
The BECCAL Experiment Design and Control Software
Arnau Prat

German Aerospace Center (DLR)
Institute for Software Technology
D-38108 Braunschweig, Germany

arnau.pratisala@dlr.de

Jan Sommer
German Aerospace Center (DLR)
Institute for Software Technology
D-38108 Braunschweig, Germany

jan.sommer@dlr.de

Ayush Mani Nepal
German Aerospace Center (DLR)
Institute for Software Technology
D-38108 Braunschweig, Germany

ayush.nepal@dlr.de
Tobias Franz

German Aerospace Center (DLR)
Institute for Software Technology
D-38108 Braunschweig, Germany

tobias.franz@dlr.de

Hauke Müntinga
German Aerospace Center (DLR)

Institute for Satellite Geodesy and Inertial Sensing
D-28359 Bremen, Germany
hauke.muentinga@dlr.de

Andreas Gerndt
German Aerospace Center (DLR)
Institute for Software Technology
D-38108 Braunschweig, Germany

University of Bremen
D-28359 Bremen, Germany

andreas.gerndt@dlr.de

Daniel Lüdtke
German Aerospace Center (DLR)
Institute for Software Technology
D-38108 Braunschweig, Germany

daniel.luedtke@dlr.de

Abstract—This paper presents the software responsible for the
design and execution of the experiments in the Bose-Einstein
Condensate and Cold Atom Laboratory (BECCAL) mission, an
experiment with ultra-cold and condensed atoms on the Inter-
national Space Station. The software consists of two parts: the
experiment control software and the experiment design tools.
The first corresponds to the software running on the payload
and is in charge of controlling and executing the experiments,
while the latter are the tools used by the scientists to create the
experiment definition that will be later uploaded to the instru-
ment to be executed. To overcome the challenge of developing
software with such complexity, it was decided to follow a model-
driven development approach. Several domain-specific lan-
guages (DSLs) have been created to allow scientists to describe
their experiments in a domain-specific way. These descriptions
are then uploaded and executed by different interpreters on-
board. The paper details the architecture of the experiment
control software and the different modules that compose it,
as well as the developed languages and tools used to describe
new experiments. The paper also discusses and evaluates some
important aspects of the software, such as how resilient it is
to failures, as well as the advantages and disadvantages of the
selected approach compared to other approaches used in similar
missions. The developed software will also be used for the
MAIUS-2/3 missions.

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. EXPERIMENT CONTROL SOFTWARE . . . . . . . . . . . . . . . . 2
4. EXPERIMENT LANGUAGES . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5. EXPERIMENT DESIGN TOOLS . . . . . . . . . . . . . . . . . . . . . . . 5
6. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Published article can be found at: https://ieeexplore.ieee.org/document/9438129

1. INTRODUCTION
The NASA-DLR Bose-Einstein Condensate and Cold Atomic
Laboratory (BECCAL) [1] aims at conducting experiments
with ultra-cold and condensed atoms on board the Interna-
tional Space Station (ISS). Its goal is to enable fundamental
research as well as advance technological development by
satisfying a wide range of experimental needs. The unique
microgravity environment on board the ISS will contribute
to these goals by providing prolonged times of free fall and
observation.

The payload operation will be done in collaboration with
scientist from many different institutions, and the aim is to
enable all participants to design and execute their experiments
on the instrument. Finding a common framework to be
used by all scientists to develop new experiments for the
apparatus can be a difficult task. The developed tools should
be powerful enough to create any possible experiment as well
as simple enough to be used by any user without in-depth
knowledge of the hardware. Additionally, the tools must
prevent the user from designing experiments which could
harm the apparatus.

This paper presents the software tools responsible for the
design and execution of the experiments in BECCAL: The
experiment control software and the experiment design tools.
The first one is the software running on the payload and
is in charge of controlling and executing the experiments,
while the latter are the tools used by the scientist to create
the experiment definitions that will be later uploaded to the
instrument to be executed.

Both inherit from the software [2] used in the MAIUS-
1 sounding rocket [3] mission, the first to create a Bose-
Einstein Condensate in space. While in the case of MAIUS-
1, the microgravity phase, in which the experiments were
executed, was only a few minutes long, in BECCAL this time
will be much longer. This will allow for longer and more
complex experiments, which the experiment control software
will need to support.

The main difference of the software with respect to its
predecessor is the possibility to add or modify experiment
descriptions without the need of recompiling the software.

1



This is achieved by using interpreter engines which inter-
pret textual experiment descriptions and execute them after
successful sanity checks. This is a feature that was not
needed for MAIUS-1 due to the limited scope of the mission,
but for a multi-user facility such as BECCAL, this becomes
mandatory.

The software implements several other features to meet the
new mission requirements, such as support for new hardware
compared to the MAIUS-1 mission as well as updating third
party frameworks and libraries to their latest version. Also,
since the experiment will be a payload on board the ISS, the
overall system has to fulfill the necessary safety requirements.
To this end, the design and code quality of the overall
software have to meet the required standards.

