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Abstract—Hyperspectral images showing objects belonging to
several distinct target classes are characterized by dozens of
spectral bands being available. However, some of these spectral
bands are redundant and/or noisy, and hence, selecting highly-
informative and trustworthy bands for each class is a vital step
for classification and for saving internal storage space; then the
selected bands are termed a highly-informative spectral band
subset. We use a Mutual Information (MI)-based method to select
the spectral band subset of a given class and two additional
binary quantum classifiers, namely a quantum boost (Qboost)
and a quantum boost plus (Qboost-Plus) classifier, to classify a
two-label dataset characterized by the selected band subset. We
pose both our MI-based band subset selection problem and the
binary quantum classifiers as a quadratic unconstrained binary
optimization (QUBO) problem. Such a quadratic problem is
solvable with the help of conventional optimization techniques.
However, the QUBO problem is an NP-hard global optimization
problem, and hence, it is worthwhile for applying a quantum
annealer. Thus, we adapted our MI-based optimization problem
for selecting highly-informative bands for each class of a given
hyperspectral image to be run on a D-Wave quantum annealer.
After the selection of these highly-informative bands for each
class, we employ our binary quantum classifiers to a two-label
dataset on the D-Wave quantum annealer. In addition, we provide
a novel multi-label classifier exploiting an Error-Encoding Output
Code (ECOC) when using our binary quantum classifiers. As
a real-world dataset in Earth observation, we used the well-
known AVIRIS hyperspectral image (HSI) of Indian Pine, north-
western Indiana, USA. We can demonstrate that the MI-based
band subset selection problem can be run on a D-Wave quantum
annealer that selects the highly-informative spectral band subset
for each target class in the Indian Pine HSI. We can also
prove that our binary quantum classifiers and our novel multi-
label classifier generate a correct two- and multi-label dataset
characterized by their selected bands and with high accuracy
such as having been produced by conventional classifiers - and
even better in some instances.

Index Terms—Hyperspectral images, Mutual Information, Fea-
ture selection, Quantum classifier, Quantum Machine Learning,
D-wave quantum annealer.

I. INTRODUCTION

AQUANTUM Annealer (QA) is a computing machine
configured as a graph network G = (E, V ), at each

vertex of which particles are residing, and its edges define the
interaction strengths among these particles which are in quan-
tum states ups or downs. For a D-Wave quantum annealer,
the graph G has a specific network topology named Pegasus,
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in which only certain edges are connected. In particular, the
interaction among the particles is constrained [1], [2].

A D-Wave quantum annealer works as a metaheuristic pro-
cess which is dedicated to tackle specific classes of optimiza-
tion problems, e.g., QUBO problems. There are theoretical
studies that a D-Wave quantum annealer can solve these
QUBO problems faster than a conventional annealer (even
for NP problems) [3], [4]. However, currently, there are no
indications of computational advantages for real-world prob-
lems. For practical applications, several studies are devoted
to benchmark and assess a D-Wave quantum annealer for an
operational planning and feature extraction from remotely-
sensed images [5], [6].

For a real-world dataset in Earth observation, remotely
sensed images differ in their image content representations
due to the diverse satellite platforms with their different types
of sensors. When we want to use a D-Wave quantum annealer
with an Earth observation dataset, some of the challenges
are the proper choice of appropriate remotely sensed images
specified by their image content representations such as their
spatial information, polarization states, spectral bands, and
the embedding of a given dataset in the topology of a D-
Wave quantum annealer. Here, we consider hyperspectral
images (HSIs), and a selection of their highly-informative
band subset is a very vital procedure in Earth observation.
Hence, we use a Mutual Information (MI)-based optimization
method to select the highly-informative band subset, and more
importantly, we can easily embed and optimize the MI-based
optimization method in the Pegasus topology of a D-Wave
quantum annealer. Therefore, HSIs are one of the most proper
datasets in Earth observation for a D-Wave quantum annealer
than others. In particular, HSIs became an important field
of study to classify or identify objects in a ground scene
such as roads, land cover, or agriculture since each object
is characterized by a high-dimensional vector of the different
spectral bands within the given full wavelength range. Due
to the rich information content of the spectral bands, some
of these bands carry more discriminatory information than
others. Hence, some studies are focused on extracting highly-
informative features or a dimensionality reduction of HSIs,
for instance, by using deep learning networks or Principal
Component Analysis (PCA) [7], [8]. On the other hand, some
researchers focused on how to select a highly-informative
band subset by using the concept of information theory; in
particular, MI-based methods which provide a measure of
independence between several spectral bands. Moreover, these
MI-based methods are based on prior or reference knowledge
of the spectral signatures of objects; such knowledge can be
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obtained in specific spectral-signature databases of common
ground targets [9], [10].

