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ABSTRACT: 

When we want to extract knowledge form satellite images, several well-known image classification and analysis techniques can be 

concatenated or combined to gain a more detailed target understanding. In our case, we concentrated on specific extended target 

areas such as polar ice-covered surfaces, forests shrouded by fire plumes, flooded areas, and shorelines. These image types can be 

described by characteristic features and statistical relationships. Here, we demonstrate that both multispectral (optical) as well as 

SAR (Synthetic Aperture Radar) images can be used for knowledge extraction. The free availability of image data provided by the 

European Sentinel-1 and Sentinel-2 satellites allowed us to conduct a series of experiments that verified our classification 

approaches. This could already be verified in our recent work by quantitative quality tests. 

* Corresponding author

1. INTRODUCTION

During the past years, one could witness a wide range of 

innovative machine learning applications in the field of remote 

sensing. Typical applications often being dealt with are routine 

classifications of satellite images ranging exemplarily from 

cloud patterns in the atmosphere, to wave patterns and icebergs 

on the oceans, and to the analysis of time series of land cover 

and land use images taken in different spectral bands.  

Currently, one can find quite a number of applications, where 

“deep” (i.e., multi-layer) machine learning algorithms based on 

well-known convolutional neural network (CNN) or auto-

encoder (AE) techniques, yield rapid and sufficiently accurate 

image classification results – despite the fact that these 

algorithms are not yet adapting themselves in an optimal way to 

the varying local characteristics of typical satellite images nor 

their detailed semantic meaning and its representation. This led 

to the situation that a number of deep learning software 

packages can be downloaded as public domain software 

allowing every user to assign about ten to twenty land cover 

classes to typical satellite images. In most cases, however, these 

software packages have to be trained by hopefully 

representative examples. Therefore, their actual performance 

depends on the volume and selection of test cases, and any 

variation of these cases already provides a good measure of 

their classification robustness.  

At the same time, a more detailed analysis of deep learning 

results shows that by small adaptations of the processing 

parameters and options users can still improve and optimize the 

classification performance of the general approaches. Hence, we 

were very much interested in a straightforward and robust 

approach to more detailed parameter settings for small-scale 

(i.e., high-resolution) semantic image content classifications. 

This prompted us to investigate the potential of efficiently 

combining knowledge from different sources, such as from low-

resolution and reliably classified bigger images, derived 

interactively by qualified image analysts with information 

derived in parallel from high-resolution smaller image patches 

processed routinely with fully-automated modern deep learning 

algorithms. However, this knowledge combination step had to 

be preceded by an investigation demonstrating on which level 

any type of knowledge being extracted from our satellite images 

by different techniques can be efficiently combined, for 

instance, knowledge derived from selected image patches, 

extracted feature vectors, semantic (multi-)labels, etc. Then, a 

combination of knowledge generated by different analysis 

techniques can be a way to improve local and overall 

classification accuracies.  

We recognized that our aim should be to finally assign reliable 

and very detailed labels to very small locally confined image 

patches, thus avoiding the need for conventional feature vector 

extraction. As a consequence, we concentrated on purely 

semantic classifications and knowledge extraction techniques 

that – after being combined – are very useful for a wide range of 

remote sensing applications such as shipping route safety in 

arctic waters, coastal deltas, forest fires, and flood monitoring 

(see the selected locations in Figure 1). 

This paper comprises six sections, one appendix, and one 

reference section. Section 2 contains a description of the 

selected remote sensing applications, followed in Section 3 by 

the descriptions of our test areas and the used datasets. Section 

4 briefly summarizes the probed algorithms (with references to 

details of the applied methods), while Section 5 details our 

findings sorted by application, data, and the proposed methods. 

Conclusions and future research directions are described in 

Section 6 that completes this paper. 
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a) b) c) d) e) 

Figure 1. Location of our target areas marked on Google Maps: a) Belgica Bank in Greenland, b) Danube Delta in Romania, c) 

Sydney in Australia, d) Amazon rainforest between Brazil, Bolivia, and Paraguay, and e) Montevideo in Uruguay. 
 

2. SEA-ICE AND OTHER APPLICATIONS 

In this section we give a short introduction to our typical 

satellite image applications that call for up-to-data data together 

with some dedicated and automated software to classify and 

understand these images. Therefore, we concentrate on four 

main application areas, namely ice-covered polar areas, 

coastlines and river deltas, burnt areas and fires, and flooding 

events. 

