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Abstract— Large-scale space structures, such as telescopes or
spacecrafts, require suitable in-situ assembly technologies in
order to overcome the limitations on payload size and mass
of current launch vehicles. In many application scenarios,
manual assembly by astronauts is either highly cost-inefficient
or not feasible at all due to orbital constraints. However,
(semi-) autonomous robotic assembly systems may provide the
means to construct larger structures in space in the near future.
Modularity is a key concept for such structures, and also for
reducing costs in novel spacecraft designs. The advantage of
the modular approach lies in the capability to generate a high
number of unique assets from a reduced number of building
blocks. Thus, spacecrafts can be easily adapted to particular use
cases, and could even be reconfigured during their lifetime using
a robotic manipulation system. These ideas lie at the core of our
current EU project MOSAR (MOdular Spacecraft Assembly
and Reconfiguration).

Teleoperating a space robotic system from Earth to assemble
a modular structure is not straightforward. Major difficulties
are related to time delays, communication losses, limited control
modalities, and low immersion for the operator. Autonomous
robotic operations are then preferred, and with this goal we
propose a fully autonomous system for planning in-space assem-
bly tasks. Our system is able to generate assembly and recon-
figuration plans for modular structures in terms of high-level
actions that can autonomously be executed by a robot. Through
multiple simulation layers, the system automatically verifies the
feasibility and correctness of action sequences created by the
planner. The layers implement different levels of abstraction,
hierarchically stacked to detect infeasible transitions and initiate
replanning at an early stage. Levels of abstraction increase
in complexity, ranging from a basic geometric description of
the spacecraft, over kinematics of the robotic setup, to full
representations of the actions. The system reuses information
from failed checks in all layers to avoid similar situations during
replanning. We use a hybrid approach where symbolic reason-
ing is combined with considerations of physical constraints to
generate a holistic sequence of actions.

We demonstrate our planner for large space structures in a
simulation environment. In particular, we consider the recon-
figuration of a given modular structure, i.e. disassemble parts
and reassemble them in a new configuration. The adaptability
of our planning system is shown by executing the assembly
plans on robots with different sets of skills and in scenarios with
simulated hardware failures.
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1. INTRODUCTION

Space infrastructure has long sparked human imagination.
Plenty of examples of large spacecrafts can be found in
popular media, often being able to land on and lift-off from
other planets. In reality, factors such as the cargo area of
launch vehicles limit the size and mass of the payload, thus
limiting the size of such spatial constructions. Moreover,
structures optimized for use in space might not be able to
endure gravitational forces on Earth, not even mentioning the
high forces during launch. Thus, large space structures must
be designed in modules and assembled in space, as it was the
case for the International Space Station (ISS). Modularity and
In-Space Assembly (ISA) can also be applied for instance for
reconfiguration or maintenance of spacecrafts. However, in
many application scenarios it would be highly cost-inefficient
or even infeasible to have astronauts manually assembling
modules or structures. Thus, (semi-) autonomous robotic
assembly concepts are required.

Examples of projects aiming at developing such concepts
are MOSAR (MOdular Spacecraft Assembly and Reconfigu-
ration)' and PULSAR (Prototype of an Ultra Large Structure
Assembly Robot)?, both part of the European PERASPERA
program. PULSAR is motivated by the need of assem-
bling larger space telescopes employing ISA techniques [1].
MOSAR, on the other hand, focuses on creating diverse
spacecrafts by using reusable modules that can be reconfig-
ured by a walking manipulator [2].

Teleoperating a robotic assembly system from Earth is not

Thttps://www.h2020-mosar.eu/
2nttps://www.h2020-pulsar.eu/
Shttps://www.h2020-peraspera.eu/
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Figure 1: Visualization of the overall system. A hybrid
planner is in charge of generating a robot skill sequence for
reconfiguration, having as inputs the start and goal satellite
configurations. Two main layers, a logical and a physical one,
interact to fulfill this goal.

straightforward due to multiple reasons. First, time delay
causes operators to adopt the move-and-wait strategy [3]
starting with delays as small as 0.3s. While this would allow
teleoperation of robotic systems in Lower-Earth Orbit (LEO),
round-trip delays for communications with systems in geosta-
tionary orbit approach this value. Furthermore, low immer-
sion and limited control modalities reduce the effectiveness of
a human operator. Communication constraints such as packet
losses, loss of signal, or jitter also hinder teleoperation.

Fully-autonomous systems are then a feasible alternative. In
this paper, we present a fully autonomous system for planning
in-space assembly tasks (see fig. 1). Based on the MOSAR
scenario, the proposed system creates high-level action plans
for reconfiguration of modular spacecrafts. The plans can
be autonomously executed by a robot, as their feasibility
is automatically verified through multiple simulation layers.
The layers are organized hierarchically, with each layer rep-
resenting different levels of abstraction. During planning,
feasibility checks are executed sequentially on each level,
from the highest to the lowest level of abstraction. This
allows early detection of infeasible transitions, avoiding the
waste of computational time on lower levels of abstraction,
whose feasibility in general takes longer to compute. The
levels in our approach range from a symbolic description of
the environment, over robot kinematic considerations, to a
full representation of the actions. The design of planning
on multiple layers is tightly coupled to the concept of hybrid
planning [4], [5].

We show that storing information about failed transitions
accelerates planning and also that generalizing this infor-
mation leads to great improvements in planning time. To
achieve this, feedback from each level of abstraction is ac-
cumulated in failure memories to avoid similar situations
during replanning stages. We further show that the system
generalizes to different scenarios, e.g. different skill sets of
the robot, different geometries, or failure of robot joints. Our
system is evaluated on a scenario for reconfiguration of a
modular satellite composed of cubical elements. Given the
initial and target configurations of the satellite, the system

computes a feasible plan to transform the satellite into the
desired configuration. The general method is assessed by
randomly generated problems, while hand-selected subsets of
the problems are used to demonstrate the ability of the system
to generalize to different skill sets.

The paper is structured as follows: First, work on related
fields is introduced in section 2, followed by the required
formal definitions in section 3. Then, we present the general
planning system in section 4 and feedback strategies, used to
learn from failures, are introduced in section 5. Lastly, the
system is validated in experiments in section 6, and section 7
concludes the paper.

2. RELATED WORK

This section provides an overview of the concept of modu-
larity for space, and presents previous work on planners for
assembly of modular satellites and hybrid planning methods.

Modularity in Space

Commercial space industry is moving towards reusability of
systems and components [6]. Initial concepts for space mod-
ularity have been proposed, either through the development
of re-usable subsystems or software modules [7], or through
construction of different assemblies using commercial off-
the-shelf components. This modular approach will enable
changes in spacecraft construction and operation by provid-
ing more systematic approaches to On-Orbit Servicing (OOS)
and On-Orbit Assembly (OOA). By performing maintenance,
repair, and upgrade of components in space, the overall
lifetime of satellites can be greatly extended, thus leading
to a reduction of mission costs, increased reliability and
sustainability, and quicker response of satellite developers to
commercial demands.