In this paper, we use an Indian Pine HSI of Indian Pine com-
posed of l = 16 distinct classes. Each class is characterized
by n = 200 bands (features); thus, the number of subsets of
the features of a given class, e.g., yS = 1, is 2n combinations.
A way to find the best feature subset of this given class is to
try all combinations. This is clearly computationally expensive
for a large number of these features.

Hence, in the first part of this study, we introduce an MI-
based subset feature selection problem as a global optimization
problem for the Indian Pine HSI. Then we propose to optimize
this MI-based band subset selection problem on a D-Wave
quantum annealer. As a first step, we map the MI-based
band subset selection problem to a QUBO-based band subset
selection problem. This is our first problem mapping step.
Secondly, we optimize this mapping problem on a D-Wave
quantum annealer; quantum optimization [11], [12]; this part
was strongly motivated by a feature selection tutorial offered
by D-Wave [2].

In the second part of this study, we use binary quantum
classifiers, namely a quantum boost (Qboost) and a quantum
boost plus (Qboost-Plus) classifier, in contrast to an adaptive
boost (Adaboost) classifier [13], [14]. We first apply these
quantum classifiers to a two-label dataset of the Indian Pine
HSI, and secondly, we provide a novel multi-label classifier
via an ECOC when using our binary quantum classifiers [15],
[16]; each resulting class is discriminated by the selected
bands in the first part of our study. We also benchmarked
and assessed these binary quantum classifiers and the novel
multi-label classifier with respect to conventional classifiers,
a Decision Tree Classifier (DTC), a Support Vector Machine
(SVM), and an Adaboost classifier.

Our contribution in this paper is then an attempt to bench-
mark and assess a D-Wave quantum annealer for Earth obser-
vation data and to recognize the challenges that are encoun-
tered with real-world datasets and future quantum annealers
or devices. Towards these goals, we are employing a D-Wave
quantum annealer for feature selection and classification of
the Indian Pine HSI as a machine learning technique; our
contribution consists of a three-step approach,

1) Feature selection on a D-Wave quantum annealer: the
MI-based band subset selection,

2) Binary classification on a D-Wave quantum annealer:
the binary quantum classifiers to a two-label dataset
characterized by those selected bands.

3) Multi-label classification on a D-Wave quantum an-
nealer: the ECOC generates a multi-label dataset when
we are using our binary quantum classifiers.

Moreover, the D-Wave quantum annealer may prove rele-
vant even if we are not intending to demonstrate its advantage
over a conventional annealer.

The paper is structured as follows: We introduce the basics
of hyperspectral imaging in Section II. We present the basics
of information theory and MI-based band subset selection
problem in Section III. In Section IV, we discuss the fun-
damentals of a QUBO problem and demonstrate the problem
mapping of an MI-based problem to a QUBO-based problem.

Fig. 1. An Indian Pine Hyperspectral Image: Ground truth.

We introduce the basics of a D-Wave quantum annealer and
optimize the QUBO-based band subset selection problem for
the Indian Pine HSI on a D-Wave quantum annealer (see
Section V, quantum optimization). Finally, we apply the binary
quantum classifiers and the novel multi-label classifier to the
two- and multi-label dataset in Section VI, and in Section VII,
respectively. We then draw a conclusion in Section VIII.

II. INTRODUCTION TO HYPERSCPECTRAL IMAGING

A hyperspectral imaging sensor mounted on a satellite or
aircraft measures the electromagnetic spectrum ranging from
the visible to the near infrared wavelengths; for instance, the
Imaging Spectroscopy and the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) sensor measures 224 continuous
spectral bands ranging 400 nm to 2500 nm at 10 nm intervals
[17].

As a real-world dataset of HSIs, we consider an Indian
Pine HSI obtained by the AVIRIS sensor (see Fig. 1). This
low-noise Indian Pine image having the spectral bands of
X = {band1, . . . , band200} elements is a high-dimensional
dataset. However, not all of these spectral bands are informa-
tive for characterizing a specific class; in other words, some
bands of X are redundant or noisy.

It is advantageous to select a highly-informative band subset
of the given spectral bands for a given class. Hence, we
employ an MI-based band subset selection problem as a global
optimization problem.

III. INFORMATION THEORY AND MUTUAL
INFORMATION-BASED BAND SUBSET SELECTION

We select a highly-informative band subset for each class
of the Indian Pine HSI; for instance, we consider the spectral
bands X = {X1, . . . , X200} = {band1, . . . , band200} of a
given class yS and find its most informative band subset. To
find the highly-informative band subset for that specific class,
we employ information theory; information is a function of
probabilities. Hence, we represent band Xi and its correspond-
ing class yS as probabilities. We derived the probabilities for
the band Xi and its class yS by dividing them into ten bins
in a histogram. The probability is then defined as
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P (Xn′) =
Xn′∑10
n′=1Xn′

, P (ym′) =
ym′∑10

m′=1 ym′
, (1)

where Xn′ and ym′ represent the number of occurrences of
band Xi and its class yS in the n′-th or m′-th bin, respectively.
Their joint probability is defined in the same way.