 

These four application areas are typical for monitoring the 

Earth´s surface by satellite images, however, users do not only 

need a single image, but time series of repeated and time-

keeping image acquisitions, coverage of extended areas by big 

images, automated measurement and detection of expected and 

unexpected events, and their interpretation together with quality 

assessments.  

 

A successful monitoring and image understanding is needed by 

many authorities such as civil protection agencies as well 

scientific institutions that care for the state of our planet. The 

data that we need can be provided by several airborne or space-

borne instruments, however, the original instrument data have 

to undergo accurate calibration and reprojection steps before 

becoming useful for general use. In addition, one has to be 

aware of the fact that the different types of instruments yield 

different types of results that may have to be combined and 

analysed prior to a final understanding. 

 

The following four-part table (Table 1) summarizes the most 

important requirements and parameters of satellite imaging and 

image understanding. 

3. SATELLITE DATA AND TARGET AREAS 

3.1 Sea-Ice 

For a first sea-ice application, we selected a target area around 

Belgica Bank in the north-east of Greenland which is an area of 

extensive fast land-locked ice (ExtremeEarth, 2021). 

 

The Sentinel-1 C-band SAR (Synthetic Aperture Radar) 

spacecraft is one of the satellites that constantly monitor this 

area. From its available product types, we selected level-1 

Ground Range Detected amplitude data in Interferometric Wide 

swath mode with dual polarization (HH and HV) and a pixel 

spacing of 10×10 meters. Our analysis period covers the time 

between Jan. 2018 and Dec. 2019, and from that we selected 24 

images (i.e., one image/month). See an example in Figure 2. 

 

3.2 River Deltas and Coastlines 

The Danube Delta is the second largest river delta in Europe 

and one of the best-preserved deltas on the continent (Dumitru, 

et al., 2019). 

 

Here, both the Sentinel-1 SAR and Sentinel-2 multispectral 

instruments are covering our area of interest. For Sentinel-1 

data products, we selected the same product types as in the 

previous Section 3.1 with a single modification: now the 

polarizations for this area are VV and VH. The acquisition 

period overlaps with the one for Sentinel-2 (see below). From 

the available Sentinel-2 data products, we selected level-1C 

data with radiometrical and geometrical corrections.  

 

Application 

field 

Monitoring and analysis of 

polar areas 
Coastlines and river deltas Burnt areas and fires Flooding events 

User 

community 

shipping agencies, charting 

services, climate change 

Reservation Biosphere Danube 

Delta,  

UNESCO World Heritage  

emergency operations 

centres,  

local authorities 

emergency operations 

centres, local authorities 

Monitoring 

instruments 
SAR instruments 

SAR and multispectral/optical 

instruments 

Multispectral/optical 

instruments 

Multispectral/optical 

instruments 

Observation 

conditions 
day and night (for SAR) 

day and night (for SAR) 

day with low cloud cover (for 

optical imaging) 

dayside imaging with low 

cloud cover (for optical 

imaging) 

dayside imaging with low 

cloud cover (for optical 

imaging) 

Observed 

targets 

ice coverage, calving and 

floating icebergs, ice floes, 

snow-covered surfaces 

sediments transported by water,  

surface water dynamics, snow 

coverage, occurrences of fire 

legal or illegal deforestation, 

natural disasters after the 

fires 

destroyed buildings and 

agricultural areas  

landslides  

Pixel spacing 20 m for Sentinel-1 
20 m for Sentinel-1 

10-20-60 m for Sentinel-2 
10-20-60 m for Sentinel-2 10-20-60 m for Sentinel-2 

Spectral bands dual-band for Sentinel-1 
dual-band for Sentinel-1  

13 bands for Sentinel-2 
13 bands for Sentinel-2 13 bands for Sentinel-2 

Repeat cycle 6 days for Sentinel-1A/B 
6 days for Sentinel-1A/B 

5 days for Sentinel-2A/B 
5 days for Sentinel-2A/B 5 days for Sentinel-2A/B 

Special 

algorithms 

surface classification by 

active learning or LDA 

technique and physical 

scattering representation 

surface classification by active 

learning (with expert users) and 

by LDA technique (fully 

automated) 

surface classification by 

LDA technique 

surface classification by LDA 

technique 

Obtained 

results 

semantic classification maps 

benchmarking datasets  

semantic classification maps,  

benchmarking datasets 

semantic classification 

maps, maps of burnt areas 

semantic classification maps, 

maps of flooded areas  

Table 1: Important requirements and parameters of our application using Sentinel-1/Sentinel-2 images. 
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The pixel spacing of the images varies depending on the given 

band and lies between 10 and 60 m. Our analysis period covers 

the time between November 20th 2015 and May 18th 2016, and 

after removing some cloud-covered images we selected 16 

clear-view images. A typical example is shown in Figure 4. 

