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Abstract—While the analysis and understanding of 

multispectral (i.e., optical) remote sensing images has made 

considerable progress during the last decades, the automated 

analysis of SAR (Synthetic Aperture Radar) satellite images still 

needs some innovative techniques to support non-expert users in 

the handling and interpretation of these big and complex data. In 

this paper, we present a survey of existing multispectral and SAR 

land cover image datasets. To this end, we demonstrate how an 

advanced SAR image analysis system can be designed, 

implemented, and verified that is capable of generating 

semantically annotated classification results (e.g., maps) as well as 

local and regional statistical analytics such as graphical charts. 

The initial classification is made based on Gabor features and 

followed by class assignments (labelling). This is followed by the 

inclusion. This can be accomplished by the inclusion of expert 

knowledge via active learning with selected examples, and the 

extraction of additional knowledge from public databases to refine 

the classification results. Then, based on the generated semantics, 

we can create new topic models, find typical country-specific 

phenomena and distributions, visualize them interactively, and 

present significant examples including confusion matrices. This 

semi-automated and flexible methodology allows several 

annotation strategies, the inclusion of dedicated analytics 

procedures, and can generate broad as well as detailed semantic 

(multi-)labels for all continents, and statistics or models for 

selected countries and cities. Here, we employ knowledge graphs 

and exploit ontologies. These components could already be 

validated successfully. The proposed methodology can also be 

adapted to other SAR instruments with different resolutions as 

well as to multispectral images. 

 
Index Terms—Active learning, datasets, high-resolution 

satellite images, knowledge extraction, ontologies, SAR, semantic 

classes, TerraSAR-X. 

I. INTRODUCTION 

arth observation (EO) archive volumes are approaching the 

zettabyte scale, and are only exploited by about 5% to 10% 

(see [25] for the trends and a prediction of the Earth observation 

data volume to be stored at the German Aerospace Center 

(DLR) from 2010-2030). 

EO digital asset management and analysis prototypes exist at 

many institutions to help users find elements of interest based 

on their semantic content, allowing queries via similar 

examples, and are supported by textual terms or even sketching. 

 
The authors are with the Remote Sensing Technology Institute, German 
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Current approaches vary significantly from system 

architectures to algorithms and data structures. The difficult 

transition to operational industrial systems is, for instance, 

currently taking place in Europe (e.g., Horizon 2020 [52]), at 

the European Space Agency (ESA), or at national space 

agencies (e.g., NASA, DLR, CNES, ASI). 

Existing public databases for high-resolution image sensors, 

including even commercial sensors (with the exception of 

Google [53], etc.) are very limited or even non-existing, and for 

the existing ones the number of discernible semantic classes is 

rather limited. 

In this paper, we mainly concentrate on urban-oriented 

application cases where, at least to our knowledge, only a few 

high-resolution and publicly available SAR (Synthetic Aperture 

Radar) reference datasets exist, while universally applicable 

SAR reference datasets are very scarce. Therefore, a number of 

remote sensing researchers have compiled their own individual 

reference datasets [36]. 

In contrast to SAR datasets, there exist several well-known 

and publicly available datasets comprising a large variety of 

multispectral (optical) images containing typical remote 

sensing image patches (see, for instance, the airborne datasets 

listed in [37]). 

The purpose of this paper is not to present the semantic 

annotation methodology (only briefly presented in this paper) 

[1], but rather how semantic labels can be created, their 

statistics, the analysis of correlations between given semantic 

classes, the specificity of several geographical areas or 

countries, how to create reliable benchmark datasets, and 

finally, the creation of certain models that characterize a city or 

a country. Based on these results, as future work, we will 

analyze the possibility to use several high-resolution SAR 

models (of a commercial sensor such as TerraSAR-X [38]), to 

transfer the knowledge (from a non-commercial sensor such as 

Sentinel-1 [39]) and to generate large-scale benchmark datasets 

for urban areas [2]. 

The paper is organized as follows: Section 2 contains a survey 

of already existing semantic datasets (with details in Appendix 

I), followed in Section 3 by the characteristics of our high-

resolution SAR dataset. Section 4 briefly summarizes briefly 

our annotation approach, while Section 5 details our semantic 

findings in terms of the specificity of a city/country, and the 
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relations between geographical or architectural areas. 

Conclusions and future research directions that are described in 

Section 6 complete this paper. Appendix II presents the IDs of 

each selected TerraSAR-X product, and their locations being 

used for analysis, and a benchmark dataset creation, followed 

by Appendix III that displays (for a selected number of 

TerraSAR-X products from Appendix II) the semantic 

distribution (in per cent) of each identified label (i.e., semantic 

class or category) in the given images, and its corresponding 

semantic classification map. The last appendix, Appendix IV 

gives a list of semantic classes that are retrieved in our dataset 

with typical examples. 

II. A SURVEY OF EXISTING SEMANTIC DATASETS 

When we compare the retrieval of images or image patches 

from multimedia or remote sensing archives, we can say that 

most multimedia applications aim at the recognition of single 

objects in front of mostly irrelevant background, while typical 

remote sensing applications call for the identification of land 

cover/land use details or the monitoring of shipping routes 

covering the full image area, as well as images of built-up areas 

taken with very high resolution. During the last years, we saw 

a growing interest in satellite images in order to support a 

variety of applications (e.g., change detection, land use 

classification, disaster relief). These remote sensing 

applications are most often using optical datasets, and very few 

ones employ SAR datasets. This was our main reason to 

compile a reference dataset for SAR image patches, more 

exactly a high-resolution dataset using TerraSAR-X images [3]. 

Appendix I contains a state-of-the-art survey of existing land 

cover datasets for space-borne or airborne remote sensing, first 

for optical sensors, and then for SAR sensors. 

III. THE CHARACTERISTICS OF OUR BUILT-FOR-URBAN SAR 

DATASET 

In this paper, we concentrate on TerraSAR-X, an X-band 

SAR instrument with various operating modes, selectable 

polarization, and a number of product generation options [3].  

For most of the investigated areas, we selected High-

resolution Spotlight (HS) mode images because they provide a 

lot of details in urban areas. We took horizontally polarized 

(HH) images as this option is most frequently recorded over 

land, and we used images taken from ascending and descending 

pass directions. As for the product generation options, we 

selected Multi-look Ground range Detected (MGD) data as they 

are not affected by geometrical interpolation effects over 

mountainous terrain and thus are most suited for feature 

extraction [20]. This was also the reason for choosing 

radiometrically enhanced products that are optimized with 

respect to radiometry (i.e., brightness effects). As a result of the 

product mode and product parameter selection, our images have 

a pixel spacing of 1.25 m and a resolution of about 2.9 m. The 

average size of each full scene is 4,200×6,400 pixels (rows × 

columns). The incidence angle lies between 25° and 48°. 

For two areas (due to the unavailability of some parameters), 

we selected StripMap (SM) mode images, namely 

Radiometrically Enhanced (RE) data with single polarization 

(HH). As product generation option, we took Geo-coded 

Ellipsoid Corrected (GEC) data. These images have a pixel 

spacing of 2.5 m and a resolution of 5.75 m. The size of these 

few images is 9,885×15,025 pixels (rows × columns). Their 

incidence angle is 35° and the pass direction is descending. 

This dataset covers urban and industrial areas together with 

their infrastructure from all over the world (data being available 

via [21]). A number of 124 images tiled into 183,412 patches of 

160×160 pixels (called Phase I and Phase II) are considered as 

the most interesting target areas. These images are distributed 

over several continents: five scenes from Africa, 35 from Asia, 

54 from Europe, nine from the Middle East, and 21 from North 

and South America. The scenes were selected based on their 

availability, their content, the typical diversity of country-

specific land cover, and the recording parameters of each scene. 

At the time of writing, the process of semantic annotation has 

not yet been completed and is one that still will evolve over 

time. Another set of 171 images were analyzed with a total of 

170,145 patches with the same patch size (called Phase III). 

These images cover more areas from all over the world (36 

scenes from Africa, 32 from Asia, 36 from Europe, 29 from the 

Middle East, and 38 from North and South America). The full 

list of TerraSAR-X images is detailed in Appendix I, while the 

number of acquisitions is shown in Fig. 1. 

In total, there are about 354,000 patches tiled from the 295 

images (see their geographical location in Fig. 2) and grouped 

into 53 independent semantic classes (see Fig. 9, where the 

semantic classes are listed with their proportion) without 

deselecting the cases where two semantic classes can be 

assigned to a patch in a multi-labelling approach (e.g., Channels 

and High-density residential areas). To these classes we added 

one more class, entitled Unclassified for the patches for which 

it was not possible to define a class. This class represents 

between 1% and (maximum) 10% of the total number of 

patches of an image. 

In terms of organization of the proposed SAR reference 

datasets, we opted for our dataset to contain (for each 

TerraSAR-X image) the retrieved and semantically labelled 

classes with their individual number of patches.  

In the literature, one can find other datasets that are organized 

differently, e.g., for a defined number of classes where a fixed 

number of patches are selected from different images. We 

believe that this structuring of a dataset is a bit restrictive, and 

when we eliminate the classes that do not meet the minimum 

number of patches, this does not correspond to the reality in the 

images. 

 
Fig. 1: Geographical distribution among continents of our analysed images. 
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Fig. 2: Geographical locations of the target areas projected on Google Maps [22]. 
 

IV. A BRIEF DESCRIPTION OF OUR SEMANTIC ANNOTATION 

METHODOLOGY  

The semantic annotation methodology that we developed is 

a scheme being used to generate semantic benchmark datasets. 

This scheme is based on previous work described in [1]; 

however, in this paper the scheme is used to extract the best-

fitting semantic labels. The flow chain was also used to create 

the first semantic catalogue of the TerraSAR-X instrument, a 

work supported by the European Space Agency (ESA) under 

the technology project EOLib (Earth Observation Image 

Librarian) [23]. 

Here, we are using the output of the proposed method (see 

the workflow in Fig. 3) in order to efficiently exploit the 

information/knowledge from the semantic labels and to analyse 

the relationships between the different labels identified for each 

observed target area from the dataset. 

A brief description of the methodology (shown in Fig. 3) is 

presented step by step in the following: Create an account (as a 

project proposal for data downloading) in order to have access 

to the TerraSAR-X archives, then select the images that 

correspond to our criteria (in this case, images that cover urban 

areas from all over the world). The images are further tiled into 

patches with a size of 160×160 pixels (in our case, see [20] for 

high-resolution TerraSAR-X images) and we generate a quick-

look view of each patch and store it in a new database. From 

each patch, its primitive features are extracted, using one of the 

methods described in [20] and stored in the database. By 

applying an active learning (AL) approach based on a Support 

Vector Machine (SVM) with relevance feedback [24], we 

grouped the features following a semi-supervised approach into 

different classes. Up to this stage of the methodology, the steps 

are automated, while for the next steps some user interaction is 

needed. 

After this, we included the classification results of the 

knowledge which was provided by several experts who 

operated the system. For each class, a semantic label was 

generated that was also stored in our database, following the 

hierarchical annotation scheme defined in [1] and using the 

ground truth data of Google Earth for a correct assignment of 

the labels.  

The semantic labels were selected based on the content of 

each patch; a single label was assigned if more than 50% of the 

content belonged to a specific class (see the five examples 

shown in Fig. 4). In cases without a clear label, we allocated 

more semantic labels (see the five examples given in Fig. 5). 
 

 
Fig. 3: Proposed methodology to select, classify, semantically label (i.e., 

annotate) each patch, and generate different results for TerraSAR-X images [1]. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3084314, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JSTARS-2021-00425 

 

4 

Once this process had been completed, the benchmark 

datasets were ready to be used. In addition, each dataset was 

visually inspected by an expert and corrected (if needed). With 

such datasets, we were able to produce semantic classification 

maps, statistical analytics, classification metrics, etc. See a 

number of examples in Appendix III, Table A.III.1 for 

classification maps, and in Table A.III.2 for statistical analytics. 

If new types of images (new classes) are to be analysed, we 

have an expert user who is making the semantic annotation of 

the new images and updates the “Semantic labels database” (by 

adding the new labels) (see Fig. 3). 

As a result of the proposed approach, Fig. 6 shows for each 

continent the number of semantic classes being identified, using 

the scenes from Fig. 1 (see the left pile of the illustration for 

Phases I and II). 

From the obtained semantics (based on the classification 

results and the semantic label assignment by the users), we can 

derive several additional results: a) strategies for semantic 

annotation based on the geographical locations of the selected 

cities; b) statistical analytics based on the retrieved and assigned 

semantics; c) city or country models using the given semantic 

classes, ontologies, or knowledge graphs.  

 

     
Skyscrapers Mixed urban areas Military airplanes Bridges High-density residential areas 

Fig. 4: Five examples of classes with their corresponding sematic labels extracted from a benchmark dataset. Here, each patch is annotated with a single semantic 

label. 

     

Channels and  

Mixed Forest 

Roads and  

Stubble 

Ploughed agricultural areas 

and Low-density residential 

areas 

Roads and Ploughed 

agricultural land 

Greenhouses and 

Ploughed 

agricultural land 

Fig. 5: Another five examples of classes with semantic labels extracted from a benchmark dataset. In this figure, the content of each patch is annotated with several 

semantic labels. 
 

 

Fig. 6: Number of retrieved semantic classes/labels for each continent, based 

on the semantic analysis of the images in Phases I and II from Fig. 1. 

 

Fig. 7 shows the confusion matrix computed for 12 out of 30 

classes (we had a sufficient number of diverse patches as 

samples). The selected classes are belonging to human-made 

classes and we noticed that they are sometimes mixed up, which 

confirms the “semantic gap” between user-semantic 

annotations and computer-semantic predictions that was 

already pointed out by [47]. 

Usually, a confusion matrix is used for evaluating the 

accuracy of the classification. In our case, we computed this 

matrix in order to know more about the accuracy of the 

proposed method using as input data the given TerraSAR-X 

images. Based on this, we reached an accuracy of between 90% 

and 97% depending on the semantic class. 

Each column of the matrix refers to a predicted semantic 

class, and the total number of patches in each column represents 

the patches assigned to that class. Each row represents the true 

semantic class, while the total number of patches in each row 

represents the patches of the retrieved class [48]. 
 