The remainder of this paper is organized as follows. Section
2 gives a brief overview of related work. Section 3 describes
the experiment control software. Section 4 gives a summary
of the languages used to design the experiment. Section 5
introduces the experiment design tools. Section 6 presents
some results on some important aspects of the software.
Finally, Section 7 states the conclusions and future work.

2. RELATED WORK
On-board software for spaceborne experiments is usually
written using languages such as C or C++. One of the reasons
for this is the flexibility and performance provided by these
languages [4]. However, if non-computer experts, such as
in this case, need to contribute to the software, by creating
new experiments, the use of these languages can become a
problem due to their complexity. One solution for this are
Domain Specific Languages (DSLs) [5]. Such languages are
usually designed for a specific project and have the advantage
of introducing only a reduced set of elements. This makes
them easy to learn and use. Descriptions written using these
languages can then be used to generate code to be compiled
with the rest of the software or alternatively they can be
executed by an interpreter.

These languages often make use of a Model-Based Software
Development (MBSD) approach to specify its syntax through
a precise and concrete language model. Apart from provid-
ing a high level of abstraction and making them platform
independent, this approach has other advantages such as
reduced manual implementation of interfaces and increase
maintainability [6]. The reason for this is because the model
becomes the single point of truth and redundancies can be
substantially reduced.

Modeling languages such as the Unified Modelling Lan-
guage (UML) and System Modelling Language (SysML)
have proven to be invaluable tools for designing complex
systems [7] [8]. Modeling languages can have a textual or
graphical representation. For the second one, a good example
is MATLAB/Simulink, which allows to graphically specify
software components to later generate source code from it.

Overall, the use of such languages is a good fit for BECCAL,
where non computer experts need to collaborate and the tools
have to be as accessible as possible. As we will see, BECCAL
implements different Domain Specific Languages (DSLs),
both graphical and textual to easily create new experiment
definitions. These languages are designed specifically for the
project at hand, which makes them easier to use due to their
reduced set of elements.

The presented approach differs from the one used in similar
missions such as NASAs Cold Atom Laboratory (CAL) [9]
[10]. In CAL, experiments are designed and controlled
using LabVIEW taking advantage of its wide availability in
industry as well as its easy to use interface. However, such
approach usually requires access to a graphical session on the
computer running the experiments, either via direct access
or using a remote desktop sharing environment. This costs
bandwidth and may be subject to delays, possibly making it
difficult to operate remotely. On the other side, our approach
offers similar advantages without such burden.

The described approach also differs from the one used in
MAIUS-1 as mentioned in the introduction. Since experi-
ments are not converted to C++ to be compiled together with
the flight software but instead are saved as a textual file to
be interpreted on-board. For MAIUS-1, compilation was
feasible due to its short flight duration on a sounding rocket.
However, a multi-user facility such as BECCAL requires easy
uploading and change of experiments. The main advantage
of this approach is that it allows adding new experiments
descriptions without having to restart the software. On the
other side, before interpreting them, extensive sanity checks
need to be performed in case there could be errors with the
experiment descriptions or input parameters. The resilience
of the software due to possible errors in the experiment
descriptions is evaluated in Section 6.

Another alternative used by other complex experiment con-
trol software for physical experiments is to use high-level
languages such as Python, which may be seen as more
accessible and simpler than C or C++. An example of this can
be found in the JOKARUS [11] mission, a compact optical
iodine frequency reference for a sounding rocket, in which
Python was used to program the control software. However,
the use of these languages usually implies a higher memory
consumption and a decrease in performance compared to low-
level languages, which sometimes cannot be afforded.

Another interesting example is Orocos [12], an execution
environment for building real-time robotics, which allows
to control robots by using a different DSL, which are later
interpreted using a Lua scripting engine. This approach is
very similar to ours, however the use of custom scripting
languages instead of a general purpose one such as Lua al-
lowed us to tailor the interpreters and syntax of the languages
themselves to our needs and optimize it.

3. EXPERIMENT CONTROL SOFTWARE
The experiment control software is the software running on
the on-board computer of the experiment. It has direct com-
munication with the experiment electronics and its task is to
execute the experiment descriptions as well as to record data
from the different subsystems. The software is controlled and
monitored through the ground control software. Due to the
large amount of experiment hardware and domains involved,
a model-driven approach was chosen for its development.

This model-driven approach is used for the hardware drivers
and the experiment description part of the software. For this,
a minimal core system of the on-board software provides the
necessary interfaces to implement drivers and experiments.
These descriptions are generated by the engineers and sci-
entists using different DSLs. For the drivers, the generated
code is compiled with the rest of the flight software since the
hardware will not change during the experiment lifetime. The

2



experiment descriptions are saved in a textual form to be later
interpreted by different interpreters, which are part of the core
software.

Figure 1: Experiment Control Software Architecture

Figure 1 shows the main building blocks of the software
and their inter-dependencies. Starting from the bottom, we
have the controllers for the experiment hardware. We can
distinguish between two types: The Stack Manager han-
dles custom-built hardware using drivers auto-generated from
hardware descriptions provided by the engineers. The Driver
Manager handles off-the-shelf hardware such as cameras via
drivers manually coded. On top we have the different Inter-
preter Engines, which interpret and execute the experiments
descriptions written by the scientists as well as the module
in charge of scheduling the execution of the experiments.
Finally, both above and to the right we have the core modules
of the software, which performs tasks such as logging as well
as command and data handling.