The European Commission established the Strategic Re-
search Cluster in Space Robotics Technologies, within the
Horizon 2020 programme, to move forward in the develop-
ment of advanced robotic space technologies. Three calls
were foreseen within the cluster. The first call was focused on
the development of common building blocks, which could be
reused in the second and third calls, focused on applications
in orbital and planetary scenarios. MOSAR is one of the
projects of the second call, aiming to develop a demonstrator
to test feasibility of modular and on-orbit reconfigurable
satellites. The approach of MOSAR is based on re-use of
hardware components and software generic building blocks,
to perform mainly two demonstrations:

« Transfer of spacecraft modules from the cargo to the target
satellite using a walking manipulator.

« Replacement of a damaged module on the target, with hot
reconfiguration and re-routing of power and data.

Applications of robotic assembly in modular satellites are
very recent, consequently little work has been published in
this field and only few planners have been developed to
specifically address this case. The iBoss project [8], [9] was
a big step towards satellite modularization with the devel-
opment of common building blocks and interfaces. iBoss
also provided advances in the planning area, by introducing
the PyHop* Hierarchical Task Network planning framework
(Python implementation of SHOP [10]). This framework
relies on a task-level planner that generates sequences of
operations to solve the desired task. After the high-level

“4https://bitbucket.org/dananau/pyhop



operations are planned, an inverse kinematic (IK) check and
a motion planner are executed to compute the required robot
trajectories. Different high-level strategies were provided
in [11]. They generate reconfiguration transitions for satel-
lites by classifying, melting, and sorting states. The robot is
not included directly in the planning loop, but is considered
by using a previous analysis of its capabilities in the high-
level planning stage.

Hybrid planners

The planners for modular satellites discussed above do not
intrinsically include the robot constraints in the system. In
contrast, our planning system considers those constraints
using a so-called hybrid planner, i.e. a Task And Motion
Planning (TAMP) problem solver. These planners com-
bine symbolic and geometric planning stages, as used for
instance in the Asymov system [4]. Symbols are used to
represent action preconditions in order to check whether an
action can be performed by the robot. Often, geometric
constraints are also represented with symbols in order to
have preliminary feasibility checks at the symbolic level. For
instance, [12] translates geometric poses into symbols for ma-
nipulation planning problems. The symbols are translated to
be compliant with the Planning Domain Definition Language
(PDDL, [13]), widely used by the planning community.

For TAMP problems, symbols can be used not only for
expressing the geometric preconditions of a task, but also
their effects. [14] uses a strategy where a search is performed
for high-level tasks, and the output is tested with the motion
planner. The same authors extended their work by presenting
a system capable of learning the effects of parameterized
skills, which allows the generation of skill sequences for
solving more complex tasks [15]. The system can even
perform preparation tasks that it foresees as necessary due to
geometric constraints, for instance for pushing objects away
to clear the path in order to retrieve a desired object. In
addition, they improve the interrelation between the task and
motion planner by using temporal logic constraints, which
allows the representation of more complex scenarios.

The information of special-purpose reasoning can be inte-
grated into symbolic planning using the “computed predi-
cates” (also known as “semantic attachments™) [16], [17],
whose values are established by calling an external mecha-
nism. This is aligned with our idea of checking the different
movements of the robot with the motion planner and then
storing whether it is feasible. Back-propagation of geomet-
ric failure situations to the symbolic layer using a hybrid
planning algorithm was presented in [18]. A difference to
our solution lies in how the back propagation (feedback) is
exploited to solve future queries. We do not only detect and
use these failures, but we store and re-use them to avoid the
same problem in future re-planning actions.

Communication between the semantic or symbolic space and
the geometric spaces (including physical capabilities of the
real system) is required in the above-mentioned works. They
mostly use pick-and-place problems as test cases, which
have a reduced complexity compared to an assembly process
involving several steps and tasks. On the other hand, in our
previous works [19], [20], we intrinsically include the robots
in the planning loop. We tested our approach in a more
complex assembly domain, creating structures with modular
aluminum profiles, thus proving the capabilities of our system
to adapt not only to different assembly tasks, but also to
different skill sets of the robot. For this work we take the
idea of including the robot in the planning loop to reduce the

amount of expert knowledge required to perform planning.
This enhances the autonomy of the system, since it is then
able to cope with a wider variety of problems and constraints
with lower reliance on human knowledge.

3. FORMAL DEFINITIONS

This section provides the problem statement and the formal
definition of the planning problem to solve. In particular,
the state (i.e., configuration of a satellite) and the possible
transitions are defined in order to model a sequence of recon-
figuration steps executed with the help of robot skills.

Problem Statement

We consider as case study a modular reconfigurable satellite,
as envisaged in the MOSAR project. Such a satellite consists
of cube-shaped modules that carry different payloads, includ-
ing for instance batteries, navigation systems, and experimen-
tal stations. We assume that each module is unique, and that
the spatial arrangement of the modules can be reconfigured at
any time so that it supports a specific application goal.
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Figure 2: CEASAR robotic arm [21], whose base model is
utilized in this work to design a walking manipulator. The
end effectors are endowed with suitable standard interfaces
to allow attaching and detaching actions.

In order to reconfigure a satellite, the system makes use
of a robotic system, which in MOSAR corresponds to a
walking manipulator. The robot considered here features
seven degrees of freedom (fig. 2), and is capable of attaching
and detaching to any of the six faces of a module through a
standardized connection interface at each end. The robot can
grasp and detach one module at a time, and place it at another
location. The goal of the planner is to generate a sequence
of steps to be followed by the robotic system to transform the
initial configuration of a satellite into a desired one.

State Definition

Let us represent a module with index ¢ as a tuple m; =
(pi, fized;), in which p; = (x;,9;,2;) € R is the posi-
tion in the reference frame of the satellite, and fized; =
const. € {0, 1} indicates if the module shall have a constant
location or if it can be moved to another position by the
manipulator. A satellite consists of M modules. A particular
configuration of the satellite is given by a state s, = {m; , =
(pi, fized;)r | 0 <i < M}. A state is valid if each module
is connected by at least one side to another module, and all



modules are interconnected.