 
 

 
Fig. 7: The confusion matrix computed for a number of selected US cities. From 

the 30 retrieved semantic classes, only the ones linked to human-made 

structures are displayed. In the matrix (upper part), blanks indicate no such 

combination. The combinations between classes are marked in different colours 

depending on the number of patches (see the legend in the lower part). The 

values on the diagonal line of the matrix are the highest ones compared to the 

other values on that line (the value from the left or right part of the value on the 

diagonal line). 
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For example, the value in the seventh column of the seventh 

row indicates the number of patches with the label Medium-

density residential areas that belongs to the seventh class being 

predicted as the seventh class. The value of the seventh row and 

the fourth column indicates the number of patches labelled as 

Medium-density residential areas that actually belongs to the 

seventh class being mis-predicted as the fourth class (namely 

High-density residential areas). This principle is applied to all 

columns and lines of the matrix. 

 

Conclusion: Our method is a package of modular components 

to perform the necessary tests. The entire dataset is analysed 

identically by the proposed method using the same patch size 

(160×160 pixels), the same feature extraction method (Gabor 

filters with 5 scales and 6 orientations), the same classifier and 

kernel (SVM with chi-square tests), and the same user 

performing the semantic labelling of the retrieved classes 

(assigning one semantic label per class). The labelled patches 

are stored into a database that is used for further operations 

(analytics, ontologies, knowledge graphs, etc.). 

 

V. DISCUSSIONS OF OUR SEMANTIC FINDINGS: STATISTICS, 

ANALYTICS, MODELS, AND ONTOLOGIES 

In this section, we present our nomenclature for semantic 

annotation of the retrieved classes using the methodology from 

the previous section, followed by an in-depth analysis of the 

semantics obtained from different points of view: 

• Criteria to follow in order to semantically annotate 

additional images from different target areas. 

• Statistics about the minimum and maximum number of 

semantic classes identified per continent. 

• Statistics about the surface occupied by urban, industrial, 

and vegetated areas in a city/country. 

• A country model based on the retrieved semantic classes. 

• An ontology model for high-resolution SAR images. 

• Domain ontologies and knowledge-graph 

representations. 

 

In our case, we were able to define a nomenclature adapted 

to high-resolution SAR images where we applied a 

hierarchical semantic annotation scheme with three levels 

(see Fig. 8) with a total of 150 classes/categories, of which 

nine basic classes (agriculture, forest, hydrology, traffic, 

building architecture, public use, leisure, mineral/salt, and 

other land use categories) belong to our level-1, 73 classes 

belong to level-2, and 68 classes belong to level-3 [1]. 

Interestingly, the level-3 classes describe details of human-

made infrastructure, while the categories describing natural 

environments do not have level-3 refinements. This remark is 

only valid for high-resolution SAR images. 

By applying the procedure from Fig. 3, the entire dataset 

was tiled into about 350,000 patches and each patch was 

labelled with an assumedly correct semantic meaning. In Fig. 

9, the semantic labels are grouped into two categories: one 

that contains 24 semantic labels of human-made structures 

(urban labels), and one that contains 30 semantic labels of 

natural environments (non-urban labels). Within the full 

dataset, we identified and annotated 54 independent semantic 

classes without considering the case where two or more 

semantic classes can be assigned to a single patch (e.g., 

Channels and High-density residential areas). 

 
Fig. 8: Proposed hierarchical semantic annotation scheme with three levels. 

SAR 
 high-

resolution 
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1) Criteria to follow in order to semantically annotate 

additional images from different target areas. 

We also have to discuss which criteria should be grouped 

together with the images. To this end, the full test dataset 

containing hundreds of images was split into separate 

collections in order to maximize the number of identifiable 

categories, and to semantically annotate them using our 

previous methodology (see Section 4). 

We mainly focused on differences between the human-made 

structures (urban and industrial classes), and less on the natural 

environment (with natural and/or vegetation classes) that also 

depend on seasonal effects. 

 

 

 
Fig. 9: Statistical distribution of the semantic labels: (top) the Non-urban 

semantic labels and (bottom) Urban semantic labels identified from our 

TerraSAR-X dataset. 

 

By grouping, we mean to put together several images and 

then to apply the methodology described in Section 4 (e.g., 

classification and annotation). The selection of the images to be 

grouped is made by the user. 

The next figures (Figs. 10-13 and Figs. 15-18) have two 

parts, an upper part which presents the distribution of the 

retrieved semantic classes (given in per cent), followed by a 

lower part illustrating the patch classes that are different (and 

cannot be grouped together) or classes that are identical (and 

are grouped together). 

 

a) Combining images covering cities from different countries 

In Fig. 10, we grouped together two cities (Toulouse and 

Timisoara) belonging to two different countries from Europe 

(France and Romania). These two cities have almost the same 

local economic importance with respect to the countries that 

they belong to. We observed that for common classes identified 

in both images (e.g., Low-density residential areas, Medium-

density residential areas, and Roads-and-Mixed urban areas), 

their patches cannot be grouped together. 

A similar example is illustrated in Fig. 11, where for two 

cities on the Korean peninsula (Suwon and Pyongyang) we tried 

to group together their classes. In this case, the common classes 

are High-density residential areas, Medium-density residential 

areas, and Low-density residential areas. However, combining 

them together was not possible. 

Another example is shown in Fig. 12, where we analysed the 

African cities of Abuja, Nigeria and Lomé, Togo. The classes 

identified to be the same are Low-density residential areas and 

Pasture-and-Low-density residential areas. Again, combining 

them together was not possible.  

A last example is from the Middle East where the cities of 

Ashdod, Israel and Beirut, Lebanon were analysed. Here, 

following the semantic analysis and the specificity of the cities, 

not a single class was common. 

Similar examples for combining together of cities from 

different countries are: Tashkent, Uzbekistan and Khujand, 

Tajikistan; Belgrade, Serbia and Skopje, Macedonia; Larissa, 

Greece and Djarbakir, Turkey; Lyon, France and Genoa, Italy; 

Baghdad, Iraq and Bandar Imam Khomeini, Iran. 

 

 
Fig. 13: Percentage of patches for Ashdod, Israel and Beirut, Lebanon. In this 

case there are no identical semantic labels that can be retrieved from the two 

cities. 
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 Low-density residential areas-1 Medium-density residential areas-1 Roads-and-Mixed urban areas-1 

Toulouse  

   

 Low-density residential areas-2 Medium-density residential areas-2 Roads-and-Mixed urban areas-2 

Timisoara  

   
Fig. 10: (top) Percentage of patches for Toulouse, France and Timisoara, Romania. (bottom) In this example, for three labels of Toulouse (first line) and of 

Timisoara (second line) the same semantic labels were assigned: Low-density residential areas, Medium-density residential areas, and Roads-and-Mixed urban 

areas. 

 

 

 High-density residential areas-1 Medium-density residential areas-1 Low-density residential areas-1 

Suwon 

   

 High-density residential areas-2 Medium-density residential areas-2 Low-density residential areas-2 

Pyongyang 

   

Fig. 11: (top) Percentage of patches for Suwon, South Korea and Pyongyang, North Korea. (bottom) In this example, for three labels of Suwon (first line) and 

Pyongyang (second line) the same semantics were assigned: High-density residential areas, Medium-density residential areas, and Low-density residential areas. 
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 Low-density residential areas-1 Pasture-and-Low-density residential areas-1 

Abuja 

  

 Low-density residential areas-2 Pasture-and-Low-density residential areas-2 

Lomé 

  

Fig. 12: (top) Percentage of patches for Abuja, Nigeria and Lomé, Togo. (bottom) In this example, for two labels of Abuja (first line) and Lomé (second line) the 

same semantic labels were assigned: Low-density residential areas and Pasture-and-Low-density residential areas. 
 

 
Fig. 14: Differences between the cities of Suwon, South Korea and Pyongyang, North Korea for the two labels High-density residential areas (121 patches for 

Suwon and 199 patches for Pyongyang) and Medium-density residential areas (60 patches for Suwon and 40 patches for Pyongyang). Gabor texture filters were 

used to describe the content of each image patch in a set of coefficients. For each patch we computed the means and standard deviations of each coefficient (in 

total, we applied 5 scales × 6 orientations × 2 additional parameters (mean and variance) = 60 coefficients) [1]. Area 1 corresponds to the city of Pyongyang and 

Area 2 corresponds to the city of Suwon. The left plots are generated for the first semantic class, while the right plots are for the second semantic class. 
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Conclusion: If the given images depict cities from different 

continents/countries, combining them together leads to 

different semantic classes for the human-made structures. Even 

if we have the same semantic class label, the patches cannot be 

grouped together due to the different primitive features of the 

two cities (see Fig. 14). 

 

b) Combining multiple images covering cities belonging to the 

same country 

Here, the combining is performed based on similar source 

regions (of the same county). In this case, we mean a similar 

geographical location of the cities. 

A first example is the combining of 12 cities that belong to 

the United States (see Fig. 15). The selection of the cities is 

performed to include as much as possible the urban diversity of 

the country. Based on the results, we noticed that there are 

common classes (e.g., High-density residential areas and 

Medium-density residential areas) that appear in almost 80% of 

the cities, but also human-made classes that appear in two to 

three cities (e.g., Skyscrapers) or only in one city (e.g., Urban 

houses in residential areas). 

A second example is Fig. 16, where the selected four cities 

all belonging to the United Kingdom in Europe. 

In this case, one of the common classes selected for 

illustration is Medium-density residential areas that is retrieved 

from all images. Like in the previous example, there are also 

other human-made classes that appear in different images (e.g., 

High buildings) but not in all four images. 

A last example is for three cities in Malaysia (see Fig. 17). 

Like in the previous two examples, there are semantic classes 

that appear in all three images, and can be grouped together 

(e.g., Medium-density residential areas). As in the case of the 

United Kingdom or U.S.A., there are classes that do not appear 

in all cities (e.g., Skyscrapers). 

Similar examples for combining of cities that belong to the 

same country are: Canada (Vancouver, Calgary, Ottawa), China 

(Ashan, Binhai, Dalian, Jinan, and Shenyang), France 

(Bordeaux, Lyon, and Toulouse), Greece (Chania, Larissa, and 

Thessaloniki), Iran (Bandar Imam Khomeini, Bandar-e-Abbas, 

and Mahabad), Italy (Genoa, Naples, Puzzuoli, Taranto, Trento, 

and Venice), Poland (Bydgoszcz, Czestochowa, Lodz, and 

Torun), Russia (Krutorozhino, Central, Northern and Southern 

Moscow, Perm, Rostov on Don, and Tula), etc. 

 

 

Conclusion: If the images cover cities from the same 

country, combining them together leads to similar semantic 

classes for the human-made structures. This type of combining 

shows us that the geographical location of a city is very 

important for defining the semantic labels. Even if a semantic 

class does not appear in all the analysed cities where the 

patches appear, they are grouped together in the same class.  
 

 

 Ciudad Juarez North part of San Diego Tijuana 

Medium-density residential areas 

   

High-density residential areas 

   

Fig. 15: (top) Percentage of patches for twelve US cities: Ciudad Juarez, Los Angeles, North San Diego, South San Diego, Poway, Sun Lakes, Tijuana, Tucson, 

San Francisco, Santa Clarita, Reno, and Washington, DC. In this case, due to the same architecture of the human-made structures, the labels are similar. (bottom) 

We selected three out of twelve cities for which two semantic label names were assigned: High-density residential areas and Medium-density residential areas. 
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 London Plymouth 
First part of 

Portsmouth 

Second part of 

Portsmouth 

Medium-density residential areas 

    

Fig. 16: (top) Percentage of patches for four cities from the United Kingdom. In this case, due to the same architecture of the human-made structures, the labels are 

similar. (bottom) In this example we selected all four cities for which one semantic label name was assigned: Medium-density residential areas. 

 

          
 Alor Setar Seremban Kuala Lumpur 

Medium-density residential areas 

   

Fig. 17: (top) Percentage of patches for three cities from Malaysia. In this case, due to the same architecture of the human-made structures, the labels are similar. 

(bottom) In this example, we selected all cities for which the same single semantic label name was assigned: Medium-density residential areas. 
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 Bremen Karlsruhe Stuttgart Basel 

Medium-density residential areas 

    

High-density residential areas 

    

Fig. 18: (top) Percentage of patches for twelve cities from German-speaking countries: Berlin, Bonn, Bremen, Lindau, Karlsruhe, Mannheim, Stuttgart, Cologne, 

Kiel, Oldenburg, Munich, and Basel. In this case, due to the same architecture of the human-made structures, the labels are similar. (bottom) In this example, we 

selected four out of twelve cities for which two semantic label names appeared: High-density residential areas and Medium-density residential areas. 

 

c) Combining images that cover cities with similar 

characteristics but from different countries 

In this case, the images still belong to cities from the same 

country (e.g., Dharan and Riyad from Saudi Arabia), however, 

the commonly identified human-made structure classes are 

separated. This leads us to the conclusion that not only the 

geographical source region is important, but also the 

architectural characteristics of each city. 

As an example, where the cities are from two different 

countries is presented in Fig. 18. The important characteristics 

of these cities are that they belong to the German-speaking 

countries and have a similar architecture. Based on the results, 

we observed that there are common classes among the cities that 

belong to Germany or Switzerland (e.g., High-density 

residential areas and Medium-density residential areas).  

 

 

Conclusion: In this case, due to the same architecture of the 

human-made structures, the classes are similar and the patches 

from different cities are grouped into the same semantic class. 

 

 

2) Statistics about the minimum and maximum number of 

semantic classes identified per continent. 

After the first question, of how to group together a selection 

of images, the second question is how many semantic 

classes/labels exist in each image. 

In this context, Fig. 19 gives, for each continent being 

analysed, the maximum (max) and minimum (min) number of 

semantic classes. The maximum number of classes is between 

18 and 20 for four out of six continents. 

As for the minimum number of semantic classes, the 

variation is greater; the upper value is 11 and the lower value is 

4. From the figure, we can see that the overall range is 

maintained; a continent with a higher value for max also has a 

higher value for min. 
 