Communication between the different modules is realized by
the “Tasking Framework” developed by DLR [13] which has
been successfully used in the MAIUS-1 mission and other
DLR projects [14]. In this framework, modules are connected
through so-called channels (represented as arrows in Figure
1). These are unidirectional and handle a certain datatype
that has to fit the input and output slots of the connected
modules. In BECCAL these datatypes are called packets.
Tasking Framework follows an event-driven approach, which
means that when a module receives a new packet a response
procedure will be triggered.

These modules can be gathered into different groups de-
pending on their functionality. Namely four groups have
been identified: Telecommunication, Experiment Execution,
Hardware Management, and Data Management. Next, each
of these groups is described.

The Telecommunication group handles all communication
that is exchanged live with the Ground Control Software. It is
in charge of accepting telecommands from ground and send-
ing back telemetry packets. The received telecommands are
checked for validity and forwarded to the responsible module
for further processing. Telemetry data from other software
modules is packaged into telemetry packets according to the
communication protocol and sent to ground. It is also the
responsibility of the Telecommunication group to monitor the
state of the ground connection and reestablish it in case the
connection is lost.

The Experiment Execution group is separated into two levels:
sequences and graphs. Sequences are essentially building
blocks of the experiment and are used to carry out actions
on the experiment hardware. The graph chains multiple
sequences into a full experiment cycle and even allow for
a certain amount of flow control depending on measured
conditions. Both the sequences as well as the graphs are
saved as files and are loaded by the Experiment Execution
group. The Experiment Execution group contains all software
parts necessary to ensure the correct execution order of the
experiment. This includes the interpreter for the experiment
sequences and graphs as well as the control flow defined
therein. The group then passes the actions to the Hardware
Management group for execution.

The Hardware Management group is the only software that
directly access the experiment hardware. It is responsible for
controlling the stack electronics as well as the cameras and
other hardware operations. Additionally, to the control of the
experiment hardware, this module also collects raw data from
the electronics and the rest of the hardware and send it to the
Data Management group.

The Data Management group processes all raw data that
is collected from the hardware. This group does not have
direct access to the hardware and it receives the raw data
from the Hardware Management group. The group converts
the incoming raw data into the respective physical units.
Additionally, to the conversion of raw numeric data, the Data
Management module is also responsible for downscaling
images for the live telemetry downlink.

The processed data is then distributed threefold: It is partly
fed back to the Experiment Execution group to determine the
experiment flow. Parts are sent to the Telecommunication
group and then processed as live telemetry data for the ground
station. This also includes low resolution versions of the
acquired images. Finally, the full set of data, including full
resolution images, is saved to the file system and can be
downloaded during idle periods of the experiment.

A special group, which does not appear in Figure 1. It is
the Watchdog group, which is not part of the experiment
control system but of the Failure Recovery System. The main
purpose of the module is to monitor the remaining groups
and report and restart them if one of it is failing. To this end,
this uses a Failure Detection Isolation and Recovery (FDIR)
strategy.

The on-board computer running the experiment control soft-
ware uses a standard Linux operating system. Uploading the
experiment files and download of scientific data can be done
using standard file transfer protocols like Secure File Transfer
Protocol (SFTP). The system also allows carrying out main-
tenance such as software update through direct access to the
computer using protocols such as SSH.

4. EXPERIMENT LANGUAGES
This section goes into more details regarding the different
languages used to describe experiments. In total five different
languages have been developed, which can be split into two
domains: electronic domain and experiment domain. The
languages corresponding to the electronics domain are used
to provide hardware definitions that will be used to generate
source code. Whereas the languages corresponding to the
experiment domain are used to describe the experiments to

3



be executed on the hardware and are the languages that this
paper will focus on. This domain is formed by three DSLs.
First, is the Sequence DSL, which is an abstract description of
the behavior of a single step of the experiment. Additionally,
to prevent repeating code, Sequences are subdivided into
Subsequences as many parts of sequences will be repeated
and only differ by parameters or timing. This corresponds
to the Subsequence DSL. The last layer of the model is a
graphical representation of the experiment flow called Ex-
periment Execution Graph, which is designed as a binary
decision graph. This can be seen in Figure 2.

Figure 2: Developed Domain Specific Languages

The syntax of the Sequences, Subsequences and generated
experiment execution graphs is based on YAML (YAML
Ain’t Markup Language). The main reasons why it was
chosen was because it was found to have a good trade-off be-
tween human and machine readability. Although it is possible
to edit these files manually, it is intended that the creation of
new experiments is done through the experiment design tools
presented in Section 5. These tools provide verification and
validation, warning the user of possible errors, and simplify
the overall process of creating new experiments.