For the selection of the band subset, we exploit Mutual
Information (MI) which measures independence between band
Xi and its class yS . It is defined by

I(Xi; yS) =
∑
m′

∑
n′

P (Xn′ , ym′) log
P (Xn′ , ym′)

P (Xn′)P (ym′)
, (2)

and by Conditional Mutual Information (CMI) which is a
measure of the dependence between band Xi and its class
yS given another band Xj . The CMI can then be written as

I(Xi; yS |Xj) = E(Xi|Xj)− E(Xi|yS , Xj), (3)

where E is the entropy that is a measure of the uncertainty of
a random variable [18].

These band subset selection techniques expressed by both
Eq. (2) and Eq. (3) are named after a MI-based band subset
selection problem which became popular in machine learning
due to its strong mathematical foundation rooted in informa-
tion theory.

In the next sections, we pose the MI-based band subset
selection problem as a global optimization problem. First, we
map our MI-based band subset selection problem to a QUBO
problem, and the QUBO problem to a QUBO-based band
subset selection problem. Finally, we optimize the QUBO-
based band subset selection problem on a D-Wave quantum
annealer.

IV. PROBLEM MAPPING: THE QUBO-BASED BAND
SUBSET SELECTION

A. Mapping of a Mutual Information-based problem to a
QUBO problem

In this part, we consider and pose the MI-based band subset
selection problem as a global optimization problem [11], [12].
Moreover, the maximization over the subsets {Xi} can be
written as

max
{Xi}

∑
Xi

I(Xi; yS) +
∑
Xi,Xj

I(Xi; yS |Xj)

 , (4)

where Xi represents the bands of a given class yS of the Indian
Pine HSI (see Fig. 1).

Let us consider the band data X = {band1, . . . , band200}
of a given class of Alfalfa or simply yS = 1 as an example
case. We assume that Eq. (4) is maximized when we use the
subset XS = {X1, X2} = {band1, band2}. We can express
this result in a matrix form such that

I(X1; yS) + I(X1; yS |X2) + I(X2; yS) + I(X2; yS |X1)⇔

⇔
(
x̃1 x̃2

)( I(X1; yS) I(X1; yS |X2)
I(X2; yS |X1) I(X2; yS)

)(
x̃1
x̃2

)
,

(5)

Class labels Y Selected Bands Xi

Alfalfa band41 band47 band77
Corn-notill band13 band15 band17
Corn-mintill band3 band133 band190
Corn band49 band128 band175
Grass-Pasture band102 band143 band84
Grass-Trees band23 band40 band53
Grass-Pasture-mowed band61 band102 band109
Hay-windrowed band149 band150 band40
Oats band76 band85 band172
Soybean-notill band10 band145 band183
Soybean-mintill band12 band145 band180
Soybean-clean band4 band12 band136
Wheat band37 band82 band177
Wood band63 band102 band190
Building-Grass-Drives band18 band70 band109
Stone-Steel-Towers band79 band84 band104

TABLE I
SELECTION OF THE BEST BAND SUBSET FOR EACH CLASS OF THE INDIAN
PINE HSI BY USING THE QUBO-BASED BAND SUBSET SELECTION ON A

D-WAVE QUANTUM ANNEALER.

here x̃1 = 1, x̃2 = 1, and x̃3 = · · · = x̃n = 0. On the
other hand, we can interpret this matrix form that the x̃n’s
are for selecting a highly-informative band subset. Hence, we
can express the MI-maximization problem expressed by Eq.
(4) alternatively as

max
~x

[~xTQ~x], ~x = (x̃1, x̃2, . . . , x̃n)
T , ~x ∈ {0,+1}n, (6)

where T represents a transpose operation, and Q is repre-
sented diagonal Qii = I(Xi; yS) and off-diagonal Qij =
I(Xi; yS |Xj) elements. We can even transform this maximiza-
tion problem to a minimization problem by multiplying it by
”−1”. As a result, we have

min
~x

[~xTQ~x], ~x ∈ {0,+1}n, (7)

where Qii = −I(Xi; yS) and Qij = −I(Xi; yS |Xj) [11].
This form of the minimization problem over binary variables
~x is called a Quadratic Unconstrained Binary Optimization
(QUBO) problem.

The MI-based band subset selection problem is therefore
equivalent to a QUBO problem when we write ”−I(Xi; yS)”
and ”−I(Xi; yS |Xj)” in the Q matrix, and minimize the Q
matrix over the binary variables.