 
Fig. 19: Minimum and maximum number of semantic classes/labels per 

continent. 

 

 

Conclusion: The minimum and maximum number of semantic 

labels of a city depends on the continent where the city belongs 

to. 
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3) Statistics about the surface occupied by urban, industrial, 

and vegetated areas in a city/country 

Here we analysed each city from three points of view based 

on the semantic classes obtained when applying the 

methodology described in Section 4. 

 

a)  How developed is an urban area?  

In order to answer this question, we investigated for each city 

the semantic classes that belong to Settlements (see Fig. 8). By 

analysing the existence of semantics such as Skyscrapers, High 

buildings, or High-density residential areas we can say that this 

city is a metropolitan city, a financial center or even the capital 

of a country. In the opposite case, when the resulting semantics 

are Very low-density residential areas, or Low-density 

residential areas that city is a smaller city, such as a provincial 

city. 

In Fig. 20, the semantic classes that are the most common 

urban ones (Very low-density residential areas, Low-density 

residential areas, Medium-density residential areas, High-

density residential areas, Mixed urban areas, High buildings, 

and Skyscrapers) were derived from images of four countries. 

We analysed: in case of China five cities, in case of Germany 

eleven cities, in case of Russia five cities, and in case of the 

U.S.A. ten cities. Note that we collected the patches with 

semantic labels that are in relation to urban areas and the 

remaining patches that are not belonging to this classes are 

grouped into other classes such as Industrial production areas, 

Transport, Agriculture, Natural vegetation, Bare ground, 

Water bodies, or Unclassified. 

In Table 1, we collected from Wikipedia some information 

about the population living in each given city, the surface of the 

city, and its population density [43]. When we analysed each 

city based on its retrieved semantic classes (obtained based on 

our approach from Section 4), we correlated the observations 

with the data collected from Wikipedia for each city. 

In the following, we are investigating in detail, based on the 

semantics but also considering important demographic data, the 

most important cities (one per country) from our dataset and 

from Fig. 20. The Chinese cities are the ones with seven 

semantic classes (as upper value) in opposition to Italian cities 

that have only three semantic classes (as upper value). 

• The selected Chinese city is Shenyang (the one with the 

biggest population). When analysing the retrieved 

semantics shown in Fig. 20 (first line on the left), we can 

say that this city is a metropolitan city with the typical 

classes Skyscrapers (10% of all annotated patches), High-

density residential areas (23%) but also Medium-density 

residential areas (13%). This observation is also 

reinforced by the demographic statistics (see Table 1) 

which show that this city is a very populated one. 

• The selected German city is Munich. This is the third-

ranking city with a big population and density (see Table 

1). When analysing the retrieved semantic classes 

illustrated in Fig. 20 (first line on the right), we notice that 

this city is an important city. We can even say that this is 

a metropolitan city for the region to which it belongs to. 

From the total number of annotated patches, 41% can be 

grouped into the class of High-density residential areas to 

which we added another 3% of patches that are grouped 

into Medium-density residential areas. 
• The selected Italian city is Naples. From Fig. 20 (second 

line on the left), we recognize that this city is the one with 

the highest number of patches semantically recognized as 

High-density residential areas, when compared with the 

other five Italian cities from the same figure. This class is 

the one with the highest percentage (of 17%) from all 

annotated patches, except for the class Sea which obtains 

66%. When analysing the demographic statistics (in Table 

1), we see that Naples is a city with a big population and 

population density.  

Venice is the city ranking next to Naples where the class 

High-density residential areas contains less patches 

annotated with this label (the percentage with respect to 

all annotated patches is 13%). 

• The selected Russian city is Moscow where we analysed 

three parts of it: Center, South, and North. From the 

semantical analysis in Fig. 20 (second line on the right), 

we got 25% of the patches grouped as High buildings, 

30% of the patches grouped as High-density residential 

areas, and 20% of the patches grouped as Medium-density 

residential areas. Based on these results and strengthened 

by demographic statistics (in Table 1), we can state that 

this city is the largest metropolitan city (see also 

Wikipedia description “Moscow is the capital and largest 

city of Russia and the largest metropolitan area in 

Europe”). 

• The selected US city is San Francisco with the biggest 

population density per km2
 among the given US cities (see 

Table 1). When analysing the retrieved semantic classes 

shown in Fig. 20 (center of lowermost graphics), we can 

say that this is a metropolitan city with prominent classes 

like Skyscrapers (11% of all annotated patches) and High-

density residential areas (53%). This result is in line with 

current demographic statistics. 

 

b) How industrialized is a city? 

To answer this question, we had to compare the semantic 

labels Built-up areas with Industrial areas. This comparison 

was made for the same cities and countries like in Fig. 20. From 

this we can see how industrialized is a city/country compared 

to another city/country. By analysing each city one by one in 

Fig. 21, we can state the following: 

• The most industrialized cities (from the ones available in 

our dataset) are Binhai, China; Mannheim, Germany; 

Pozzuoli, Italy; Krutorozhino, Russia; and Tucson, U.S.A. 

• The least industrialized cities (from the ones available in 

our dataset) are Shenyang, China; Munich, Germany; 

Naples, Italy; Center of Moscow, Russia; San Francisco, 

U.S.A. 
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Fig. 20: Statistical distribution of the semantic class Inhabited built-up areas for China, Germany, Italy, Russia, and the U.S.A. The vertical axis describes the 

number of patches that are semantically annotated with this label for each city. 

 
 
 

 

TABLE I  
THE SURFACE COVERED BY EACH SELECTED CITY, THE POPULATION LIVING IN 

THE CITY, AND DENSITY OF INHABITANTS PER KM
2.  

City Population Area in km2 
Inhabitants 

per km2 

C
h

in
a 

Anshan 1,406,000 9,252 390 

Binhai 1,000,000 2,270 440 

Dalian 4,009,700 12,574 532 

Jinan 4,693,700 7,171 850 

Shenyang 5,119,100 12,942 640 

G
er

m
an

y
 

Berlin 3,669,491 892 3,944 

Bonn 329,673 141 2,300 

Bremen 567,559 327 1,700 

Cologne 1,087,863 405 2,700 

Karlsruhe 312.06 174 1,800 

Kiel 246,794 119 2,100 

Lindau 25,512 33 770 

Mannheim 310,658 145 2,100 

Munich 1,484,226 311 2,606 

Oldenburg 169,077 103 1,600 

Stuttgart 635,911 207 3,100 

It
al

y
 

Genoa 580,097 240 2,400 

Naples 967,068 119 8,100 

Pozzuoli 80,074 Not available Not available 

Taranto 198,585 250 790 

Trento 118,160 158 750 

Venice 260,897 415 630 

R
u

ss
ia

 

Krutorozhino 
Not 

available 
Not available Not available 

Moscow 12,506,468 2,511 Not available 

Perm 991,162 800 1,200 

Rostov on 

Don 
1,089,261 349 3,100 

Tula 501,169 154 3,300 
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U
.S

.A
. 

Los Angeles 3,979,576 1,302 3,276 

San Diego 1,307,402 965 1,687 

Poway 47,811 102 487 

Reno 47,811 289 907 

San 

Francisco 
881,549 601 7,255 

Santa Clarita 176,320 184 1,162 

Sun Lakes 13,975 14 Not available 

Tijuana 1,902,385 637 Not available 

Tucson 520,116 624 880 

Washington 

DC 
6,133,552 3,644 419 

 

 

 

 

 
Fig. 21: Number of patches retrieved as Inhabited built-up areas versus 

Industrial production areas. These plots consider five cities in China, eleven 
cities in Germany, six cities in Italy, five cities in Russia, and ten cities in the 

U.S.A. 

 

c) How green is the city? 

In order to answer this last question, we needed to compare 

the vegetated areas with the urban built-up areas. This was done 

by analysing the semantic classes that include vegetation versus 

the semantic classes that include urban classes. 

Analysing Fig. 22, we can say that for all continents the area 

occupied by inhabited built-up classes is larger than the area 

occupied by natural vegetation. Further details are described in 

the following list: 

• Africa (in this example, the city of Port Elizabeth, South 

Africa): the percentage of the area occupied by vegetation 

is close to the one occupied by the urban built-up area. 

• Asia (in this case, the city of Tokyo, Japan): the 

percentage of the area occupied by vegetation is very 

small compared with the one occupied by the urban area. 

• Europe (in this example the city of Porto, Portugal): the 

percentage of the area occupied by vegetation is about 

three times less than the one occupied by the urban area. 

• Middle East (in this case the city of Ashdod, Israel): the 

percentage occupied by vegetation is the lowest of all 

cases, because this region is one with a lot of desert/sand. 

• North America (in this case the city of Ottawa, Canada): 

the vegetation percentage is about 10% of the urban area. 

• Central and South America (in this case the city of 

Havana, Cuba): the percentages of vegetation and urban 

classes are close to each other. 
 

 

Fig. 22: A comparison between the urban area (Inhabited built-up areas) and 

the vegetated area (Natural vegetation) for one city per continent. A percentage 

difference of up to 100% is occupied by other classes (e.g., Water bodies). 
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Conclusion: Such statistics is very useful for municipalities, 

for those being engaged in the urbanism of the city but also for 

potential real-estate investors. The results can be correlated 

with other statistics gathered by local/government 

administrations (e.g., population censuses, demographic and 

economic statistics). 

 

4) A country model based on the retrieved semantic classes 

To create a country and/or a city model, we propose two 

strategies:  

 

a) Our first strategy considers for each country being 

investigated all the corresponding cities (select the country 

with a high number of analysed cities) and the identified 

semantic classes that belong to urban areas (e.g., Inhabited 

built-up areas) plus the semantic classes that belong to the 

industrial area (e.g., Industrial facilities).  

In this strategy, we do not consider the natural classes 

such as: Agriculture, Natural vegetation, Bare ground, and 

Water bodies. 

Here, the analysed countries with their corresponding 

cities are: China with Anshan, Binhai, Dalian, Jinan, and 

Shenyang; Germany with Berlin, Bonn, Bremen, Cologne, 

Karlsruhe, Kiel, Lindau, Mannheim, Munich, Oldenburg, 

and Stuttgart; Italy with Genoa, Naples, Pozzuoli, Taranto, 

Trento, and Venice; Russia with Krutorozhino, Moscow, 

Perm, Rostov on Don, and Tula; the U.S.A. with Los 

Angeles, San Diego, Poway, Reno, San Francisco, Santa 

Clarita, Sun Lakes, Tijuana, Tucson, and Washington DC. 

Following this strategy, Fig. 23 depicts for each 

individual country the corresponding model results based on 

the retrieved semantic classes of each city (using the 

classification and annotation strategy from Section 4). For 

each city, the semantic classes having been analysed are: 

Skyscrapers, High buildings, High-density residential 

areas, Medium-density residential areas, Low-density 

residential areas, Very low-density residential areas, Mixed 

urban areas, Urban houses in residential areas, and 

Industrial facilities. 

Finally, Fig. 23 shows for each country a model (see the 

average line); these models are further compared in Fig. 24 

with respect to urban classes, and urban and industrial 

classes. 

Analysing the illustrations from Fig. 23, we can say that 

for the U.S.A. and China the country model contains the 

Skyscrapers class that does not appear in the other three 

countries. In opposition to this class, the High buildings 

class, which is very close to Skyscrapers is found in 

Germany and Russia. 

The differences between these country models appear 

especially in the case of urban classes of the following 

categories: High-density residential areas, Medium-density 

residential areas, Low-density residential areas, and Mixed 

urban areas plus the industrial classes (e.g., Industrial 

facilities).  

 

 

 

 

Fig. 23: A model for five countries (e.g., China, Germany, Italy Russia, and the 

U.S.A.) comparing the urban and industrial semantic classes retrieved for each 

city of the respective country. 
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The magnitude-shape characteristics of this model 

depends on the retrieved classes which are defined by the 

number of patches belonging to these semantic classes for 

each city being analysed. 

A more intuitive comparison, preserving the proportions 

of each model, is presented in Fig. 24. 

 

 

Fig. 24: Comparative model extracted from Fig. 23 for the five selected 

countries. (left) Considering only the urban classes and (right) Considering not 

only the urban classes but also the industrial ones. 

 

b) Our second strategy considers more countries/cities when 

the model is created. This strategy takes into account all the 

53 semantic classes having been identified (except for the 

Unclassified class) after semantically annotating the entire 

dataset. 

In Fig. 25 (top), the models are created for four countries 

belonging to the Asian continent, and a total of 18 cities are 

analysed. For China there are five cities, for India there are 

three cities, for Malaysia there are three cities, and for 

Russia there are seven cities. In Fig. 25 (bottom), we present 

for the same countries the weight (as a percentage) of each 

semantic class that provides a contribution to the model of 

the respective country. 

In Fig. 26 (top), the models are created for 15 cities that 

belong to two North American countries. For the U.S.A., we 

analysed 12 cities, while for Canada three cities. Similarly 

to the previous figure, Fig. 26 (bottom) presents the 

percentage of each class that enters the model creation. 

In the next pictures, Fig. 27 (top) illustrates the role of six 

European countries with a total of 27 cities. The countries 

are selected to show off their diversity all over Europe. For 

France we used three cities, for Germany 11 cities, for Italy 

six cities, for Poland three cities, and for the UK four cities. 

The percentage of each semantic class which enters into the 

creation of the semantic model of the country is shown in 

Fig. 27 (bottom). 

The last model (see Fig. 28 (top)) is for Middle Eastern 

countries with a total of seven cities from four countries. 

Their distribution per country is the following one: three 

cities from Iran, two cities from Saudi Arabia, one city from 

Lebanon, and one city from Israel. In Fig. 28 (bottom), we 

show the weight (in percent) of each semantic class which 

has an impact when compiling the model. 

Finally, Fig. 29 puts together all the models created for 

each continent and the countries belonging to it. 

The Asian classes that these countries/cities have in 

common are: Channels, High-density residential areas, 

Industrial buildings, Medium-density residential areas, 

Mixed forest, Mixed urban areas, Railway tracks, Roads, 

and Stubble. 