 

3.3 Fires 

One of the most devastating fires in Australia occurred in the 

year 2019, when several million hectares of land were burnt and 

almost half a billion animals perished (Australia, 2019).  

In August 2019, many fires affected the Amazon rainforest. 

Here a second study application is one of the Amazon forest 

located between Brazil, Bolivia, and Paraguay (Amazon, 2019). 

 

Again, the Sentinel-2 multispectral instrument is covering our 

area of interest, and we used the same configuration of product 

types as in the previous Section 3.2. For both areas, we selected 

a set of three images acquired before, during, and after the fires. 

As a typical example, Figure 5 shows the results of the image 

acquired during the Australian fires on December 31st, 2019, 

while Figure 6 shows an example of the Amazonian fires on 

August 25th, 2019. 

 

3.4 Floods 

A prominent flooding example is Montevideo in Uruguay, 

where the confluence of the two rivers Paraná and Uruguay was 

affected on October 18th, 2019 (Uruguay, 2019). 

 

Here again, we consider the Sentinel-2 satellite with the same 

product types as in the Section 3.2. Our selected images were 

acquired before, during, and after October 18th, 2019. In Figure 

7, we show the results of the image acquired on October 18th, 

2019. 

 

Due to space limitations for this paper, we show only one image 

per application from our full set of available images, while the 

numerical results are presented for all proposed methods. The 

results for the remaining images are similar. 

 

4. ALGORITHMS 

In this section we present the algorithms being used for the 

applications described in Section 3 with their related data.  

In order to create semantic classification maps, topic 

representations or physical scattering representations, a 

sequence of (manual or automated) steps has to be executed. 

These are specific for each algorithm. 

 

For all algorithms a pre-processing step is required, in which a 

given Sentinel image is split into patches of instrument-

dependent sizes. For Sentinel-1, the patch size is 256×256 

pixels, while for Sentinel-2 the patch size is 120×120 pixels. 

 

4.1 Semantic Classification based on Gabor Filtering and 

Support Vector Machines (SVMs) 

This algorithm is an active learning algorithm described in 

detail in (EOLib, 2018). Its specific steps are the following 

ones:  

 

Feature extraction step: From each patch, a 60-element feature 

vector is automatically created that is based on Gabor filtering 

(we compute the means and variances of 5 scales and 6 

orientations). 

Clustering step: The extracted features are clusters using a 

Support Vector Machine (with a Chi-squared kernel) with 

relevance feedback. This is a manual step, where a GUI is 

operated by an expert user in order to create classes that make 

sense. Here, the number of classes is not fixed, and they are 

defined by the user and the content of the data. 

 

Semantic annotation step: The retrieved classes are 

semantically annotated by the user (by choosing an existing 

semantic label or by defining a new one) based on his/her 

experience and using the existing ground-truth data. 

 

Map generation step: After all patches have been labelled, we 

automatically generate a semantic classification map (see an 

example in Figure 2-b). 

 

This method can generate its results very fast, through only a 

few positive and negative examples given by the expert user, 

and the class he/she is searching can be found quickly. 

 

4.2 Semantic Classification based on Compression Rates 

Here, the first part of the algorithms is the same. The part that 

differs is the classification step where two algorithms are 

compared (Dumitru et al., 2021). The steps of both methods are 

automated, except for the label assignment. These clustering 

algorithms are chosen as state-of-the-art methods, but other 

algorithms can be used, too. 

 

4.2.1 Compression based on Dictionaries and k-means 

Clustering 

Dictionary computation step: To each patch tiled from the 

image, a Lempel-Ziv-Welch (LZW) compression algorithm is 

applied. LZW is a lossless data compression algorithm (Smith, 

2004). Then a dictionary with compression rate results is 

created (Dumitru et al., 2021). 

 

Clustering step: The dictionaries are string vectors containing 

the information from each patch in a compact form. For 

applying a clustering algorithm, all strings must have the same 

size; as a consequence, the strings are reduced to a short 

uniform length (Vaduva et al., 2015). In our case, an 

unsupervised k-means technique is used, where k is equal to the 

number of classes retrieved by the user in the first method. 