Communication of the sequences with the electronics is done
through the so-called channels and they are the basic elements
to interact with the experiment hardware. There are two types
of channels: output channels, which change some physical
parameter (actuators) and input channels, which measure
a certain parameter (sensors). In a sense, sequences and
subsequences can be seen as a precise timing description of
the state of the apparatus, where each step describes which
and how a channel is modified. On the other side, graphs can
use input channels to read the current state of the apparatus
and decide what next step to take.

In Figure 3 we can see an example of a subsequence file. The
structure of sequences and subsequences is fairly similar and
a brief description of the structure for both is given below.

A sequence can contain parameters, constant channels and
subsequence elements. Each of them is described below.
Also, a sequence should have a unique name and identifier.
Optionally, it is possible to specify a description for the
sequence and the date when it was created or modified. After
these, one can specify the parameters that the sequence takes.
The value that each parameter takes can then be specified
when running the sequence. If no value is specified or the
value is not within defined bounds, the default value is used.
After the parameters, one can specify constant channels.
These are channels that remain constant during the execution
of the sequence. Its value can be of three types: boolean,
float or ramp. Finally, one can specify subsequences. In
order to define which subsequences should be executed, first

name: TestSubseq
description: 'An example test subsequence'
date: '01.01.2021'
init: false
parameters:
Analog0: {default: 0.0, max: 10.0, min: -10.0}
Analog1: {default: 0.0, max: 10.0, min: -10.0}
Time: {default: 10.0, max: 500.0, min: 0.0}

subsequence:
- time: 0.0
slotname: SetToZeroAnalog123
channels:
- {name: AnalogOut00, value: 0.0}
- {name: AnalogOut01, value: 0.0}
- {name: AnalogOut02, value: 0.0}

- time: 0.1 + Time
slotname: SetValuesAnalog12
channels:
- {name: AnalogOut00, value: Analog1}
- {name: AnalogOut01, value: Analog2}

Figure 3: Example Subsequence File

it needs to be specified the time when they should be executed
followed by the subsequence name. Note that the time should
be greater than the previous subsequence time plus the time it
takes for such subsequence to execute.

Similar to a sequence, a subsequence may contain zero or
more parameters, and slots elements. Each of them is de-
scribed below. Also, each subsequence should have a unique
name. In the same way as the sequence, a subsequence starts
with its metadata fields, i.e., its unique name and optionally
description and date. The init option is used to specify if the
channels will be called in init mode. While sequences are
comprised of subsequences, subsequences are comprised of
slots. Each slot allows one to specify a set of channels that
needs to be called at a certain period of time. The value for
these channels can be a parameter, float or bool.

As seen in Section 2, the use of DSLs has several advantages.
However, it also limits what is possible to do with them.
Thus, there are certain sequences that are not realizable using
this syntax and had to be coded directly using C++. These
sequences are called Untimed Sequences and are compiled
together with the flight software. The normal sequences
are known as Timed Sequences. An example of Untimed
Sequences is the sequence in charge of locking the lasers to
the right frequency.

It is foreseen that a pool of commonly used sequences and
subsequences (both timed and untimed) will be shared with
the experiment developers containing basic functionalities
such as taking a picture. Then this pool can be used as
basic blocks to create more complex experiments using them
as basic elements for the graphs. While additional timed
sequences will be able to be created using the experiment
editors, new untimed sequences will need to be coded by the
payload developers.

The graphs on the other side are graphical representations
designed as a binary decision graph. Similar to UML ac-
tivity diagrams, graphs are represented by boxes and deci-
sion points. Each decision point is shaped like a rhombus
and has a binary output (true or false). The output will
depend on the evaluation of the expression inside the decision
point. Graphs can have different types of boxes, these are:
assignment boxes, where an assignment to a parameter can
be done; sequence boxes, which can call a given sequence;
subgraph boxes, which can call another graph and scan-fit
blocks, which allow repeating a sequence changing the value

4



S

F

A

G

Entry point

End point

Connector

Control block

Assignment block

Sequence block

Scan-fit block

Subgraph block

Figure 4: An Example Experiment Execution Graph

of different parameters that the sequence takes. Depending
on the type of box it will have a different color or shape.
Elements are connected together through arrows and each
element can only be connected to another element. Figure 4
visualizes an example sequence-graph with two entry-points.
A graph can be started from either of these entry-points, and
a graph execution terminates at an end-point.

Apart from sequences and control blocks, the graphs can
also include other special components. One of the most
important are the so-called scan-fit blocks. These allow to
scan a sequence with different values for certain parameters
and optimize them by analyzing the output of the sequence
being run. These have been substantially improved with
respect to the previous version flown in MAIUS-1 allowing
more complex scans and optimization of multiple parameters
simultaneously.

name: GraphTest_conf1
id: 0x22451BE4
description: 'An example test graph'
date: '02/09/2020 10:36:30'
globals:
glob1: {default: 1.0, max: 2.0, min: -1.0}
glob2: {default: -1.0, max: 2.0, min: -1.0}

points:
- {id: 0x00000000, next: 0x00000101}
- {id: 0xFFFFFFFF, next: 0xFFFFFFFF}
- {id: 0x00000001, next: 0x00000102}
controls:
- {id: 0x00000104,

condition: 'glob1 < measurement(NTC_2DCoil)',
nextTrue: 0x00000105,
nextFalse: 0xFFFFFFFF}