The North American classes that these countries/cities 

have in common are: Boats, Bridges, Channels, High-

density residential areas, Industrial buildings, Medium-

density residential areas, Mixed forest, Ocean, Ploughed 

agricultural land, Port facilities, Railway tracks, Roads, 

Skyscrapers, Sparse trees, Sports grounds, Storage tanks, 

and Stubble. 

The European classes that these countries/cities have in 

common are: Bridges, Channels, High buildings, High-

density residential areas, Industrial buildings, Low-density 

residential areas, Medium-density residential areas, Mixed 

forest, Ploughed agricultural land, Railway tracks, Rivers, 

Roads, Sports grounds, and Stubble.  

The Mid-Eastern classes that these countries/cities have 

in common are: Airport buildings, Industrial buildings, 

Medium-density residential areas, Roads, and Sand. 

The other classes (that are not common), are the classes 

that are specific to each city/country/continent and we can 

outline the specificity of each of them. 

For example, below we are listing some classes that are 

specific to cities/countries/continents: 

• Sand is a semantic class that is specific to the Middle 

East. Here, we are not referring to sand on a beach. 

• Skyscrapers is a semantic class that is mainly visible 

in North America and Asia. 

• Chemical plants is a class specific to oil extraction 

areas (e.g., Iran) but also in highly-industrialized 

countries (e.g., China). 

• Rice paddies is a class specific to Asian countries 

(e.g., China, India, Indonesia) [29]. 

• Exotic trees is a class identified in Greece but also in 

other Mediterranean countries. 

• Vineyards is a class identified in the 

regions/countries that are big wine producers. 

Among them we would like to mention: Puglia, Italy; 

Bordeaux, France; Porto, Portugal; and Rioja, Spain. 
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Conclusion: Based on one of the two strategies, one can 

create models of a city and/or country that can be used later 

(e.g., for knowledge transfer).  

A still ongoing activity is to combine data form different 

cities with different city environments in order to avoid 

potential bias situations. 

 

 

 
 

 

Fig. 25: A country model, calculated for four Asian countries with a total of 18 cities, considering all semantic classes. The top figure shows the obtained model 

based on the number of patches for each retrieved class. The bottom figure shows the percentage of each semantic class for each country. 

 

 

 
 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3084314, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JSTARS-2021-00425 

 

18 

 

 

 

Fig. 26: A country model, calculated for two North American countries with a total of 15 cities, considering all semantic classes. The top figure shows the 

obtained model based on the number of patches for each retrieved class. The bottom figure shows the percentage of each semantic class for each country. 

 

 

 

 
 

 

Fig. 27: A country model, calculated for six European countries with a total of 27 cities, considering all semantic classes. The top figure shows the obtained 

model based on the number of patches for each retrieved class. The bottom figure shows the percentage of each semantic class for each country. 
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Fig. 28: A country model, calculated for four Middle Eastern countries with a total of 7 cities, considering all semantic classes. The top figure shows the obtained 

model based on the number of patches for each retrieved class. The bottom figure shows the percentage of each semantic class for each country. 

 

 

Fig. 29: A synthesis of all models created with countries belonging to given continents (considering all 53 semantic classes of our model). 

 

5) An ontology model for high-resolution SAR images 

After the processing of TerraSAR-X images (following the 

procedure of Section 4), we generated a data model that 

contains all the information (metadata, images, patches, feature 

vectors, and semantic labels) that was later exploited for a 

semantic definition of the image content. This data model was 

transformed to the standard triple model of RDF [26] and is part 

of our SAR ontology. This model can be further combined with 

other data (e.g., OpenStreetMap [44], Corine Land Cover [41], 

Urban Atlas [45]) and be used for semantical queries and/or for 

statistical analytics. Here, the focus is on the creation of a SAR 

ontology (that was further adapted to urban environments). The 
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semantic label classes obtained after the annotation using a 

scheme with three levels (presented in detail in Fig. 8) are used 

as the main component of our ontology. The definition of the 

SAR ontology [28] is based on the given data model and the 

semantic annotation scheme for high-resolution SAR sensors 

(see Fig. 8). 

Our SAR ontology consists of three parts (as defined in the 

TELEIOS project as “TerraSAR-X semantic catalogue” use 

case [28]): 

• Its first part summarizes the structure of a product, such as 

a TerraSAR-X image together with its metadata being 

associated with the image (e.g., product type, resolution, 

coordinates, acquisition time, incidence angle, orbit 

number, pass direction). 

• A second part that defines the properties of the image data 

(e.g., patches, feature vectors). 

• The third part describes the hierarchical semantic annotation 

scheme (e.g., Settlements, Transportation, Industrial 

production areas) used for semantically annotating the 

classes generated after the active learning (AL) 

classification. 

Fig. 30 shows the SAR ontology composed of the following 

ontology classes (these ontology classes are not the semantic 

classes described in [27] and [28]). 

• Image. This class is related to TerraSAR-X images. An 

instance of this class corresponds to the TerraSAR-X 

images. 

• Product. This class is related to TerraSAR-X products (a 

product contains images and the metadata). An instance of 

this class corresponds with the class Image through the 

property hasImage. 

• Metadata. This class is related to the metadata. An instance 

of this class corresponds with the TerraSAR-X metadata. 

• Patch. This class contains consistsOf patches of an image. 

An instance of this class corresponds with the class Image 

through the property hasImage. 

• FeatureVector. This class is related to the feature vector that 

is computed based on a selected algorithm for each patch. 

An instance of this class corresponds with the feature vector 

value for the class Patch through the property 

hasFeatureVector. 

• LandCoverLandUse. This class is related to the land 

cover/land use of the area occupied by the patch that 

corresponds to a TerraSAR-X image. The class 

LandCoverLandUse contains a number of sub-classes based 

on the semantic classification scheme. 

• SemanticLabel. This class is related to the semantic label 

that is assigned by the user to a patch (via an active learning 

procedure) through the property hasLabel. An instance of 

the class SemanticLabel corresponds with sub-classes of the 

LandCoverLandUse class through the property 

correspondsTo. 

 

Based on the SAR ontology model described above for 

TerraSAR-X, and depicted in Figs. 31 and 32, the model has 

been updated for an urban model (e.g., a city model). For 

exemplification, we chose two cities (used in the previous sub-

section), namely San Francisco and Naples.  

 

 

 

Fig. 30: A general SAR ontology based on the three-level hierarchical classification scheme defining the semantic classes retrieved from a high-resolution SAR 

dataset (e.g., TerraSAR-X). Please note, not all semantic classes in level-2 have also level-3 counterparts (only the human-made classes [1]). 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3084314, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JSTARS-2021-00425 

 

21 

 

Fig. 31: SAR ontology model for the city of San Francisco, U.S.A. 

 

 

Fig. 32: SAR ontology model for the city of Naples, Italy. 

 

 

 

Conclusion: This model ontology can be created for different 

cities and even for countries. In order to analyse the similarities 

or differences between two ontology models, several similarity 

measures such as Kullback-Leibler divergence can be applied 

(see the following equation and Fig. 33). This is an activity 

planned as future research. 

𝐾𝐿′(𝑟1, 𝑟2) = 𝐾𝐿(𝑟1, 𝑟2) +∑𝑝(𝑘𝑖|𝑟1) ∗ 𝐾𝐿′(𝑘𝑖 , 𝑝𝑖)

𝑛

𝑖=1

 

 

 
 

Fig. 33: Similarity measure between two ontologies (e.g., two cities). 
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6) Domain ontologies and knowledge-graph representation 

A domain ontology is the set of definitions and concepts 

pertaining and belonging to a specific domain and shared by the 

users [35], [33]. 

A domain ontology representation is designed in such a way 

as to help users understand and extract the information and 

knowledge that exists in Earth observation product data. A 

typical example is shown in Fig. 34.  

If we look at the left part of the figure, we can see that the 

whole process is divided into two parts: the first part is “data-

driven” and the second part is “user-driven” [31], and each part 

is split into detailed tasks. The right side of the figure is a more 

general one, which shows us how from a general concept, 

following a series of steps, we can reach a specific concept. 

Now we are analysing the upper left part in detail, namely 

the “data-driven” component. This stage is off-line and begins 

with an Earth observation product, in our case, a SAR product 

acquired by TerraSAR-X, its metadata and image analysis 

results, followed by the image parameter estimation. The “user-

driven” stage is an interactive one and starts with the 

classification using a machine learning method with relevance 

feedback (e.g., an AL method with a human-machine 

interaction as a dialogue based on positive and negative 

examples [32]) of the features and to group them into classes. 

At this stage, the user knowledge is collected (when defining 

semantic labels, the user transfers his/her knowledge to the 

system), and the adaptation to the user conjecture is created 

[31]. 

Such a concept was already used for the design and 

implementation of three systems, namely KIM (Knowledge-

based Information Mining) [33], EOLib (Earth Observation 

Image Librarian) [23], and CANDELA [34]. We found similar 

activities with a Mississippi State University team, where 

GeoIRIS [49], GEOSS [50], and SIIM [51] have been 

developed. 

The model presented in Fig. 34 is one for which the levels of 

information enable a simple and systematic representation of 

the image content as well as a link of the image content to the 

user interest expressed semantically in the frame of a given 

domain ontology [31]. 

A semantic label is: (1) defined by expert users with a 

meaning within a certain domain ontology, (2) provided based 

on the user expertise and (3) supplemented by the retrieval of 

primitive image features. The features associated with each 

label help (based on the classification) find all the 

images/patches that contain the corresponding label. 

In Fig. 35, we present an example for the urban domain from 

the vision of a remote sensing expert. For instance, this vision 

can be different for the same domain from the point-of-view of 

a cadastre expert. 

Our first attempts in the field of knowledge graphs are 

described in [56], where a knowledge graph is used to select 

image data combined with additional information and to 

generate from them higher-level interpretation results. The 

linking can be understood as an upwards translation of binary 

data into content-related information.  

We also have to discuss the way from semantics to 

knowledge graphs. As already pointed out by [35], EO 

semantics is gained from various sources and also via various 

modalities or procedures.  

The EO image semantics is extracted mainly by two 

methods. Supervised classifiers are using predefined training 

data, e.g., labelled images, to create a model. Then the model is 

applied to unknown data extracting the trained semantic classes. 

Thus, the generation of the training data plays an important role, 

and the knowledge of how the training data was generated is 

crucial. A particular case of supervised learning is the AL. 
 

 

Fig. 34: A domain ontology representation.  Different domains usually have different ontologies (e.g., Urban, Hydrology). 
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Fig. 35: A domain ontology linked to an urban application. 

 

In a relevance feedback loop (i.e., a human/machine dialogue) 

based on positive and negative examples selected by an expert 

and ranked by a classifier, a model is created. This model has 

the interesting and unique property to gather the domain 

knowledge of the expert. However, the meaning of EO images 

goes beyond the semantic classes of the Earth´s land cover; it 

refers to the identity and quantitative evaluation of physical 

parameters. The extraction of meaningful parameters is based 

on mathematical or statistical models of the observations. In 

this context, the understanding of the Earth´s cover structure or 

processes needs a complete modelling frame. This can be 

represented by a knowledge graph. The nodes of the knowledge 

graph are the semantic classes (or representations of meaningful 

physical parameters), but also of other descriptors from related 

non-EO data sources, as metadata, topological or geometrical 

information, i.e., GIS, thematic maps, text descriptions, or even 

records extracted from social media systems. The layout of the 

graph is ruled by the elements of the domain ontologies, ranking 

from sensor types to application fields. The graph edges 

represent either processes, e.g., active learning for gathering the 

expert knowledge, or forward models for physical parameter 

inversion, but can also be ontological relations among entities.  
 

 

Fig. 36: Knowledge-graph representation adapted to the Urban domain. 
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An example is presented in Fig. 36 for the case of urban 

understanding based on TerraSAR-X images. The knowledge 

graph is explaining the entire chain of relations, from 

time/location of the observations, the primitive SAR image 

descriptors being relevant for urban structure recognition, 

relevant semantic classes, to high-abstraction information 

extracted from heterogenous linked data sources. 

 

 

Conclusion: Another way to describe and characterize a city 

or country is to represent them as a domain ontology or 

knowledge graph. 

 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

Our proposed active learning method (being used as a 

support of our semantic annotation strategy) has many 

advantages in comparison with popular deep learning methods 

[57].  

Expressed in a few words, (a) The active learning method 

needs very few data for training (about 0.1 KB) compared to 

deep learning where several GB of data is needed. (b) The 

training of the active learning component is very fast (some 

minutes) vs. deep learning where several hours are necessary 

for training. (c) The semantic classes are defined by the user, 

while for deep learning they are most often automated. In deep 

learning, the class decision is binary (belonging or not 

belonging to the given class), contrarily to active learning 

where the user defines the class. (d) The classification accuracy 

of the two methods is comparable (appr. 85%). 

Note that for medium-resolution images (e.g., Sentinel-1 [39] 

and Sentinel-2 [40]), the selected semantic labels belong to 

level-1 (the most general ones), and sometimes to level-2. In 

addition, for multispectral images (e.g., for Sentinel-2) there are 

some specific classes that need to be considered (e.g., Clouds) 

in addition to the already defined semantic SAR classes. 

By comparing the retrieved semantic classes from three 

sensors (e.g., TerraSAR-X, Sentinel-1, and Sentinel-2), we can 

see that the number of semantic classes is affected by the 

resolution, but also by the type of the sensor (cf., Fig. 9, Fig. 37, 

and Fig. 38). When analysing these figures, it becomes apparent 

that for the human-made classes, their number is decreasing 

with resolution (from 25 classes in the case of high-resolution 

TerraSAR-X images to 13 classes in the case of the two 

Sentinels). For the classes of natural environments this number 

does not change so much (e.g., 30 classes for TerraSAR-X, and 

28 classes for Sentinel-1, respectively 25 classes for Sentinel-

2). 

This approach can be extended to medium-resolution and 

low-resolution sensors. A first investigation to be considered is 

one using additional Copernicus [55] sensors (e.g., Sentinel-1, 

Sentinel-2, and Sentinel-3). A second study shall consider third-

party sensors (e.g., COSMO-SkyMed, Envisat, Gaofen-3, 

Landsat-7, QuickBird, Pléiades, RADARSAT-2, SPOT-6, and 

WorldView-2). 