B. Mapping the QUBO problem to the QUBO-based subset
band selection problem

To select a highly-informative band subset characterizing
each class of the Indian Pine image (Fig. 1), we employ
the QUBO problem described by Eq. (7) with an additional
constraint

min
~x

[~xTQ~x], s.t.
n∑
i=1

x̃i = k, x̃i ∈ {0,+1}, (8)

where k is the number of bands (band subset) of interest, and
n = 200 is the total number of given bands. Hence, we define
the QUBO-based band subset selection problem as
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Fig. 2. Left: Ground truth, Right: Classification of the l = 16 classes
characterized by three highly-informative spectral bands shown in Table. I
by using a Support Vector Machine (SVM).

QUBO-based band selection PCA
Classifier DTC SVM DTC SVM
Accuracy 0.74 0.81 0.72 0.81

TABLE II
CLASSIFICATION ACCURACY OF THE DTC AND THE SVM.

min
~x

[~xTQ~x+ γ
n∑
i=1

(x̃i − k)2], ~x ∈ {0,+1}n; (9)

where γ is a Lagrange multiplier. As an experiment for
selecting the most informative band subset for the specific
class of an Indian Pine HSI, we consider the band subsets
with three elements (k = 3).

V. QUANTUM OPTIMIZATION: USING A D-WAVE
QUANTUM ANNEALER

A. D-Wave quantum annealer

We selected a highly-informative band subset characterizing
the specific class of the Indian Pine HSI by optimizing the
QUBO-based band subset selection problem in the form of
Eq. (9). We optimized this optimization problem on a D-
Wave quantum annealer, and we even benchmark the D-Wave
quantum annealer with respect to its conventional version.

A D-Wave Quantum Annealer is a quantum annealer for the
special class of optimization problems, in particular, QUBO-
like problems. Such a quantum annealer is a metaheuristic
process evolving slowly enough from its initial energy Hi to
its final energy Hf in the form of a QUBO problem. The
evolution process is expressed by

H(t) = (1− λ(t))Hi(X̂) + λ(t)Hf (Ẑ), (10)

where X̂ , Ẑ are Pauli-x and -z matrices, Hi is the initial
Hamiltonian of a system for a given time function of λ(t) = 0,
and Hf is the QUBO problem with λ(t) = 1 [1]-[3].

The hardware of the D-Wave quantum annealer has a
specific graph topology G = (V,E) named Pegasus; its
vertices represent binary variables ~x, and its edges define
interaction strengths among the binary variables. However, the
connectivity of these binary variables in the Pegasus topology
is very constrained; in particular, only the certain binary

Algorithm 1 Fitting weak classifiers
1: INPUT: Training bands:

(x,y) = (x1, y1), . . . , (xS , yS); {xS represents the three
selected bands for a given class yS (Table I).}

2: y ∈ {−1,+1}S ; {S is the size of the input dataset, and
y represents the two-label of the Indian Pine HSI (Table
III).}

3: Initialize the weak classifiers: c = [c1, . . . , cN ]; {DTCs.}
4: N ; {the number of DTCs.}
5: wS = (1, . . . , 1)/S; {Assigning the same weight to each

data element xS .}
6: for i← 1, . . . , N do
7: Fit a DTC, c[i], to the (x,y) with a weight wS .
8: yp = c[i](x), yp ∈ {−1,+1}S .
9: errm = wS · I(yp! = y)/sum(wS).

10: am = 0.5 · log 1− errm
errm

.

11: wS = wS · exp(−am · yp · y); {boosting the weight of
misclassified data.}

12: wS = wS/sum(wS).
13: end for
14: h = [h1, . . . , hN ], hn ∈ RS ; {defining an array to store

the weak classifier predictions.}
15: for i← 1, . . . , N do
16: h[i] = c[i](x); {storing the predicted classes.}
17: end for
18: h = h/N ; {scaling h to the range of [−1/N, 1/N ].}
19: return h.
20: STOP ALGORITHM.

variables are allowed to interact with others through the edges
[19].

In addition, the performance of a D-Wave quantum annealer
strongly depends on mapping the binary variables of our
QUBO problem expressed by Eq. (9) to the Pegasus topology.
As it is possible to map (embed) our QUBO problem to the
Pegasus topology as efficiently as possible, we employed a
technique called minor-embedding which is offered by the
company D-Wave systems [2], [19].

B. Quantum optimization for the band subset selection

Quantum optimization is an optimization of our QUBO-
based band subset selection problem on a D-Wave quantum
annealer. We performed our experiment in a classical annealer
and a D-Wave quantum annealer. Both of these annealers
selected the same band subset for each class of the Indian
Pine HSI; we shown these selected band subsets in Table I
while k = 3 in Eq. (9).

To prove that we selected the highly-informative band subset
for each class on a D-Wave quantum annealer, we performed
the scene classification for our Indian Pine HSI by using a
Decision Tree Classifier (DTC) and a Support Vector Machine
(SVM) shown in Fig. (2) as a proof-of-concept.