Reconfiguration Sequence

Given the initial and goal configurations of the satellite, Sgtq,t
and s.,q respectively, the objective is to find a sequence of
transitions ¢; that move one module at a time, until the final
configuration is reached. The configuration of the satellite
is changed from sj to sgy; by transition ¢;. The module
to be moved needs to have at least one free face in s; (and
Sk+1) so that the manipulator can grasp it. Furthermore, only
those transitions that do not violate the validity condition
of a state are allowed. The walking manipulator receives
the transitions as a set of tasks for execution. In order to
solve these tasks, the robotic system provides a set of so-
called skills, i.e. collections of atomic actions, which have
the capability to generate trajectories considering the current
state of the modules as geometric constraints.

Different robot embodiments have different sets of skills. In
our case, three main skills are implemented: attach, detach,
and move a module. By combining these three skills, higher
level tasks can be performed. For instance, the robot can
move itself on top of the satellite by attaching and detaching
its end-effectors on the satellite connectors, a behavior we
refer to as “walking” in the rest of this paper. Following
the same logic, with a proper sequence of skills, tasks like
moving a module from a starting to a goal position over
multiple intermediate positions can be achieved.

4. AUTONOMOUS ROBOT PLANNING SYSTEM

In order to provide an assembly sequence plan, our planning
system uses two abstraction layers, namely a logic and a
physical layer. They are connected through a feedback
system that enables the transfer of experience from the phys-
ical to the logic layer. An overview of the architecture of
the planning system is first given, followed by a detailed
description of the implementation of both layers.

Architecture

The architecture of our planning system is shown in fig. 3.
It receives the start and goal configurations of the satellite as
input. The planning system is tasked with finding a feasible
solution for the reconfiguration sequence. The planner is
composed of a logic layer, a physical layer, and a feedback
system. The logic layer generates a state sequence, and it is
in charge of all the semantic checks during the generation of
this symbolic solution (list of states to reach the goal), i.e.
it checks the validity of the states and required transitions.
This layer does not have any information about the robot
kinematics or any other geometric knowledge needed to plan
and execute a particular transition with a robot motion. The
physical layer takes a state sequence as input and performs
checks related to the robotic capabilities and geometrical
constraints. It includes IK checks and motion planning,
embedded in planning levels of varying complexity. Both
layers are presented in detail below.

A feedback loop is implemented to establish the communica-
tion between the two layers. In case of a failure in the physical
layer, the feedback strategies (see section 5) are triggered.
These strategies prune the search tree of the logic layer and
also store the type of failure, in order to avoid it in future
planning actions. This process runs iteratively until either
a valid solution for reaching the desired state is found, or
until all theoretically possible semantic solutions are checked.

For practical reasons we set an upper limit on the number of
allowed checks, since the number of feasible solutions grows
exponentially with the number of modules.

Logic Layer

The logic layer is in charge of finding the semantic solutions
considering different constraints. Such solutions can be seen
as a sequence of states that change the system from the
initial to the goal configuration. The core of this layer is
based on graph search. The graph represents the possible
states with the required transitions between them; therefore,
a path through the graph represents a solution. Formally, the
graph G is composed by nodes V' and edges E. A node
v; € V represents a particular satellite configuration s;, with
Vstart and venq representing the start and end configurations,
respectively. An edge e;; € E connects the nodes v; and
v; if and only if there is a valid semantic transition ¢;; that
connects the satellite configurations s; and s;. Finally, a
semantic solution is a valid path, formally:

[Ustarta ceey Uiy Vi1, ~-~7Uend]> — ei(i+1) S E Vl

In principle, multiple paths can be a valid semantic solution,
but the shortest one is preferred as it requires the smallest
number of transitions (therefore less robot motions are re-
quired). Based on this preference, the natural graph search
algorithm to be used is the breadth-first search (BFS). In this
algorithm, all the nodes that are one step further from the start
are analyzed first, followed by the nodes that are two steps
further, and so on. This method guarantees that the end node
is reached with the minimal number of steps possible.

Using this basic version of BFS is enough to obtain a working
system, but the huge amount of possible states and transitions
between them makes the search slow for problems with a
large number of modules. Two improvements are imple-
mented to speed up this search. First, a heuristic is developed
to give preference to states that are closer to the end state.
Second, the branching factor (the average number of new
states visited from a previous known state) is limited to bz 4 x
(fig. 4). Therefore, only the top by 4 x states are considered
to search for a solution. The same heuristic is used to define
the top states of the branching factor, and to choose which
state should be visited next.

The heuristic for a state s; is defined in the following priority
order:

o The number of modules of s; that are already in their final
position.

e The number of modules of s; that are not in their final
position, but that are in a position that is free in Sepq-

o The sum of the Euclidean distances of the module positions
in s; to their final position.

The idea of this heuristic is to quantify how far state s; is
from s¢pq. The first measure of how many modules are in
a correct position is the simplest one. In case there is a tie
in this measurement, we check how many modules are not
occupying the final position of another module. This measure
indicates how many modules must be moved to place another
one in the correct place. Finally, in cases where the two
previous measures do not differentiate two states, we simply
check how far away the modules are from their final position.
If a module is further away, it is more likely to require more
transitions to take it to its final position, compared to a case
where its final position is closer.
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Figure 3: Architecture of the autonomous robot planning system. The system receives as inputs the start and goal satellite
configurations, and iterates between the logic and physical layer until a solution is found.
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Figure 4: Concept of limiting the branching factor. In
order to avoid the generation of too many new states, which
negatively affect the overall planning time, a limit on the
number of new states to keep is set. A heuristics is used to
decide which are the fittest states.

Algorithm 1 summarizes the search for solutions in the logic
layer. The algorithm starts with an empty priority queue
PriorityQsar (the priority used is the heuristic given be-
fore), which stores different discovered satellite configura-
tions. The variable sg.tyq; Stores the configuration that is
being analyzed at the moment, starting by the initial configu-
ration Sg:q¢. In case the configuration under analysis is not
the goal one (s4041), an expansion is performed, checking
for all the configurations that can be reached from s,ctya1
by moving one module. These configurations are computed
by the function GENNEWSTATES(Sqctuqr)- At the moment
of generating the new possible satellites, the different con-
straints mentioned above plus the ones discovered in the
physical layer are considered. The possible configurations
are organized in a priority queue, and then the first by x
ones are stored in the main queue to keep the search until
the goal configuration is reached. Finally, the path can be
reconstructed reversely from the goal state by recursively
following the parent.

Algorithm 1: Search for solutions in the logic layer.

1PriorityQsar + 0;
2SEARCH LOGIC LAYER (Ss14rt, Sgoal, DMaX)

3 | Sactual < Sstarts

4 | while Sactual/= Send do

5 PriorityQ ngw < GENNEWSTATES(Sqctual);
6 for bMAX do

7 Snew — PriorityQ n gw .pop(0);
8 Snew-PaArent <— Sqctuals

9 PriorityQsar.add(Snew);
10 end
11 Sactual PTiOTit?JQSATPOP(O);
12 | end

Physical Layer

The logic layer abstracts away the underlying geometry,
kinematics, and dynamics of the problem in order to plan
efficiently. Thus, the physical layer’s task is to ensure that
solutions found on the logic layer are valid and feasible in the
real world. For example, in [19], sub-levels of the physical
layer are introduced to represent the planning problem with
various degrees of complexity. There are levels that include
collision checks, inverse kinematics, and dynamics of the
task, each with only the parts, then adding the tools, and
finally including the robot.