- {id: 0x00000102,
condition: 'glob2 := 2.0',
nextTrue: 0x00000104,
nextFalse: 0x00000104}

sequences:
- {id: 0x00000105,

name: SI_2,
hash: 0x9F50D140,
parameters: [1000.0, 1.0, 1.0, 800.0, 800.0],
next: 0xFFFFFFFF}

subgraphs:
- {id: 0x00000101,

name: scanfits/GraphTest_conf1_SF_0_0x09AC94EA,
next: 0x00000105}

Figure 5: A Generated Flow File Example

In order to be interpreted, graphs are translated into so called
flow files. Similar to sequences, flow files are also based on

YAML and they are an element representation of graphs. Fig-
ure 5 shows an example of one of these files. All the elements
are grouped based on these basic types. In this case, entry
points, sequences, subgraphs and control blocks. Assignment
blocks are translated into control blocks, and scan-fits are
generated into subgraphs in which basic elements emulates
the behavior.

5. EXPERIMENT DESIGN TOOLS
The experiment design tools are used by the scientist to
design new experiments. They support the scientist with
designing a formally correct experiment which later can be
uploaded and executed on the payload. There are two main
tools: the Sequence GUI and the Experiment Editor. Both
software packages provide graphical user interfaces to assists
physicists to design complex experiments. The Sequence
GUI has been used to design the Sequences and the Subse-
quences, whereas the Experiment Editor is used to design the
experiment execution graphs. In addition, the Sequence GUI
can also be used to locally control the experiments by directly
uploading sequences to the apparatus. Both tools are foreseen
to be delivered to the scientists as a single package. A more
detailed description of both tools is given below.

Figure 6 shows a screenshot of the Sequence GUI, where
values for different channels of a subsequence are displayed
with GUI controls inside slots, allowing for easy editing of
subsequences. Triggers and digital channels are displayed as
buttons, while inputs for analog channels allow floating point
numbers with optional parameters. On the top, subsequence
parameters can be added, removed or changed.

Figure 6: Screenshot Sequence GUI

An additional GUI element shown in Figure 7 allows arrang-
ing and parameterizing subsequences into sequences.

The Sequence GUI is intended for the design of sequences
and subsequences, while experiment execution graphs are
designed using the Experiment Editor explained below. Since
sequences can only write to analog and digital items but
not read from them, they cannot react to the current state
of the experiment. This behavior is achieved through the
experiment execution graphs by passing different parameters
to the sequences they call depending on the current execution
state.

5



Figure 7: Sequence GUI Timeline

Input errors such as invalid values for physical channels
or overlapping subsequences are checked at runtime and
immediate feedback is given to the user with details about
the errors. These checks are powered by the same hardware
definitions that are used by the experiment control software.
Therefore the hardware definitions are used as the single point
of truth throughout all software tools.

The Sequence GUI is written in Python with Qt bindings for
the GUI elements, which allows for high-level graphics sup-
port as well as easy debugging and extensibility by scientists.

The experiment editor is based on Java/Eclipse and provides
installable features with plugins. This modular approach
allows to have an incremental development workflow, so
that features could be added or updated conveniently as per
the new requirements from the scientists. The experiment
editor follows a model-driven development methodology and
is built on top of Virtual Satellite 4 (VirSat4) [15], an
open source software for model-based systems engineering
(MBSE). The MBSE approach in the development increases
productivity by allowing source code, test files, as well as
documentations to be generated automatically from the data
model of the system. To that end, the experiment editor
provides textual as well as graphical DSLs to describe and
configure the model i.e. the experiment execution graph.
Moreover, through the import mechanism sequences and
hardware DSLs can be linked to the model. New textual
DSLs have been developed to define condition expressions,
assignment expressions, and the scan-fit operation.

Figure 8: Screenshot Experiment Editor GUI

Figure 8 shows a screenshot of the experiment editor GUI,
where an example experiment execution graph can be seen.
An example scan-fit operation using the respective DSL can
be seen in the bottom panel. The panel on the left shows the
project tree and the one on the right shows the palette. The

user can choose elements from the palette and click anywhere
on the graph to create it and connect them using the connec-
tors. All graphs start at an entry point and end at the end-
point. Each of these blocks can be customized individually by
opening them in an editor. A double-click on the DSL blocks
(assignment, control, and scan-fit) opens the respective DSL
textual editor, whereas, for other blocks the respective editor
GUI is open. A graph instance can be configured by creating
a graph configuration for it. A graph configuration holds an
instance of all global parameters associated with the graph.
Initial values of the global parameters can be assigned in
the graph configuration. The flow files are generated from
the graph configuration triggering a generator. A flow file
is generated for the graph and all other graphs which are
subgraphed by the configured experiment execution graph.
Furthermore, all scan-fit operations are treated as a subgraph
and they are also serialized into individual flow files.