 

Semantic annotation step: The output of the classification are 

classes (clusters) that are labelled manually by an expert user. 

 

4.2.2 Compression based on Dictionaries and Gaussian 

Mixture Models (GMMs) 

Dictionary computation step: This step is identical with the one 

from Section 4.2.1. 

 

Clustering step: The procedure is the same as the one from 

Section 4.2.1, but the clustering algorithm is Unsupervised 

Gaussian Mixture Models (GMMs).  

 

Semantic annotation step: This step is the same as the one form 

Section 4.2, where the classes are labelled by an expert user. 

 

The LZW method compresses the data into dictionaries and 

reduces the storage space. Thus, it can be an alternative to 

other established feature extraction methods. Of course, the 
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selected clustering algorithm also has some impact on the 

classification results. 

 

4.3 Topic Representations based on Latent Dirichlet 

Allocation (LDA) 

After the pre-processing step, where the macro-patches of 

256×256 pixels are created, the next steps to be applied are the 

following ones (Karmakar et al., 2021): 

 

Macro-patch tiling step: Once the macro-patches are generated, 

each patch is tiled again into smaller patches of 4×4 pixels. A 

macro-patch of 256×256 pixels will create 4,096 micro-patches 

of 4×4 pixels. 

 

Clustering step: A k-means algorithm is applied to the local 

descriptors; these descriptors are the linearized pixel brightness 

values of the micro-patches. The number of clusters is 

experimentally set to 50. Each cluster is then considered as a 

visual word (Karmakar et al., 2021). 

 

Bag-of-words modelling step: The pixel values of each image 

patch are then assigned to the words of the dictionary. The 

image patches are then modelled as a bag of words based on the 

occurrence of the words. 

 

LDA step: We apply LDA (Blei et al., 2003) in order to 

discover the latent semantics of the images as a set of topics. 

These topics are distributions over the words of the dictionary. 

The images can then be represented as distributions over the 

topics. The number of topics is set to match the number of 

semantic classes discovered by the user using the active 

learning algorithm. 

 

LDA can be applied for learning the high-level semantic 

structures in areas with no or poor existing prior knowledge 

(disaster areas, polar areas, etc.). 

 

4.4 Physical Scattering Representations based on LDA and 

Convolutional Neural Networks (CNNs) 

This hybrid method is specific for SAR data, for which two 

polarizations are required. The method is trying to make full use 

of the physical scattering mechanisms and spatial information of 

dual-pol SAR images (in our case, the HH and HV polarization 

data provided by Sentinel-1 tiled into patches of 256×256 

pixels). A summary of the steps is presented below but for more 

details, see (Huang et al., 2021). 

 

Scattering step: Here we apply Cloude and Pottier’s 

polarimetric decomposition based on scattering entropy (Cloude 

and Pottier, 1997) to our dual-polarized SAR data (with HH and 

HV polarizations). This is followed by a Wishart classifier (Lee 

et al., 1999) that generates nine types of scattering mechanisms. 

 

Topic modelling step: A mixture of topics is generated for each 

patch based on the scattering labels generated by a Latent 

Dirichlet Allocation (LDA) model. Then, for each patch a bag 

of scattering topics is created. 

 

Unsupervised learning step: The topic description can also be 

represented by image features extracted from a pre-trained 

convolutional neural network (CNN) model for SAR images; 

here, a soft constraint function is used for the learning step. For 

our applications, we use a pre-trained deep model of a 

TerraSAR-X dataset transferred via a ResNet-18 backbone 

(Huang et al., 2020) to simulate high-quality Sentinel-1 data. 

 

Supervised label prediction step: This final step uses the 

annotated (i.e., labelled) data to train the classification layer 

with given constraints. The subsequent classification is 

performed with a limited number of labelled data, and the entire 

network is fine-tuned with a constraint loss function. 

 

Integrating artificial intelligence (AI) learning with physics 

models produces results with higher generalization power and 

robustness and is increasing prediction performance. The 

physics-driven AI for SAR is regularising existing AI models by 

physical rules for the SAR image formation and target 

scattering, thus implementing hybrid paradigms where machine 

learning models substitute the unknowns or computationally 

expensive physics-based models. 

