = qd , q̇ = 0, θ̇ = 0]. Asymptotic
stability of the equilibrium state of (4)–(5) can easily be shown by consider-
ing the Lyapunov function V = 1/2

(
Mq̇2 + Bη̇2 + K(θ − q)2 + Kq(q − qd)2

)
and invoking La’Salles Theorem [17].



Under ESP control, the link interaction behavior is primarily
dominated by the intrinsic joint stiffness K (usually Kη >>
K) and the damping coefficient Dq. Since K is system
inherent and cannot be changed (SEA) or just within small
margins (VSA), the link interaction behavior is mostly fixed.

III. Controller Design
In this section we extend the basic idea presented in

Sec. III-B to general robotic systems that feature nonlinear
elastic transmissions, multiple joints and that are subject to
gravity. First, we treat the case of Cartesian impedance con-
trol. Joint-level impedance control is a special case thereof
and can be easily derived from it. Before we start, we set
the scene by introducing the class of robots we consider.

A. Robot Dynamics
Throughout this paper, we consider a simplified model of

a n-link robot with compliant joints, which is based on the
model proposed by Spong in [1]. It is given by

M (q)q̈ +C(q, q̇)q̇ = ψ(θ − q) − g(q) + τext (6)
Bθ̈ +ψ(θ − q) = u. (7)

Herein, q ∈ Rn and θ ∈ Rn represent the link angles
and motor angles, respectively. The symmetric and positive
definite inertia matrix of the rigid links is denoted by M ∈

Rn×n. The constant, diagonal and positive definite matrix
B ∈ Rn×n consists of the actuator inertias.3 These conditions
are fulfilled for all pure rotational and pure prismatic joint
robots and in some special cases for robots that feature a mix
of rotational and prismatic joints, see [18] for an in-depth
discussion. The gravitational forces are represented by g(q),
and C(q, q̇)q̇ denotes the Coriolis and centrifugal forces. As
suggested by [19], we define the n×n matrix C(q, q̇) via the
Christoffel symbols, such that the matrix Ṁ (q) − 2C(q, q̇) is
skew symmetric for all (q, q̇) ∈ Rn×Rn [20]. Only the motor
coordinates θ can be directly actuated via the generalized
motor forces u ∈ Rn, which serve as the control input.
The link coordinates q can only be indirectly actuated via
the elastic torques ψ(ϕ), which are, in general, nonlinear
functions of the spring deflection ϕ = θ − q. This form of
under-actuation represents the major challenge in the control
of the states q and q̇. Assumptions on the spring potential Us
and assumptions specific for the Cartesian impedance control
case are given in the Appendix X.

B. Generalization of the Design Idea
In the Idea Sec. II we added spring and damper terms

to the link. Here, we aim to extend the link dynamics
with terms that are due to Cartesian springs and dampers.
This would allow the user to impose a desired dynamical
behavior between the robot end-effector motion and external
generalized forces τext. This relationship will be described
in terms of the end-effector coordinates x. We consider the
Cartesian spring and damper forces to be of the form

Fx(x̃, ẋ) = −
(
Dxẋ +

∂Ux(x̃)
∂x

)
, (8)

whereDx specifies the desired damping and ∂Us(x̃)
∂x the spring

forces that are derived from a potential function Us. The

3When talking about motor inertias, we refer to the sum of all the motor-
side inertias reflected through the gearboxes to the compliant element side.
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position errors in operational space x̃ are denoted by x̃ ..=
x − xd. The following assumptions have to be met.