As a future plan, we want to analyse the possibility of using 

the knowledge of high-resolution models (already generated for 

TerraSAR-X) in order to transfer and generate models for 

medium-resolution sensors. 
 

 

Fig. 37: Statistical distribution of the semantic labels: (top) The non-urban 

semantic labels and (bottom) The urban semantic labels identified from our 

dataset (see also [39]). This is an example similar to the TerraSAR-X dataset, 

but this time for a Sentinel-1 dataset. 

 

 

 

Fig. 38: Statistical distribution of the semantic labels: (top) The non-urban 

semantic labels and (bottom) The urban semantic labels identified from our 
dataset (see also [40]). The statistics refers to the Sentinel-2 dataset. 
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APPENDIX I 

This appendix provides a state-of-the-art survey of several 

land cover datasets for multispectral and SAR sensors. 

A. Remote sensing multispectral datasets: 

1) UC Merced Land Use Dataset [4]: This is a dataset 

manually built from the USGS National Map Urban Area 

Imagery collection of 20 US cities: Birmingham, Boston, 

Buffalo, Columbus, Dallas, Harrisburg, Houston, 

Jacksonville, Las Vegas, Los Angeles, Miami, Napa, New 

York, Reno, San Diego, Santa Barbara, Seattle, Tampa, 

Tucson, and Ventura. The dataset includes 21 land use 

classes: Agricultural, Airplane, Baseball diamond, Beach, 

Buildings, Chaparral, Dense residential, Forest, Freeway, 

Golf course, Harbour, Intersection, Medium residential, 

Mobile home park, Overpass, Parking lot, River, Runway, 

Sparse residential, Storage tanks, and Tennis court [6]. 

These classes were selected based on their variety of spatial 

patterns and are homogeneous with respect to texture and 

colour. Each class contains 100 patches of 256×256 pixels 

with a pixel spacing of 1 foot (0.3048 m). 

2) SpaceNet Dataset [5]: This is a corpus of images made 

available by Digital Globe over six international cities: Rio 

de Janeiro (Brazil), Las Vegas (Nevada, U.S.A.), Paris 

(France), Shanghai (China), Khartoum (Sudan), and 

Atlanta (Georgia, U.S.A.). The dataset contains high-

resolution WorldView-2 and WorldView-3 images [46], 

and each image covers 200 m2 on ground with building 

annotations. 

3) SAT-4 and SAT-6 Airborne Datasets [6]: This is a dataset 

extracted from the National Agriculture Imagery Program 

(NAIP) collection. A commercial image labelling tool was 

used to manually label uniform image patches. Each image 

was tiled into patches covering different classes like Rural 

areas, Urban areas, Densely forested, Mountainous 

terrain, Small to large water bodies, Agricultural areas, 

etc. covering the whole state of California. The patch size 

is 28×28 pixels with a pixel spacing of 1 m. 

The SAT-4 Dataset consists of 500,000 patches covering 

four land cover classes: Barren land, Trees, Grassland, and 

a class that contains all other land cover classes.  

The SAT-6 Dataset consists of 405,000 patches covering 

six land cover classes: Barren land, Trees, Grassland, 

Roads, Buildings, and Water bodies. 

4) High-Resolution Satellite Scene Dataset [7]: This is a 

collection of satellite image patches available via Google 

Earth that contains 12 classes: Airport, Bridge, River, 

Forest, Meadow, Pond, Parking, Port, Viaduct, Residential 

area, Industrial area, and Commercial area. For each class 

there are 50 patches of 16×16 pixels. 

5) Data Fusion Contest Dataset [8]: This dataset was 

compiled during several previous IGARSS conferences 

and aims to promote different topics of research such as: 

registration, change detection, multi-temporal analysis, 

object detection and tracking, image classification, etc. 

For example, very high-resolution datasets are available 

that cover Urban and Harbour areas in Vancouver, 

Canada (acquired in 2016), Urban and Harbour areas in 

Zeebrugge, Belgium (acquired in 2015), Urban areas near 

Thetford Mines in Québec, Canada (acquired in 2014), etc. 

As a result of the contest, the test images were annotated 

with a predefined number of classes. 

6) AID dataset [9]: This dataset is a large-scale data set 

containing 30 aerial Google Earth classes: Airport, Bare 

land, Baseball field, Beach, Bridge, Center, Church, 

Commercial, Dense residential, Desert, Farmland, Forest, 

Industrial, Meadow, Medium residential, Mountain, Park, 

Parking, Playground, Pond, Port, Railway station, Resort, 

River, School, Sparse residential, Square, Stadium, 

Storage tanks and Viaduct. The AID (Aerial Image Data 

Set) covers different countries and regions from all over the 

world (China, France, Germany, Italy, Japan, UK, US, etc.) 

collected at different times and seasons. There are between 

200 to 400 patches with a size of 600×600 pixels for each 

class. 

7) BigEarthNet Dataset [10]: This dataset is a large-scale 

Sentinel-2 [39] data collection that consists of 125 images 

(590,326 image patches with a size of 120×120 pixels) 

acquired between June 2017 and May 2018. The data cover 

ten European countries: Austria, Belgium, Finland, Ireland, 

Kosovo, Lithuania, Luxembourg, Portugal, Serbia, and 

Switzerland. Each patch is semantically annotated (into 45 

classes) using a multi-label approach provided by the 

European CORINE Land Cover database in 2018 [41] such 

as: Mixed forest, Coniferous forest, Non-irrigated arable 

land, Transitional woodland/shrub, Broad-leaved forest, 

Land principally occupied by agriculture with significant 

areas of natural vegetation, Complex cultivation patterns, 

Pastures, Water bodies, Sea and ocean, Discontinuous 

urban fabric, Agro-forestry areas, Peatbogs, Permanently 

irrigated land, Industrial or commercial units, Natural 

grassland, Olive groves, Sclerophyllous vegetation, 

Continuous urban fabric, Water courses, Vineyards, 

Annual crops associated with permanent crops, Inland 

marshes, Moors and heathland, Sport and leisure facilities, 

Fruit trees and berry plantations, Mineral extraction sites, 

Rice fields, Road and rail networks and associated land, 

Bare rock, Green urban areas, Beaches, Dunes, Sands, 

Sparsely vegetated areas, Salt marshes, Coastal lagoons, 

Construction sites, Estuaries, Intertidal flats, Airports, 

Dump sites, Port areas, Saline, and Burnt area. 

8) SEN12MS Dataset [11]: The SEN12MS (a curated dataset 

of georeferenced multi-band Sentinel-1 and Sentinel-2 

imagery for deep learning and data fusion) dataset contains 

180,662 patches (of 256×256 pixels) extracted from three 

sensors: Sentinel-2, MODIS [42], and Sentinel-1 that cover 

256 cities.  

9) So2Sat LCZ42 Dataset [12]: This is a dataset consisting of 

42 co-registered images of Sentinel-1 and Sentinel-2. Their 

patch size is 32×32 pixels. These images cover cities from 

all over the world using 17 classes: Compact high-rise, 

Compact mid-rise, Compact low-rise, Open high-rise, 

Open mid-rise, Open low-rise, Lightweight low-rise, Large 

low-rise, Sparsely built, Heavy industry, Dense trees, 
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Scattered trees, Bush-scrub, Low plants, Bare rock or 

paved, Bare soil or sand, and Water.  

10) EUROSAT Dataset [13]: This is a Sentinel-2 image dataset 

that contains 27,000 patches of 64×64 pixels. The dataset 

is distributed over 34 European cities from: Austria, 

Belarus, Belgium, Bulgaria, Cyprus, Czech Republic, 

Denmark, Estonia, Finland, France, Germany, Greece, 

Hungary, Iceland, Ireland, Italy/Holy See, Latvia, 

Lithuania, Luxembourg, Macedonia, Malta, Republic of 

Moldova, Netherlands, Norway, Poland, Portugal, 

Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, 

Ukraine, and UK. The patches are labelled with ten classes: 

Industrial buildings, Residential buildings, Annual crop, 

Permanent crop, River, Sea and lake, Herbaceous 

vegetation, Highway, Pasture, and Forest. 

B. Remote sensing SAR datasets: 

1) MSTAR Dataset [14]: The MSTAR (Moving and 

Stationary Target Acquisition and Recognition dataset) 

dataset is a well-known X-band SAR dataset for standard 

Automatic Target Recognition (ATR) of military objects. 

There are two public collections: The September 95 

Collection containing 20 target types plus eventually 

different articulation, obscuration, and camouflage, while 

the November 96 Collection contains 27 targets types plus 

articulation and obscuration. These datasets are divided 

into four sub-datasets: MSTAR Clutter, MSTAR Targets, 

MSTAR/IU T-72 Variants, and MSTAR/IU Mixed 

Targets. In total, there are 17,096 target patches with 

selectable number of pixels ranging from 54×54 pixels to 

192×192 pixels. 

2) OpenSARShip Dataset [15]: This is a dedicated dataset for 

ship identification based on Sentinel-1 data. This dataset 

contains 41 images (11,346 patches of 50×50 pixels). The 

port locations of these images are around big cities in 

China, Japan, and Singapore: Shanghai, Shenzhen, Tianjin, 

Yokohama, and Singapore. There are 17 pre-defined 

labels: Cargo, Tanker, Passenger, Law enforcement, Anti-

pollution equipment, Port tender, Tug, Search and rescue 

vessel, Pilot vessel, High-speed craft, Diving ops, 

Dredging ops, Underwater ops, Towing, Fishing, Wing in 

ground, and Other type. 

3) OpenSARUrban Dataset [16]: This Sentinel-1 dataset 

covers 21 metropolis cities in China (e.g., Shanghai, 

Beijing, Hangzhou, Wuhan, etc.). The images are tiled into 

33,358 patches of 100×100 pixels. For these cities, ten 

labels are defined: Skyscraper, Dense and low-rise 

residential buildings, High-rise buildings, Villas, General 

residential areas, Storage areas, Airports, Railways, 

Highways, and Vegetation. 

4) TenGeoP-SARwv Dataset [17]: This Sentinel-1 dataset 

covers open ocean areas and is tiled into 37,000 patches. 

This SAR imagery dataset of ten geophysical phenomena 

from Sentinel-1 wave mode (TenGeoP-SARwv) is labelled 

with ten classes: Pure ocean waves, Wind streaks, Micro-

convective cells, Rain cells, Biological slicks, Sea ice, 

Icebergs, Low-wind area, Atmospheric front and Oceanic 

front. 

5) Sea Ice and Iceberg Dataset [18]: This Sentinel-1 dataset 

covers the Danmarkshavn region on the east coast of 

Greenland. In total, there are 12 images that are labelled 

with different ice types classes. 

6) Ice Types and Ice Edge Dataset [19]: This dataset consists 

of 31 images manually labelled using co-registered optical 

images (Sentinel-2 and Sentinel-3 [54]). There are six ice 

type classes: Open water, Newly formed ice, 

Brash/pancake ice, Young ice, Thin to medium first-year 

ice, Thick, and Deformed ice. The patch size is defined at 

three levels: 10×10 pixels with a total of 18,441 patches, 

20×20 pixels with a total of 16,574 patches, and 32×32 

pixels with a total of 14,747 patches. 

 

APPENDIX II 

This appendix presents the IDs of each selected TerraSAR-

X product, and their locations being used for analysis and a 

benchmark dataset creation. 

 

 
TABLE AII.1 

THE IDS OF EACH TERRASAR-X PRODUCT AND THEIR LOCATION (COMPILED DURING PHASE I AND PHASE II COVERING AFRICA, ASIA, EUROPE, MIDDLE EAST, 

AND SOUTH AND NORTH AMERICA). THE TERRASAR-X PRODUCTS USED FOR DEMONSTRATION IN APPENDIX III ARE MARKED IN RED. 

No. TerraSAR-X product id Location (city, country) 

Africa 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T175652_20080417T175653 Oran, Algeria 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20080606T174113_20080606T174113 Abuja, Nigeria 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20071123T165517_20071123T165518 Port Elizabeth, South Africa 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20090414T180622_20090414T180623 Lomé, Togo 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20071130T163306_20071130T163306 Bulawayo, Zimbabwe 

Asia 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20080105T093811_20080105T093812 Anshan, China 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20080101T221736_20080101T221737 Binhai, China 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20080102T220022_20080102T220023 Dalian, China 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20080101T221813_20080101T221814 Jinan, China 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20080105T093821_20080105T093821 Shenyang, China 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T130704_20080417T130705 Belgaum, India 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T130747_20080417T130748 Pune, India 
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8 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T130846_20080417T130847 Vadodara, India 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20100506T110921_20100506T110922 Jakarta, Indonesia 

10 TSX1_SAR__MGD_RE___HS_S_SRA_20080216T083621_20080216T083621 Tokyo, Japan 

11 TSX1_SAR__GEC_RE___SM_S_SRA_20080921T204303_20080921T204310 Sendai, Japan 

12 TSX1_SAR__GEC_RE___SM_S_SRA_20101020T204313_20101020T204320 Sendai, Japan 

13 TSX1_SAR__GEC_RE___SM_S_SRA_20110312T204309_20110312T204315 Sendai, Japan 

14 TSX1_SAR__GEC_RE___SM_S_SRA_20110323T204308_20110323T204315 Sendai, Japan 

15 TSX1_SAR__GEC_RE___SM_S_SRA_20110506T204311_20110506T204317 Sendai, Japan 

16 TSX1_SAR__GEC_RE___SM_S_SRA_20110517T204311_20110517T204317 Sendai, Japan 

17 TSX1_SAR__GEC_RE___SM_S_SRA_20110528T204312_20110528T204318 Sendai, Japan 

18 TSX1_SAR__GEC_RE___SM_S_SRA_20110608T204313_20110608T204319 Sendai, Japan 

19 TSX1_SAR__GEC_RE___SM_S_SRA_20110619T204313_20110619T204319 Sendai, Japan 

20 TSX1_SAR__MGD_RE___HS_S_SRA_20100715T113823_20100715T113824 Alor Setar, Malaysia 

21 TSX1_SAR__MGD_RE___HS_S_SRA_20100710T112903_20100710T112904 Kuala Lumpur, Malaysia 

22 TSX1_SAR__MGD_RE___HS_S_SRA_20100710T112856_20100710T112856 Seremban, Malaysia 

23 TSX1_SAR__MGD_RE___HS_S_SRA_20120927T093801_20120927T093802 Pyongyang, North Korea 

24 TSX1_SAR__MGD_RE___HS_S_SRA_20080530T012137_20080530T012138 Jacobabad, Pakistan 

25 TSX1_SAR__MGD_RE___HS_S_SRA_20080220T135055_20080220T135055 Krutorozhino, Russia 

26 TSX1_SAR__MGD_RE___HS_S_SRA_20080221T150945_20080221T150946 Moscow South, Russia 

27 TSX1_SAR__MGD_RE___HS_S_SRA_20080427T150945_20080427T150946 Moscow Center, Russia 

28 TSX1_SAR__MGD_RE___HS_S_SRA_20090127T150946_20090127T150946 Moscow North, Russia 

29 TSX1_SAR__MGD_RE___HS_S_SRA_20100522T111956_20100522T111956 Singapore, Singapore 

30 TSX1_SAR__MGD_RE___HS_S_SRA_20090302T213515_20090302T213516 Daejeon, South Korea 

31 TSX1_SAR__MGD_RE___HS_S_SRA_20111227T093724_20111227T093725 Suwon, South Korea 

32 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T131332_20080417T131333 Khujand, Tajikistan 