 

5. EXPERIMENTAL RESULTS 

In this section, we start with the first application (i.e., sea-ice), 

for which all the methods from Section 4 are verified. Based on 

the obtained results, we identified the two best methods that are 

subsequently applied to the next applications, namely river 

deltas and coastlines. 

For the last two applications, namely fires and floods, we 

selected a method for which we wanted to see the influence of 

the selected multispectral bands and the retrieval behaviour of 

different classes (e.g., the separation between smoke and 

clouds, the different types of water – such as muddy or ocean 

water). 

 

5.1 Sea-Ice 

The first method (active learning) was applied by an expert 

user, and the resulting classes were obtained after the necessary 

user interaction with the system (knowledge transfer from the 

user to the system). This method is based on Gabor filtering and 

was applied to a sequence of patches tiled from the full image, 

followed by an SVM-based feature classification step. The 

number of classes are defined again by an expert user. From the 

selected image acquired on April 17th, 2021 we obtained 8 

semantic classes (excluding the black border class that appear in 

each Sentinel-1 image). The results of the semantic 

classification are shown in Figure 2-a. 

 

The next method tests were conducted without user interaction 

and by using the number of classes of the first method. 

 

For the second (compression with k-means) and third method 

(compression with GMM), an LZW compression was applied to 

each patch in order to generate a common dictionary.  

For the second method, we first performed an unsupervised k-

means clustering step keeping the number of classes to the value 

found by the expert user (k=8) for the first method. Applying 

the algorithm, we noticed that the patches were grouped into 7 

semantic classes (see Figure 2-b). Analysing the result from 

Figure 2-c by comparing it with the given ground-truth, we 

observed that one class is a mixture of two classes and the class 

Mountains is missing in contrast with the Figure 2-b results. 

 

For the third method, the procedure is the same but this time we 

used some Gaussian Mixture Models (GMMs). The number of 

retrieved semantic classes is 6, two less than for the SVM 

method and one less than for the k-means method. 
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Topics 
 

 
1     2     3       4      5       6       7     8      9     10    11   12 

The fourth method (LDA) is a topic representation based on 

Latent Dirichlet Allocation (LDA). Here, we noticed a better 

grouping, and the generated map comes closer to the quick-look 

image (see Figure 2-a). These topics can be used to represent 

the corresponding semantic classes (e.g., from Figure 2-b) 

through a combination of topics (Karmakar et al., 2021). For 

example, the semantic class Water bodies from Figure 2-b has 

as dominant topics the categories topic 6 (38%) and topic 12 

(36%), while the remainder is split into almost equal 

proportions of topic 4 and topic 11. Another example is the 

class Icebergs which is mostly composed of topic 12 (33%), 

topic 1 (22%), topic 5 (16%), and topic 11 (13%). 

An appropriate selection of the number of LDA topics is very 

important. We observed that there are some topics that do not 

fall into the scope of any of the semantic classes. Therefore, a 

more detailed study still needs to be made in future to find the 

optimum number of topics. 

 

The last method (LDA with CCN) is a hybrid approach which is 

specific to dual-pol SAR data (in our case, to Sentinel-1). The 

method extracts the physical scattering phenomena into 9 

classes. Unfortunately, these physical classes cannot be 

compared with the previous ones because there are no one-to-

one correspondences. 
 

As a conclusion of this first Section 5.1, we can say that the 

methods that are providing results close to our ground-truth 

data are the one based on SVM, and the one based on LDA. 

 

5.2 River Deltas and Coastlines 

Following the results from the first Section 5.1, we applied 

these two methods to our data of the Danube Delta acquired by 

Sentinel-1 and Sentinel-2. Due to the different revisit periods of 

each satellite and the partly visible cloud coverage of the area 

by Sentinel-2, the closest acquisitions of both satellites were 

May 18th, 2016 for Sentinel-1, and April 28th, 2016 for 

Sentinel-2 (Dumitru, et al., 2019). 

 

Based on the results from the previous Section 5.1, we applied 

for this application the two selected methods. The results for 

Sentinel-1 are depicted in Figure 3, while the results for 

Sentinel-2 are shown in Figure 4. From the two images, we 

noticed that the area covered by Sentinel-1 is larger than the one 

covered by Sentinel-2. 

In the case of the first method, due to the differences in 

resolution between Sentinel-1 and Sentinel-2, the number of 

categories and the retrieved semantic classes may differ, and 

some categories can be mixed together or be missing. Here, 

there are two semantic class differences between the sensors. 