Assumption 1. Let β be a strictly positive constant. The
potential function Ux : Rn → R has to be lower bounded as
follows 4

Ux(x̃) − Ux(0) ≥ β ||x̃||2. (9)

Assumption 2. The damping matrix D ∈ Rn×n is symmetric,
positive definite and bounded.5

The operational space forces Fx can be transformed to the
corresponding joint τx forces according to [21] via

τx(x̃, ẋ) = JT(q)Fx. (10)

The Jacobian is introduced in the Appendix X.In analog
fashion, we can relate external forces Fext to external torques
τext via τext = J

T(q)Fext. We now aim to derive a controller
u in (7) such that the behavior of the resulting compensated
system is equivalent to the following desired dynamics

M (q)q̈ +C(q, q̇)q̇ = ψ(η − q) + τx(x̃, ẋ) + τext (11)
Bη̈ +ψ(η − q) = −Dηη̇. (12)

Note, we extended the link-side dynamics solely with the
impedance terms τx and canceled gravity. The inertial and
elastic properties of the plant are preserved. The new motor
coordinates η ∈ Rn reflect this desired link behavior. 6

4One popular potential function that satisfies this assumption is 1
2 x̃

TKxx̃,
with Kx ∈ R

n×n being a constant, positive definite matrix.
5The user can even choose D to be state and explitly state-dependent as

long as the conditions of the implicit function theorem are satisfied such
that η in (13) can be expressed in terms of the other variables.

6The desired dynamics (11)–(12) is written mixed in link coordinates q
and operational space coordinates x, even though our desired interaction
behavior is defined in operational space state variables x̃, ẋ via (8). We
maintain this mixed notation throughout the paper since many terms can be
written clearer and simpler as function of q. In the end, q and q̇ can always
be thought of being substituted by q =Gı(x) and q̇ = J ı (Gı(x)) ẋ.



C. Achieving the Desired Dynamics

We start by imposing equivalence of (6) and (11) to find
an implicit relation

ψ(θ − q) = ψ(η − q) + g(q) + τx(x̃, ẋ)︸             ︷︷             ︸
=:n(xd ,x,ẋ)

(13)

between the new motor coordinates η and the original motor
coordinates θ.7 Next, we want to achieve equivalence of (7)
and (12). To this end, we transform the motor dynamics
(7) into the new coordinates η which requires the second
time derivative of θ as function of η. We differentiate the
coordinate transformation with respect to time and obtain
after rearranging some terms

θ̇ =A(xd,x, ẋ,θ) η̇ + a (14)
A(xd,x, ẋ,θ) ..=κı(θ − q)κ(η − q),

a(qd, q, q̇, q̈,θ) ..=
(
In×n −A(q, q̇,θ)

)
q̇ + κı(θ − q) ṅ(q, q̇,θ).

Herein, A can be interpreted as a set-point8 and state-
dependent Jacobian matrix that constitutes a ratio between
the local stiffnesses of the nonlinear springs of the original
and the reference system. By deriving (14) with respect to
time, we get a relation between the accelerations of the old
and new motor coordinates

θ̈ = Aη̈ + Ȧη̇ + ȧ. (15)

The relations (13) and (15) allow us to perform a coordinate
transformation [θ, q] 7→ [η, q] for the robot dynamics
(6)–(7). Obviously, for the link dynamics (6) we obtain the
desired dynamics (11). For the transformed motor dynamics
we get

BAη̈ +BȦη̇ +Bȧ +ψ(η − q) + n = u.

We now choose the control input

u =B
(
Ȧη̇ + ȧ

)
+ n −BABıKηη̇

+ (In×n −BABı)ψ(η − q),
(16)

in order to obtain the desired motor dynamics (12).

Remark 1. Control law (16) is significantly simpler than
a corresponding feedback linearization based control law,
which would contain the first and second time derivatives of
both the inertia matrixM (q) and the Coriolis and centrifugal
forces C(q, q̇)q̇.

Remark 2. In theory, we can realize arbitrary torques n, cf.
(13), on the links. With the only assumption, that their time
derivatives up to the second order are known. This might
lead to interesting applications of the ESπ control concept in
future such as implementation of reactive collision avoidance
methods, virtual force fields and virtual walls.

7For the case that the inverse function of ψ is not analytically available,
one has to solve (13) for η numerically. The existence of such a solution is
ensured, under assumptions made above, by the implicit function theorem.

8The set-point dependence is due to the coordinate transformation that is
parameterized by qd .