33 TSX1_SAR__MGD_RE___HS_S_SRA_20080617T112306_20080617T112307 Thailand, Bangkok 

34 TSX1_SAR__MGD_RE___HS_S_SRA_20100607T112955_20100607T112956 Mueang Yala, Bangkok 

35 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T131349_20080417T131349 Tashkent, Uzbekistan 

Europe 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20090629T170303_20090629T170303 Oslo, Norway 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20071213T175041_20071213T175042 Bordeaux, France 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20080103T055248_20080103T055249 Lyon, France  

4 TSX1_SAR__MGD_RE___HS_S_SRA_20071127T174146_20071127T174147 Toulouse, France 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20080919T052516_20080919T052517 Berlin, Germany 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20091103T165235_20091103T165236 Berlin, Germany 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20080106T171744_20080106T171744 Bonn, Germany 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20080211T054213_20080211T054214 Bremen, Germany 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20081007T171757_20081007T171758 Cologne, Germany 

10 TSX1_SAR__EEC_RE___SM_S_SRA_20080626T165225_20080626T165233 Elbe River, Germany 

11 TDX1_SAR__EEC_RE___SM_S_SRA_20130615T165250_20130615T165258 Elbe River, Germany 

12 TSX1_SAR__MGD_RE___HS_S_SRA_20090822T171727_20090822T171728 Karlsruhe, Germany 

13 TSX1_SAR__MGD_RE___HS_S_SRA_20080803T170134_20080803T170135 Kiel, Germany 

14 TSX1_SAR__MGD_RE___HS_S_SRA_20090709T171659_20090709T171700 Lindau, Germany 

15 TSX1_SAR__MGD_RE___HS_S_SRA_20090929T172611_20090929T172612 Mannheim, Germany 

16 TSX1_SAR__MGD_RE___HS_S_SRA_20080324T165948_20080324T165949 Munich, Germany 

17 TSX1_SAR__MGD_RE___HS_S_SRA_20080118T165948_20080118T165949 Oldenburg, Germany 

18 TSX1_SAR__MGD_RE___HS_S_SRA_20100319T171722_20100319T171723 Stuttgart, Germany 

19 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T162157_20080417T162157 Chania, Greece 

20 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T162304_20080417T162305 Larissa, Greece 

21 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T162318_20080417T162319 Thessaloniki, Greece 

22 TSX1_SAR__MGD_RE___SM_D_SRA_20170119T044614_20170119T044622 Greece and Albania 

23 TSX1_SAR__MGD_RE___HS_S_SRA_20080104T053554_20080104T053555 Genoa, Italy 

24 TSX1_SAR__MGD_RE___HS_S_SRA_20071124T165907_20071124T165908 Venice, Italy 

25 TSX1_SAR__MGD_RE___HS_S_SRA_20120405T171645_20120405T171646 Trento, Italy 

26 TSX1_SAR__MGD_RE___HS_S_SRA_20080727T051106_20080727T051107 Naples, Italy 

27 TSX1_SAR__MGD_RE___HS_S_SRA_20100219T051110_20100219T051111 Puzzuoli, Italy 

28 TSX1_SAR__MGD_RE___HS_S_SRA_20101203T045412_20101203T045412 Taranto, Italy 

29 TSX1_SAR__MGD_RE___HS_S_SRA_20121006T163243_20121006T163244 Skopje, Macedonia 

30 TSX1_SAR__MGD_RE___SM_S_SRA_20150515T060009_20150515T060014 Flevoland, Netherlands 

31 TSX1_SAR__MGD_RE___SM_S_SRA_20150513T171853_20150513T171901 North Holland, Netherlands 

32 TSX1_SAR__MGD_RE___HS_S_SRA_20090921T055126_20090921T055127 Rotterdam, Netherlands 

33 TSX1_SAR__MGD_RE___HS_S_SRA_20120618T163539_20120618T163539 Bydgoszcz, Poland 

34 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T162603_20080417T162604 Czestochowa, Poland 

35 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T162617_20080417T162618 Lodz, Poland 

36 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T162638_20080417T162639 Torun, Poland 
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37 TSX1_SAR__MGD_RE___HS_S_SRA_20071211T182413_20071211T182413 Porto, Portugal 

38 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T162441_20080417T162442 Timisoara, Romania 

39 TSX1_SAR__MGD_RE___HS_S_SRA_20100827T043541_20100827T043541 Teica, Romania 

40 TSX1_SAR__MGD_RE___HS_S_SRA_20080220T135244_20080220T135244 Perm, Russia 

41 TSX1_SAR__MGD_RE___HS_S_SRA_20080221T150727_20080221T150728 Rostov on Don, Russia 

42 TSX1_SAR__MGD_RE___HS_S_SRA_20080221T150920_20080221T150920 Tula, Russia 

43 TSX1_SAR__MGD_RE___HS_S_SRA_20120925T163328_20120925T163329 Belgrade, Serbia 

44 TSX1_SAR__MGD_RE___HS_S_SRA_20110314T180700_20110314T180700 Madrid, Spain 

45 TSX1_SAR__MGD_RE___HS_S_SRA_20080417T162824_20080417T162825 Vaesteras, Sweden 

46 TSX1_SAR__MGD_RE___HS_S_SRA_20071225T051437_20071225T051438 Stockholm, Sweden 

47 TSX1_SAR__MGD_RE___HS_S_SRA_20080105T051432_20080105T051433 Uppsala, Sweden 

48 TSX1_SAR__MGD_RE___HS_S_SRA_20080517T171656_20080517T171657 Basel, Switzerland 

49 TSX1_SAR__MGD_RE___HS_S_SRA_20080308T151336_20080308T151337 Djarbakir, Turkey 

50 TSX1_SAR__MGD_RE___HS_S_SRA_20111105T150530_20111105T150530 Van, Turkey 

51 TSX1_SAR__MGD_RE___HS_S_SRA_20080426T061721_20080426T061722 Portsmounth, UK 

52 TSX1_SAR__MGD_RE___HS_S_SRA_20080428T180049_20080428T180049 Portsmounth, UK 

53 TSX1_SAR__MGD_RE___HS_S_SRA_20090112T175227_20090112T175228 London, UK 

54 TSX1_SAR__MGD_RE___HS_S_SRA_20101216T180937_20101216T180937 Plymouth, UK 

Middle East 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20080424T141832_20080424T141832 Dubai, United Arab Emirates 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20120917T153849_20120917T153850 Beirut, Lebanon 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20100104T144554_20100104T144555 Bandar Imam Khomeini, Iran 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20081217T020508_20081217T020509 Bandar-e-Abbas, Iran 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20120930T025439_20120930T025440 Mahabad, Iran 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20090122T145515_20090122T145515 Baghdad, Iraq 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20091123T154638_20091123T154639 Ashdod, Israel 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20121011T150153_20121011T150153 Riyadh, Saudi Arabia 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20121228T144502_20121228T144503 Dhahran, Saudi Arabia 

North America 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20100713T012058_20100713T012058 Calgary, Canada 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20110802T111219_20110802T111220 Ottawa, Canada 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20120418T230130_20120418T230131 Ottawa, Canada 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20080420T142039_20080420T142040 Vancouver, Canada 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20090516T010702_20090516T010702 Ciudad Juarez, Mexico 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20080807T013407_20080807T013407 Los Angeles, U.S.A. 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20100630T015032_20100630T015032 North San Diego, U.S.A. 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20100915T015039_20100915T015040 Poway, U.S.A. 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20080319T140558_20080319T140559 Reno, U.S.A. 

10 TSX1_SAR__MGD_RE___HS_S_SRA_20111024T141527_20111024T141528 San Francisco, U.S.A. 

11 TSX1_SAR__MGD_RE___HS_S_SRA_20080221T135841_20080221T135841 Santa Clarita, U.S.A. 

12 TSX1_SAR__MGD_RE___HS_S_SRA_20111113T014206_20111113T014207 South San Diego, U.S.A. 

13 TSX1_SAR__MGD_RE___HS_S_SRA_20100916T013327_20100916T013327 Sun Lakes, U.S.A. 

14 TSX1_SAR__MGD_RE___HS_S_SRA_20090519T015021_20090519T015021 Tijuana, U.S.A. 

15 TSX1_SAR__MGD_RE___HS_S_SRA_20100615T012430_20100615T012431 Tucson, U.S.A. 

16 TSX1_SAR__MGD_RE___HS_S_SRA_20080303T225930_20080303T225931 Washington DC, U.S.A. 

17 TSX1_SAR__MGD_RE___HS_S_SRA_20090120T111345_20090120T111346 Washington DC, U.S.A. 

Central and South America 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20090206T230744_20090206T230745 Bogota, Columbia 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20081120T232958_20081120T232958 Havana, Cuba 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20080904T231959_20080904T232000 Nazca Lines, Peru 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20080907T104449_20080907T104449 Nazca Lines, Peru 

 
TABLE AII.2 

THE IDS OF EACH TERRASAR-X PRODUCT AND THEIR LOCATIONS OVER THE WORLD (IN PHASE III COVERING AFRICA, ASIA, EUROPE, MIDDLE EAST, AND SOUTH 

AND NORTH AMERICA).  

No. TerraSAR-X product id Location (city, country) 

Africa 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20081211T155307_20081211T155308 Aswan High Dam, Egypt 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20110205T160324_20110205T160325 Cairo, Egypt 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20101126T034800_20101126T034801 Al Marj, Egypt 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20100329T155511_20100329T155511 Damietta, Egypt 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20090719T034754_20090719T034755 Kafr Ghatati, Egypt 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20081023T154438_20081023T154439 Assuan-Barrage, Egypt 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3084314, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

JSTARS-2021-00425 

 

29 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20130205T174850_20130205T174851 Algiers, Algeria 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20130206T052324_20130206T052325 Zarzaitine Airport, Algeria 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20130216T174510_20130216T174511 Tamanrasset Airport, Algeria 

10 TSX1_SAR__MGD_RE___HS_S_SRA_20111205T070214_20111205T070214 Mlonp, Senegal 

11 TSX1_SAR__MGD_RE___HS_S_SRA_20080828T190908_20080828T190908 Dakar, Senegal 

12 TSX1_SAR__MGD_RE___HS_S_SRA_20071116T190901_20071116T190902 Dakar, Senegal 

13 TSX1_SAR__MGD_RE___HS_S_SRA_20100603T052903_20100603T052903 Lagos, Nigeria 

14 TSX1_SAR__MGD_RE___HS_S_SRA_20090414T180622_20090414T180623 Lomé, Togo 

15 TSX1_SAR__MGD_RE___HS_S_SRA_20090114T184515_20090114T184516 Tenoumer, Mauritania 

16 TDX1_SAR__MGD_RE___HS_S_SRA_20110112T061220_20110112T061221 Abidjan, Ivory Coast 

17 TSX1_SAR__MGD_RE___HS_S_SRA_20110713T162421_20110713T162422 Muglad, Sudan 

18 TSX1_SAR__MGD_RE___HS_S_SRA_20110923T161532_20110923T161533 Heglig Airport, Sudan 

19 TSX1_SAR__MGD_RE___HS_S_SRA_20121121T035150_20121121T035151 Khartoum, Sudan 

20 TSX1_SAR__MGD_RE___HS_S_SRA_20100330T171306_20100330T171307 Tripoli, Libya 

21 TSX1_SAR__MGD_RE___HS_S_SRA_20110404T043935_20110404T043935 Marsa al Brega, Libya 

22 TSX1_SAR__MGD_RE___HS_S_SRA_20071117T172054_20071117T172054 Nalut, Libya 

23 TSX1_SAR__MGD_RE___HS_S_SRA_20100106T051353_20100106T051354 Al Jabal al Gharbi, Libya 

24 TSX1_SAR__MGD_RE___HS_S_SRA_20071112T171224_20071112T171225 Al Mallasah al Gharbiyah, Libya 

25 TSX1_SAR__MGD_RE___HS_S_SRA_20110115T051354_20110115T051354 Al Jabal al Gharbi, Libya 

26 TSX1_SAR__MGD_RE___HS_S_SRA_20110712T044912_20110712T044913 Matadi, Congo 

27 TSX1_SAR__MGD_RE___HS_S_SRA_20120919T044135_20120919T044136 Luanda, Angola 

28 TSX1_SAR__MGD_RE___HS_S_SRA_20081123T161220_20081123T161220 Goma, Rwanda 

29 TDX1_SAR__MGD_RE___HS_S_SRA_20120724T165652_20120724T165653 Koffiefontein, South Africa 

30 TSX1_SAR__MGD_RE___HS_S_SRA_20130604T032055_20130604T032056 Durban, South Africa 

31 TSX1_SAR__MGD_RE___HS_S_SRA_20130608T034532_20130608T034533 Bafokeng, South Africa 

32 TSX1_SAR__MGD_RE___HS_S_SRA_20081003T163144_20081003T163145 Tambo Airport, South Africa 

33 TSX1_SAR__MGD_RE___HS_S_SRA_20090607T164018_20090607T164018 Valhalla, South Africa 

34 TSX1_SAR__MGD_RE___HS_S_SRA_20090918T170536_20090918T170536 Lohatla, South Africa 

35 TSX1_SAR__MGD_RE___HS_S_SRA_20091205T033859_20091205T033859 Baviaanskloof, South Africa 

36 TSX1_SAR__MGD_RE___HS_S_SRA_20100130T032036_20100130T032037 Durban, South Africa 

37 TSX1_SAR__MGD_RE___HS_S_SRA_20100328T172953_20100328T172954 Cape Town, South Africa 

38 TSX1_SAR__MGD_RE___HS_S_SRA_20100509T032039_20100509T032040 Durban, South Africa 

39 TSX1_SAR__MGD_RE___HS_S_SRA_20100514T164017_20100514T164018 Johannesburg, South Africa 

40 TSX1_SAR__MGD_RE___HS_S_SRA_20091125T132702_20091125T132703 Point Marianne, Br. Ind. Ocean Territory 

41 TSX1_SAR__MGD_RE___HS_S_SRA_20100419T173537_20100419T173537 Lobito, Angola 

Asia 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20080926T223156_20080926T223157 Sanya, Vietnam 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20130406T231447_20130406T231448 Sanya Airport, Vietnam 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20110926T222353_20110926T222354 Woody Island, Vietnam 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20100620T224243_20100620T224244 My Tho, Vietnam 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20100701T105640_20100701T105641 Ho Chi Minh, Vietnam 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20100523T225122_20100523T225123 Rach Gia, Vietnam 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20100529T224105_20100529T224106 Hue, Vietnam 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20100513T223357_20100513T223357 Phan Thiet, Vietnam 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20100518T105756_20100518T105757 Da Nang, Vietnam 