In the domain of cube-shaped modules with equal sizes,
the objects can only be assembled in a predefined raster.
Thus, static collision checks between the modules (without
considering the robot motion) can easily be formalized and
moved to the logic layer. By defining conditions on the
construction of new edges in the graph, e.g. not allowing the
robot to place modules at positions that are already occupied
or only allowing to grasp modules from sides where there is
no neighboring module, the logic layer filters out transitions
that would result in a static collision.

Architecturally, the physical layer consists of two modules,
one to check the inverse kinematics of the transition and one



Table 1: KEY POSES OF THE SKILLS

SKILL | KEY POSEs

attach * pose of target face at target module
* no key poses because it does not

detach

include motion
* pose of target face at module to move
* pose of target face at goal position

move module

to check if a feasible motion exists. The physical layer could
be simply replaced by a motion planner, as the motion planner
internally checks for IK solutions, i.e. if no IK solution to a
given position exists, the motion planner does not try to find
a valid trajectory to that point. However, inverse kinematics
can be computed much faster than proving the existence of
a valid motion plan, thus, we split the physical layer up into
these two modules.

In order to evaluate the feasibility of a skill based on inverse
kinematics, the IK module requires a definition of key poses
to check. Thus, for each skill s we define a set of ¢4 key poses
ki (p) € SE(3)

K. =k )

where p is the skill parameterization. The key poses for our
skills are listed in table 1. If any of the given poses of a skill
cannot be reached, the physical layer returns a failure of type
“inverse kinematics”.

Motion planning is performed by a planner based on [22],
which computes a valid trajectory between the start and end
configuration of the robot that avoids collisions with the
environment. The different skills of the robot are represented
as motions between the defined key poses, with additional
“attach” and “detach” actions that bind a module to or release
a module from an end-effector. If the motion planner does
not find a feasible trajectory for a given parameterized skill,
it returns a failure of type “motion plan”.

5. FEEDBACK STRATEGIES

The separation of planning into two layers brings various
advantages. Computations are performed faster on the logic
layer due to the use of symbolic characteristics. However,
symbolic representations do not enclose all the information
the system needs for a real execution. The physical layer
plays the opposite role, by performing checks of higher
fidelity, but being more expensive time-wise. In this work,
we exploit the best of both worlds with what we call feedback
strategies.

The feedback strategies collect information from the physical
world and make them available on the logic layer. In this
section, we present three different feedback strategies as
exemplary cases. First, previously encountered IK queries
are stored in a regression model for reachability prediction.
The prediction model is based on the classical support vector
machine (SVM) algorithm. Second, a failure memory is
presented, which stores different cases where the motion
planner was not able to compute a feasible trajectory. The
structure of the satellite is analyzed and then compared with
new cases to make a fail prediction of a new case without
the need of using the motion planner again. Third, a pruning
strategy for the search is given. Based on failures of previous
semantic solutions, new solutions can directly be discarded.
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Figure 5: Decision flow for inverse kinematic regression. A
new query is issued and, based on previous experience, a
decision is made whether the query is forwarded to the IK
solver or blocked.

A key aspect in the presented planning approach is its ability
to learn from errors and avoid repeating them. In particular,
queries to lower levels of abstraction are very expensive since
they take longer to answer, thus, it is necessary to avoid them
if they are known to fail. Thus, we implement filters that store
failed queries and guard the gates of the IK module and the
motion planner to keep them from expensively answering the
same questions over and over again. This is inspired by the
concept of two reasoning systems proposed in [23], a first one
fast and intuitive, and a second one slower but more thorough.
Our filters resemble system 1, while the motion planner and
IK module resemble system 2. Importantly, we change this
concept by making sure that our filters are overly conserva-
tive. This means that we rather accept false negatives than
false positives. The reason for this is, that we prefer missing
a possible solution over performing unnecessary checks. This
is a trade-off between completeness and efficiency. As there
are usually many solutions for the same problem, we expect
the system to find one even though some valid solutions might
be filtered out.

Inverse Kinematic Regression

One of the main goals of the different feedback strategies is
to reduce the number of time-costly checks on the physical
layer. Typically, IK checks are the most common checks
performed on this layer. They can be understood as feasibility
checks, i.e. whether the robot is able to reach a given
Cartesian pose. These feasibility checks are performed at
first for each movement that the robot has to perform. This
verifies that the key poses of a movement can be reached,
before spending time on searching for a valid trajectory — that
might not exist — for that motion.

As the scenario presented in this work has a modular struc-
ture, it can be expected that similar IK checks are performed
several times. In order to avoid solutions that have been
proven to be infeasible before, it is required to translate this
information into the logic layer. The modular structure of
the problem allows for a simple look-up table that stores
semantically infeasible solutions. However, a look-up table
does not generalize to unseen cases, but it is only able to avoid
doing exactly the same mistake again. To tackle the problem
of analyzing new cases, the architecture of fig. 5 is proposed.

The only input of this system is the final pose of the end-
effector of the robot, which is independent of the modules
configuration. As mentioned above, if a particular position



has already been queried before, the system repeats the
answer that was previously obtained. This method relies on
the first experience obtained for a given position, but given the
non-random nature of the IK solver and the modular nature of
the problem, we do not expect any variation in the results. If
a new (previously unknown) position is requested, the system
has to make a prediction. It is expected for example, that if
several positions close to the requested one are infeasible, the
requested one is infeasible as well. Therefore, we implement
a binary predictor.

Given the non-linearity of the problem, no simple hard-
margin classifier can be used. Taking into account that
our planner must be able to handle physical failures, the
workspace of the robot under such restrictions can change
drastically. For this reason, a binary prediction regression
model with a SVM was chosen. The input for the algorithm
is a vector v = (z,y, 2) € R that represents the target trans-
lation of the free end-effector with respect to the base of the
manipulator attached to the satellite. Note that for the same
vector v there can be multiple cases that classify differently
because of the target orientation. The success probability
of any vector v is defined as the amount of successful tests
divided by the total amount of tests for that vector. The
relative orientation could also be included into the input of
the classification algorithm, but in order to improve data
efficiency, the amount of features is reduced. As discussed
above, we decided for a conservative approach. Thus, we
define a threshold of success probability that any vector has
to reach at least in order to be classified as feasible. In our
system we empirically set that threshold to 0.1. In order to
use the model it must first be trained. Thus, it rests as passive
observer for the first trails and only later classifies new data
based on the observed data. In our particular case we set this
parameter to 20 trials. This threshold is a trade-off between
the soundness of the classifier and, again, speed. In case that
the model was not yet trained with enough cases, new queries
are forwarded to the IK checker by default. The answer is
then added to the training data.