In addition, we discovered that we needed at least a 10-
dimensional parameter to reach the same accuracy as our
proof-of-concept method when we apply the PCA for the
dimensionality reduction and conventional classifiers (the DT
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Algorithm 2 Qboost classifier
1: INPUT: h from (Algorithm 1) or given.
2: OUTPUT: The strong classifier C.
3: Fit the weak classifiers to (x,y) (Algorithm 1): h (if h is

not given).
4: The weak subset classifier selection:
α∗ = minα[α

TQα], α ∈ {0,+1}N ; {QUBO problem}

5: Diagonal and off-diagonal elements of a matrix Q:
6: Q ∈ RN×N .
7: for i← 1, . . . , N do
8: Qii = S/N2 + λ− 2(h[i])T · y.
9: end for

10: for i← 1, . . . , N do
11: for j ← i+ 1, . . . , N do
12: Qij = (h[i])T · h[j].
13: end for
14: end for
15: Optimize QUBO problem on a D-Wave quantum

annealer
16: An optimal estimator weight vector: α∗.
17: PREDICT: given the test band set (x1, . . . xt);

18: T =
1

t

∑t
t=1

∑N
i=1 α

∗h[i](xt).

C(xt) = sign
(∑N

i=1 α
∗[i]h[i](xt)− T

)
.

19: STOP ALGORITHM.

and the SVM) for the multi-class classification of the Indian
Pine HSI (see Table. I) [8]. For this scenario, we present the
classification accuracy of the test dataset in Table. II.

These findings lead to the conclusion that our QUBO-based
band subset selection method identified the highly-informative
band subset, and it even helped to reduce a storage space and
the computational load for training the given classifiers.

VI. A CASE STUDY OF A BINARY QUANTUM CLASSIFIER
ON A D-WAVE QUANTUM ANNEALER FOR

HYPERSPECTRAL IMAGE

We have the Indian Pine HSI with 16 classes, where
each class is characterized by three highly-informative bands
selected by our QUBO-based band subset selection method
shown in Table I. In this section, we analyse binary quantum
classifiers, namely a quantum boost (Qboost) classifier, and a
quantum boost plus (Qboost-Plus) classifier, for a two-label
dataset of the Indian Pine HSI created as the binary output
of a D-Wave quantum annealer; for instance, Alfalfa and
Corn-notill, or Corn-mintill and Corn-notill, etc. Further, we
benchmarked the classification accuracy of our binary quantum
classifiers with respect to conventional binary classifiers, such
as a DTC, an SVM, and an Adaboost classifier.

We considered first two types of boosting algorithms, a
Qboost and an Adaboost algorithm (classifier). The Qboost
classifier is a quantum version of an Adaboost classifier.
Here, we use two types of terminology for these classifiers,
a strong classifier C and a weak classifier ci. The strong
classifier leverages many weak classifiers to achieve its high

classification accuracy; the weak classifier is a classifier that
classifies a given dataset better than random guessing [20].

A. Basics of an Adaboost classifier

An Adaboost classifier is an algorithm for finding an optimal
estimator weight of many weak classifiers so that the classifier
C is maximized [21];

C(xS) = sign

[
N∑
i=1

αici(xS)

]
, ci(xS) ∈ {−1,+1}, (11)

where (xS , yS) represents a training dataset, and αi ∈ [0,+1]
is the estimator weight that is continuous-valued. Here,
sign(f(xS)) = 1 if f(xS) > 0, sign(f(xS)) = −1 if
f(xS) < 0, and sign(f(xS)) = 0 otherwise. The loss of
the Adaboost classifier is defined as an exponential loss

α∗ = min
α

[
S∑
s=1

exp

{
−ys

N∑
i=1

αici(xs)

}
/S

]
. (12)

In contrast, a Qboost classifier is an algorithm for finding an
optimal estimator weight which takes only binary numbers
αi ∈ {0,+1}, and its loss is defined by a squared loss
denoted as L2. Hence, the Qboost classifier is equivalent to
a subset selection algorithm among many weak classifiers to
approximately maximize the accuracy of the strong classifier.
In next section, we delve into the Qboost classifier in more
detail.

In general, these boosting algorithms start with assigning
identical weights wS to our dataset. The weak classifiers
classify these datasets, and if the data is misclassified then
the weight of that data is increased (boosted). This procedure
is repeated until no further improvement in the classification
accuracy can be seen. A DTC with a depth of one is considered
as a weak classifier; sometimes, it is called a decision stump
classifier. We already presented the steps for boosting a weight
wS and the weak classifier in Algorithm 1.