 

In the case of the second method, the topic representation gives 

more details compared to the first method (e.g., the currents or 

the waves in the Black Sea). Here, the LDA method is applied 

only to the RGB 10 m bands (as a rule, B4, B3, B2) provided by 

the Sentinel-2 satellite. 
 

As a conclusion for this Section 5.2, we propose to use Sentinel-

2 data for more structural details, and LDA as an analysis 

method.  

 

5.3 Fires 

In this section, we first start by presenting the results obtained 

based on SVM and those with LDA using Sentinel-2 data (like 

in Section 5.2). 

   

- 

 
 

 
 

a) b) c) 

   

 
 

 

 
  

 

 
 

d) e) f) 

Figure 2. An image example of Belgica Bank, Greenland acquired on April 17th, 2018. (From left to right, upper part): The Sentinel-

1 quick-look image, our semantic classification based on active learning (with Gabor filtering as feature vector and an SVM as 

classifier), our semantic classification based on compression (with dictionaries as feature vector and k-means as classifier); (From left 

to right, lower part): Our semantic classification based on compression (with dictionaries as feature vector and a GMM as classifier), 

the topic representation based on LDA, and the physical scattering representation based on a hybrid approach (LDA and CNNs). 

Each case includes a colour legend, except figure a) which is the quick-look of the analysed image. 
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a) b) c) d) 

Figure 3. An image example of the Danube Delta, Romania acquired on May 18th, 2016. a) The Sentinel-1 quick-look image, b) Our 

semantic classification based on active learning (with Gabor filtering as feature vector and an SVM as classifier), and c) Our topic 

representation based on LDA. The active learning process is supported by a colour legend shown in c); the colour legend of LDA is 

similar to the one from Figure 2. 
 

   
 

a) b) c) d) 

Figure 4. An image example of the Danube Delta, Romania acquired on April 28th, 2016. a) The Sentinel-2 RGB (B4, B3, and B2) 

quick-look image, b) Our semantic classification based on active learning (with Gabor filtering as feature vector applied to each band 

and an SVM as classifier), and d) Our topic representation based on LDA. The active learning process is supported by a colour 

legend shown in c); the colour legend of LDA is similar to the one from Figure 2. 
 

These results are followed by an impact analysis of Sentinel-2 

spectral band selections, and how this combination can help 

find or easily separate classes (e.g., to separate clouds from 

smoke or muddy water from clean water). 

 

Figure 5 presents the comparative results between the first 

method based on SVM and the fourth method based on LDA. 

These results are obtained using only the RGB bands (B4, B3, 

and B2). The conclusion we can draw from this figure is the 

same one as the previous case illustrated in Figure 4. 

 

The Sentinel-2 instrument has 13 spectral bands, with a swath 

width of 290 km and a spatial resolution of 10 m (for the four 

visible and near-infrared bands), 20 m (for the six red-edge and 

shortwave infrared bands), and 60 m (for the three atmospheric 

correction bands). Table 2 summarizes the details for each band.  

 

We prepared four combinations of bands and analysed the 

impact of these combinations. This study was made to provide a 

better separation of the different categories (e.g., smoke from 

clouds), and possibly to increase the number of classes. The 

selected combination of bands is: visible false-colour bands (see 

the green colour highlighting in Table 2), false-colour 

visible/infrared bands (see the orange colour in Table 2), false-

colour infrared bands (see the blue colour in Table 2), and all 

13 bands (see the pink colour in Table 2). 

 

As a first example, we show the impact of different band 

combinations of Sentinel-2 channels. Figure 6 illustrates the 

band-dependent appearance of Clouds, Smoke, and Fires in the 

area of Sydney, Australia affected by fires in the end of 2019. 

 

By carefully analysing each image from Figure 6, we can say 

that: 

• The class Clouds and Smoke can be identified and 

classified (based on topics) from the two types of band 

combinations. A better separation between them is 

obtained by the second combination. For these images, 

the Forest area that has been decimated by fire can be 

better separated and determined as a different topic in the 

second combination.  

 

• When we analyse the third combination of bands, the two 

classes of Smoke and Clouds no longer appear, but instead 

we can clearly see the class Fires and that the area that 

was separated by the second combination is still aflame.  

 

• From the last combination of bands, which comprises all 

bands, we can extract the classes Smoke and Clouds, 

however, the devastated forest area is mixed with the 

unaffected forest area. 