We use this classification algorithm to restrict the search of
solutions on the logic layer. Since the transitions between
states already give an insight of the relative positions re-
quired, a fast check with the IK regression can be performed.
The system looks over all the intermediate positions to find
out if there is one where it is feasible to reach the initial
and goal positions of the transition. An example is shown
in fig. 6, where a module has to be moved from position A to
position B. In the first try there is an IK failure that indicates
that the system cannot reach the final position. By changing
the intermediate position, the robot can now reach the starting
and goal configurations. If no intermediate position can be
found where the movement is feasible, then the transition is
directly discarded in the logic layer. If the IK regression does
not classify the position as feasible, it can be skipped. Thus,
the transitions that pass the classifier very likely do not have
IK issues.

Another advantage of this approach is its re-usability. If the
parameters of two tasks are the same (i. e. robot kinematics
and environment), the information collected before is still
valid. Therefore, if a target pose is requested, the memory
can be used without modifications.

Failure Memory

As discussed above, it is interesting to keep lower mod-
ules from answering the same queries over and over again.
However, we design the failure memory to remember failed

Figure 6: Inverse kinematic checks performed to verify if it is
possible to translate a module from position A to position B.
In the first case (above) this is not possible, but it is solved
by changing the intermediate position in the second case
(bottom).
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Figure 7: Concept of the failure memory. The logic planner
queries the failure memory with a transition. If the failure
memory already knows that this transition is impossible, it
immediately returns this. Otherwise it forwards the query to
the motion planner. The motion planner replies to the logic
module and updates the failure memory if a failure is found.

feasibility checks; not to store feasibility checks that succeed.
This is due to safety concerns. Our system is designed to
work in space applications, thus the generated plans must
guarantee success. Therefore, every transition in the final
plan must be validated by all lower level modules, and we do
not want to rely on — partially probabilistic — methods of the
failure memory. On the other hand, if the failure memory is
wrong in classifying a transition as infeasible while it actually
is feasible, the worst thing that can happen is that the planner
misses a solution. The idea of this concept is visualized in
fig. 7.

The most common types of actions the robot performs in our
scenario are attaching to and detaching from modules. As
detaching does not include any motion of the robot but solely
changes the state of the connector at the end-effector, it can
never fail and is, thus, not considered further in the realm of
the failure memory. Attaching the robot to a module means
that the robot is already attached to a module with one end-



effector and moves its other end-effector to a specified face
of another (sometimes even the same) module. The failure
memory represents such a transition of type “attachment” as
atuple 7 = (W, g, g5), where W is the world state, g; is the
index of the target module, and gy is the target face. Further-
more, we define the world state as W = (S, rg, 71, fo, f1)
where S = {ci,...c,} is the satellite state containing the
indices of the individual modules c;, r; is the index of the
module the robot is attached to with end-effector j € {0, 1},
and f; is the face to which end-effector j is attached. The
modules are attached to each other in a fixed raster, which
allows to view their positions as discrete variables. The
position of module i is thus p; € Z3, the same holds for 7
and r;. We did not include the robot configuration into the
world state for reasons that will be discussed later.

We identified two crucial requirements to ensure that the
failure memory has the desired effect: (i) the failure memory
has to detect queries that have already led to negative answers,
and (ii) it must be able to generalize from situations that lead
to negative answers in new but similar situations.

The first requirement translates into the need of having an
identity function that behaves like the Kronecker delta for
world states:

1 if Wy =W,
0 otherwise

5W1,W2 = { (1)

If such a method exists, the planner can save failed transitions
along with the state in which they occurred, and prevents from
testing them again. In the given problem the requirement of
an identity method is fulfilled because of the discrete world
state according to our definition, which makes it easy to com-
pare two world states. In continuous domains each variable
of the world state additionally requires a threshold that rep-
resents the amount of deviation that is accepted between two
world states while still being considered identical. In hybrid
planning approaches, discretization is typically achieved by
means of symbolic state representations [4], [24]. In our
system, eq. (1) in combination with a unique representation
of the transition allows to identify queries that have already
been answered.

Restricting the failure memory to only recognize identical
situations is obviously not sufficient. Thus, we designed the
failure memory to generalize to new but similar situations.
The approach we use to achieve this goal is to “remove”
ambiguity in the world state and transition: First, ambiguity
due to the freely defined world origin is removed by aligning
the world frame with the robot coordinate system. Thus,
the world is centered on the robot and the orientation of
the robot in the world is fixed using the initial state of the
robot. Second, we remove ambiguity introduced by objects
out of reach of the robot. Therefore, all modules of the
satellite that are further away from the robot origin than the
maximum length of the robot are removed from the world
state. Since the robot cannot collide with these modules, they
do not restrict its possible motions and thus, they can safely
be ignored.

Third, we exploit symmetry of the robot to further reduce
ambiguity. Most robotic systems are designed with some
symmetry, thus, what we describe in detail for the given robot
can be transferred to other robots as well. In our specific
case we make use of two symmetries: First, we assume the
robot is symmetric with respect to the fourth joint, so it does
not make a difference which end-effector is connected to a

module and which one is used in the attach action. Second,
the first and the last axis of the robot can be rotated from —7
to 7. Thus, robot attachment positions can always be chosen
such that the next goal is in a specified quadrant if projected
onto the x-y plane (in robot coordinate frame). This approach
is conservative and can be over restrictive, but as discussed
above, this is the result of a trade-off between soundness,
efficiency, and completeness of the plan.

The world state considered for the failure memory has then
the following characteristics: (i) the satellite is centered
around the module, (ii) the satellite does not contain modules
out of reach of the robot, and (iii) the satellite is rotated
such that the goal is in positive x and y direction. Figure 8
visualizes the approach used for generalization.

The generalized states can later be used to check whether
a transition is feasible in a specific satellite configuration.
Consider that the failure memory is aware of a failure for
a transition given a generalized satellite configuration s,,
and the question is whether it also fails given the current
satellite configuration s,. This can be answered by using the
generalized representation of s,. If then s, C s, it can be
concluded that the transition also fails in s;. All the modules
in s,, which possibly played a role to prevent the skill from
being executed successfully, are also present in s, thus the
transition will fail.

The approach of the failure memory can be generalized to
other actions and problems if an identity function for world
states is designed. Furthermore, the efficiency of the failure
memory can be improved by means of removing unneeded
information in the world state.