10 TSX1_SAR__MGD_RE___HS_S_SRA_20100715T113823_20100715T113824 Alor Star, Malaysia 

11 TSX1_SAR__MGD_RE___HS_S_SRA_20100511T230937_20100511T230938 Alor Star, Malaysia 

12 TSX1_SAR__MGD_RE___HS_S_SRA_20100506T230101_20100506T230101 Kota Bharu, Malaysia 

13 TSX1_SAR__MGD_RE___HS_S_SRA_20130618T225334_20130618T225335 Shah Alam, Malaysia 

14 TSX1_SAR__MGD_RE___HS_S_SRA_20100613T230921_20100613T230922 Songkhla, Thailand 

15 TSX1_SAR__MGD_RE___HS_S_SRA_20091208T230811_20091208T230812 Ko Lak, Thailand 

16 TSX1_SAR__MGD_RE___HS_S_SRA_20100515T220312_20100515T220313 Banjarmasin, Indonesia 

17 TSX1_SAR__MGD_RE___HS_S_SRA_20110604T220226_20110604T220226 Samarinda, Indonesia 

https://plus.google.com/100844892180950170021/about?gl=US&hl=en&ved=0CA0Q2QY&sa=X&ei=C5EIUsaJIY7QsgbgnYCoAw
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18 TSX1_SAR__MGD_RE___HS_S_SRA_20090105T012029_20090105T012029 Khanqah Sirajia, Pakistan 

19 TSX1_SAR__MGD_RE___HS_S_SRA_20130130T131205_20130130T131206 Islamabad, Pakistan 

20 TDX1_SAR__MGD_RE___HS_S_SRA_20130205T130257_20130205T130257 Lahore, Pakistan 

21 TSX1_SAR__MGD_RE___HS_S_SRA_20130418T125628_20130418T125628 Kashi, China 

22 TSX1_SAR__MGD_RE___HS_S_SRA_20090715T103740_20090715T103740 Brunei-Muara, Brunei 

23 TSX1_SAR__MGD_RE___HS_S_SRA_20100507T105407_20100507T105408 Kuching, Brunei 

24 TSX1_SAR__MGD_RE___HS_S_SRA_20110130T005547_20110130T005548 New Delhi Airport, India 

25 TSX1_SAR__MGD_RE___HS_S_SRA_20100521T232409_20100521T232410 Mawlamyine, Burma 

26 TSX1_SAR__MGD_RE___HS_S_SRA_20091201T114951_20091201T114951 Yangon, Burma 

27 TDX1_SAR__MGD_RE___HS_S_SRA_20121006T132233_20121006T132234 Khujand, Tajikistan 

28 TDX1_SAR__MGD_RE___HS_S_SRA_20120914T132248_20120914T132249 Tashkent, Uzbekistan 

29 TSX1_SAR__MGD_RE___HS_S_SRA_20130321T230641_20130321T230642 Wattay Airport, Laos 

Europe 

1 TDX1_SAR__MGD_RE___HS_S_SRA_20120622T170056_20120622T170057 Nossen, Germany 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20081213T170029_20081213T170030 Aschaffenburg, Germany 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20090221T050826_20090221T050826 Dresden, Germany 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20090822T171800_20090822T171800 Hambach Lignite Mine, Germany 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20091127T053441_20091127T053442 Frankfurt Airport, Germany 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20120621T171735_20120621T171736 Stuttgart, Germany  

7 TSX1_SAR__MGD_RE___HS_S_SRA_20130115T051717_20130115T051717 Leipzig / Halle Airport, Germany 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20101222T054259_20101222T054300 Kasslerfeld, Germany  

9 TSX1_SAR__MGD_RE___HS_S_SRA_20130121T172651_20130121T172652 Düsseldorf Airport, Germany 

10 TSX1_SAR__MGD_RE___HS_D_SRA_20080204T165119_20080204T165120 Hohenkammer, Germany 

11 TSX1_SAR__MGD_RE___HS_S_SRA_20071216T165941_20071216T165942 Oberau, Germany 

12 TSX1_SAR__MGD_RE___HS_S_SRA_20081017T051755_20081017T051756 Traunreut, Germany 

13 TSX1_SAR__MGD_RE___HS_S_SRA_20111107T052646_20111107T052647 Hallein District, Austria 

14 TSX1_SAR__MGD_RE___HS_S_SRA_20110318T062021_20110318T062022 Madrid Airport, Spain 

15 TSX1_SAR__MGD_RE___HS_S_SRA_20090213T055404_20090213T055405 Barcelona, Spain 

16 TSX1_SAR__MGD_RE___HS_S_SRA_20090630T181527_20090630T181528 Torrejon Airport, Spain 

17 TSX1_SAR__MGD_RE___HS_S_SRA_20080812T173438_20080812T173439 Paris 16th arrondissement, France 

18 TSX1_SAR__MGD_RE___HS_S_SRA_20090324T054331_20090324T054331 Strasbourg, France 

19 TSX1_SAR__MGD_RE___HS_S_SRA_20130722T171624_20130722T171625 Cannes, France 

20 TSX1_SAR__MGD_RE___HS_S_SRA_20130801T173331_20130801T173331 Marseille, France 

21 TSX1_SAR__MGD_RE___HS_S_SRA_20090215T173425_20090215T173426 Montereau, France 

22 TSX1_SAR__MGD_RE___HS_S_SRA_20130623T174335_20130623T174336 North of Paris, France 

23 TSX1_SAR__MGD_RE___HS_S_SRA_20120918T044434_20120918T044435 Belgrade, Serbia 

24 TSX1_SAR__MGD_RE___HS_S_SRA_20100718T154545_20100718T154546 Helsinki, Finland 

25 TSX1_SAR__MGD_RE___HS_S_SRA_20110604T060016_20110604T060017 Zeebrugge, Belgium 

26 TSX1_SAR__MGD_RE___HS_S_SRA_20110820T042649_20110820T042650 Targu Mures, Romania 

27 TSX1_SAR__MGD_RE___HS_S_SRA_20130227T161615_20130227T161616 Ramnicu Valcea, Romania 

28 TSX1_SAR__MGD_RE___HS_S_SRA_20080930T160714_20080930T160714 Bucharest, Romania 

29 TSX1_SAR__MGD_RE___HS_S_SRA_20130624T155022_20130624T155023 Cernavoda, Romania 

30 TSX1_SAR__MGD_RE___HS_S_SRA_20130624T155039_20130624T155040 Galati, Romania 

31 TSX1_SAR__MGD_RE___HS_S_SRA_20100830T173519_20100830T173520 Roermond, Netherlands 

32 TSX1_SAR__MGD_RE___HS_S_SRA_20090108T172651_20090108T172651 West of Amsterdam, Netherlands 

33 TSX1_SAR__MGD_RE___HS_S_SRA_20090706T055114_20090706T055115 East of Amsterdam, Netherlands 

34 TSX1_SAR__MGD_RE___HS_S_SRA_20090921T055126_20090921T055127 Port of Rotterdam, Netherlands 

35 TSX1_SAR__MGD_RE___HS_S_SRA_20090901T173521_20090901T173521 Zeeland, Netherlands 

36 TSX1_SAR__MGD_RE___HS_S_SRA_20080326T193235_20080326T193236 Caba da Praia / Terceira Island, Portugal 

Middle East 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20090323T012001_20090323T012001 Afshar, Afghanistan 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20090511T012929_20090511T012930 Kandahar Airport, Afghanistan 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20090521T135505_20090521T135506 Herat Airport, Afghanistan 
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4 TDX1_SAR__MGD_RE___HS_S_SRA_20101112T133721_20101112T133722 Kandahar Airport, Afghanistan 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20130412T023134_20130412T023134 Riffa, Bahrain 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20130509T144455_20130509T144456 Ras Laffan, Qatar 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20130531T144445_20130531T144446 Abu Nakhlah, Qatar 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20130204T024735_20130204T024735 Basrah Airport, Iraq 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20120913T030415_20120913T030416 Alexandria, Iraq 

10 TDX1_SAR__MGD_RE___HS_S_SRA_20120623T150409_20120623T150410 Baghdad, Iraq 

11 TSX1_SAR__MGD_RE___HS_S_SRA_20080928T150353_20080928T150353 Baghdad, Iraq 

12 TSX1_SAR__MGD_RE___HS_S_SRA_20081225T025515_20081225T025515 Baghdad, Iraq 

13 TSX1_SAR__MGD_RE___HS_S_SRA_20110522T153803_20110522T153803 Ein Gedi, Israel 

14 TDX1_SAR__MGD_RE___HS_S_SRA_20130322T141824_20130322T141825 Mawaleh, Oman 

15 TDX1_SAR__MGD_RE___HS_S_SRA_20120621T153840_20120621T153840 Damascus, Syria 

16 TSX1_SAR__MGD_RE___HS_S_SRA_20130205T023128_20130205T023129 King Fahd Airport, Saudi Arabia 

17 TSX1_SAR__MGD_RE___HS_S_SRA_20120914T024911_20120914T024912 Riyadh, Saudi Arabia 

18 TSX1_SAR__MGD_RE___HS_S_SRA_20110926T032153_20110926T032154 Arar, Saudi Arabia 

19 TSX1_SAR__MGD_RE___HS_S_SRA_20120204T141019_20120204T141020 Jask Airport, Iran 

20 TSX1_SAR__MGD_RE___HS_S_SRA_20130130T023904_20130130T023905 Abadan Airport, Iran 

21 TSX1_SAR__MGD_RE___HS_S_SRA_20090416T022259_20090416T022259 Abu Dhabi, United Arab Emirates 

22 TSX1_SAR__MGD_RE___HS_S_SRA_20080817T142711_20080817T142712 Dubai, United Arab Emirates 

23 TSX1_SAR__MGD_RE___HS_S_SRA_20121030T021434_20121030T021435 Dubai, United Arab Emirates 

24 TSX1_SAR__MGD_RE___HS_S_SRA_20130531T144436_20130531T144436 Al Qaffay Island, United Arab Emirates 

25 TSX1_SAR__MGD_RE___HS_S_SRA_20090809T023124_20090809T023125 Durrat Al-Bahrain, United Arab Emirates 

26 TSX1_SAR__MGD_RE___HS_S_SRA_20100819T141849_20100819T141850 Dubai, United Arab Emirates 

27 TSX1_SAR__MGD_RE___HS_S_SRA_20101212T022258_20101212T022259 The Palm Jumeira, United Arab Emirates 

North America 

1 TDX1_SAR__MGD_RE___HS_S_SRA_20111126T011308_20111126T011309 Edmonton, Canada 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20080903T222539_20080903T222540 Bylot Island, Canada 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20110506T111215_20110506T111216 Ottawa West part, Canada 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20090706T225246_20090706T225247 Arnprior, Canada 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20100901T110337_20100901T110338 Montreal, Canada 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20100918T230943_20100918T230943 Brampton, Canada 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20120109T110428_20120109T110429 Romulus, U.S.A. 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20080818T113026_20080818T113026 Toledo, U.S.A. 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20100622T230819_20100622T230819 Washington DC, U.S.A. 