D. Motor Inertia Shaping
In Section II we elaborated on the implications of motor

inertia shaping on the basis of a single joint robot. The
implications can be directly transferred to the multi joint
case. By changing the control law from (16) slightly to

u∗ =B
(
Ȧη̇ + ä

)
+ n −BAB̌ıKηη̇

+
(
In×n −BAB̌ı

)
ψ(η − q),

(17)

we obtain the following closed-loop motor dynamics

B̌η̈ +ψ(η − q) = −Dηη̇ (18)

where we scaled the motor inertia from B to B̌
Remark 3. Let us assume that B and B̌ are related via
a scalar factor β > 0 such that B̌ = βB, and that A is
diagonal. In that case, we have BAB̌ı = βıA and motor
inertia shaping can be thought of as a linear scaling of the
feedback of the virtual spring torques ψ(η−q) and the motor
damping torques Kηη̇.

IV. Closed-Loop Dynamics in Cartesian Coordinates
For the passivity analysis (Sec. V) and the stability anal-

ysis in (Sec. VI) of the closed-loop dynamics (11) and (18),
it is advantageous to transform the dynamics equations into
task coordinates. By pre-multiplying (11) with J−T(q) and
substituting q̈ and q̇, which can be obtained from the first and
second the time derivatives of (27), we get for the closed-
loop link dynamics

Λx(x)ẍ + µx(x, ẋ)ẋ = J−Tψ(η − q) + Fx(x̃, ẋ) + Fext
(19)

where

Λx(x) ..= J−T(q)M (q)J ı(q)

µx(x, ẋ) ..= J−T(q)
(
C(q, q̇) −M (q)J ı(q)J̇ (q)

)
J ı(q)

are the link-side inertia and Coriolis/centrifugal matrices
expressed in x coordinate. The inertia matrix Λ is symmetric
and positive definite. Analog to the joint case, the matrix
Λx(x) − 2µx(x, ẋ) is skew-symmetric for all x ∈ and all
ẋ ∈ Rm.
Remark 4. By considering G, see Appendix X, as the
identity mapping, control law (16) reduces to a joint-level
impedance controller. The corresponding closed-loop dynam-
ics can therefore be considered as a special case of (18)–(19).
As a direct consequence, all passivity and stability statements
in Sec. V and Sec. VI directly apply to the joint impedance
case.

V. Passivity Analysis
In this section, we analyze the passivity properties of

the closed-loop systems (18)–(19). The physically motivated
design approach of the reference dynamics, c.f. Fig. 2(b),
suggest the following intuitive storage functions

S x(x̃, ẋ) =
1
2
ẋTΛx(q)ẋ + Ux(x̃), (20)

S η(x,η, η̇) =
1
2
η̇TBη̇ + Us(η − q). (21)

The sum S = S x + S η comprises the total virtual kinetic and
potential energy of the closed-loop system (18)–(19). The
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time derivatives of the storage function S x and S η, expressed
along the solutions of the closed-loop dynamics, give

Ṡ x(x̃, ẋ) = −ẋTDẋ + ẋTJ−T(q)ψ(η − q) + ẋTJ−T(q)τext,

Ṡ η(x,η, η̇) = −η̇TKdη̇ − q̇
Tψ(η − q).

We can identify three kind of terms. First, each of the
quadratic forms represents the power dissipation that is
due to a virtual damper. Second, the term q̇Tψ(q − η)
correspond to interconnection ports between the motor and
link dynamics.9 Third, ẋTFext represents an interconnection
port that allows energy exchange between the robot and
its environment, see Fig. 4. The result so far motivate the
following proposition:

Proposition 1. The closed-loop system (18)–(19) represents
a passive map from external forces Fext to the velocities ẋ.

Proof. The time derivatives of the storage functions S is
given by

Ṡ (x, ẋ,η, η̇) = −ẋTDxẋ − η̇
TKdη̇ + q̇

Tτext ≤ ẋ
TFext.