As mentioned above, the failure memory does not take the
robot joint configuration into consideration. This is because
joint information is only required if there are two or more
distinct regions in the configuration space of the robot where
transitions from one region to the other are not feasible.
We argue that this does not happen often in our scenario
and, again, underline the conservative behavior of the failure
memory. As our experiments show, this conservatism helps
to reduce planning time enormously.

Pruning Search

Another way to make use of feedback is to prune solutions
that have been shown to fail. Pruning is key in problems
where the amount of semantically valid solutions grows ex-
ponentially with each step. Also, since it is expensive time-
wise to check solutions on the physical layer, it is important
to eliminate all cases known to fail in the layer above (see
fig. 9).

The key point for a proper pruning is how to choose what
solution should be pruned and where, based on the infeasible
transition. In our system we used the simplest approach,
all states that are under the infeasible transition ¢;,; are
discarded. In a formal way, all the solutions that have the
same transitions as the failed solutions up to the transition
tiny are pruned. Since all the steps up to that transition have
been the same, the same infeasibility is expected to happen.

A difference between this feedback strategy and the two
previously mentioned is its lack of reusability. It is less likely
to have a similar transition between the same states as in the
failed plan given the huge size of the configuration space for
the satellite.
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Figure 8: Steps for generalizing a transition. (a) shows the original configuration. The robot’s task is to attach to the orange
face. In (b) the world is centered on the robot, and modules out of reach are removed. Next, in (c) the satellite is rotated in

order to have the target position in positive x and y coordinates.
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Figure 9: Concept of pruning. Once a transition was found
to be infeasible in the physical layer, this information is sent
back to the logical layer for the corresponding pruning. All
the states that were built using such transition are discarded.

These three strategies have been shown as examples of how
the two layers can interact, exploiting the best of both worlds.
We believe that the fact of separating the task generation in
a logic layer from the execution of robot in a physical layer
allows the system to adapt to different interactions between
robot and satellite. In the following section, different experi-
ments show such adaptation and how the feedback strategies
reduce the number of checks performed in the physical layer,
therefore reducing the planning times.

6. EXPERIMENTS AND VALIDATION

To verify the performance of our system, we ran multiple
experiments. The two key points we demonstrate are the
reduction of checks required when the feedback strategies are
used, and the capability of the system to adapt to different
scenarios. We show the first point by comparing the planning
time of our system with and without feedback. The second
point is evaluated by designing and running three different
scenarios that require adaptation. The three scenarios we
consider are (i) changing the size of the cubic modules, (ii)

reducing the skill set of the robot, and (iii) simulating a joint
failure.

In order to achieve a fair comparison, we created random
tasks for rearranging satellites consisting of 4 to 15 cubic
modules. For each number of modules in the satellite, we
created 5 test scenarios. While investigations on the feedback
strategies are reported over all test cases, we pick exemplary
test cases to show the adaptation of the system. All exper-
iments ran on a 64-bit Linux computer with Intel® Xeon®
CPU E5-1630 v4 @ 3.70GHz with 8 cores and 16 GB RAM.
Our system was not optimized to achieve the best planning
times; the focus was rather on demonstrating the usefulness
of feedback, and learning from feedback during planning.

Time Reduction using Feedback Strategies

The impact of the feedback strategies described in section 5
is evaluated by comparing planning times with and without
them. The focus of this work does not lie on comparing
effects of different feedback strategies, but on demonstrating
their usefulness. Thus, we compare two scenarios: running
the system without any feedback strategies versus running the
system with IK regression and the failure memory. Since the
feedback strategies do not affect planning time on the logic
layer but on the physical layer, and in our test cases semantic
search showed to be much faster than physical simulation, we
only compare planning times on the physical layer.

In space applications that do not require online calculations it
is unusual to compare approaches based on their absolute exe-
cution times, as super computers on Earth can be employed to
perform the required computation. However, the search space
for symbolic solutions grows exponentially with the size
of the problem, therefore even super computers reach their
limits when trying to solve a sufficiently complex problem.
Consequently, the more effective the planning algorithm is,
the more complex problems can be solved.

We performed the evaluation on 12 different levels of dif-
ficulty, ranging from 4 to 15 modules per satellite. As
described above, we created 5 random test problems that the
system had to solve for each level of difficulty. The results
are reported in table 2. Note that the absolute times are not
comparable, as there is a lot of variation. Some test cases
seem to be easy and fast to solve, while others are harder
to solve and, thus, take longer. This can be seen by the



high standard deviation reported for the physical planning
times. Importantly, we group the tests by the number of
modules in the satellite, while the difference between initial
and final state (i.e. the amount of modules to move) is chosen
randomly. Therefore, we focus on relative time savings in the
following. Note also that the time spent on the logic layer can
be neglected in comparison to the time spent on the physical
layer, thus we focus on the results for the physical layer.

Typically, the feedback strategies do not affect the time
required for the logic layer. For tests with low numbers of
modules we see a slight increase in planning times (e.g. with
5,6, 7,9, and 10 modules) that can be explained with the
overhead added through the feedback strategies. In contrast,
for tests with a higher number of modules (e.g. with 8, 11,
12, 13, 14, and 15 modules) the time spent on the physical
layer decreases slightly. This comes as the effect of pruning
unfeasible solutions at an early stage thanks to feedback
strategies outweighs their overhead. All in all the effects of
the feedback strategies on the time spent on the logic layer
can be neglected with regards to their effects on time spent
on the physical layer.

The results show that implementing feedback can save
tremendous amounts of time during planning. In average,
the feedback strategies saved 27.5% of planning time, with
a standard deviation of 13.0%. The numbers also show that
the effect of the failure memory and the IK regression vary
strongly. In the test cases with 5 modules, for example,
the failure memory did not reduce the amount of queries
to the motion planner at all. In contrast, for the case of
14 modules (which seems to be a hard problem to solve
based on the planning time of the logical layer), the failure
memory blocked approx 22.2% of the calls. The reason for
these extreme differences could be that, on the one hand,
the problems with 5 modules were very easy to solve (as
also the absolute times suggest) and there were no infeasible
transitions. The problems with 14 modules, on the other
hand, were much more difficult and contained many similar
transitions that were filtered out by the failure memory.

The IK regression was rather constant in the ratio of calls
blocked. While this ratio was low for relatively simple cases
with 4, 5, 6, or 8 modules, it showed its effectiveness for
more complex scenarios, with ratio of blocked calls ranging
from 23.91% in the case of 7 modules to 33.35% in the case
of 14 modules. Note also that the relative time savings grow
with the difficulty of the problem, as shown in fig. 10. This
suggests that the feedback strategies are especially useful
for complex problems. Overall, this experiment shows the
importance of feedback strategies in planning.