 

Band number 
Central 

Wavelength 

Combin

ation 

1
0

 m
 

2 - Blue 492.4 nm    

3 - Green  559.8 nm    

4 - Red  664.6 nm    

8 - Near Infrared (NIR) 832.8 nm    

2
0

 m
 

5 - Vegetation red edge 704.1 nm    

6 - Vegetation red edge 740.5 nm    

7 - Vegetation red edge 782.8 nm    

8a - Narrow NIR 864.7 nm    

11 - Shortwave IR(SWIR) 1613.7 nm    

12 - SWIR 2202.4 nm    

6
0

 m
 1 - Coastal aerosol 442.7 nm    

9 - Water vapour 945.1 nm    

10 - SWIT - Cirrus 1373.5 nm    

Table 2: Spectral bands of Sentinel-2 given by the European 

Space Agency (ESA). 

 

As a conclusion for this application, to separate Clouds from 

Smoke, we recommend to use the second combination which 

can also delimit the area destroyed by Fires. 
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a) b) c) d) 

Figure 5. An image example of the Amazon rainforest, between Brazil, Bolivia, and Paraguay on August 25th, 2019. a) The 

Sentinel-2 RGB (B4, B3, and B2) quick-look image, b) Our semantic classification based on active learning (with Gabor filtering as 

feature vector applied to each band and an SVM as classifier), and d) Our topic representation based on LDA. The active learning 

process is supported by a colour legend shown in c); the colour legend of LDA is similar to the one from Figure 2. 
 

    

    
Figure 6. The area of Sydney, Australia affected by forest fires on December 31st, 2019. The visibility of the different classes 

depends on the selection of the Sentinel-2 colour bands. (From left to right, upper part): A quick-look image of visible false-colour 

bands (B4, B3, and B2), false-colour visible/infrared bands (B8, B4, and B3), false-colour infrared bands (B12, B11, and B8A), and 

all 13 bands. (From left to right, lower part): The information that can be gained from the topics extracted by LDA for the four band 

combinations. The topic colours are similar to Figure 2. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 7. The area of Montevideo, Uruguay affected by floods on October 18th, 2019. The visibility of the different classes depends 

on the selection of the Sentinel-2 colour bands. (From left to right, upper part): A quick-look image of visible false-colour bands, 

false-colour visible/infrared bands, false-colour infrared bands, and all 13 bands. (From left to right, lower part): The topic colours 

are similar to Figure 2. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-455-2021 | © Author(s) 2021. CC BY 4.0 License.

 
461



 

 

5.4 Floods 

Here, like in Section 5.3, we are analysing the impact of the 

selected Sentinel-2 spectral bands, and how different 

combinations can separate different classes for other 

applications. These combinations are the same as those from the 

Fires application depicted in Table 2. 

 

As a second example, we show the impact of different band 

combinations of Sentinel-2 channels. Figure 7 illustrates the 

results for the area of Montevideo, Uruguay affected by floods. 

 

Making the same type of analysis as in the previous example, 

we can state: 

 

• In the first two types of band combinations, we can see 

the estuary formed by the Plata river at the confluence of 

the Paraná and Uruguay rivers, and also the river delta 

created by the Lucía river before entering the Plata river. 

Here, we can extract more topics that probably correspond 

to the Ocean/River currents, the mud brought by the 

floods, the alluvium silt-laden waters, etc. 

 

• In the third combination only one extra class/topic can be 

retrieved in the water. 

 

• For the last combination, we see the confluence of two 

waters and their separation as well as another class of 

Water that comes from the Lucia Sana River with alluvia. 

 

As a conclusion for this last application, to better separate 

different water topics/classes, we recommend to use the first 

combination. 

 

6. CONCLUSION AND FUTURE WORK 

In conclusion, this paper presents a number of algorithms 

applied to Sentinel-1 and Sentinel-2 images for the analysis of 

four different applications. The output of these algorithms are 

semantic classification maps, topic representations or physical 

scattering representations. For one algorithm (active learning), a 

sequence of steps has to be executed by an expert user. Our 

proposed algorithms can be applied to both SAR and 

multispectral images except for the hybrid algorithm which is 

specific for SAR images. 

 

In future, we plan to extend the area of applications and to 

include: volcanic eruptions, tsunamis/tornadoes, cyclones, 

landslides, and industrial accidents (Charter, 2021). 
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