(22)

□

VI. Stability Analysis

Here we present a formal stability analysis of the closed-
loop system (18)–(19) in absence of external generalized
forces Fx. We consider z =

[
xT ηT ẋT η̇T

]T
as the

system state. By virtue of Assumption 3, follows that

z0 =
[
xT

d Gı(xd)T 0T 0T
]T

(23)

is a unique equilibrium state of (18)–(19). The time deriva-
tive of the storage function S , cf. (22), motivates the follow-
ing proposition.

Proposition 2. Consider the closed-loop dynamics (18)–(19)
in absence of external forces Fext. The equilibrium point (23)
is asymptotically stable.10

Proof. Consider the following Lyapunov function candidate
V(x̃, ẋ,η, η̇) = S (x̃, ẋ,η, η̇). Clearly, V is a positive definite

9Recall, that ẋTJ−T(q) = q̇T.
10The stability analysis in the physical x and virtual η coordi-

nates is sufficient. Once, asymptotic stability of the equilibrium point
z0 has been shown, one can deduce via (13) the corresponding
equilibrium point in the x and θ coordinates. It turns out to be
[xT θT ẋT θ̇T]T = [xT

d

(
Gı(xd) +ψı

(
g
(
Gı(xd)

)))T
0T 0T]T, i.e. the

equilibrium position of θ is shifted byψı
(
g
(
Gı(xd)

))
relative to equilibrium

position of η, which is precisely the deflection of the intrinsic spring due
to gravity as expected.

y

x

z

TCP

Fig. 5. Robot David in the initial configuration, i.e. x ≈ xd . All forces
and Cartesian coordinates are expressed in the coordinate system shown.

function of the state z due to Assumption 3. Its time
derivative along the solutions of (18)–(19) is given by

V̇(x̃, ẋ,η, η̇) = −ẋTDxẋ − η̇Kdη̇ ≤ 0,

which is a negative semi-definite function. This allows us to
invoke LaSalle’s invariance principle to conclude asymptotic
stability of the equilibrium point (23). □

VII. Experiments
In this section, we present four experiments for the valida-

tion of the proposed control laws. All experiments have been
conducted on the first four VSA joints of the DLR Hand Arm
System [6], also known as David. The experimental setup is
shown in Fig. 5.

It is important to point out that ESπ control is not limited
to this particular type of VSA as implemented in David.
ESπ control is applicable to any robot featuring VSA or
serial elastic actuators (SEA) that fulfill Assumption 3, which
is the case for a huge class of robots. These assumptions
can be weakened by taking the results of [22] into account.
Throughout all experiments the motor inertia is scaled down
by a factor of β = 0.3 which lowers the parasitic effect
of the motor inertias. For the experiments where a human
subject interacts with the robot, we estimate the forces that
are exerted on the robot by an momentum based observer
[23]. The estimated external forces Fext and torques τext
are used for validation purposes only and we filtered these
signals offline with a Butterworth filter with a -3 dB cut-
off frequency at 10 Hz. The damping matrices Kx,Kq and
Kd are designed in an analog way as described in [24]. In
the following, ξx, ξq and ξη represent the respective modal
damping factors for Kx,Kq and Kd (zero values mean no
damping). A video that demonstrates the performance of
ESπ control on the DLR Hand Arm System is provided
under the following link: https://youtu.be/sbhiNNIxMNQ.

A. Interaction with a Human User
The first experiment verifies the accuracy of the controlled

Cartesian stiffness during the interaction with a human sub-
ject. The user grasps the robot at the end-effector and exerts
forces – mainly in the x-y plane – and therefore deflects
the TCP from its equilibrium position. The initial robot
configuration is shown in Fig. 5. The interaction behavior
is determined by the commanded values of the diagonal
stiffness matrix Kx. Its values are summarized in the first
row of Table I. The estimated forces that are exerted by the
user are displayed in Fig. 6a. The corresponding deflection
plots are contained in Fig. 6b. In order to validate the

https://youtu.be/sbhiNNIxMNQ


TABLE I
Controller parameters for experiment 1 and 3.