B. A Qboost classifier for a two-label dataset of the Indian
Pine HSI

Moving towards the Qboost classifier, after having stopped
boosting the weight of our dataset, the Qboost classifier selects
the weak subset classifier so that the classification accuracy
of the strong classifier is maximized. We executed the weak
subset classifier selection algorithm on a D-Wave quantum
annealer as shown in Algorithm 2. Below, we explain the
derivation of Algorithm 2 in detail. More importantly, the
Qboost classifier exploits the weight boosting by solving the
weak subset classifier selection problem on a D-Wave quantum
annealer.

For the two-label dataset of the Indian Pine HSI, we
define the training band dataset as (x1, y1), . . . , (xS , yS), the
test band dataset as (x1, . . . , xt), and the strong classifier,
C(xS) ∈ {−1,+1}, which is a binary classifier in the form
of [13], [20],
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C(xS) = sign

[
N∑
i=1

αici(xS)

]
, ci(xS) ∈ {−1,+1}, (13)

where αi ∈ {0, 1} is the estimator weight, and ci(xS) is the
weak classifier; we chose DTCs as our weak classifiers.

Recent papers on theoretical studies [13], [14] and a prac-
tical application for the remote sensing [22], are proposed to
formulate the loss of the strong classifier as a squared loss L2:

α∗ = min
αi,λ

 S∑
s=1

(
N∑
i=1

αici(xs)− y(xs)

)2

+ λ
N∑
i=1

α0
i

 ,
(14)

where α∗ represents the optimal estimator weight vector, S is
the size of the training band dataset, and λ

∑N
i=1 α

0
i represents

a 0-norm term. By expanding the squared loss function, we
have

α∗ = min
α,λ

 N∑
i=1

N∑
j=1

αiαj

(
S∑
s=1

ci(xs)cj(xs)

)
+

+

N∑
i=1

αi

(
λ− 2

S∑
s=1

ci(xs)y(xs)

)]
,

(15)

which is in the form of a QUBO problem while we define

Qij =

S∑
s=1

ci(xs)cj(xs),

Qii = S/N2 + λ− 2
N∑
i=1

ci(xS)y(xS).

(16)

Then we can write

α∗ = min
α

[αTQα], α ∈ {0,+1}N . (17)

We optimized this problem on a D-Wave quantum annealer to
select the weak subset classifier in its quadratic form.

Then we obtained the optimal estimator weight vector α∗,
and the strong classifier for the test band dataset becomes

C(xt) = sign

[
N∑
i=1

α∗i ci(xt)− T

]
,

T =
1

t

t∑
t=1

N∑
i=1

α∗ci(xt),

(18)

where (x1, . . . xt) are from the test band dataset of the Indian
Pine HSI, and T is derived experimentally to increase the
classification accuracy of the strong classifier C(xt) [13],
[14]. We already the procedures of the Qboost classifier in
Algorithm 1 and Algorithm 2.

Secondly, we chose the DTC, SVM, and Qboost classifiers
as weak classifiers instead of only a DTC. This method is
sometimes called an ensemble method. By exploiting Eq. (13)
and Eq. (15), we again formulated weak classifiers such that

Binary Classifier Accuracy
Classes DTC SVM Qboost Qboost-Plus Adaboost
{1, 2} 0.99 0.99 0.99 0.99 0.99
{2, 3} 0.89 0.83 0.64 0.85 0.84
{3, 4} 0.88 0.92 0.83 0.92 0.90
{4, 5} 0.95 0.98 0.95 0.98 0.96
{5, 6} 0.99 0.99 0.98 0.99 0.98
{6, 7} 1.00 1.00 1.00 1.00 1.00
{7, 8} 0.95 0.99 0.99 0.99 0.99
{8, 9} 1.00 1.00 1.00 1.00 1.00
{9, 10} 1.00 0.99 0.99 0.99 0.99
{10, 11} 0.75 0.78 0.72 0.75 0.78
{11, 12} 0.83 0.86 0.83 0.86 0.84
{12, 13} 1.00 1.00 1.00 1.00 1.00
{13, 14} 0.99 0.99 0.99 0.99 0.99
{14, 15} 0.85 0.90 0.87 0.90 0.88
{15, 16} 0.99 0.99 0.99 0.99 0.99

TABLE III
CLASSIFICATION ACCURACY OF THE DTC, SVM, Qboost, Qboost-Plus,
AND Adaboost FOR THE TWO-LABEL OF THE INDIAN PINE HSI; {i, j}
REPRESENTS THE TWO-LABELS, E.G., {1, 2} → Alfalfa and Corn-notill

(FIG. 1). BY A BOLD FONT WE NOTED THE HIGHEST ACCURACY VALUE
OF THE QBOOST-PLUS CLASSIFIER WITH RESPECT TO THE ADABOOST

CLASSIFIER.