10 TSX1_SAR__MGD_RE___HS_S_SRA_20090115T110512_20090115T110512 Washington DC, U.S.A. 

11 TSX1_SAR__MGD_RE___HS_S_SRA_20090301T225940_20090301T225941 Baltimore, U.S.A. 

12 TSX1_SAR__MGD_RE___HS_S_SRA_20090812T110513_20090812T110514 Baltimore, U.S.A. 

13 TSX1_SAR__MGD_RE___HS_S_SRA_20110911T104717_20110911T104718 Massachusetts, U.S.A. 

14 TSX1_SAR__MGD_RE___HS_S_SRA_20100812T120450_20100812T120451 Chicago Airport, U.S.A. 

15 TSX1_SAR__MGD_RE___HS_S_SRA_20100912T110453_20100912T110454 JFK Airport, U.S.A. 

16 TSX1_SAR__MGD_RE___HS_S_SRA_20120912T111334_20120912T111335 New York, U.S.A. 

17 TSX1_SAR__MGD_RE___HS_S_SRA_20081116T105608_20081116T105609 New York, U.S.A. 

18 TSX1_SAR__MGD_RE___HS_S_SRA_20081117T225129_20081117T225130 New York, U.S.A. 

19 TSX1_SAR__MGD_RE___HS_S_SRA_20080818T113026_20080818T113026 Johnson Island, U.S.A. 

20 TDX1_SAR__MGD_RE___HS_S_SRA_20120312T015927_20120312T015928 Long Beach, U.S.A. 

21 TSX1_SAR__MGD_RE___HS_S_SRA_20081102T015111_20081102T015111 Edison, U.S.A. 

22 TSX1_SAR__MGD_RE___HS_S_SRA_20081214T135851_20081214T135852 La Canda Flintridge, U.S.A. 

23 TSX1_SAR__MGD_RE___HS_S_SRA_20100915T132454_20100915T132455 Sun Lakes, U.S.A. 

24 TSX1_SAR__MGD_RE___HS_S_SRA_20121027T140650_20121027T140650 Napa, U.S.A. 

25 TSX1_SAR__MGD_RE___HS_S_SRA_20121206T134215_20121206T134215 Salton Sea, U.S.A. 

26 TSX1_SAR__MGD_RE___HS_S_SRA_20121221T140656_20121221T140656 Bay Farm Island, U.S.A. 

27 TSX1_SAR__MGD_RE___HS_S_SRA_20121223T133331_20121223T133331 Gilbert, U.S.A. 

28 TSX1_SAR__MGD_RE___HS_S_SRA_20130730T135046_20130730T135047 Los Angeles, U.S.A. 
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South America 

1 TSX1_SAR__MGD_RE___HS_S_SRA_20120528T001924_20120528T001925 Port of San Jose, Guatemala 

2 TSX1_SAR__MGD_RE___HS_S_SRA_20090625T104815_20090625T104816 Cundinamarca, Columbia 

3 TSX1_SAR__MGD_RE___HS_S_SRA_20090206T230744_20090206T230745 Bogota, Columbia 

4 TSX1_SAR__MGD_RE___HS_S_SRA_20081107T102945_20081107T102946 Tia Juana, Venezuela 

5 TSX1_SAR__MGD_RE___HS_S_SRA_20081125T083747_20081125T083748 Sao Jose dos Campos, Brazil 

6 TSX1_SAR__MGD_RE___HS_S_SRA_20090423T082912_20090423T082912 Sao Jose dos Campos, Brazil 

7 TSX1_SAR__MGD_RE___HS_S_SRA_20120814T084449_20120814T084450 Brasilia, Brazil 

8 TSX1_SAR__MGD_RE___HS_S_SRA_20091107T082911_20091107T082912 Barra da Tijuca, Brazil 

9 TSX1_SAR__MGD_RE___HS_S_SRA_20100410T082908_20100410T082908 Rio de Janeiro, Brazil 

10 TDX1_SAR__MGD_RE___HS_S_SRA_20130626T211726_20130626T211727 Rio de Janeiro, Brazil 
 

APPENDIX III 

This appendix shows (for a selected number of TerraSAR-X 

products from Appendix II) the semantic distribution (in per 

cent) of each identified label (i.e., semantic class) in the given 

image, and its corresponding semantic classification map. 

In this appendix, a uniform colour coding was not possible 

as we have too many classes. Thus, there is no one-to-one 

correspondence between semantic classes and colours. The 

colours from one classification map to another one will differ. 

The users have to understand the colours for each image/pie 

chart separately. 

TABLE AIII.1  

THE QUICK-LOOK IMAGE OF A SELECTED NUMBER OF TERRASAR-X PRODUCTS ACQUIRED OVER AFRICA, ASIA, EUROPE, MIDDLE EAST, NORTH OF AMERICA 

(FROM PHASE I-II) TOGETHER WITH THEIR SEMANTIC MAPS. THESE CITIES ARE THE ONES CONTAINED IN APPENDIX II. 

Abuja Bulawayo Lomé 

 

   

  
Port Elizabeth  Alor Setar Daejeon   
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Kuala Lumpur Jakarta Jacobabad 

  

 

  

 

Mueang Yala Pyongyang Seremban 

  

 

  

 

Singapore Suwon Belgrade 
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Berlin Bordeaux Bremen 

  

 

  

 

Bydgoszcz Chania Genoa 

  

 

  

 

Karlsruhe Lindau London 
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Lyon Madrid Mannheim 

  

 

  

 

Munich Naples Oslo 

  

 

  

 

Plymouth Portsmouth Porto 
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Puzzuoli Rotterdam Skopje 

  

 

  

 

Stockholm Stuttgart Taranto 

  

 

  

 

Teica Thessaloniki Trento 
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Uppsala Van Ashdod 

  

 

  

 

Baghdad Bandar-e-Abbas Bandar Imam Khomeini 

  

 

  

 

Beirut Dhahran Mahabad 
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Riyadh Calgary Ciudad Juarez 

  

 

  

 

North part of San Diego Ottawa Poway 

  

 

  

 

Reno Santa Clarita San Francisco 
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South part of San Diego Sun Lake Tijuana 

  

 

  

 

Tucson Vancouver Washington, DC 

  

 

  

 

 

 

 
TABLE AIII.2 

SEMANTIC DISTRIBUTION (IN PERCENT) OF THE SELECTED TERRASAR-X IMAGES PRESENTED IN TABLE AIII.1. 

Abuja Bulawayo 
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Port Elizabeth Lomé 

  

Alor Setar Daejeon 

  

Jakarta Jacobabad 
 

 

 
 

 

 

 
 

Kuala Lumpur Pyongyang 
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Seremban Singapore 

  

Suwon Mueang Yala 

  

Belgrade Berlin 

 
 

Bordeaux Bremen 
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Bydgoszcz Chania 

  

Genoa Karlsruhe 

  

Lindau London 

  

Lyon Madrid 
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Mannheim Naples 

  

Munich Oslo 

  

Plymouth Portsmouth 

  

Porto Puzzuoli 
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Rotterdam Taranto 

  

Teica Thessaloniki 

  

Trento Skopje 

  

Stockholm Stuttgart 
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Uppsala Van 

  

Ashdod Baghdad 

  

Bandar-e-Abbas Bandar Imam Khomeini 

  

Beirut Dhahran 
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Mahabad Riyadh 

  

Calgary Ciudad Juarez 

  

North part of San Diego Ottawa 

  

Poway Reno 
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Santa Clarita San Francisco 

  

South part of San Diego Sun Lake 

  

Tijuana Tucson 

  

Vancouver Washington DC 
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APPENDIX IV 

This appendix contains a list of semantic classes that are 

retrieved in our dataset with typical examples. 

The histogram is computed for each quick-look patch. The 

patch size is 160×160 pixels, this means 25,600 pixel values.  

This histogram shows the number of brightness matches per 

unit level (within an interval from 0 to 255, i.e., 256 bins). 

 

TABLE AIV.1 
THE THREE-LEVEL HIERARCHICAL SCHEME (SEE FIG. 8): LEVEL 1 (BOLD FACE CLASS NAMES) GIVES GENERAL INFORMATION ABOUT THE SEMANTIC CLASSES, 

LEVEL-2 (BULLETS) GIVES MORE DETAILS FOR THE CLASSES DEFINED IN LEVEL-1, AND LEVEL-3 (CIRCLES) IS THE MOST DETAILED LEVEL OF THE PROPOSED 

SCHEME. THE CLASSES THAT ARE IDENTIFIED IN OUR DATASET ARE MARKED IN RED. 

Semantic classes Quick-look example Histogram 

Settlements 

• Inhabited built-up areas 

o Very low-density residential areas  

 

 

 

 

o Low-density residential areas 

 

 

 

 

 

o Medium-density residential areas 

 

 

 

 

 

o High-density residential areas 

 

 

 

 

 

o Mixed urban areas 

 

 

 

 

 

o Urban houses in residential areas 

 

 

 

 

 

o High buildings 

 

 

 

 

 

o Informal settlements/refugee camps 

  

  

  

  

  

  

  

  

• Uninhabited built-up areas 

o Churches 

 

 

- 

 

 

- 
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o Commercial areas 

 

 

 

 

o Sports grounds 

 

 

 

 

 

o Administrative compounds 

 

 

 

 

 

o Skyscrapers 

 

 

 

 

 

o Educational buildings and campuses 

 

 

 

 

 

o Monument areas 

 

 

 

 

 

o Assembly halls 

 

 

 

 

o Fountains 

 

 

 

o Cemeteries 

 

 

 

 

 

o Parking areas 

 

 

 

 

 

o Open squares 

  

  

  

  

  

  

  

 

- 

 

 

- 

 

  

  

  

• Leisure time facilities 

o Amusement parks 

 

 

- 

 

 

- 
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o Castles 

 

 

 

 

o Hotel resorts 

 

 

 

 

o Tents 

 

 

 

 

o Public parks 

 

- 

 

 

- 

 

  

  

- 

 

- 

 

• Towers  

- 

 

 

- 

 

• Green spaces  

- 

 

 

- 

 

Industrial production areas 

• Industrial facilities 

 

o Industrial buildings 

 

 

 

 

o Chemical plants 

 

 

 

 

 

o Sewage treatment 

 

 

 

 

o Storage tanks 

 

 

 

o Solar parks 

 

 

o Wind parks and farms 

 

 

 

 

o Off-shore platforms 

  

  

 

- 

 

 

- 

 

  

 

- 

 

 

- 

 

 

- 

 

 

- 

 

  

• Industrial storage areas 

 

o Stockpiles 
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o Depots and dumps 

  

• Mining facilities and quarries  

- 

 

 

- 

 

• Truck line-up  

- 

 

 

- 

 

Military facilities 

• Barracks 

 

• Command posts 

 

• Bunkers 

 

 

• Depots and vehicles 

 

 

 

• Camouflaged targets 

 

 

• Fences 

 

 

 
 

 

• Probing grounds, test and shooting ranges 

 

 

 

 

• Naval facilities 

 

 

 

 

• Airplane carriers 

 

 

 

• Airforce facilities 

 

 

• Launch pads 

 

 

• Antenna fields 

 

- 

 

- 

 

- 

 

- 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

  

 

- 

 

 

- 

 

  

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

Transport 

• Airports 

 

o Airport buildings 
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o Control towers 

 

 

 

 

 

o Passenger terminals 

 

 

 

 

o Cargo areas 

 

 

o Hangars 

 

 

 

 

o Runways 

 

 

 

 

 

o Taxiways 

 

 

 

 

 

o Aprons 

 

 

 

 

o Open terrain 

 

 

 

 

o Test stands 

 

 

 

 

o Airplanes 

  

  

 

- 

 

 

- 

 

 

- 

 

 

- 

 

  

  

  

  

 

- 

 

 

- 

 

  

• Roads  

 

 

o Streets and roads 

 

 

 

 

o Highways 

 

 

 

o Feeders 

 

  

  

 

- 

 

- 
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o Roundabouts 

 

 

 

o Gasoline and maintenance stations 

  

 

- 

 

 

- 

 

• Railways 

 

 

o Railway tracks 

 

 

 

o Elevated tracks 

 

 

o Shunting areas 

 

 

 

 

o Depots 

 

 

 

 

o Station buildings 

 

 

 

 

o Control centers 

  

 

- 

 

- 

 

- 

 

 

- 

 

  

  

 

- 

 

 

- 

 

• Bridges and tunnels 

 

 

o Bridges and fly-overs 

 

 

 

o Tunnel portals 

  

 

- 

 

 

- 

 

• Ports and shipbuilding facilities 

 

o Quays 

 

 

 

 

 

o Harbour infrastructure 

 

 

 

 

 

o Warehouses and depots 
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o Docks and shipyards 

 

 

 

 

 

o Cranes 

 

 

 

 

 

o Container stacks 

 

 

 

 

o Pontoons 

  

  

  

  

• Water vessels 

 

 

o Small vessels (boats) 

 

 

 

 

o Big vessels (ships) 

  

  

• Power grid 

 

o Power plants 

 

 

 

 

o Transformer stations 

 

 

 

o High voltage lines 

 

 

 

 

 

o Power line corridors 

  

 

- 

 

 

- 

 

  

  

Agriculture 

 

 

• Cropland 
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• Stubble/bare/ploughed agricultural land 

 

 

 

 

 

• Rice paddies 

 

 

 

 

• Pasture 

 

 

 

 

• Plantations and vegetables 

 

 

 

 

• Greenhouses 

 

 

 

 

• Vineyards 

  

  

  

 

- 

 

 

- 

 

  

  
Natural vegetation 

 

 

• Coniferous forest 

 

 

 

 

• Broadleaf/deciduous forest 

 

 

 

 

• Mixed forest 

 

 

 

 

• Rain forest 

 

 

 

 

• Sparse trees 

 

 

 

 

• Thrown trees 

 

 

 

  

  

  

 

- 

 

 

- 
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• Clear cuts 

 

 

 

 

• Regrowth 

 

 

 

 

• Prairies and grassland 

 

 

 

 

• Tundra 

 

 

• Taiga 

 

 

• Burn scars 

 

- 

 

 

- 

 

  

  

 

- 

 

 

- 

 

 

- 

 

- 

 

- 

 

 

- 

 

Bare ground 

 

 

• Grassland 

 

 

 

 

• Brush/rangeland 

 

 

 

 

 

• Barren, rock, soil or sand 

 

 

 

 

• Desert 

 

 

 

 

• Cliffs 

 

 

 

 

 

• Hills 

 

 

 

 

 

 

• Mountains 
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• Mountain shadows 

 

 

 

 

• Ice on ground 

 

 

• Derelict land 

  

 

- 

 

 

- 

 

 

- 

 

 

- 

 

Water bodies 

 

• Rivers 

 

 

 

 

 

• Lakes 

 

 

 

 

 

• Channels/canals 

 

 

 

 

 

• Sea 

 

 

 

 

 

• Ocean 

 

 

 

 

• Delta 

 

 

 

 

• Beach 

 

 

 

 

• Tidal flats 

 

 

 

 

• Firth 

 

 

 

  

  

  

  

  

  

  

 

- 

 

 

- 
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• Breaking waves 

 

 

 

 

 

• Breakwater 

 

 

 

 

 

• Ice on water 

 

 

 

 

• Flooded areas 

 

 

 

 

• Reservoirs 

 

 

 

 

• Debris (flotsam) 
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