Adaptation to Different Scenarios

To illustrate the ability of our system to adapt to different
scenarios, we consider three types of changes that require
system adaptation, and demonstrate them in experiments.
The scenarios presented in this section might also serve future
designers of modular satellites or robotic systems in their
design choices.

Changing size of modules—One decision that designers of
modular satellites have to take is the geometry of the modules.
Therefore, it is key to test how the robotic setup interacts
with different modules and if it is able to perform the desired
tasks. Naturally, it is desired that the system can adapt to
different geometries, making it more autonomous, rather than
manually adapting the planning system for each geometrical
variation. Geometric adaptation also enables the system to
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Figure 10: Time savings (in percentage of total motion
planner time) when using feedback strategies

deal with new modules if designers decide to change module
geometry at some point.

In our experiment we changed the edge length of the modules
from 0.6 m to 0.8 m. The change of module size suffices to
enforce different solutions for many problems. We tested the
performance of the system with the new module geometry
in multiple of the test cases defined for the first experiment.
In some of the cases, the resulting plans where identical to
the original plans because the original plan was still feasible.
However, to illustrate the adaptability we present a test case
with 5 modules that yielded different solutions. The results
with original and larger module size can be compared in
table 3. While the plan is the same on the highest level
of abstraction, i.e. the move actions are the same, it differs
on the next level, which contains walking actions. Since
the distances to cover are bigger in the case of the bigger
modules, the robot needs an extra walking motion to reach
the goal position. This demonstrates that the system is able to
adapt to different geometries and is still able to find solutions.

Different skill sets—The proposed system is also able to adapt
to different skill sets. The skill set of a robot can change over
lifetime, as programmers implement new skills or old skills
are removed due to degradation of a robot. Also, a designer
might have the choice between different robots with different
skill sets to perform a task. Our planner can answer whether
a certain robotic system can handle a given situation with
its skills or not. In particular, we demonstrate this in a case
were the walking manipulator is no longer able to walk, but is
fixed to the structure with one end. We tested this scenario on
multiple test cases from the original experiment. The planner
did not find a solution for any problem with more than 6
modules. This is because in those tests some modules are
too far away for the robot to reach when its base is fixed. We
use a test case with 6 modules to show, exemplary, how the
different solutions look like. The solutions can be compared
in table 4.

The most obvious difference between the plans lies in the
missing walking actions with the reduced skill set, which was
expected as the walking skill was the skill that we deactivated
in the experiment. Furthermore, it can be observed that the
planner decided for another intermediate position to store
module 3. While it seems that the heuristics used during
planning encouraged the planner to walk towards the target
module before moving it in many instances of the original



Table 2: EVALUATION OF FEEDBACK STRATEGIES FOR DIFFERENT SCENARIOS.

WITHOUT FEEDBACK WITH FEEDBACK

Difficulty || avg. time avg. time avg. time avg. time calls blocked | calls blocked time
# of logic physical logic physical by failure by IK re- savings

modules layer in s layer in s layer in s layer in s memory in % | gression in % in %
4 0.09 65.65 (£55.4) 0.09 55.34 (£46.2) 8.84 15.97 15.70

5 0.21 46.89 (£20.6) 0.23 45.65 (£19.4) 0.00 8.04 2.65

6 7.73 56.73 (£22.9) 8.03 42.18 (£14.5) 1.04 8.72 25.66

7 7.17 339.83 (+157.4) 7.39 204.79 (+49.9) 16.01 2391 39.74

8 1.94 130.54 (£72.4) 1.90 109.64 (+40.1) 2.67 15.87 16.02

9 1.32 380.62 (+189.7) 1.40 227.69 (+46.1) 3.88 27.27 40.18

10 12.46 441.01 (£284.4) 12.88 356.73 (£175.0) 20.08 25.63 19.11

11 22.95 773.43 (£501.7) 22.22 435.06 (+£162.6) 11.82 29.45 43.75

12 10.31 704.04 (£286.1) 10.13 504.74 (+89.1) 12.97 32.65 28.31

13 14.78 1689.89 (£849.6) 14.63 1291.03 (£908.0) 21.35 33.13 23.60

14 280.95 1904.94 (£820.4) 269.78 965.08 (+171.2) 22.22 33.35 49.34

15 26.78 659.35 (+96.2) 26.56 489.86 (£91.9) 3.41 26.64 25.71

Table 3: GEOMETRICAL ADAPTABILITY OF THE PLANNER:
TEST CASE WITH TWO DIFFERENT MODULE SIZES (SEE
APPENDIX FIG. 11 AND FIG. 12).

ORIGINAL CUBE SIZE || B1G CUBES

Table 4: ADAPTABILITY TO DIFFERENT SKILL SETS: COM-
PARING ONE ORIGINAL CASE AND ONE WITH A REDUCED
SKILL SET (SEE APPENDIX FIG. 14 AND FIG. 15).

ORIGINAL SKILL SET || REDUCED SKILL SET

walk from pos [0,0,0]
using face x-

walk from pos [0,0,0]
using face x-

walk from pos [0,0,0]
using face x-

walk via pos [0,0,0] using
face y+

walk via pos [0,0,0] using
face y+

walk via pos [0,0,0] using
face y-

walk via pos [1,0,0] using
face y+

walk to pos [1,0,0] using
face x+

walk to pos [1,0,1] using
face x+

MOVE CUBE 3 from
[2, 0, 0] to [0, O, 2] using

walk to pos [1,0,1] using
face x+

MOVE CUBE 3 from
[2, 0, 0] to [0, O, 2] using

face: x+ face: x+

MOVE CUBE 2 from MOVE CUBE 2 from
[1,0, 0] to [0, 1, 0] using [1, 0, 0] to [0, 1, O] using
face: x+ face: x+

setup, the planner was also able to find a solution without
walking. This shows that our system is able to adapt to
different skill sets.

Joint failure—Another scenario that any system deployed in
space or in orbit must be able to deal with are failures. In
order to have an operative system for as long as possible, it is
important that the system can still be operated if some failures
occur. In particular we analyze the case of a joint failure,
where one joint can only be moved in a limited range.

For the experiments we reduced the joint limits of the fourth
joint of our robot to a range from 40° to 180° instead of
originally —180° to 180°. With the modified limits, the
minimal step size of the robot during walking increases and
the robot is no longer able to make small steps to neighboring
module faces. As with the other experiments, we tested this
scenario on a subset of the original test cases. With the
reduced joint limits the robot was still able to finish all tests
successfully, but the solutions differed from the original ones.