Kx,11 Kx,22 Kx,33 ξx ξη β σi=1...4

Cartesian stiffness in N m−1 deg

0 60 3000 0 0 0.3 5
1500 600 1500 0.6 / 0 0.05 0.3 5
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Fig. 6. Forces exerted by the user on the TCP of the robot (raw and filtered
signals of forces) for the Cartesian impedance experiment.

achieved stiffness behavior, the applied forces in ex and ey-
direction are plotted versus the corresponding displacements
in Fig. 7. The static characteristics that corresponds to the
desired stiffness behavior are shown by the black dotted
lines. The hysteresis-like deviation from the desired quasi-
static behavior is in some degree due to uncompensated link-
side friction and due to inaccuracies in the estimation of
the external disturbances. The static error of the estimated
forces, in absence of external forces, is in the magnitude of
up to 8 N, see e.g. Fig. 6a at t = 0. The same experiment
has been repeated for the joint-level ESπ controller with the
settings given in the first row of Tab. II. The estimated
external torques τext applied by the user are shown in Fig. 8.
The plot in Fig. 9 displays τext over the corresponding
link deflections q̃. Figure 10 shows the local joint stiffness
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Fig. 7. Forces exerted in the x-y-plane versus the corresponding deflections
in the x-y-plane. The black dashed lines correspond to each of the desired
stiffness behaviors for the quasi-static case.

TABLE II
Controller parameters for experiment 2 and 4.

Kq,11 Kq,22 Kq,33 Kq,44 ξq ξη β σi=1...4

Angular stiffness in N m rad−1 deg

1000 500 150 50 0.1 0.05 0.3 5
800 800 800 800 0.6 0.05 0.3 5
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Fig. 8. External torques τext applied by the user (raw and filtered signals)
for the joint-level impedance experiment.

values of the physical springs, i.e. κ(θ−q). For comparison,
the commanded link-side stiffness values Kq are shown as
well. For this particular experiment, the commanded – and
achieved, cf. Fig. 9 – link-side stiffnesses are up to 5 times
higher than the stiffnesses of the real physical stiffness.

B. Disturbance Rejection Behavior
The third experiment shows the disturbance rejection

performance of the Cartesian ESπ controller for two different
damping settings (ξx = 0.6 and ξx = 0) and compares them
to the well known motor PD controller by Tomei [25].11 The
settings are given in row two of Tab. I. In this experiment,
the TCP of the robot was deflected by the user from its
initial configuration and then quickly released. The results
are shown in Fig. 11. The respective points in time when
the TCP is released are indicated by orange triangles. For
the well-damped case the disturbance of approx. 9 cm is
rejected within 0.28 s with basically no overshooting. The
graphs of the corresponding internal joint torques ψ(θ − q)
show equally nice convergence behavior. This means, once

11The proportional gains were set to 8000 N m rad−1 and the damping
gains to 250 N rad−1 s for each joint.
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400

200

0

time [s]
0 3 9 12

Jo
in

t
st

iff
ne

ss
va

lu
es

[N
m

]

6

600

800

1000
commanded link stiffness
values Kq

joint stiffness
values κ(θ − q)

Fig. 10. Local joint stiffness values for the real physical springs.

the control error x̃ converged, the internal motor movements
simultaneously come to rest. We repeated this experiment
with a joint-level ESπ controller. The controller gains are
given in the second row of Tab. II and the results are
contained in Fig. 11. This experiments shows, that even in
the case of control input saturations, the controlled system
stays stable.

C. Discussion
As the results above show, ESπ control shows impressive

performance in practice (see also the attached Video):
• Excellent damping performance with basically no over-

shooting.
• Very precise stiffness control in joint and Cartesian

space. Linear force-stiffness relations can be realized
even for large displacements and not just locally.

• The link stiffness can be substantially increased over the
natural stiffness of the system.

• The system stays stable even in the case of control input
saturation. (see Fig. 12).

• The systems stays stable even with all damping gains
set to zero (see Experiment I).