6. RESULTS
The BECCAL instrument is scheduled to be launched and
integrated on the ISS in 2024 and planned to be operated for
several years. In order to support such long lead times, the
experiment control software as well as the experiment design
tools need to be developed with long time maintainability
in mind. For the experiment control software, this was
comparably easy to achieve. It mostly depends on a standard
C++ compiler and libraries provided by the operating system,
which will be available given common support schedules of
commercial Linux operating systems.

For the experiment design tools, this was more difficult to
achieve since GUI components are often subject to constant
progress and changes. We therefore use Virtual Satellite as
a base-platform for our new tools, which is developed by
DLR. It is a strategic software product for DLR’s model-
based systems engineering effort which ensures long-term
maintenance. The GUI elements for the Experiment Editor to
create and manipulate graphs had to be re-implemented based
on Graphiti, a more modern and future-proof framework than
the Eclipse Modeling Framework (EMF) used in MAIUS-1.
Similarly, the Sequence GUI is updated to the most recent
version of Python and corresponding Qt bindings. In both
cases, care was taken to keep continuity in the user interface.

A first version of the new BECCAL software, both experi-
ment control software and experiment design tools, have been
disseminated to scientists working with a laboratory setup.
The received feedback from the experts who use the tools
through different interviews is very positive.

Although the user interface of the new experiment de-
sign tools were re-implemented in large parts compared to
MAIUS-1, only little time was necessary to train the users
to work with the new user interface. It is now already
part of the daily work in the laboratory. The round-trip
time for experiment changes has been decreased significantly.
Previously, when changes were introduced to sequences or
experiment execution graphs, the experiment control software
needed to be recompiled, which could take up to 20 min in
worst-case scenarios. Recompilation is now only necessary
if changes were made to the control electronics of the ex-
periment which occurs very rarely in the laboratory and will
not occur at all for the final BECCAL instrument. Given
the significant increase in complexity of BECCAL compared
to earlier instruments like MAIUS-1, also longer and more
complex test campaigns in the laboratories are to be expected.

6



The achieved time savings in the daily work for the scientists
will facilitate this work greatly.

BECCAL is developed with an international collaboration of
scientists for the experiment design in mind. Being able to
exchange knowledge and experience as well as trace changes
and contributions is therefore necessary. With the new BEC-
CAL software, all experiment input data, i.e., sequences,
subsequences, and experiment execution graphs are now
available as simple text files in YAML format. That means,
common tools for distribution, version control, and data
comparison known from the software development domain
can be used to establish the framework for the collaboration.
The YAML format also ensures a certain level of human
readability of all input data, giving the chance for manual
check, if necessary.

A big change with respect to the MAIUS-1 software is the
fact of using custom interpreters for the DSLs. An interesting
metric is to see how resilient is our software to corrupted
or invalid experiments descriptions as well as invalid input
values to the experiment. In MAIUS-1, if there was a problem
with an experiment definition, this could be notified by the
compiler. However, in BECCAL sanity checks and validation
have to be performed on the fly.

In the case of BECCAL, we can analyze three scenarios. A
first one in which an experiment definition files (sequence,
subsequence or graph) is corrupted and cannot be processed;
a second one, in which an out-of-bounds value for a pa-
rameter is passed to an experiment; and finally, the case in
which a graph goes into an error state due to the dynamics
of the experiment outputting wrong values or entering into an
infinite loop.

The first scenario is easily solved by using a checksum in
the experiment definitions. The experiment control software
computes the hash for the file and checks whether it matches
the provided one. In case the hashes do not match, the defini-
tion is deemed corrupted, the experiment is not executed and
a warning is sent to the experiment operator.

The second scenario is handled on the fly through validators
implemented in the interpreters. When assigning a value
to a parameter, the experiment control software first checks
whether the value is between the defined maximum and min-
imum bounds. If yes, the value is assigned to the parameter.
And if not, the default value is assigned and a warning
message is sent to the operator.

The third case can only be checked through simulation, either
by running it in a simulator or in one of the planned ground
test beds. Future improvement could include to perform a
model checking analysis on the graph. Every experiment
needs to be tested before being uploaded to the ISS, since
there are rare combinations of sequences which could have
the potential to create strong heating and potentially degrad-
ing the experiment performance.

For this reason, experiments will only be allowed to run on
the ISS if they have been tested and qualified by one of the
ground test-beds. For qualification, an operational procedure
is in place which ensures that potentially damaging experi-
ment configurations will not be allowed to be transmitted to
the BECCAL instrument on-board the ISS.

7. CONCLUSION
In this paper, we presented the software responsible for the
design and execution of the experiments in the BECCAL
mission. This is composed of two parts: the experiment
control software, which is the software running on the on-
board computer of the apparatus and is in charge of executing
the experiments, and the experiment design tools, which are
the tools used by the scientist to design new experiments.
Both inherit from the MAIUS-1 software and the main nov-
elty is the possibility to add and execute new experiments
on the fly, this is done by using an interpreter engine which
interprets and executes the experiment definitions without
the need of recompile and restarting the software. At the
moment BECCAL, is expected to fly in 2024. And several
improvements will still be made to the software. However,
part of the software will already be tested for the MAIUS-
2/3 missions, which are expected to fly in 2022 and 2023
respectively.