C(xS) = sign

[
3∑
i=1

αici(xS)

]
, ci(xS) ∈ {−1,+1}, (19)

where c1(xS), c2(xS), c3(xS) represent the DTC, SVM, and
Qboost classifiers, respectively. In this scenario, we have h =
[c1(xS), c2(xS), c3(xS)] in Algorithm 2, and this ensemble
method is called a Qboost-Plus classifier [2].

C. Benchmarking Qboost and Qboost-Plus for the two-class
classification

We run our experiment in several scenarios for the two-
label dataset of the Indian Pine HSI by using the DTC, SVM,
Qboost, Qboost-Plus, and Adaboost classifier. These scenarios
are:

1) DTC for the two-label dataset of the Indian HSI.
2) SVM for the two-label dataset of the Indian HSI.
3) Qboost with 30 weak classifiers for the two-label dataset

of the Indian HSI; the weak classifiers are the DT
classifiers with the depth three.

4) Qboost-Plus for the two-label dataset of the Indian HSI;
the weak classifiers are a DTC, an SVM, and a Qboost
classifier.

5) Adaboost with 30 weak classifiers for the two-label
dataset of the Indian HSI; the weak classifiers are the
decision stump classifiers.

All above scenarios used for benchmarking are the two-
label classification of the Indian Pine HSI, and we present the
classification accuracy of our experiment in Table III. We even
compared the boosting algorithms, the Qboost-Plus and the
Adaboost classifier. Their results demonstrate that the Qboost-
Plus classifier performs the same as the Adaboost classifier
and even better in some instances.

In this part, we selected the most highly-informative band
of the Indian Pine HSI by using our QUBO-based band subset
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Algorithm 3 A multi-label classifier by using quantum binary
classifiers via an ECOC

1: INPUT: Training bands:
(x,y) = (x1, y1), . . . , (xS , yS); {xS represents the three
selected bands for a given class yS (see Table I).}
y ∈ {1, 2, . . . , 16}S ;
{y represents l = 16 distinct labels of the Indian Pine
HSI, and S is a size of the training dataset.}

2: OUTPUT: Quantum binary classifiers:
Cb = {C1, C2, . . . , C24}.

3: CODING MATRIX:
4: Assign b = 24 codewords to each class (b > log2 l), and

generate l by b coding matrix M for l = 16 distinct labels
(see Table IV).

5: Construct S by b coding matrix M ′ for training classes
y.

6: TRAINING:
7: for i← 1, . . . , b do
8: Construct two sets, Gi and Gi. Gi consists of all labels

for which M ′[:, i] == 1, and Gi is the complement set.

9: Fit a quantum binary classifier Ci to distinguish Gi
from Gi by using Algorithm 2.

10: end for
11: TESTING:
12: Given an unlabeled data xt.
13: Evaluate the trained quantum binary classifiers Cb(xt) =
{C1(xt), C2(xt), . . . , C24(xt)} by employing the step 17
of Algorithm 2.

14: Compute an Euclidean/Hamming distance:
dj = d(Cb(xt),M [j, :]), j = 1, 2, . . . , l.

15: return argminj dj ; {codewords (a label) for the unlabeled
data xt}.

16: STOP ALGORITHM.

selection method. Further, we leveraged these selected bands
to benchmark our Qboost and Qboost-plus algorithms with
respect to the classical classifiers. Our quantum classifiers
clearly outperform the conventional classifiers for most of the
binary instances of the Indian pine HSI.

VII. A NOVEL MULTI-LABEL CLASSIFIER FOR THE INDIAN
PINE HSI ON A D-WAVE QUANTUM ANNEALER

In the prior section, we exhibited that our quantum binary
classifiers (Qboost and QboostPlus) classify the two-label of
the Indian Pine HSI with high accuracy due to the binary
output of a D-Wave quantum annealer. However, the Indian
Pine HSI has 16 classes, and the quantum binary classifiers
are needed to extend for the multi-label classification. Hence,
we propose a novel technique for the multi-label classification
via an Error-Correcting Output Code (ECOC), and namely, we
leverage an ECOC technique to classify the multi-label of the
Indian Pine HSI when using our binary quantum classifiers
[15], [16], [23].

An ECOC technique (see Algorithm 3 for a detailed
procedure):

Classes A coding matrix M with l × b elements.
1 1 1 0 1 0 1 0 0 0 0 1 . . . 1
2 0 1 1 0 1 0 0 0 1 1 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

... . . .
...

16 0 1 0 0 1 1 1 1 1 0 1 . . . 1

TABLE IV
AN EXAMPLE OF THE CODING MATRIX M FOR THE ALL l = 16 LABELS OF

THE INDIAN PINE HSI GENERATED RANDOMLY, AND EACH CLASS IS
CHARACTERIZED BY b = 24 CODEWORDS.