VIII. Extension to the Joint-Level Tracking Case
ESπ control based link-side motion tracking can be

achieved by substituting τx and n in (11) and (13), respec-
tively, by

τ̃q(q̃, ˙̃q) = −Dq ˙̃q −
(
∂Uc(q̃)
∂q̃

)T

,

ñ(t, q, q̇) = g(q) +M (q)q̈d(t) +C(q, q̇)q̇d(t) + τ̃ ∗q (t, q̃, ˙̃q),

with q̃ ..= q − qd(t), where qd ∈ C
n is the desired trajectory,

and modifying the coordinate transformation (13) to

ψ(θ − q) = ψ(η − q̃) + ñ, (24)

and otherwise proceeding analogously to Sec. III-B.

IX. Conclusion
This paper presents an impedance control concept for

robots with highly elastic joints with possibly nonlinear
stiffness characteristics. It preserves the inherent physical
structure of the system by preserving the inertial properties
and the elastic structure of the plant. This is achieved
by introducing new motor coordinates that reflect the de-
sired link-side impedance behavior. The physically motivated
nature of the design approach allows us to visualize the
representing closed-loop dynamics as multi-spring-damper
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Fig. 11. The disturbance rejection performance of the ESπ controller for
two different modal damping factors is shown. As reference, and in order
to show the ’natural’ oscillatory behavior of the system, the performance of
the well known motor PD controller by Tomei is shown [25].

system. This allows for a physically intuitive interpretation
of the closed-loop behavior, which in turn, turns out to
be highly valuable for the tuning stage. All gains can be
interpreted as spring and dampers, respectively. It also allows
for a comprehensive stability and passivity analysis based
on a physically motivated Lyapunov and storage function.
Neither upper nor lower bounds on the gains are imposed.
A theoretical limitation of the approach seemed to be the
dependence on the time derivatives of the link positions up
to the third order. However, in practice it turned out to be
no limitation, since the time derivatives could be computer
based on the model of the plant. To the best of knowledge,
this is the first Cartesian impedance controller that has been
experimentally validated on multi-joint robot with highly
elastic variable stiffness joints featuring highly nonlinear
stiffness characteristics.

We presented a Cartesian impedance control approach
which provides highly elastic robots with the capability to
stably interact with the environment. In theory, however, our
concept allows to impose arbitrary torques on the links (un-
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der the assumption that their first and second time derivatives
are known). In future, we hope to exploit this torque interface
in order to adopt classic control methods that have been
originally developed for rigid robots. Thereby, we hope to
further increase the field of application for highly elastic
robots by providing them with abilities rigid robots robots
already possess.

X. Appendix

Assumption 3. The positive definite spring potential func-
tion Us : Rn → R is three times continuously differentiable.
The elastic torque function ψ : Rn → Rn is defined as follows

ψ(ϕ) ..=

(
∂Us(ϕ)
∂ϕ

)T

∈ Rn. (25)

The local stiffness, i.e., the Hessian of the spring potential
Us is non-singular for all ϕ0 ∈ R

n and denoted as

κ(ϕ) ..=
∂ψ(ϕ)
∂ϕ

∈ Rn×n, (26)

Basically, this includes all practically relevant spring types
(buckling springs excluded).

A. Assumptions for the Cartesian Impedance Control Case
We assume the existence of a C3 forward kinematics

mapping G : D̄q → D̄x from the link configuration variables
q ∈ D̄q ⊆ R

n to the task coordinates x ∈ D̄x ⊆ R
m, which,

e.g., describe the position and orientation of the robot end-
effector, i.e.,

x = G(q). (27)

Throughout this paper, when referring to Cartesian
impedance control, we consider the non-redundant case n =
m, and assume that the Jacobian matrix of the mapping (27)

J (q) =
∂G(q)
∂q

(28)

is non-singular for all q ∈ D̄q, i.e., supq∈Dq

∥∥∥J (q)−1
∥∥∥ < ∞,

such that G is a diffeomorphism [26, p. 174]. Therefore,
q and x are equivalent representations of the link-side
configuration.
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