ACKNOWLEDGMENTS
This work is partly supported by the German Space Agency
(DLR) with funds provided by the Federal Ministry for
Economic Affairs and Energy (BMWi) due to an enactment
of the German Bundestag under Grant Nos. 50WM1131-
1137, DLR50WP1431-1435, 50WM1552-1557, 50WP1700-
1706 and 50WM1952-1957. We would also like to thank
the BECCAL and MAIUS teams for their contribution and
support.

REFERENCES
[1] K. Frye, S. Abend, W. Bartosch, A. Bawamia,

D. Becker, H. Blume, C. Braxmaier, S.-W. Chiow,
M. A. Efremov, W. Ertmer, P. Fierlinger, N. Gaaloul,
J. Grosse, C. Grzeschik, O. Hellmig, V. A. Henderson,
W. Herr, U. Israelsson, J. Kohel, M. Krutzik, C. Kürbis,
C. Lämmerzahl, M. List, D. Lüdtke, N. Lundblad,
J. P. Marburger, M. Meister, M. Mihm, H. Müller,
H. Müntinga, T. Oberschulte, A. Papakonstantinou,
J. Perovšek, A. Peters, A. Prat, E. M. Rasel,
A. Roura, W. P. Schleich, C. Schubert, S. T. Seidel,
J. Sommer, C. Spindeldreier, D. Stamper-Kurn, B. K.
Stuhl, M. Warner, T. Wendrich, A. Wenzlawski,
A. Wicht, P. Windpassinger, N. Yu, and L. Wörner,
“The Bose-Einstein Condensate and Cold Atom
Laboratory,” arXiv, dec 2019. [Online]. Available:
http://arxiv.org/abs/1912.04849

[2] B. Weps, D. Lüdtke, T. Franz, O. Maibaum, T. Wen-
drich, H. Müntinga, and A. Gerndt, “A model-driven
software architecture for ultra-cold gas experiments
in space,” in Proc. of the International Astronautical
Congress, IAC, 2018.

[3] D. Becker, M. D. Lachmann, S. T. Seidel, H. Ahlers,
A. N. Dinkelaker, J. Grosse, O. Hellmig, H. Müntinga,
V. Schkolnik, T. Wendrich, A. Wenzlawski, B. Weps,
R. Corgier, T. Franz, N. Gaaloul, W. Herr, D. Lüdtke,
M. Popp, S. Amri, H. Duncker, M. Erbe, A. Kohfeldt,
A. Kubelka-Lange, C. Braxmaier, E. Charron,
W. Ertmer, M. Krutzik, C. Lämmerzahl, A. Peters,
W. P. Schleich, K. Sengstock, R. Walser, A. Wicht,
P. Windpassinger, and E. M. Rasel, “Space-borne Bose-
Einstein condensation for precision interferometry,”
Nature, vol. 562, no. 7727, pp. 391–395, 2018.
[Online]. Available: https://doi.org/10.1038/s41586-

7



018-0605-1

[4] M. Nahas and A. Maaita, “Choosing appropriate pro-
gramming language to implement software for real-
time resource-constrained embedded systems,” Embed-
ded Systems-Theory and Design Methodology, 2012.

[5] M. Fowler, Domain-specific languages. Pearson Edu-
cation, 2010.

[6] B. Selic, “The pragmatics of model-driven develop-
ment,” IEEE software, vol. 20, no. 5, pp. 19–25, 2003.

[7] B. Selic, “Using UML for modeling complex real-
time systems,” in Languages, compilers, and tools for
embedded systems. Springer, 1998, pp. 250–260.

[8] P. David, V. Idasiak, and F. Kratz, “Reliability study
of complex physical systems using sysml,” Reliability
Engineering & System Safety, vol. 95, no. 4, pp. 431–
450, 2010.

[9] D. C. Aveline, J. R. Williams, E. R. Elliott, C. Dutenhof-
fer, J. R. Kellogg, J. M. Kohel, N. E. Lay, K. Oudrhiri,
R. F. Shotwell, N. Yu et al., “Observation of bose–
einstein condensates in an earth-orbiting research lab,”
Nature, vol. 582, no. 7811, pp. 193–197, 2020.

[10] M. Soriano, D. Aveline, M. Mckee, K. Virkler, C. Ya-
mamoto, and A. Sengupta, “Cold atom laboratory mis-
sion system design,” pp. 1–11, 2014.

[11] K. Döringshoff, F. B. Gutsch, V. Schkolnik, C. Kürbis,
M. Oswald, B. Pröbster, E. V. Kovalchuk, A. Bawamia,
R. Smol, T. Schuldt et al., “Iodine frequency reference
on a sounding rocket,” Physical Review Applied, vol. 11,
no. 5, p. 054068, 2019.

[12] M. Klotzbücher, P. Soetens, and H. Bruyninckx, “Oro-
cos rtt-lua: an execution environment for building real-
time robotic domain specific languages,” in Interna-
tional Workshop on Dynamic languages for RObotic
and Sensors, vol. 8, 2010.