An exemplary test case with 5 modules is shown in table 5.
In the solution of the original problem, the robot is attached
to face x+ of the module at [1, 0, 1] before moving module 3.
Directly afterwards, the robot tries to move the neighboring
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MOVE CUBE 5 from
[0, 1, 1] to [0, 2, O] using

MOVE CUBE 5 from
[0, 1, 1] to [0, 2, 0] using

face: x+ face: x-

MOVE CUBE 4 from MOVE CUBE 4 from
[1,1,0] to [0, 1, 1] using [1,1,0] to [0, 1, 1] using
face: x+ face: z+

MOVE CUBE 3 from MOVE CUBE 3 from
[0, 0, 1] to [1, 1, O] using [0,0, 1] to [1, 1, 1] using
face: x+ face: y-

walk to pos [0,2,0] using

face x+

MOVE CUBE 2 from MOVE CUBE 2 from
[1, 0, 0] to [0, O, 1] using [1,0,0] to [0, O, 1] using
face: x+ face: y-

MOVE CUBE 3 from
[1, 1,0] to [1, 0, O] using
face: z+

MOVE CUBE 3 from
[1, 1, 1] to [1, 0, O] using
face: y-

module at [1, 0, 0] with face x+, which is possible in the
original setup. With the reduced joint limits, however, the
robot is not able to attach to this face and has to walk around
first, until it is attached to face y+ of module [1, O, 1], and
from this location it can perform the move action. Thus,
this illustrates how the system is also able to cope with robot
failures.

7. CONCLUSIONS AND FUTURE WORK

This paper presented a hybrid planning system with a logical
and a physical layer, capable of generating plans to transform
a modular satellite from an initial to a final configuration. The
logic layer is in charge of the high-level planning of the tasks,



Table 5: ADAPTABILITY TO JOINT FAILURES: COMPARING
ONE ORIGINAL CASE AND ONE WITH A REDUCED RANGE
OF MOTION FOR ONE JOINT (SEE APPENDIX FIG. 11 AND
FIG. 13).

NORMAL JOINT LIMITS

walk from pos [0,0,0]
using face x-

|| REDUCED JOINT LIMITS

walk from pos [0,0,0]
using face x-

walk via pos [0,0,0] using
face y+

walk via pos [0,0,0] using
face y+

walk to pos [1,0,1] using
face x+

MOVE CUBE 3 from
[2, 0, 0] to [0, O, 2] using

walk to pos [1,0,1] using
face x+

MOVE CUBE 3 from
[2, 0, 0] to [0, O, 2] using

face: x+ face: y+
walk to pos [1,0,1] using
face y+
MOVE CUBE 2 from MOVE CUBE 2 from
[1,0, 0] to [0, 1, O] using [1, 0, 0] to [0, 1, O] using
face: x+ face: x+

while the physical layer deals with the robot capabilities and
geometry problems. The two layers are interlaced through a
feedback loop, which improves the planning time by quickly
discarding infeasible solutions.

We have demonstrated the ability of our system to adapt to
different scenarios without any core changes. Three main
cases were shown: changing the size of the modules of the
satellite, simulating a joint failure, and using a different skill
set for the robot. However, the adaptation capability comes
at the cost of requiring several time-consuming checks in
the physical layer. Different strategies were implemented to
reduce the amount of such checks. Experiments have shown
that these strategies have reduced planning times in average
by 27.5% and in some cases up to 50%.

Although the feedback strategies have shown a great impact
on the planning times, there is still room for improvement.
Additional feedback strategies can be implemented to retrieve
more information from the physical layer in order to reduce
the planning time even more. Another possible improvement
is to reduce the communication between different subpro-
grams, which, in our case, was a major source of time
consumption due to our middleware. Note also that our
current implementation was not optimized to give the best
time performance; parallel programming could significantly
improve this aspect. In any case, the goal of this work was
not to set a baseline for planning problems in terms of ab-
solute times, but to demonstrate the usefulness of integrating
feedback from the physical layer on the logic layer.

We believe that this work can be the basis for a simulation
and testing environment for new robotic systems designed to
work with modular satellites. Comparisons between different
robotic setups can be drawn on how they behave with new
module sizes, on how they react to failures, how many skills
need to be implemented, and so on. Our architecture supports
such studies by simply adapting the modular planning system,
instead of having to implement a completely new one.
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APPENDIX

walk from pos [0,0,0] using walk via pos [0,0,0] using
face x- face y+

MOVE CUBE 2 from
[1,0,0] to [0, 1, O] using
face: x+

continue MOVE

walk to pos [1,0,1] using
face x+

continue MOVE

MOVE CUBE 3 from
[2,0,0] to [0, O, 2] using
face: x+

Figure 11: Reference solution for problem with 5 modules.

walk from pos [0,0,0] using walk via pos [0,0,0] using
face x- face y+

MOVE CUBE 3 from
[2,0,0] to [0, O, 2] using
face: x+

continue MOVE

walk via pos [1,0,0] using
face y+

walk to pos [1,0,1] using
face x+

MOVE CUBE 2 from
[1,0,0] to [0, 1, O] using
face: x+

continue MOVE

Figure 12: Solution for problem with 5 modules and increased module size.
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walk from pos [0,0,0] using walk via pos [0,0,0] using walk to pos [1,0,1] using 1[\;[00\,]3’] th[J(])?' EO 3] uf;?r?gj

face x- face y+ face x+

MOVE CUBE 2 from

continue MOVE walk to pos [1,0,1] using [1,0,0] to [0, 1, O] using continue MOVE

face: y+

Figure 13: Solution for problem with 5 modules and reduced joint limits.

face y+ face: x+

MOVE CUBE 5 from MOVE CUBE 4 from
start at [0, 0, 0], face x- [0,1,1] to [0, 2, O] using continue MOVE [1,1,0] to [0, 1, 1] using

face: x- face: z+

MOVE CUBE 3 from MOVE CUBE 2 from
continue MOVE [0,0,1] to [1, 1, 1] using continue MOVE [1,0,0] to [0, O, 1] using

face: y- face: y-

MOVE CUBE 3 from

continue MOVE [1,1,1] to [1, O, O] using continue MOVE
face: y-

Figure 14: Solution for problem with 6 modules and reduced skill set.
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% H %

walk from pos [0,0,0] using
face x-

W

walk via pos [0,0,0] using
face y-

walk to pos [1,0,0] using
face x+

®

MOVE CUBE 4 from
[1,1,0] to [0, 1, 1] using
face: x+

LS

continue MOVE

A

continue MOVE

tis

MOVE CUBE 3 from
[1,1,0] to [1, O, O] using
face: z+

continue MOVE

i

MOVE CUBE 2 from
[1,0,0] to [0, O, 1] using
face: x+

walk to pos [0,2,0] using
face x+

%

continue MOVE

%

MOVE CUBE 5 from
[0, 1, 1] to [0, 2, O] using
face: x+

Qv

MOVE CUBE 3 from
[0,0,1] to [1, 1, O] using
face: x+

v

continue MOVE

Figure 15: Reference solution for problem with 6 modules.
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