A multi-label classifier accuracy
Classes DTC SVM Qboost Qboost-Plus Adaboost

{1, 2, . . . , 16} 0.82 0.72 0.67 0.77 0.64

TABLE V
CLASSIFICATION ACCURACY OF THE DTC, SVM, Qboost CLASSIFIER,
Qboost-Plus CLASSIFIER, AND Adaboost CLASSIFIER FOR THE ALL 16

LABELS OF THE INDIAN PINE HSI; {1, 2, . . . , 16} REPRESENTS THE ALL
16 LABELS (FIG. 1). BY A BOLD FONT WE NOTED THE HIGHEST

ACCURACY VALUE OF THE QBOOST-PLUS CLASSIFIER WITH RESPECT TO
THE ADABOOST CLASSIFIER.

• Coding matrix: We assign unique b-bits (codewords) to
each class of the Indian Pine HSI such that b > log2 l
where l = 16 is a number of classes; the classes are
represented by a so-called coding matrix M ∈ {0, 1}l×b
(see Table IV), and M ′ ∈ {0, 1}S×b for a training dataset
with size S. In our case, each class is represented by
b = 24 codewords generated randomly.

• Training: We train each column of the coding matrix M ′

by quantum binary classifiers Cb = {C1, C2, . . . , C24}.
• Testing: For an unlabeled input xt, we evaluate Cb(xt) =
{C1(xt), C2(xt), . . . , C24(xt)}, and then we assign
Cb(xt) to the closest codewords in the coding matrix M
by using an Euclidean/Hamming distance.

A. Benchmarking Qboost and Qboost-Plus for the multi-label
classification

We run our experiment for the multi-label of the Indian Pine
HSI via the ECOC by using the DTC, SVM, Qboost, Qboost-
Plus, and Adaboost classifier. Furthermore, we presented the
classification accuracy of our experiment in Table V. We
compared also the classification accuracy and the confusion
matrix of the Qboost-Plus with one of the Adaboost classifier
(see Fig. 3). Their results again demonstrate that the Qboost-
Plus classifier beats the Adaboost classifier when we leverage
the ECOC technique for a multi-label classification case. More
importantly, we provided a novel multi-label classifier via the
ECOC technique when applying a quantum computing device
yielding binary outputs.

VIII. DISCUSSION AND CONCLUSION

In the first part of this paper, we used an MI-based band
subset selection technique as a global optimization approach
for a real-world problem of the Indian Pine hyperspectral
dataset on a D-Wave quantum annealer. We first mapped
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(a) The Qboost-Plus classifier via the ECOC technique (b) The Adaboost classifier via the ECOC technique

Fig. 3. The confusion matrix for the l = 16 labels of the Indian Pine HSI.

this MI-based band subset selection problem to a QUBO-
based band subset selection problem. Then we benchmarked
and assessed the performance of a D-Wave quantum annealer
compared to a conventional annealer. We demonstrated that the
D-Wave quantum annealer correctly selects highly-informative
bands competitive to a conventional annealer. To prove that our
D-Wave quantum annealer selected the best bands for each
class, we classified all 16 classes based on their three highly-
informative bands by applying a Decision Tree Classifier and a
Support Vector Machine classifier. Their classification results
exhibit that the selected bands are the highly-informative ones.
Besides, the feature selection method saves storage space and
reduces the computational load for the training process.

In the second part of our article, we first tested a binary
classification for the Indian Pine HSI due to the binary output
of our D-Wave quantum annealer. We proposed to employ
two binary quantum classifiers, Qboost and Qboost-Plus, to
our two-label dataset. Secondly, we provided an ECOC for
the multi-label classification of the Indian Pine HSI when
applying our binary quantum classifiers. Here, the classes are
characterized by the bands selected during the first part of our
study. We benchmarked these binary quantum classifiers and
the novel multi-label classifier in comparison to conventional
classifiers that are a Decision Tree Classifier, a Support Vector
Machine classifier, and an Adaboost classifier. Our binary
quantum classifiers and our novel multi-label classifier even
outperform these conventional classifiers for most instances
of the two- and multi-label dataset.

In the end, we realized how to leverage a quantum annealing
device to extract knowledge and support real-world optimiza-
tion problems in comparison to conventional machine learning
techniques. In addition, we conceived strategies for formulat-
ing and embedding real-world problems to the topology of a
D-Wave machine.

We must note however that our method is not intended to
compete with a conventional method, but we intended to find
a proper dataset in Earth observation to evaluate an existing
quantum algorithm on a D-Wave quantum annealer or the
future quantum computers since the choice and the size of

a dataset play a vital role in quantum computers.
In terms of a future work, we will design a hybrid quantum-

classical network for Earth observation datasets which exploits
both quantum computers (a quantum annealer and gate-based
quantum computer) and a conventional computer. Such a
hybrid network will be independent of the choice and size
of datasets.
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