[13] Z. A. Haj Hammadeh, T. Franz, O. Maibaum,
A. Gerndt, and D. Lüdtke, “Event-driven multithreading
execution platform for real-time on-board software sys-
tems,” in Proceedings of the 15th annual workshop on
Operating Systems Platforms for Embedded Real-time
Applications, 2019, pp. 29–34.

[14] C. J. Treudler, H. Benninghoff, K. Borchers, B. Brunner,
J. Cremer, M. Dumke, T. Gärtner, K. J. Höflinger,
D. Lüdtke, T. Peng et al., “ScOSA-scalable on-board
computing for space avionics,” in Proceedings of the
International Astronautical Congress, IAC, 2018.

[15] SC-SRV DLR. (2019) Virtual satellite
4 - core. [Online]. Available:
https://github.com/virtualsatellite/VirtualSatellite4-
Core

BIOGRAPHY[

Arnau Prat received his B.S. degree
in electronics systems engineering and
M.S. degree in telecommunications engi-
neering from the Polytechnic University
of Catalonia (UPC), Barcelona, Spain
in 2015 and 2017 respectively. He is
currently a research scientist at the Ger-
man Aerospace Center (DLR) in the de-
partment of Software for Space Systems
and Interactive Visualization since 2018

where he is involved in the development of on-board software
for space mission. From 2016 to 2017, he was a research
assistant with the department of Signal Theory and Commu-
nications, UPC, Barcelona, Spain, where he was involved in a
terahertz radar system. In 2017 he was a visiting student with
the department of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, NY, USA, where he worked on an
intelligent cognitive assistant for space applications.

Jan Sommer received his M.Sc. in
Space Science and Engineering in 2013
Technical University of Luleå. After
a traineeship with the European Space
Agency in the section for software en-
gineering he is now with the German
Aerospace Center (DLR) in the depart-
ment “Software for Space Systems and
Interactive Visualization” since 2015
where he is active in the development

of on-board software for spacecraft missions. His current
research interests include the application of model-driven
software development methods for on-board software devel-
opment.

Ayush Mani Nepal received his M.Sc.
degree in Computational Sciences in En-
gineering (CSE) with a major in Elec-
trical Engineering from the Technical
University of Braunschweig in 2019. He
joined the department of Software for
Space Systems and Interactive Visual-
ization at the German Aerospace Cen-
ter (DLR) during his Masters in year
2017 and has since been active in the

development of model-driven software engineering tools for
space systems. After writing the Master thesis in 2019, he is
working as a scientific researcher in the same department at
DLR. His main research interests include machine learning
for space domain applications.

8



Tobias Franz received his M.Sc degree
in Computer Science from the Technical
University of Braunschweig in 2018. He
joined the Institute for Software Technol-
ogy at German Aerospace Center (DLR)
in 2012 as part of a university program,
where he was active in area of model-
driven software development for embed-
ded systems. Currently he is a research
scientists with interests in model-based

systems engineering for space systems.

Hauke Müntinga received his diploma
in Physics from the University of Old-
enburg in 2008. He then joined the
Center of Applied Space Technology and
Microgravity at the University of Bre-
men, where he worked on quantum opti-
cal experiments in microgravity in drop-
tower and sounding-rocket experiments.
In 2019, he reveived his doctorate in Ex-
perimental Physics. In 2020, he joined

the Institute for Satellite Geodesy and Inertial Sensing at
the German Aerospace Center (DLR), where he develops
experiment control software for spaceborne experiments and
simulations of quantum sensors.

Andreas Gerndt is the head of the
department “Software for Space Sys-
tems and Interactive Visualization” at
the German Aerospace Center (DLR).
He received his degree in computer sci-
ence from Technical University, Darm-
stadt, Germany in 1993. In the position
of a research scientist, he also worked
at the Fraunhofer Institute for Computer
Graphics (IGD) in Germany. Thereafter,

he was a software engineer for several companies with focus
on Software Engineering and Computer Graphics. In 1999
he continued his studies in Virtual Reality and Scientific Vi-
sualization at RWTH Aachen University, Germany, where he
received his doctoral degree in computer science. After two
years of interdisciplinary research activities as a postdoctoral
fellow at the University of Louisiana, Lafayette, USA, he
returned to Germany in 2008 to work for DLR in the domain
of aerospace software research. Since 2019, he is also
Professor in High-Performance Visualization at University of
Bremen, Germany.

Daniel Lüdtke received the diploma de-
gree Dipl.-Ing. in Computer Engineer-
ing from Technische Universität Berline
(Germany) in 2003. He worked as a
research assistant at the department of
Computer Engineering and Microelec-
tronics, TU Berlin. He joined the Ger-
man Aerospace Center (DLR), Institute
for Software Technology in 2010. Since
2012 he is managing the research group

Onboard Software Systems and is vice head of the department
Software for Space Systems and Interactive Visualization.
His current research interests include model-driven software
engineering for space systems with an emphasis on reconfig-
urable embedded systems.

9


